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Abstract: The transition from batch to continuous processes in the pharmaceutical industry has been
driven by the potential improvement in process controllability, product quality homogeneity, and
reduction of material inventory. A quality-by-control (QbC) approach has been implemented in a
variety of pharmaceutical product manufacturing modalities to increase product quality through a
three-level hierarchical control structure. In the implementation of the QbC approach it is common
practice to simplify control algorithms by utilizing linearized models with constant model parameters.
Nonlinear model predictive control (NMPC) can effectively deliver control functionality for highly
sensitive variations and nonlinear multiple-input-multiple-output (MIMO) systems, which is essential
for the highly regulated pharmaceutical manufacturing industry. This work focuses on developing
and implementing NMPC in continuous manufacturing of solid dosage forms. To mitigate control
degradation caused by plant-model mismatch, careful monitoring and continuous improvement
strategies are studied. When moving horizon estimation (MHE) is integrated with NMPC, historical
data in the past time window together with real-time data from the sensor network enable state
estimation and accurate tracking of the highly sensitive model parameters. The adaptive model
used in the NMPC strategy can compensate for process uncertainties, further reducing plant-model
mismatch effects. The nonlinear mechanistic model used in both MHE and NMPC can predict the
essential but complex powder properties and provide physical interpretation of abnormal events.
The adaptive NMPC implementation and its real-time control performance analysis and practical
applicability are demonstrated through a series of illustrative examples that highlight the effectiveness
of the proposed approach for different scenarios of plant-model mismatch, while also incorporating
glidant effects.

Keywords: continuous pharmaceutical manufacturing; model predictive control; state estimation;
quality-by-control (QbC); glidant effects; plant-model mismatch

1. Introduction

Pharmaceutical manufacturing processes have traditionally employed the batch op-
eration mode, in which fixed amounts of raw materials are run through different unit
operations to obtain the final drug product. Quality attributes of the final drug product
were originally tested at the end of each batch processing step, where quality control
essentially followed a quality-by-testing approach (QbT) [1], e.g., mixing uniformity is
tested at the conclusion of the blending process. Over the last few years several factors
have driven a shift from batch towards continuous pharmaceutical manufacturing. These
factors include a reduction in the development cost for new medicines, making it both
desirable and feasible to produce smaller annual volumes of targeted solutions for smaller
patient populations, as well as improving product quality, decreasing cycle time, and better
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controlled processing, to name a few popular drivers [2]. An economic analysis provided
by Schaber and co-workers [3] highlights that continuous operation is able to provide
estimated overall savings that can range from 9 to 40%, depending on the drug loading
and process chosen, when compared to traditional batch operation. Additionally, encour-
aged by the regulatory agencies to modernize pharmaceutical manufacturing processes,
academia and industry have invested significant time and resources to study different
aspects required to successfully shift from batch to continuous operation mode. These
efforts were made possible through various collaborations and consortiums [4–6].

In 2012, Gernaey and co-workers [7] identified the design and implementation of
continuous pharmaceutical processes as one of the many issues that remain unresolved.
Advanced process understanding is critical to the implementation of continuous pharma-
ceutical manufacturing applications [8]. To address this requirement, a quality-by-design
(QbD) approach was pursued over the last decade [9]. QbD is a multi-step procedure
that involves: (i) definition of quality target product profiles (QTPPs) and critical qual-
ity attributes (CQAs), (ii) identification of critical material attributes (CMAs) and critical
process parameters (CPPs), (iii) linking of the CMAs and CPPs with the CQAs, (iv) exam-
ination of the design space and required control strategies, (v) validation, scale-up, and
production [10]. While QbT primarily focused on end-stage testing, QbD revolved around
advanced product and process understanding for systematic design of the operating space
using mechanistic models and design of experiments (DoE). However, more recently there
has been a shift towards quality-by-control (QbC), wherein quantitative and predictive
understanding is leveraged for active process control with robust process design and
operation, enabling smart manufacturing [11].

A goal of the QbC approach is real-time process monitoring and management, wherein
advanced process control strategies are utilized to handle disturbances and exceptional
events [11]. Process analytical technology (PAT) methods play a crucial role in monitoring
a variety of CQAs in order to accomplish this [8,9]. Monitoring and control of CQAs
such as tensile strength and tablet porosity are critical as they are linked to dissolution
profiles of the manufactured tablets, which are ultimately linked to patient safety and
treatment efficacy [12–16]. Tablet tensile strength and dissolution profile are affected by
various factors such as particle size, API concentration, and addition of lubricants and
glidant [17,18]. Glidants are added to improve the flowability of the blend. However,
glidants and lubricants are also known to impact other product parameters, such as bulk
density, compactibility, and compressibility. An objective of this work is to incorporate the
impact of the use and control of glidants while assuring that the critical properties, such
as tensile strength of the manufactured tablets, are maintained at desirable levels. In the
context of continuous manufacturing, when a glidant feeder is used, it is important to use
calibrated mechanistic models to handle the variations of glidant concentration. Therefore,
it is essential to explore a variety of different control strategies to address the changes in
CQAs of a tablet that may arise when glidants are used. It is worth noting that even though
these challenges and control strategies are also relevant to lubricants, the development of
mechanistic models and relevant control strategies associated with lubricants is beyond
the scope of this work.

The identification and handling of plant-model mismatch (PMM) is an important com-
ponent of any real-time process monitoring and control approach, and it has been an area
of interest for decades. PMM can arise in the continuous tablet manufacturing process for a
variety of reasons, e.g., the feeder refill step is known to introduce disturbances that affect
CMAs such as the bulk density [19–21]. Since this may result in a deviation in the CQAs,
PMM needs to be monitored and algorithms to mitigate it need to be developed and imple-
mented. In order to monitor PMM, Harris initially presented a minimum variance-based
assessment criterion to assess the condition of the working control loop [22]. This approach
has gained popularity, but it is limited to single-input-single-output (SISO) systems [23].
More recently, data-driven methods that examine autocovariance and solve an optimiza-
tion problem formulated to address the mismatch estimates in MIMO systems have been
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developed. These methods minimize the discrepancy between the autocovariance of the
output and the actual autocovariance of the mean-centered output variable [24–26]. Partial
correlation coefficient (PCC)-based methods to identify PMM have also received attention
in the literature, where PCC is well-suited as it is able to handle cases with high correlation
in the manipulated variables [27,28]. As model re-identification is a critical, and often a
time-consuming step once PMM has been identified, hybrid machine learning approaches
have been proposed in order to aid model selection [28]. While there is great depth in the
literature associated with the identification of PMM, there is limited discussion on practical
approaches that would be applicable to the continuous pharmaceutical manufacturing
industry in terms of management of the PMM [29,30]. CQAs and CMAs need to be tracked
online during plant operation but they may be unmeasurable in practice through existing
PAT sensing methods (e.g., the bulk density within a unit operation); therefore, alternative
solutions are required. This work proposes novel state estimation methods to accurately
track states and model parameters online and, hence, guide operating decisions.

Additionally, most work in the continuous tablet manufacturing domain utilizes linear
model predictive control strategies, often resulting from the linearization of a nonlinear
system, which may not be adequate for some strongly nonlinear processes [31–33]. A liter-
ature review of traditional MPC application for different unit operations in the continuous
pharmaceutical manufacturing industry can be found in [34], including end-to-end in silico
and implementation studies. Since there is limited implementation of nonlinear model
predictive control strategies for the continuous pharmaceutical manufacturing industry, a
main objective of this work is to develop and present a moving horizon estimation-based
nonlinear model predictive control (MHE-NMPC) framework to serve the dual require-
ment of accurate estimation and effective control. Model predictive control strategies are
also advantageous over traditional proportional-integral-derivative (PID)-based control
strategies, as they are able to effectively handle constraints, loop interactions and non-
square control systems that may be encountered in manufacturing of pharmaceutical solid
dosage forms [35–38]. A main practical concern for any developed framework is the need to
ensure that the optimization problem can be solved in real-time, particularly for relatively
quick processes such as those in the continuous pharmaceutical manufacturing industry.
Therefore, an additional objective is to examine and discuss the real-time feasibility of the
developed framework in controlling a rotary tablet press.

It is important to note that once non-conforming quality attributes have been identified,
a long-term goal is the integration of control frameworks similar to the MHE-NMPC struc-
ture with residence time distribution (RTD)-based modeling frameworks that are currently
being developed to guide tablet product diversion in the continuous pharmaceutical man-
ufacturing industry and truly enhance and enable smart manufacturing operations [39,40].

To summarize, the primary objective of this work is to develop and present a moving
horizon estimation-based nonlinear model predictive control (MHE-NMPC) framework to
serve the dual requirement of accurate estimation and effective control, and to demonstrate
its practical applicability by discussing its implementation feasibility in controlling a rotary
tablet press. A secondary objective of this work is to examine different control strategies
that are required when incorporating glidant feeders to further control tablet properties.

The rest of this work is organized as follows. In Section 2, mathematical modeling
and optimization approaches for state estimation and control will be briefly discussed,
along with the proposed monitoring algorithm and its advantages, i.e., the MHE-NMPC
framework to monitor CMAs and CQAs and determine control actions will be presented.
Section 3 will illustrate the robustness of the proposed MHE-NMPC framework with two
examples of application. Specifically, the studies will showcase monitoring and control
of a rotary tablet press in the presence of (i) plant-model mismatch and (ii) uncertainty in
the glidant concentration. Section 4 will provide concluding remarks and directions for
future work.
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2. Material and Methods
2.1. State Estimation

State and parameter estimation methods have been utilized to enhance process mon-
itoring capabilities in a number of industrial applications, ranging from bioreactors to
robotics to continuous pharmaceutical manufacturing [30,41,42]. State and parameter
estimation is a powerful tool in scenarios where process states or model parameters cannot
be directly measured with sensors.

A nonlinear state-space model is defined as follows:

.
x = g(x, u, θ, w) (1)

y = l(x, u, θ, v) (2)

where x, u, θ, and y are the state variable vector, input variable vector, model parameter
vector, and measurement vector, respectively [43]. The process and measurement noise are
denoted by w and v, respectively. A schematic illustration of conventional state estimation
algorithms is presented in Figure 1, where the nonlinear model is initialized based on the
state values at the previous time step (k − 1) in order to obtain a prediction of the states and
model parameters at the current time (k). State measurements are obtained from available
sensors and are utilized to obtain a more accurate estimate of the states and parameter
values by correcting the predictions from the model.
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Figure 1. Conventional state estimation algorithm.

A number of alternative algorithms to carry out state estimation have been devel-
oped, e.g., the Kalman filter (KF), extended Kalman filter (EKF), unscented Kalman filter
(UKF), particle filter (PF), and moving horizon estimation (MHE) are among the more
popular approaches [44–47]. While the KF and EKF algorithms are suitable for linear or
approximately linear applications, the UKF, PF, and MHE algorithms are able to handle
processes that are more nonlinear in nature. The KF, EKF, and UKF algorithms also assume
that error distributions are Gaussian in nature, while this assumption does not have to be
satisfied for the PF and MHE algorithms [46]. Unlike the conventional approach illustrated
in Figure 1, MHE utilizes a window, or moving horizon, of previous measurements in
order to estimate the current states and model parameters, often providing improved
performance when compared to the other algorithms. MHE is also capable of handling
measurements collected from sensors at different sampling intervals or frequencies, which
is advantageous for industries that utilize a variety of sensors to track physical attributes,
as is the case in continuous pharmaceutical manufacturing. Therefore, MHE will be the
choice of state estimation algorithm utilized in this work, as it is able to effectively track
plant-model mismatch caused by deviations in model parameters, such as variations in the
bulk density due to uncertainty in upstream unit operations (e.g., refilling of feeders).

The importance of monitoring powder feeder dosing in continuous pharmaceutical
manufacturing is investigated in great detail by Destro and co-workers [29], wherein an
MHE-based state estimation approach is implemented to reconcile mass measurements
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that are available from loss-in-weight (LIW) feeders with downstream measurements that
are available from a PAT instrument and, thereby, to obtain practically continuous mea-
surements as opposed to sampled measurements provided from the PAT instrument. The
authors also demonstrate that the MHE approach is superior to one that utilizes statistical
filters instead of the state estimator. Similarly, robust estimators were incorporated within
the MHE skeleton of a feeding-blending system to handle dynamic systems with gross
errors [30]. While the results presented in both case studies are promising, neither discusses
or elaborates on the importance of their integration with efficient control strategies. To
the knowledge of the authors, there has been no work in the continuous pharmaceutical
manufacturing domain that has examined the integration of state estimation strategies
with efficient control strategies, and therefore, this will be the central focus of this work, as
discussed in the following sections.

2.2. Model Predictive Control (MPC)—Linear and Nonlinear

Model predictive control methods have been employed by various industries over
the past few decades [48–52]. MPC relies on the dynamic model of the process. This
model can either be linear or linearized models obtained through system identification,
as in the case of the linear implementation of MPC, or be nonlinear and derived using
first principles or semi-empirically (using a hybrid model), as in the case of NMPC [53].
Both MPC algorithms utilize a finite time horizon to optimize the control input at the
current time iteration, while keeping future time iterations in mind. This ability makes
MPC predictive in nature due to its ability to anticipate future events and take control
actions accordingly, which is not possible using traditional PID controllers [54].

While nonlinear model predictive control (NMPC) methods have been utilized by
some industries, to the knowledge of the authors their implementation has not been
explored extensively for continuous pharmaceutical manufacturing of solid dosage forms,
cf. [31–33], where linear or hybrid implementations of MPC are utilized. Since processes
in the continuous pharmaceutical manufacturing industry are known to be nonlinear in
nature, it is therefore desirable to develop and implement an NMPC approach.

It should also be noted that these predictive control strategies are particularly advan-
tageous for cases of non-square systems, i.e., where the number of manipulated variables
exceeds the number of the controlled variables, since these methods are able to effectively
manage nonlinear relationships [35–37]. These cases cannot be straightforwardly handled
using traditional PID control strategies [38].

The following section will present the developed MHE-NMPC framework that seeks
to accomplish the dual requirement of accurate estimation and efficient control. Since
real-time implementation feasibility is an area of interest, a discussion on the practical
applicability of the framework developed will also be presented.

2.3. Moving Horizon Estimation-Based Nonlinear Model Predictive Control (MHE-NMPC)
Framework

The algorithm proposed in this work seeks to combine the effective estimation capa-
bilities of MHE with the control abilities of NMPC, through the MHE-NMPC framework
illustrated in Figure 2. Real-time measurements of output variables (y) and input variables
(u) are first collected to monitor the process. Since disturbances, either known or unknown,
can always exist in a real plant, mismatches may arise between the sensor measurements
and model values. As elaborated previously, the goal of state estimation is to obtain a ‘true
state’ value by utilizing the information from both measurements and process models. The
‘true state’ can be either measurable, e.g., API concentration at the blender exit using NIR
sensors [55–57], or unmeasured, e.g., powder holdup in the blender. Through the updating
of uncertain model parameters, which have changes due to upstream disturbances, MHE
enables the handling of plant-model mismatch, thus allowing the controller to receive
estimated output variables (ŷ) with less uncertainty. The NMPC control algorithm then
minimizes the error between setpoints

(
ysp
)

and estimated output variables (ŷ) by de-
ciding the optimal control move (u) for the process to reach both setpoint tracking and
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disturbance rejection, i.e., the control objectives, while updating the model parameter (θ̂k)
and median of the error distribution in the past time window (ζ).
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A schematic illustration of the MHE-NMPC framework at time t = k is shown in
Figure 3, with Npast measurements available in the past window and Np estimations in the
prediction window. The MHE is then formulated as follows:

min
θ̂k

J =
k

∑
t=k−Npast

(εt)
TWE εt + (θ̂k − θ̂k−1)

TWθ(θ̂k − θ̂k−1) (3a)

subject to
x̂k−Npast+j+1 = f (x̂k−Npast+j, uk−Npast+j, θ̂k) (3b)

ŷk−Npast+j = h(x̂k−Npast+j) (3c)

εk−Npast+j = yk−Npast+j − ŷk−Npast+j (3d)

x̂k−Npast+j+1 ∈ X, εk−Npast+j ∈ Ωε, θ̂k ∈ Ωθ (3e)

j = 0, 1, . . . , Npast (3f)

where θ̂k are estimated uncertain parameters, which are bounded in the compact set Ωθ . In
the above formulation, yt and ut are measurements of output variables and input variables
at time t, respectively; ŷt and x̂t are estimated output and state values, respectively; εt
are output disturbances, which are bounded in the compact set Ωε; and WE and Wθ are
the weighting matrices. After the MHE optimization problem is solved at time t = k, the
estimated state x̂k−Npast+1|t=k is chosen as the initial state value of next time step t = k + 1,
i.e., x̂k−Npast+1|t=k+1 = x̂k−Npast+1|t=k [58].

While an error distribution of output variables yt − ŷt in the past time window can
be obtained from Equation (3d), a single point estimate of the output ŷt is of most interest
in many applications, instead of the whole error distribution [59]. When no probabilistic
process models are used, it is easier to use a single point estimate of the output ŷt to
visualize and control process dynamics. In this study, the median of the error distribution
in the past time window is used to represent output disturbances ζk at time t = k, i.e.,

ζk = median
{

εk−Npast+j

}
, for j = 0, 1, . . . , Npast (4)

Therefore, with estimated states x̂k, output disturbances ζk, and updated uncertain
optimal parameters θ̂k, the NMPC framework at time t = k is given by:
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min
∆ut

J =
k+Np

∑
t=k

(ŷt − ysp)
T Wy

(
ŷt − ysp

)
+

k+Nc−1

∑
t=k

(∆uT
t W∆u∆ut) (5a)

subject to

x̂k+j+1 = f (x̂k+j,
ˆ
uk+j, θ̂k) (5b)

ŷk+j = h
(

x̂k+j

)
+ ζk (5c)

∆uk+j =
ˆ
uk+j+1 −

ˆ
uk+j (5d)

x̂k+j ∈ X,
ˆ
uk+j ∈ U, ∆uk+j ∈ Ω∆u (5e)

j = 0, 1, . . . , Np − 1 (5f)

where Nc is the length of the control time window, and ysp are the setpoints of the output
variables. Wy and W∆u are the weighting matrices. Control movements ∆u are constrained
in the compact set Ω∆u. The control window Nc is usually smaller than the prediction
window Np and has to be chosen considering a compromise between computational burden
and stability requirements. Control movements ∆uk+j in control window Nc vary according
to results of optimization, but those beyond the control window are zero, i.e., ∆uk+Nc =

∆uk+Nc+1 = · · · = ∆uk+Np−1 = 0, which implies that
ˆ
uk+Nc =

ˆ
uk+Nc+1 = · · · = ˆ

uk+Np . In

other words, while the predicted ŷk+j can still be calculated using ∆uk+j and
ˆ
uk+j in the

prediction window Np, only ∆uk+j in control window Nc is considered in the objective
function. It should be noted that models of estimated output variables ŷt are different in
Equations (3c) and (5c). In the future time window, output disturbances ζk are added to
the model of the process, allowing zero steady-state offset in controlled output variables
y [59,60]. A schematic illustration of MHE-NMPC is provided in Figure 3, where at each
iteration, the MHE is utilized to obtain a more accurate representation of the true state of
the process and plant-model mismatch, and the NMPC is utilized to find the optimal first
move for each input variable u. This framework thus allows for both accurate estimation
and efficient control.
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2.4. Implementation of a Real-Time Feasible MHE-NMPC Framework

The MHE-NMPC framework is implemented in MATLAB (MathWorks R2018a) and
the MATLAB built-in fmincon function is used to solve the optimization problem in each
iteration. The computation is performed on a 64-bit ASUS VivoBook with Intel® Core™
i7-8550U @1.80 GHz processor and 8GB of total memory. In all simulated results, the time
unit for each step is 1 s, the past time window

(
Npast

)
used in MHE is 30 time units, and

the NMPC is tuned with prediction time window
(

Np
)

chosen to be 60 time units and
control time window (Nc) to be 10 time units. Sensor measurements are also assumed to
be available at 1 s intervals. It should be noted that the average computation time for each
iteration is 0.7 s, indicating that the optimization problem can be solved and implemented
in real time. These results demonstrate the feasibility of the proposed framework, and its
ability to achieve real-time process control.

The following section will explore the applicability of the developed MHE-NMPC
framework to track plant-model mismatch and to efficiently control a key process unit
operation in the continuous manufacturing line of solid dosage forms, i.e., the rotary
tablet press.

3. Examples of Application to Continuous Direct Compression

The applicability of the developed MHE-NMPC framework will be demonstrated
through two case studies. The first case study will highlight the importance of monitoring
model parameters in real time and how this is enabled via state estimation, as opposed
to the use of fixed model parameters. Different degrees of plant-model mismatch will be
used. The second case study will present the applicability of the framework in the practical
scenario of having uncertainty in the glidant feeding conditions.

Both case studies will focus primarily on the tablet press unit operation of the direct
compression line. A hierarchical implementation of the three-level quality-by-control (QbC)
framework of control systems for the continuous direct compression line is illustrated in
Figure 4, whose unit operations are comprised of feeders, blenders, and the tablet press.
For this line, Level 0 control is generally implemented through programmable logic control
(PLC) systems built into the unit operation equipment in order to control CPPs. Level 1
control relies on PAT tools to monitor and control CQAs and can encompass multiple unit
operations designed to reduce the impact of disturbances that may propagate downstream.
Level 1 control supervises the Level 0 control, typically accomplished through SISO control
loops which aim to maintain desired setpoints for the CQAs. A distributed control system
(DCS) is employed to integrate process equipment such as the feeders and tablet press
and any instrumentation that measures material properties. More advanced approaches
are applied at Level 2 and use mathematical models such as MHE for validating process
measurements, with the ability to predict the effects of disturbances and changes in the
CPPs on the CQAs. Additional functionalities provided at Level 2 can include NMPC, a
quality management system (QMS), and real-time optimization (RTO).
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3.1. Tablet Press Model

The rotary tablet press and the lubricant/glidant feeder are key unit operations, where
the latter is used to reduce frictional loses and facilitate powder flow during die filling
and formation of solid tablets via mechanical compression. Therefore, models for glidant
effects in die filling and compression processes will be used to monitor and control the
porosity and tensile strength of tablets. Specifically, these mechanistic models capture the
effects of glidant concentration and mixing conditions [61,62].

The weight of a convex tablet, W, formed using Natoli D-type tooling with shallow
cup depth can be computed as follows:

W = ρbVf ill

(
1− ξ1

nT
nF

+ ξ2
H f ill

D

)
(6)

where D, Vf ill , H f ill , ρb, nT , and nF, refer to the diameter of the die, volume of the die
cavity, dosing position, bulk density of the powder, turret speed, and feed frame speed,
respectively [62]. In Equation (6), ξ1 and ξ2 are model parameters to be estimated from
experimental data. The bulk density depends on glidant concentration and mixing con-
ditions, but its dependency is beyond the scope of this work. For the D-type tooling, the
volume of the die cavity is given by:

Vf ill =
πD2H f ill

4
+

πh
(

3D2

4 + h2
)

6
(7)

where h is the cup depth. The tablet production rate,
.

mtablet, is given by:

.
mtablet = WnT Nstation (8)
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where Nstation is the number of turret stations available. For a blend composed of MCC
(Avicel PH200), APAP (acetaminophen) and silica experimental evidence suggests that
both pre-compression and main compression forces do not show a dependency on glidant
conditions [62]. The pre-compression force (PCF) is then computed as follows [63]:

Fpc =
πD2

4b

[
ρpc − ρc

ρpc(a− 1) + ρc

]
(9)

where parameters a and b are Kawakita constants [63], which represent the maximum
degree of compression and the reciprocal of the pressure applied to attain this degree of
compression, respectively. In Equation (9), ρc and ρpc refer to the critical density and the
pre-compression relative density, respectively. The pre-compression relative density is
computed as follows:

ρpc =
W

Vpcρt
(10)

and

Vpc =
πD2Hpc

4
+

πh
(

3D2

4 + h2
)

3
(11)

where ρt and Hpc refer to the true density of the powder and the pre-compression thickness,
respectively. Similarly, the main compression force (Fpunch) is computed as follows:

Fpunch =
πD2

4b

[
ρin−die − ρc

ρin−die(a− 1) + ρc

]
(12)

with the in-die relative density ρin−die given by:

ρin−die =
W

Vin−dieρt
(13)

and

Vin−die =
πD2Hin−die

4
+

πh
(

3D2

4 + h2
)

3
(14)

where Hin−die refers to the main compression thickness. The tablet density, or out-of-die
relative density of the tablet, ρtablet, is then obtained utilizing the elastic recovery, ερ, of the
tablet as follows:

ρtablet =
(
1− ερ

)
ρin−die (15)

The elastic recovery model is not sensitive to the glidant mixing conditions [61,62],
and it is governed by:

ερ = ε0
ρin−die − ρc,ε

1− ρc,ε
(16)

where ε0 and ρc,ε are the in-die elastic recovery at full compaction and the relative density
at which tablets do not exhibit elastic recovery, respectively [64]. The tensile strength σt
exhibits dependency on glidant conditions and it is computed as follows

σt = σ0

[
1−

(
1− ρtablet

1− ρc,σt

)
e(ρ

tablet−ρc,σt )

]
(17)

where σ0 is the tensile strength at zero porosity and ρc,σt is the critical relative density at
which tablets do not exhibit any the tensile strength, i.e., the relative density at which a
tablet starts forming [17]. It bears emphasis that these parameters are functions of glidant
conditions, specifically:



Processes 2021, 9, 1612 11 of 23

ρc,σt =
ρc,0 − ρc,∞

1 + Cσ
+ ρc,∞ (18)

σ0 =
σ0,φ

1 + Cσ
(19)

Cσ =
cb1

l γb2

b3
(20)

where ρc,0, ρc,∞, σ0,φ, b1, b2, and b3 are model parameters estimated from experimental data.
In Equation (20), cl and γ are the glidant concentration and total shear imparted to the
blend, respectively. For simplicity, the total shear strain is represented by an equivalent
mixing time, which, in turn, is estimated as follows

γ = γ0 +
m f ,h
.

mtablet
(21)

where γ0 and m f ,h are a total shear strain base line, expressed in term of mixing time, and
the mass hold up in the feed-frame and hopper, respectively. Specifically, for the purpose
of these case studies, the model parameter γ0 is the glidant mixing time used in the rotary
Tote blender when the blend was prepared. A 5L rotary Tote blender was employed. The
mean residence time in the feed-frame, i.e.,

m f ,h
.

mtablet
, is used to estimate the additional shear,

or mixing time, imparted inside the tablet press.
The dependency of the bulk density on the glidant concentration, cl , can be incorpo-

rated through the following equation [62]:

ρb = ρb,∞ −
ρb,∞ − ρb,0

1 + Cρ
(22)

where ρb,∞ and ρb,0 represent the bulk densities when the shear strain imparted is infinite
and zero, respectively. Cρ is a lumped parameter that defines the glidant mixing conditions
computed as follows [62]:

Cρ =
cr1

l (γ + γ0)
r2

r3
(23)

where γ and γ0 are the shear imparted to the powder during mixing and the initial shear
strain imparted prior to mixing, respectively. r1, r2, and r3 are fitting parameters.

A Natoli NP-400 tablet press and SOTAX AT4 tablet tester were used in this work to
fabricate tablets and gather experimental data under steady-state conditions. The experi-
mental data were then used to carry out parameter fitting using the fmincon function in
MATLAB to obtain realistic model parameters values that could be used for the simulations
presented in case studies 1 and 2, which are summarized in Table 1.

Table 1. Summary of model parameters for case studies 1 and 2.

Case Study 1 Case Study 2

Purpose Assess Control Performance in the Presence of
Different Levels of PMM

Assess Control Performance When Uncertainty
in Glidant Concentration Is Present

Assumption Glidant Concentration Can Be Manipulated Glidant Concentration Needs to Be Estimated

Model Parameters No PMM Mild PMM High PMM Nominal Operation

ξ1 0.036 0.036 0.036 0.036

ξ2 0.030 0.030 0.050 0.030

ρb (g/cm3) 0.365 0.390 0.410 0.365

ρc 0.265 0.290 0.230 0.265

Kawakita: a 0.80 0.77 0.84 0.80
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Table 1. Cont.

Case Study 1 Case Study 2

Purpose Assess Control Performance in the Presence of
Different Levels of PMM

Assess Control Performance When Uncertainty
in Glidant Concentration Is Present

Assumption Glidant Concentration Can Be Manipulated Glidant Concentration Needs to Be Estimated

Model Parameters No PMM Mild PMM High PMM Nominal Operation

Kawakita: 1/b (MPa) 10.26 10.26 8.55 10.26

ρt (g/cm3) 1.53 1.53 1.51 1.53

ε0 0.08 0.08 0.08 0.08

ρc,ε 0.57 0.57 0.57 0.57

σ0 (MPa) 11.67 11.67 11.67 11.67

ρ0 0.57 0.57 0.57 0.57

ρ∞ 0.61 0.61 0.61 0.61

b1 0.31 0.31 0.31 0.31

b2 0.38 0.38 0.38 0.38

b3 8.40 8.40 8.40 8.40

ρb,∞ (g/cm3)

N/A

0.450

ρb,0 (g/cm3) 0.330

r1 0.361

r2 1.394

r3 23.326

3.2. Case Study 1: Monitoring and Control of the Rotary Tablet Press in the Presence of
Plant-Model Mismatch

Monitoring powder bulk density in the tablet press is of critical importance, as it
affects the tablet properties [12]. Sources of variability can be introduced during any of
the unit operations upstream, e.g., in the feeder unit operations during refill, as the feeder
switches from gravimetric mode to volumetric mode, leading to either increases in bulk
density due to compression or decreases in bulk density due to aeration [19–21].

For this case study, a four-by-five system was employed as it would enable the incorpo-
ration of an extra manipulated input for added control benefits, i.e., glidant concentration.
It is assumed that the direct compression line has the ability to utilize the glidant con-
centration as a manipulated variable through changes in the glidant flowrate. In practice
this would be implemented in the hierarchical three-level QbC framework, by using a
level-one PID control, that would use the glidant concentration measurement and adjust
the glidant flowrate to follow the concentration setpoint set by the level-two NMPC. In this
case the four-by-five non-square level-e control system is comprised of controlled variables
consisting of the tablet weight, pre-compression force, production rate, and tensile strength
and manipulated variables consisting of the dosing position, pre-compression thickness,
main compression thickness, turret speed, and glidant concentration. It is assumed that
measurements for the tablet weight, pre-compression force, main compression force, and
production rate are all available every second [61]. In this simulation, it should be noted
that the main compression force was not a directly controlled variable with specified set
points. This is because the tensile strength could not be maintained while simultaneously
fixing the main compression force. Given the objective to maintain the tensile strength at
desired levels due to its link to patient safety, the tensile strength was chosen over the main
compression force as a controlled variable. Since measurements of the main compression
force are available, they were utilized in the MHE framework only for the purpose of
parameter estimation. As maintaining the CQAs is important, and since the tensile strength
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measurements are not available in real time, a soft sensor based on Equation (17) is utilized
in order to track this particular state in real time. In practice, the SOTAX AT4 tablet tester
can be utilized in order to obtain measurements of the tensile strength. However, since the
diametrical compression test is destructive, tensile strength measurements are available at
a lower frequency than one of the PAT sensors, which in turn also drives the need for a
soft sensor.

A summary of the controlled variables, manipulated variables, measured variables,
and uncertain model parameter is provided in Table 2. In order to examine the performance
of the MHE-NMPC framework under PMM, three different scenarios will be examined,
namely: nominal operation (no PMM), operation with mild PMM, and operation with high
PMM. A summary of model parameters for each scenario is provided in Table 1, where the
MHE-NMPC tuning parameters are those described in detail in Section 2.4. Mild PMM
is simulated by introducing mismatch to three model parameters: ρb, ρc and Kawakita
parameter a. High PMM is simulated by introducing mismatch to six model parameters:
ξ2, ρb, ρc, Kawakita parameters a and b, and ρt. In this simulation, the ‘model’ and ‘plant’
share the same equations detailed in Section 3.1. Different parameter values were assigned
to the ‘model’ and ‘plant’ in order to simulate mismatch. Additionally, sensor measurement
noise in the plant was simulated by adding normally distributed error with zero mean and
variance analogous to the variability of a real sensor. This variability was obtained from
historical plant data.

Table 2. Summary of variables and uncertain model parameters for case study 1.

Controlled variables Tablet weight, pre-compression force, production rate, tensile strength

Manipulated
variables

Dosing position, pre-compression thickness, main compression
thickness, turret speed, silica concentration

Measured variables Tablet weight, pre-compression force, main compression force,
production rate

Uncertain model
parameters Bulk density, critical density, a: maximum degree of compression

For all three scenarios, three model parameters are tracked, i.e., ρb, ρc and Kawakita
parameter a. The bulk density was monitored due to its influence on a number of other
model parameters and states, while the relative critical density and Kawakita parameter a
are both known to influence the compression forces, making them critical parameters that
also need to be tracked in real time.

Simulation results of the process outputs for all three scenarios are presented in
Figure 5a–c, respectively. The MHE-NMPC framework is utilized for all simulations and
includes open-loop control from 0–100 s (indicated by red shading in all plots), state
estimation using MHE and open loop control from 100–200 s (indicated by yellow shading
in all plots), and implementation of the MHE-NMPC framework from 200 s until the end
of the simulation (indicated by gray shading in all plots). Setpoint changes are introduced
for the tablet weight from 210 mg to 240 mg at 400 s, for the pre-compression force from
0.3 kN to 0.6 kN at 600 s, for the production rate from 6.9 kg/h to 8 kg/h at 800 s, and for
the tensile strength from 4.2 MPa to 6 MPa at 600 s, respectively.
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(c) high PMM.

For the scenario where there is no PMM, accurate setpoint tracking can be achieved
for all states (see Figure 5a). This is also true for the case where there is mild PMM (see
Figure 5b). This is primarily enabled due to the ability of the MHE-NMPC framework to
accurately track variations in the uncertain model parameters in real time as illustrated
in Figure 6b, allowing the impact of PMM to be effectively managed. In the case where
there is high PMM (see Figure 5c), fairly accurate setpoint tracking can still be achieved
despite there being mismatch in more parameters than those being tracked. This is also
observed from the parameter estimation results in Figure 6c, although there is a slight offset
in the model parameters being tracked to compensate for the variation in the additional
model parameters that are not being tracked. The corresponding plots of the manipulated
variables for all three scenarios are presented in Figure 7.
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Control performance metrics are required in order to assess the performance of the
development framework and accurately assess the impact of PMM for each scenario.
Beyond the typical controller performance metric, i.e., integral of absolute error (IAE),
some additional metrics are used to quantify the control performance in each scenario,
which include the duration-to-reject (D2R) and magnitude to product (M2P) [65]. These
metrics are able to quantify control performance in a manner that is more relevant for the
continuous pharmaceutical industry. D2R is the duration of time that the process requires
to smooth out the process disturbance or to reach a new set point for the CQA/CPP. M2P
describes the maximum deviation in the CQA/CPP from the target setpoint. Larger values
of all these performance metrics indicate worse or degraded control performance. The IAE
values are calculated from t = 300 s to t = 1000 s. A summary of the control performance
metrics is provided in Table 3.

When mild PMM exists, the control performance of the MHE-NMPC framework is
comparable to the scenario without PMM, implying that the framework is able to suffi-
ciently handle the PMM. However, when there is excessive PMM in multiple parameters as
in the scenario with high PMM, significantly higher values of IAE and M2P are obtained,
particularly in the tensile strength. This can be attributed to the fact that there was mis-
match in more model parameters than those being tracked for this particular simulation, as
can be noted from Table 1, resulting in an offset in the estimates of the model parameters
to compensate for the added uncertainty (see Figure 6c). It should also be noted that
the setpoints for the tablet weight and production rate track reasonably well, even in the
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presence of high PMM as demonstrated by the comparable IAE values for both states.
However, since the tensile strength is an important CQA that is linked to the dissolution
profile of the tablets, once high PMM begins to cause an offset in the tensile strength, it can
serve as an indicator for the requirement to carry out model re-identification. This case
study was able to demonstrate the strength of the MHE-NMPC framework in its ability to
handle PMM in multiple model parameters.
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Table 3. Control performance of the MHE-NMPC framework for case study 1 under different levels
of PMM.

Controlled Variables Performance Metrics No PMM Mild PMM High PMM

Tablet Weight

IAE 6.83 7.00 7.05

M2P (%) 3.31 3.19 3.61

D2R (s) 76 78 74

Tensile Strength

IAE 9.95 10.18 39.07

M2P (%) 5.25 5.23 10.46

D2R (s) 82 81 90

Production Rate IAE 8.84 8.26 8.41

3.3. Case Study 2: Monitoring and Control of the Rotary Tablet Press in the Presence of
Uncertainty in the Glidant Concentration

This scenario aims to explore a more practical concern with regards to the incorpo-
ration of the glidant feeder in the control scheme. In practice in some applications, it
might not be possible to accurately control the concentration of the glidant in the direct
compression process, due to the low concentrations used and, thus, the small feeding rates
needed. Uncertainty in the glidant concentration is important, as it leads to variations in
the bulk density upstream of the rotary tablet press. Therefore, accurate monitoring and
control of these variations is required.

Since the glidant concentration can no longer be treated as a manipulated input for
this scenario, the original system is revised to form a four-by-four MIMO system with
the controlled variables consisting of the tablet weight, pre-compression force, production
rate, and tensile strength. The manipulated variables consist of the dosing position, pre-
compression thickness, main compression thickness, and turret speed. Once again it
is assumed that only measurements for the tablet weight, pre-compression force, main
compression force, and production rate are available every second. As tensile strength
measurements are not available in real time, a soft sensor based on Equation (17) is once
again utilized for this particular state. The concentration of silica is then assumed to be
an uncertain parameter. A summary of the controlled variables, manipulated variables,
measured variables, and uncertain model parameters is provided in Table 4. A summary of
the model parameters was provided in Table 1, where the MHE-NMPC tuning parameters
are those detailed in Section 2.4.

Table 4. Summary of variables and uncertain model parameters for case study 2.

Controlled variables Tablet weight, pre-compression force, production rate, tensile strength

Manipulated
variables

Dosing position, pre-compression thickness, main compression
thickness, turret speed

Measured variables Tablet weight, pre-compression force, main compression force,
production rate

Uncertain model
parameters Silica concentration

For this particular case study, mismatch is introduced through positive and negative
step changes in the silica concentration from its nominal value of 0.2% to 0.35% between
300 and 700 s and from 0.2% to 0.05% between 1100 and 1500 s, respectively. Step changes
in either direction are introduced in order to examine if and how the direction of the
mismatch affects the control performance. Simulation results of the process outputs for
open loop control, closed loop control using only NMPC control, and closed loop estimation
and control using the proposed MHE-NMPC framework are presented in Figure 8a–c,
respectively. The simulation for the NMPC framework includes open loop control from 0
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to 200 s, with a closed loop NMPC strategy implemented from 200 s until the end of the
simulation. The simulation for the MHE-NMPC framework includes open loop control
from 0 to 100 s, state estimation using MHE and open loop control from 100 to 200 s, and
implementation of the MHE-NMPC framework from 200 s until the end of the simulation.
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Figure 8a demonstrates failure of the open loop control to maintain the controlled
variables at their setpoints and, thus, the need to implement effective control strategies. Due
to the disturbance terms utilized in the NMPC framework, offset free control is achieved
for three of the four controlled variables when only NMPC is employed, as illustrated in
Figure 8b. However, since real-time measurements are unavailable for the tensile strength,
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a soft sensor is employed. Since the soft sensor does not incorporate a disturbance term,
an offset can be observed between the soft sensor values and the set point due to the
mismatch caused by the assumption of fixed model parameters in the NMPC framework.
In contrast, as illustrated in Figure 8c the MHE-NMPC framework is able to achieve offset
free control for all four states, including the tensile strength. This is attributed to the ability
of the MHE-NMPC framework to provide (i) real-time and accurate estimation of uncertain
model parameters, enabled by MHE, and (ii) efficient control, enabled by NMPC.

Figure 9 shows results for the uncertain model parameter estimation, i.e., the esti-
mation of silica concentration. These results demonstrate the ability of the MHE-NMPC
framework to accurately track variations in silica concentration. It should be noted that
the sluggish behavior at higher concentrations of silica is due to the nonlinear effect silica
has on the process. Since in practice the true value of the concentration of silica might
be unknown, this case study demonstrates the advantage of utilizing the MHE-NMPC
framework to achieve accurate estimation of both measurable and unmeasurable states
and parameters, such as the concentration of silica, while executing realistic and effective
control strategies.
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Figure 10 shows the manipulated variables for the different control strategies studied
in this section. All changes in the manipulated variables presented in these results are
realistic in nature and can be achieved during normal operation of the tablet press. It
should be noted that the variations in the manipulated variables are larger in the case
where only NMPC is utilized (see Figure 10b) compared to the case where the MHE-NMPC
framework is utilized (see Figure 10c). This may be attributed to a less effective linear
output disturbance model implemented in the NMPC framework, when compared to
the MHE-NMPC framework that also carries out parameter updating incorporating more
directly nonlinear effects of the PMM in the scheme.

This case study was able to demonstrate the ability of the MHE-NMPC framework
to track and manage fluctuations in the glidant concentration, often caused by upstream
disturbances, thereby providing an efficient solution to a common process upset faced
when operating the rotary tablet press.
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4. Conclusions

The continuous pharmaceutical manufacturing industry is in need of improved real-
time process monitoring and management strategies that, specifically, are able to effectively
identify and handle plant-model mismatch (PMM). In order to enable the quality-by-
control (QbC) paradigm to move forward, this work developed and presented a moving
horizon estimation-based nonlinear model predictive control (MHE-NMPC) framework
to accomplish the dual requirement of accurate estimation and efficient control. Real-
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time implementation feasibility of the developed framework was also discussed, and the
ability of the proposed framework to solve the optimization problem at each time step in a
manner that enabled real-time implementation was highlighted. The practical applicability
of the developed framework was corroborated through two realistic case studies that
incorporated the effects of glidant to better control CQAs such as the tensile strength.
Both examples demonstrated the ability of the framework to achieve reasonable control
performance despite the presence of varying sources and degrees of PMM.

Future work includes further demonstration of the practical applicability of the pro-
posed MHE-NMPC framework utilizing the rotary tablet press at Purdue University,
including the application of the framework to the entire direct compression line. While
a soft sensor was utilized in this work to track the tensile strength, in practice, due to
low-frequency measurement availability from the SOTAX AT4 tablet tester, sensor fusion
methods might be required to integrate and efficiently utilize all available plant data. This
improved strategy would also require additional studies to determine how frequently to
collect measurement data from the SOTAX AT4 tablet tester, due to the destructive nature
of the testing method.
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