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Current technologies to measure granule flowability involve at-line methods that can take hours to perform.
This is problematic for a continuous dry granulation tableting line, where the quality assurance and control
of the final tablet products depend on real-time monitoring and control of powder flowability. Hence, a real-
time alternative is needed for measuring the flowability of the granular products coming out of the roller
compactor, which is the unit operation immediately preceding the tablet press. Since particle analyzers have
the potential to take inline measurements of the size and shape of granules, they can potentially serve as
real-time flowability sensors, given that the size and shape measurements can be used to reliably predict
flowability measurements.
This paper reports on the use of Partial Least Squares (PLS) regression to utilize distributions of size
and shape measurements in predicting the output of three different types of flowability measure-
ments: rotary drum flow, orifice flow, and tapped density analysis. The prediction performance of PLS
had a coefficient of determination ranging from 0.80 to 0.97, which is the best reported performance
in the literature. This is attributed to the ability of PLS to handle high collinearity in the datasets and
the inclusion of multiple shape characteristics—eccentricity, form factor, and elliptical form factor—
into the model. The latter calls for a change in industry perspective, which normally dismisses the
importance of shape in favor of size; and the former suggests the use of PLS as a better way to reduce
the dimensionality of distribution datasets, instead of the widely used practice of pre-selecting distri-
bution percentiles.

© 2023 American Pharmacists Association. Published by Elsevier Inc. All rights reserved.

Introduction

blend. For certain compositions, especially those with relatively
high active pharmaceutical ingredients (API), the flowability can

The basic operations in the continuous production of pharma-
ceutical tablets normally involve powder feeding, blending, and
then powder compaction into tablets. Loss-in-weight feeders are
often used to dose the different powder components of a tablet,
in order to meet the correct composition after mixing the dosed
components together in a continuous powder blender. Then, a
tablet press compacts the powders into a pharmaceutical tablet
with the correct physical characteristics of hardness, strength,
and dimensions.! Because of the processes that a blend undergoes
while inside the tablet press, the performance of the tablet press
is dependent on the flowability of the pharmaceutical powder
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become insufficient enough to be detrimental to the quality of
the final tablet products.?

To solve this problem, the tablet press is usually preceded by a
granulation step, one of the primary goals of which is to improve the
flowability by increasing the size of the particles.*~® During this pro-
cess, the shape of the particles could be modified as well, which could
either improve or diminish the flowability and other properties of the
granules. ” However, the changes in the size and shape distribution of
the powder as it goes through a granulator, such as a roller compactor
(RC), could vary. Even if the feed to the RC is a powder blend with
consistently uniform properties, the quality of product granules could
become inconsistent if the RC is unable to reliably maintain its tar-
geted process parameters. This is likely to happen as the condition
and performance of the RC and its associated controllers degrade

0022-3549/© 2023 American Pharmacists Association. Published by Elsevier Inc. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.xphs.2023.01.009&domain=pdf
mailto:rlagare@purdue.edu
https://doi.org/10.1016/j.xphs.2023.01.009
https://doi.org/10.1016/j.xphs.2023.01.009
http://www.ScienceDirect.com
http://www.jpharmsci.org

1428 R.B. Lagare et al. / Journal of Pharmaceutical Sciences 112 (2023) 1427-1439

over time, leading to production of granules with high variability in
its critical-to-quality attributes such as flowability.>~!" Conversely, a
perfectly running RC can still result in low quality granules if the
powder blend feed to the RC is not consistent, possibly a result of
faulty upstream operations. While certain levels of fluctuations in the
quality of the product granules can be tolerated, corrective measures
need to be implemented in a timely manner in case these fluctuations
do go beyond the accepted limits. Hence, effective real-time monitor-
ing is required.

One of the major challenges with monitoring granule flowability
is the absence of a singular measure. It is a common practice to
choose among the multiple methods available to characterize flow-
ability depending on the process conditions experienced by the gran-
ule. In a tablet press, the granules are subjected to various flow
regimes that include dynamic flow in the feed frame and orifice flow
into the die during the dosing stage. Hence, measuring flowability to
monitor the granules exiting the roller compactor require multiple
flowability measurement methods.

Perhaps the biggest challenge with monitoring flowability is the
absence of a real-time option. Flowability measurements are per-
formed at-line, which would require a sample size reduction step to
minimize sampling error. Over-all, performing these at-line flowabil-
ity measurements could take hours, which makes it impractical for
real-time monitoring. To circumvent this limitation, real-time meas-
urements of the size and shape distribution have been a popular
approach. '>7'° In fact, size and shape measurements from particle
analyzers have been demonstrated to be successful in monitoring
granulation processes in real-time, albeit for wet granulation.'*!°
However, this approach is limited by the unclear quantitative rela-
tionship that the size and shape distributions have on the behavior of
the granules, albeit the qualitative relationship has long been estab-
lished.

An interesting solution would be to utilize the size and shape
measurements from the particle analyzers to predict granule behav-
ior such as flowability.'*'® The challenge is in the development of a
predictive model that can embody the exact relationship of the size
and shape distribution of the granules versus its flowability. More
specifically, if the size and shape of a powder can be determined in
real-time, would it be possible to infer its flowability based on that
information alone?

The size and shape of constituent particles have long been estab-
lished to be primary indicators of powder flow behavior,%!”~'° but
they have not been demonstrated to sufficiently regress against and
reliably predict powder flowability. Many attempts have been made
towards this goal, and the latest was in 2020,%° which showed prom-
ising results. In that work, a linear regression model was used to
regress the angle of repose and the Carr ratio, which are both meas-
ures of flowability, versus selected percentiles of the measured size
distribution. For example, the angle of repose was regressed against
the 10™" percentile of the size distribution (i.e., the D10 value), and
this resulted in the best performing model for angle of repose with a
0.65 coefficient of determination. The D10 of the size also resulted in
the best model for predicting the Carr ratio, resulting in a 0.92 coeffi-
cient of determination. In that work, the circularity distribution of
the powders was measured to provide insight on the shape but were
not mentioned during the discussions on regression.

While demonstrably useful, this univariate approach to regression
is limiting the success of the effort as it ignores the other percentiles
that could offer useful information for predictions. Moreover, it
ignores the probability that these percentiles could be highly-corre-
lated with each other. This is especially true for granulation, where
the formation of a larger particle from two or more smaller particles
would result in the increase of the higher size percentiles, and the
corresponding decrease of the lower size percentiles. Finally, the uni-
variate approach fails to consider the effect of shape and its

correlation with size. Such a relationship has been demonstrated in
previous works and should be taken into account.

Aside from the regressors, the flowability measurements are also
expected to be highly correlated. As an example, the rotary drum
method for characterizing flow measures the angle of repose of the
powders in the rotary drum as it spins at a certain RPM. Measures of
the angle of repose are taken at various levels of RPM and this results
in multiple angles of repose that are, as may be expected, correlated
with each other—e.g., powders with good flowability would tend to
have a low angle of repose regardless of the RPM level. Hence, both
the regressors and the predicted variables are highly-correlated, and
the regression method of choice should perform well with such data-
sets.

A good candidate for a regression model is projection to latent
structures (PLS), which is a form of latent variable multivariate
regression, and has been demonstrated to work well with highly-cor-
related datasets. It should be a clear upgrade over univariate linear
regression and should be expected to perform better. This was evi-
dent when Yu et.al.(2011)?! successfully used PLS to regress measure-
ments of the Ring Shear Tester with size and shape distribution,
reporting high coefficient of determination values of up to 0.82. How-
ever, using the Ring Shear Tester alone is inadequate for characteriz-
ing granule flowability in a tableting line because it has poor
sensitivity for powders with decent flowability—i.e., flow function
coefficients higher than 10.%?

Since the RC granules are intended for the tablet press, flowability
measurements should be able to characterize dynamic flow condi-
tions at the feed frame and during die filling; these can be respec-
tively achieved using the rotary drum flow and orifice flow test. 2%
Furthermore, tapped density analysis can be included to characterize
powder compression mechanics in the die and partly some of the
quasi-static flow conditions that occurs in the tablet press.!”!9242> |t
is thus significant to extend the demonstrated success of using PLS to
predict these three flowability measurements that are relevant to
tablet pressing, namely: rotary drum flow, orifice flow, and tapped
density.

This paper reports the performance of PLS as a regression model
for predicting multiple flowability measurements based on size and
shape distribution, and it offers four unique contributions. First, it
demonstrates the importance of shape-related measurements in
developing a flowability sensor. Second, it shows the limitations of
arbitrarily selecting percentiles (or D-values) to represent distribu-
tions of particle measurements. Third, it examines the predictability
of flowability measurements based on size and shape distribution
measurements. Lastly, it reveals that although the flowability mea-
surement variable are correlated with each other, the three flowabil-
ity tests under consideration also contributed unique information
regarding flow behavior, justifying their joint consideration in the
modeling effort.

Materials and Methods
Granules

The powders used in this work were Acetaminophen Grade 0048
(APAP) purchased from Mallinckrodt Pharmaceuticals and Avicel
microcrystalline cellulose Grade PH-102 (MCC-102) from FMC Bio-
Polymer. A powder blend was prepared by blending 10g APAP for
every 90g of MCC-102 for 30 minutes in a 5L Tote blender. Using this
powder blend as a feed to an Alexanderwerk WP-120 Roller Compac-
tor (RC), six batches of granules were produced. The first three
batches varied with the roll pressure used to form the granules, while
the next three batches also varied with the roll pressure albeit with a
larger screen size than the first three batches.
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Table 1

Roller compactor process conditions for producing six batches of pharmaceutical granules.
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Batch Roll Pressure, bar Granulator Screen Size, mm Pre-Granulator Screen Size, mm Roll Speed, RPM Roll Gap, mm
1 30 1.0 2.5 4.0 2.0
2 60 1.0 2.5 4.0 2.0
3 90 1.0 2.5 4.0 2.0
4 30 1.6 2.5 4.0 2.0
5 60 1.6 2.5 4.0 2.0
6 90 1.6 2.5 4.0 2.0

All batches were produced with the gap control (feedback) func-
tion of the RC turned on. This means that the Roll Gap was kept at a
constant value by constantly adjusting the speed of the feed screw
that pushes the powders into the two counter-rotating rolls. On the
other hand, the roll pressure was maintained via its own separate
PID control. Table 1 lists the process conditions used to produce the
batches of granules that were used to develop the flowability sensor.

Sample Collection and Sampling Size Reduction

The collection of granular samples started approximately after 1kg
of throughput has been produced by roller compactor, ensuring that
the collected granules represent the steady-state products of the unit
operation. Since the volume requirements of each flowability tests are
much smaller, an appropriate size reduction scheme is employed to
minimize sampling error. This is achieved by using the PT100 sample
divider by Retsch,?° to subdivide the powders into eight equal subsam-
ples. To exactly match the volume requirements of the flowability
measurements, the operation of the sample divider was performed in
multiple passes, recombining an appropriate number of subsamples so
that the subsequent pass results into eight equal subdivisions that
each has the desired subsample volume. Table 2 shows the sample vol-
ume requirements for each flowability measurement.

Flowability Measurements

There are three flowability measurements considered in this
study: powder flow in a rotary drum, tapped density analysis, and
powder flow through an orifice. As aforementioned, these measure-
ments were considered jointly in order to match the flow conditions
that a powder undergoes in a tablet press. Powder flow in a rotary
drum was performed using the GranuDrum,?” tapped density analy-
sis was performed using the GranuPack,?® and powder flow through
an orifice was measured using Flodex.?° Both GranuDrum and Granu-
Pack were manufactured by GranuTools, while Flodex was manufac-
tured by Teledyne Hanson.

GranuDrum

When taking flowability measurements using the GranuDrum,
powder is loaded into a rotary drum with sides made of optical glass
that allows the measurement of the angle of repose, which is the
angle that the powder surface makes (from the horizontal) as the
drum is rotated at a certain speed. This speed is then increased at
2RPM increments from 2RPM to 20RPM and the angle of repose is
estimated each time. Multiple measurements are taken at each rpm
setting, and the calculated mean and variance of those measurements

Table 2

Sample volume requirements for each flowability test.
Flowability Measurement Volume
1. GranuDrum 50 mL
2. GranuPack 25 mL
3. Flodex 34 mL

are respectively included in the data output as the angle of repose
and cohesion for that particular RPM, resulting in a data matrix of at
least 20 columns.

Furthermore, since materials with good flowability would gener-
ally have low angle of repose while the opposite is true for powders
with poor flowability, each of these columns in the data matrix are
expected to be highly correlated with each other.

GranuPack

For flowability measurements using the granuPack, the powder
sample of known mass is introduced into a tube and a diabolo is
added on top of the powder to ensure a flat surface at the top of the
powder. As the tube is tapped at a precise intensity, the instrument
monitors the changes in the position of the diabolo, which is then
translated to a corresponding change in the powder volume and bulk
density. This results in a compaction curve of number of taps versus
bulk density (or volume), and several parameters are automatically
calculated to represent flowability characteristics: bulk density,
tapped density, Hausner ratio, Carr ratio, and two kinetic parameters.
While this data output is much less than that of the GranuDrum,
these characteristics are still expected to be correlated with each
other, as powders with good flowability are expected to have low
Hausner and Carr ratios while the opposite is true for powders with
poor flowabiity.

Flodex

The Flodex involves loading a known mass of powder into a cylin-
drical flat bottom hopper with a spring-loaded latch that can be acti-
vated to release the powders. A concentric annular disk with a
specific orifice diameter is placed just above the bottom latch, so
powder flows through the orifice upon its release. Because of the
annular disk, not all of the powder will be drained out of the con-
tainer. If the powder is not too cohesive, it will form an inverted cone
shape, the angle of which could be used to characterize flowability.
This angle is called the drained angle of repose, and it could be esti-
mated based on the mass of residual powder and the size of the ori-
fice using Equation (1), which is based on simple geometry and
symmetry of a cylinder.??

24Myet
T Ppue (2D3 — 3D, D2 + D3)

¢, = arctan (1)

The annular disks could be switched out to change the orifice size,
which ranges from 2.0mm to 20mm. Finding the orifice size through
which a powder can feely fall is another flowability characteristic
that can be measured with Flodex. This is referred to as the flowabil-
ity index,?*> which will henceforth be referred to in this paper as the
orifice flow index to avoid confusion with other flowability indices.
Another similar flowability measure is the jamming onset, which is
the largest orifice size at which the powder jams.??

Particle Size and Shape Measurements

The size and shape of the granule produced by the roller compac-
tor were measured using the SolidSizer,>® manufactured by Canty
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Process Technology. The SolidSizer was chosen primarily because of
its ability to measure all the particles that are loaded into its hopper.
Since its capacity is higher than the volume requirements of all con-
sidered flowability tests, it can provide the size and shape measure-
ments of all the particles that are responsible for the results of each
flowability tests. This minimizes sampling error, which is important
when trying to establish the predictability of flowability based on
size and shape measurements.

The software for the SolidSizer has been modified by Canty Pro-
cess Technology to export the full dataset of measurements for each
particle, making it possible to extract the distributions of size and
shape-related parameters, which would prove to be critical in pre-
dicting flowability measurements. It is for this reason that the Solid-
Sizer, despite being an at-line measurement method, was chosen for
this study. Other commercially available particle analyzers could
have been used, like the Eyecon,®' from Innopharma, that can be
readily deployed in-line to provide real-time measurements of a con-
tinuous process. However, the predictive performance of such parti-
cle analyzers would be limited, since most are focused on the size
distribution and less importance is given to the shape distribution. In
some devices, only the central tendencies of the shape distribution—
e.g., the mean and standard deviation—are reported, which would
not have been ideal per the results discussed in Section 3.3.

Size and Shape Characterization

The powders that are loaded into the hopper of the SolidSizer exit
to a slightly tilted vibratory chute. This chute transports the particles
to the lower end of the chute where it falls off as a curtain of particles.
With a light source on one end of the fall-off, a high-speed camera on
the other end captures back-lit 2D projections of the particles. An
illustration of the SolidSizer and a schematic of its working mecha-
nism are respectively shown in Figs. 1 and 2.

The camera images are then analyzed by the JM Canty Image
Analysis software, which detects the edges of particle projections and
extracts features relevant to its size and shape. As shown in Fig. 3, an
ellipse can be fitted around the particle edges to deduce relevant pri-
mary features such as the major diameter, minor diameter, area, and
perimeter.

The size distribution of each granule sample is based on the diam-
eter of a sphere with an equivalent volume as the measured particle.
To get a volume from a 2-dimensional image, the geometric average
between the major and minor diameter of each particle is computed
to get a tertiary diameter, and the resulting dimensions are used to
compute the volume of the ellipsoid, which approximates the volume
of the particle.

Powder Hopper

Vibratory chute
Light source

Camera

Powder collection pan

Figure 1. Labelled parts of the SolidSizer.

Particles
Direction
«c 098¢ o SUD.A0:, High-speed
) 9 Camera
Vibratory Chute .
Light Source . —
g

Figure 2. Schematic of SolidSizer measurement.

Figure 3. Fitting an ellipse around a detected particle.

The shape distribution is based on more than one quantity since
there multiple ways to characterize shape. As listed in Table 3, shape-
related variables like the aspect ratio, eccentricity, form factor, and
elliptical form factor can all be deduced from the primary features
measured by the SolidSizer.

The aspect ratio and the eccentricity both reflect changes in the
elongation of the particles. The form factor may also be considered as
circularity, and is the square of the ratio of the area equivalent spheri-
cal perimeter and the actual perimeter. It incorporates information
pertaining to the nature of the surface of the particle such as its
roundness, roughness, and interlocking tendency. Similarly, the ellip-
tical form factor also considers the perimeter of the particle image
but compares it with an area equivalent elliptical perimeter instead
of circular. This gives the ability to properly distinguish a smooth
elongated shape from an irregular but equiaxed shape, which is
prone to interlocking and would have poor flowability.>?

Size and Shape Distribution Characterization

In order to have a consistent number of variables in the regressor
dataset without having to make assumptions about the nature of the
distribution, the percentiles were computed from the size and shape
cumulative distribution of each granule sample. At least 20 variables
are included in the regressor dataset by including every 5™ percentile
from 5 to 100.

Furthermore, the span of each size and shape distribution is calcu-
lated by the following formula:

Table 3
Shape-related variables considered for shape distributions.

Shape-related variable Formula

Aspect ratio Dinin/Dmaj Equation 2

Eccentricity D \2 Equation 3
1 (Bs)

Form factor 47tArea/Perimeter? Equation 4

Elliptical form factor pruArea)Perimeter?, f — (M

2 Equation 5
+/Aspect Ratio - 1)
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Dgg — D10

Span = ——— 6
P Do (6)

This allows the characterization of the breadth of each distribu-
tion, which is an important feature that could affect flowability.>*

Projection to Latent Structures and the NIPALS Algorithm

Projection to latent structures or partial least squares (PLS) is the
regression method of choice because of the high collinearity that are
expected among the variables in the X and Y datasets (i.e., datasets
containing the regressor and response variables respectively). PLS
works best with such a highly-correlated dataset as it can project
them into lower dimensional space with much fewer dimensions,
and in a manner that maximizes the correlation between the X and
the Y datasets. Furthermore, PLS modeling can reveal insights on the
relationships among the X space, among the Y space, and between X
and Y; this is done via plots such as the loadings plot and variable
importance to the projection plot.>*—>’

Principal components analysis (PCA) and partial least squares
modeling, including visualization of results, were performed using
the PyPhi python module developed by Dr. Salvador Garcia. This
module is open source and can be accessed via Github at https://
github.com/salvadorgarciamunoz/pyphi.

Results and Discussion

The flowability measurements from the Flodex, GranuDrum, and
GranuPack have a total of 26 variables, which can be combined into a
single Y dataset for PLS regression. Merging the Y datasets is war-
ranted because they are all related to granule flowability, which
means that the variables in the datasets are expected to be highly col-
linear (correlated). This is confirmed by a principal components anal-
ysis (PCA) on the Y dataset (see Fig. 4), which shows that only five
principal components can already account for 90% of the total varia-
tion in the entire dataset.

This dimensionality reduction is even more significant for the X
dataset, which contains a total of 84 variables that includes the per-
centiles and the spans of the distributions of size and shape—i.e.,
equivalent volume diameter, eccentricity, form factor, and elliptical
form factor. Principal components analysis on the X dataset as shown
in Fig. 5 suggests high collinearity among the variables as more than

1.0
2
12 4 12.0
10 A 0.8
8 .
[} 0.6
(_:é Bl Eigenvalue
2 6 R2X
g Q2x
w F0.4 -
4 -
F0.2
2 =
0- - 0.0

1 2 3 4 5
Principal Component

Figure 4. Principal components analysis on the combined Y dataset.
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5 g
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1 2 3 4 5
Principal Component

Figure 5. Principal components analysis on the X dataset.

80% of the total variation in the dataset can be explained by five prin-
cipal components.

Although the number of principal components is limited to five in
both Fig. 4 and Fig. 5, it can definitely be increased to improve the
explained variance. However, as can be seen from the figures, this
improvement tapers off. At some point, any additional component,
which increases the complexity of the model, can no longer be justi-
fied, and could even lead to data overfitting. Conversely, less principal
components could be employed to utilize a simpler model, but this
comes at a cost to model accuracy. This relationship between the
number of principal components and the explained variance is appli-
cable not only to PCA, but to PLS as well, as can be seen from Fig. 6.

Predictability of Flowability Measurements

The demonstrated collinearity among variables is not only limited
to within the datasets, but also across each other. This is clear when
training a PLS model that maximizes the correlation between the X
and the Y datasets. The resulting model, which is shown in Fig. 6,
reveals that the 100 combined variables of the X and Y datasets can
be reduced to 7 principal components. Furthermore, the results of

26.9 L0
25 4
225 Lo.8
20 A
o BN Eigenvalue o6
E 151 R2X
g R2Y
o
o Q2y Lo.a
10 4
5.9 0.2
5 .
2.3 18 2.5 20

1 2 3 4 5 6 7
Principal Component

Figure 6. Effect of principal components on the PLS model to predict flowability meas-
urements from size and shape distribution.
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Predictability of Flowability Measurements
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Figure 7. Predictability of flow measurement variables from the PLS model.

modeling with 7 principal components show that 89% of the varia-
tions in X is responsible for 81% of the variations in Y. As a check
against overfitting, cross-validation was implemented, where the
model still accounted for 77% of the variations in the Y space of the
cross-validation datasets.

These percentages of explained variance reflects the good predic-
tive performance of the PLS model on the combined flowability mea-
surement variables, but it does not show the individual
predictabilities of each variable, which are not the same. As shown in
Fig. 7, majority of the flowability variables have decent predictability
with coefficient of determination (R?) values higher than 0.80. How-
ever, there are variables with poor predictability—i.e., they have low
coefficient of determination and high values of root mean square
error (RMSE). These are the tapped density analysis dynamics-related
variables (i.e., Tau and Characteristic Tap Number) from the Granu-
Pack flowability tests, and most of the Angle (of Repose) values from
the GranuDrum flowability tests. For the GranuDrum tests, it seems
that only cohesion values and dynamic angle of repose measured at
select RPM settings can be included in the flowability sensor model,
albeit there is currently no explanation for these noteworthy obser-
vations.

Collinearity in the Datasets

The successful reduction in dimensionality achieved by the PLS
model is proof of high collinearity among variables**~>°, which can
be corroborated by investigating the loadings in the X and Y datasets,
starting with Fig. 8 for the first principal component. Within X, the
size percentiles (e.g., Dv5, Dv10, etc.) are positively correlated with
the percentiles of the form factor (e.g., FFDV5, FFDV10, etc.) and the
elliptical form factor (e.g., EFFDV5, EFFDV10, etc.), while being nega-
tively correlated with the percentiles of the eccentricity as well as the
span of the form factor and elliptical form factor. This supports evi-
dence from previous studies **°° that shows powder particles
becoming smoother and more spherical at larger sizes, while becom-
ing more elongated, rougher, and more prone to interlocking at
smaller sizes.

Analogous observations can be made for the Y space, as shown in
Fig. 9, where the drained angle of repose, orifice flow index, and
cohesion can be seen to be inversely correlated with the Hausner
ratio, Carr ratio, and the dynamic angle of repose. Finally, the correla-
tions are also apparent among variables in X and Y. By simulta-
neously observing Fig. 8 and Fig. 9, the size and form factor can be
seen to have a direct relationship with the Hausner ratio and the Carr
ratio while having an indirect relationship with the drained angle of
repose, cohesion, and orifice flow index.

Attributing Predictive Performance Improvement

The predictive performance of the PLS model has an overall coeffi-
cient of determination (R? value) of 0.81, outperforming the most
recent attempt 2° to link measurements of size and shape with flow-
ability. This improvement can be attributed to three major reasons:
using a PLS model to account for collinearity, using a combination of
size and shape to predict flowability, and using all measures of shape
that are relevant to flowability instead of just using one.

Limitations of Pre-Selecting Percentiles Amid Collinearity

The ability of a PLS model to account for collinearity among varia-
bles means that there is no need to pre-select which variables should
be used as input variables into the model. Often, when distributions
are involved, certain percentiles (e.g., 10, 50, and 90%) are used to
represent the distribution, and these are the ones considered for
analysis or for model building.?**° This is especially true for the 50
percentile, which is commonly referred to as “D50”. Unfortunately, a
lot of information is lost when doing this.

The predictor variables may be ranked based on their influence to
the projection, which is calculated from the weighted sum of squares
of the PLS-weights with the weights calculated from the explained
variance per variable in the Y-space for each PLS component.>* This
results in a plot called the VIP plot, which stands “Variable Influence
to the Projection” plot. The VIP plot in Fig. 10 shows that the D50
does not necessarily rank the highest. Instead, the most important
variables include a combination of size and shape percentiles.
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X Space Loadings LV #1

Figure 8. Loadings in the X-space for the first principal component of the PLS model.
Figure 9. Loadings in the Y-space for the first principal component of the PLS model.
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Figure 12. Elliptical form factor data fitted to a Weibull distribution.

Moreover, the relative magnitude of their importance suggests that
most of these variables need to be taken altogether in order to
achieve the current predictive capability. Hence, pre-selecting per-
centiles should be avoided since it prevents the optimum use of

R.B. Lagare et al. / Journal of Pharmaceutical Sciences 112 (2023) 1427-1439

information from a dataset; instead, methods like PCA or PLS should
be considered to transform the dataset into one with a much lower
number of dimensions while retaining maximum information.

An alternative to reducing the dimensionality of a distribution
data is to fit it to a continuous distribution such as a Gaussian curve,
essentially reducing the number of variables to just the mean and the
variance. However, real distributions rarely follow a bell curve and
fitting one would lead to significant loss of information. Although
other distributions are available such as the Weibull distribution that
can better fit real distributions of particle size and shape for pow-
ders,"! they often do not fit perfectly, leading to substantial loss of
information. Figures Fig. 11 and Fig. 12 respectively show both a
good and a bad fit for a Weibull distribution fitted to one of the gran-
ule shape distributions. Ultimately, poor fits can lead to poor perfor-
mance, which is why the use of the highly collinear percentiles with
PLS proved to be a robust alternative, since the latter can reduce the
dimensionality while retaining most information.

Importance of Shape in Predicting Flowability

The VIP plot in Fig. 10 shows the relative importance of shape
measurements in predicting flowability. Shape factors like eccentric-
ity and elliptical form factor are among the most important variables
alongside certain percentiles of size. This ranking is based on a PLS
model that is trained using data from granules produced using two
different screen sizes for the mill.

Interestingly, the importance of shape becomes even more pro-
nounced if the PLS model is trained with datasets from granules pro-
duced from only a single screen size for the mill. Training a model
this way is sensible if the intended purpose of the flowability sensor
is for process control, since the mill screen size is not usually changed
in the middle of an operation. As shown in Fig. 13, even more percen-
tiles of the elliptical form factor rank the highest of importance, albeit
they still need to be taken altogether with the other predictor varia-
bles in order to achieve the current predictive performance.

Limiting the datasets to granules produced at a constant screen
size (i.e., granules 1, 2, and 3 in Table 1) means the variations in the
granules can only be attributed to changes in the roll pressure during
production. The increased emphasis on the shape for this limited
dataset implies that changes in the roll pressure strongly affects the
shape of the granules, particularly the elliptical form factor. In con-
trast, varying the screen size tends to affect the size more, albeit the
shape is also affected. These observations about the effect of these
two process parameters of the RC on the resulting granule size and
shape are previously unreported in literature.

Limiting Datasets to Improve Predictive Performance

Another interesting observation when limiting the training data-
sets to granules produced at a constant screen size is the improved
predictive performance of the PLS model. As shown in Fig. 14, such a
model with 7 principal components can explain at least 97% of the
variance in X and Y, which is a significant improvement over the
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Figure 13. VIP plot of PLS model trained with limited dataset (from Granules made with 1.0mm mill screen size).



R.B. Lagare et al. / Journal of Pharmaceutical Sciences 112 (2023) 1427—-1439

o [ 345 1.0
30 A Log
25 2

) BN Eigenvalue [ 0.6

5207 R2X

é\ R2Y

o 151 O- Q2y 0.4
10 4

0.2
5 -

- 0.0

1 2 3 4 5 6 7
Principal Component

Figure 14. PLS model results of a limited dataset (granule batches 1-3).

model developed from a dataset that involves multiple screen sizes
(Fig. 6). This means that varying the roll pressure during granule pro-
duction induces changes in granule flowability that can be mostly
explained by the currently considered measures of size/shape—i.e.,
diameter, eccentricity, form factor, and elliptical form factor. On the
other hand, changing the screen size might have induced changes in
the granules that are not totally reflected by these size and shape
quantities. This warrants an investigation on additional shape (or
size) quantities that can complete information on the physical char-
acteristics of the granules. Introducing these quantities, into the pre-
dictor dataset might further improve the performance of a model
trained with a more diverse dataset.

A potential implication of the aforementioned observations when
developing a flowability sensor is to implement a hierarchical strat-
egy, where several PLS models could be developed for specific screen
sizes that might be used for the RC. During operation, the appropriate
PLS model would then be selected according to the screen size that
would be used. This does not mean, however, that one should
completely abandon the notion of training a PLS model with datasets

X Space Loadings LV #1
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including multiple screen sizes. When the intended purpose is fault
detection, having a PLS model that spans various screen sizes would
be more suitable for detecting maintenance-related issues. An exam-
ple would be the detection of the reinstallation of the incorrect
screen during maintenance, or perhaps the detection of the gradual
blockage of the mill screen with granules as the RC mill is continu-
ously operated.

Relationships Among Variables

The relationship between the flow characteristics of a powder and
the size and shape of its constituent particles, is already well-known.
However, the loading coefficients of a resulting PLS can reveal addi-
tional insights regarding these relationships, which is interesting
because multiple shape measurements have not been previously con-
sidered altogether as predictors for flow properties. As already men-
tioned, the datasets from granules produced at varying roll pressures
(constant screen size) resulted in a PLS model that utilized shape-
related variables with greater importance. The loading coefficients of
the first principal component, as shown in Fig. 15, indicates that a
decrease in particle size strongly corresponds with an increase in
eccentricity an increase in the form factor and elliptical form factor.
This suggests that variations in the roll pressure that lead to lower
particle sizes tend to make the granules more elongated (higher
eccentricity values) and would make the shape rougher and/or more
irregular (lower form factors). As expected,*>** these changes in the
predictor variables corresponded to poor flowability trends in the Y
space loadings (Fig. 16), which showed higher Hausner and Carr
ratios and a higher drained angle of repose.

Remarkably, however, loadings in that same Y space also show
trends that indicate better flowability; cohesion values went down
and both the jamming onset and orifice flow index decreased. This
contradicting information proves that although the different flow-
ability measurements are highly correlated and overlapping, each
one provides unique information that is necessary to fully character-
ize flowability of granules produced from roll compaction.

Similar observations can be made for the loading coefficients of
the second principal component shown in Figs. 17 and 18. The size
distribution became broader as the higher size percentiles increase
while the lower percentiles decrease. This can be attributed to the
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Figure 15. X-space loadings of first principal component for PLS model trained with limited dataset (granules batches 1-3).
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Figure 16. Y-space loadings of first principal component for PLS model trained with limited dataset (granule batches 1-3).

process in the roller compactor that leads to generation of finer par-
ticles, which occurs during ribbon formation and milling, as well as
agglomeration of particles into larger granules, which occur during
ribbon formation. Changes in the shape are less pronounced for the
second principal component, although larger percentiles of the ellip-
tical form factor have corresponding significant increases.

On the surface, a broader size distribution should lead to poor
flowability 3, which can be seen from the higher cohesion values.
However, variables in the Y dataset also showed trends indicating
improved flowability, like a significantly lower drained angle of
repose, lower Hausner and Carr ratios, and lower dynamic angle of
repose; most likely, the improved flowability trends can be attributed
to increased values of the elliptical form factor. Similar to the first
principal component, these contradictions support the notion that

X Space Loadings LV #2

0.2+
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w2

the flowability of granules produced by a roller compactor require
multiple flowability measurements, even though they are highly cor-
related.

The uniqueness of information provided from each flowability
measurement is also apparent when comparing the performance of
PLS models when all the flowability measurements are combined
into a single Y dataset, versus when different PLS models are devel-
oped for each flowability measurement. When the columns of the Y
dataset—i.e., the individual flowability measurements—are highly
correlated, they tend to have an overlapped latent space, leading to
improved prediction performance when taken altogether as a single
Y dataset during PLS modeling.>®

However, the results in Fig. 19 show slightly worse results for a
singular PLS model versus separate PLS models for each flowability

Figure 17. X-Space loadings of second principal component for PLS model trained with limited dataset (granules batches 1-3).
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Figure 18. Y-space loadings of second principal component for PLS model trained with limited dataset (granules batches 1-3).

measurement, suggesting that despite these overlaps in the latent
spaces, each flowability measurement offers unique information
relating to granule flowability. Hence, they should be included in the
model.

Conclusions

Particle analyzers that are deployed in-line could fill the techno-
logical gap for effectively monitoring a continuous pharmaceutical
dry granulation line. By extracting the full distributions of relevant
size and shape parameters from the particle measurements, real-
time predictions of granule flowability could be achieved.

The relevant size and shape parameters might differ depending on
the application, which would affect which flowability measurements
would be relevant for monitoring. For monitoring a roller compactor
in a dry granulation line, flowability was characterized according to
the flow conditions that the product granules may experience in the
tablet press, which were via three different methods: flow in a rotary
drum, flow through an orifice, and tapped density. PLS analysis
revealed that although the measurement variables from these meth-
ods are highly-correlated with and among each other, all of them are
necessary for a complete characterization of the flow behavior of a
powder.

PLS proved to be an effective regression method for predicting gran-
ule flowability based on the size and shape distributions of granules. Its
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Figure 19. Comparison of predictive performance between a singular PLS model (Trained with a combined Y dataset) and separate PLS models (one model for each flowability test).
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ability to greatly reduce the dimensionality of a highly-correlated data-
set, while maintaining maximal information, makes it possible to input
entire distribution percentiles into a regression model without resort-
ing to pre-selecting percentile variables or assuming a distribution
form that might be incorrect. PLS excelled because of its ability to han-
dle high collinearity, which was present in both the predictor and the
response variable datasets, ultimately resulting in coefficient of deter-
mination values ranging from 0.80 to 0.97, depending on the dataset
used to train the PLS model. Another important feature that had a
major contribution to this modeling performance is the inclusion of
entire distributions of multiple relevant shape descriptors in the pre-
dictor variable dataset. The addition of the form factor and the elliptical
form factor to supplement the information provided by eccentricity
proved to have a significant positive impact to the performance as evi-
denced by the loadings plot and the VIP plot.

Often, particle analyzers focus on particle size and treat particle
shape to be of diminished importance. For instance, the Eyecon,>! is
a promising instrument for inline measurements of particle size and
shape. While its data output includes the full distribution of size, it
only gives the mean and standard deviation of the eccentricity. Since
shape distributions are not necessarily Gaussian, this leads to loss of
information that ultimately results in poor predictive performance of
the flowability. This dismissal of particle shape measurements is
mostly driven by the lack of appreciation of shape by industry. Moni-
toring particle size and shape by itself is hardly useful unless it is
used to predict more process-relevant quantities. Hopefully, the find-
ings reported in this study about the importance of shape would
improve the appreciation and focus of the powder processing indus-
try towards shape measurements.
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