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Abstract 
This paper presents a condition monitoring system development framework that 
incorporates process knowledge to enhance the performance of machine learning models. 
Essentially, the framework uses information about the process to create a representation 
of the process condition, which can be broken down into modules using concepts 
borrowed from probabilistic graphical modeling. These modules represent simpler 
problems for fault detection and diagnosis, which allows traditional machine learning 
(ML) models to perform better without the need for a larger set of training data. Using 
the Tennessee Eastman Process (TEP) as a case study, the framework was shown to 
improve detection and diagnosis of all fault types in the TEP fault library under relevant 
metrics for evaluating condition monitoring systems. 
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1. Introduction 
Continuous manufacturing processes often require a condition-based maintenance 
approach in order to fully realize its benefits. This requires the effective implementation 
of a condition monitoring (CM) system that can holistically oversee the condition of a 
process.(Schenkendorf, 2016) It is often challenging to obtain a mechanistic model of the 
condition of a process, so most of the work in literature focused on data-driven methods 
such as machine learning (ML).(Yin et al., 2012) The workflow for this development can 
be visualized in Figure 1, where data from the equipment and sensors of a continuous 
tableting line are used to train a ML model that can detect and diagnose faults. Given the 
right dataset, this workflow can be very effective in creating high performing fault 
detection and diagnosis algorithms. The problem is real scenarios rarely have the right 
dataset available. Hence, it is often the case that traditional ML models developed in this 
manner underperform, and the course of action is to acquire a better dataset, which might 
be prohibitively expensive, and/or to use a better ML model. 
 
Another course of action that one could take is to build on the existing knowledge about 
the process to develop a mechanistic model. However, level of process knowledge that is 
required to do this could be even more expensive than acquiring a better dataset for 
training a machine learning model. Hence, any available process knowledge is often 
neglected because it is not enough for mechanistic modeling, and modeling efforts would 
be directly to a purely data-driven approach. An innovative solution would be to find a 
way to apply this knowledge in enhancing the performance of the ML model development 
workflow in Figure 1. Such a framework was developed and found to be effective for a 
continuous pharmaceutical tableting pilot plant. (Lagare et al., 2022a)  
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Figure 1. Machine Learning Model Development Workflow Applied 
to the Continuous Tableting Pilot Plant at Purdue University 

It is now interesting to question the limitations of the framework, especially in its 
applicability towards larger processes with a larger fault library. For this purpose, the 
Tennessee Eastman Process (TEP) will be considered,(Downs and Vogel, 1993) which is 
a very different process than a continuous tableting line. First, the material streams are no 
longer solids, but either liquids or gases. The TEP also has more chemical components 
and chemical transformations are involved. There are more unit operations in the TEP 
and to add to its complexity, includes a recycle stream, which the pharmaceutical solids 
processing system does not have. Finally, the fault library of the TEP is much larger, with 
22 conditions that need to be determined from 53 input variables taken from sensors and 
equipment across the process. (Chiang et al., 2000) 
 
As expected, the condition monitoring system for the TEP, developed using workflow in 
Figure 1, showed poor performance using metrics relevant to condition monitoring. This 
study shows that the condition monitoring system development framework, which will 
be discussed in Section 2.1, was effective in improving the performance of the machine 
learning models in monitoring the condition of the process. 

2. Methods 
2.1. Condition Monitoring System Development Framework 
The proposed framework adds several steps to the ML model development workflow in 
Figure 1, which is now depicted as a node (white) in Figure 2. The two additional steps, 
i.e., representation and modularization, is mainly responsible for improving the ensuing 
ML model development step and will be the main subject of this paper.  

 
Figure 2. Proposed Condition Monitoring System Development Workflow 

The final step of the proposed framework—integration—is critical in holistically 
interpreting the predictions of the modules. The result is a more robust condition 
monitoring system that can still function amid sensor maintenance repairs, reducing the 
need for product diversions and/or process shutdowns.(Lagare et al., 2022b)  
2.1.1. Process Representation 
Process representation is the first step in the CM system development framework. This 
step is responsible for incorporating available process knowledge into the workflow, and 
its key components are shown in Figure 3.  
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Based on these components, the minimum process knowledge requirement to be able to 
perform process representation is a process flow diagram (PFD). The PFD shows the 
material transformations that taking place, the unit operations responsible for the material 
transformations, the locations of the measured and manipulated variables, and the 
locations of the faults in the fault library. Based on the PFD of the TEP (Chiang et al., 
2000), the process condition may be represented as in Figure 4. 

 
Figure 3. Process Representation Workflow 

 
Figure 4. Process Condition Representation of the TEP depicting material and unit operation 
condition as blue and green nodes respectively. (The numbers in straight brackets are the designated 
numbers of the measured variables, and the numbers in curly brackets are the designated numbers 
of the manipulated variables) 

2.1.2. Process Modularization 
Once the process representation is available, it is now possible to modularize the 
process—i.e., break it down into smaller sections. Although there would be countless 
ways to do this, there are logical limitations to this combinatorics problem. First, a module 
must contain at least one fault. Without a fault, there is no condition monitoring job. It is 
thus interesting to see in Figure 4 that the faults are not dispersed throughout the process 
but are concentrated on certain nodes. With this first constraint, one can see that the 
condition representation of the TEP can be broken down into five modules, where the 
nodes that contain the fault can be considered the central node of the module. 
 
Nodes directly adjacent to the central node may be included in the module, especially if 
the central node does not have input variables for ML model development. If these 
secondary nodes, do not have any measured variables, then other nodes that are directly 
adjacent to the secondary nodes may be added to the module. This process may be 
repeated until the added node has a measured variable or if there are no more nodes to 
add. This methodology is represented in Figure 5, and is consistent with the concept of d-
separation in probabilistic graphical modeling, where observations in one probabilistic 
variable/node removes the probabilistic relationship between the parent and the child of 
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the observed node.(Bishop and Nasrabadi, 2006) Hence, if a measured variable is 
involved in an added node, adding a node that is conditionally dependent on that measured 
variable becomes unnecessary since it gives you no further information about the central 
node that involves the faults for the module. 

 
Figure 5. Methodology for modularization of process condition representation 

 
Figure 6. Reactor Condition Module 

 
Figure 7. Stream 2 Condition Module 

Another noteworthy implication of the workflow in Figure 5 is that only the central nodes 
are mutually exclusive among the modules, and the measured/manipulated variables in 
the secondary nodes may be shared. An example of a module based on the reactor 
condition as the central node is shown in Figure 6 and a module based on the feed stream 
condition is shown in Figure 7. Notice that both modules have “Stream 6” condition node 
as a secondary node. The dashed lines indicate the conditional independence of the central 
node to the rest of the condition nodes in the process condition representation. 
2.1.3. Machine Learning Model Development Workflow 
After the modularization step, ML classifiers are developed using the Model Builder 
feature by the ML.NET application. Model Builder can take the labelled input variables 
from each condition module to explore different traditional machine algorithms (i.e., not 
neural networks) and recommend the best one based appropriate classification 
metrics.(Microsoft, 2022)  
2.2. Performance Metrics for Condition Monitoring 
In this study, condition monitoring performance will be determined using five metrics: 
fault detection rate, false alarm rate, accuracy, normal condition certainty index (NCCI), 
and the overall prediction certainty index (OPCI). Fault detection rate, false alarm rate, 
and accuracy are standard metrics used for evaluating classifiers(Fawcett, 2006) and fault 
detection algorithms for the TEP.(Yin et al., 2012)  
 
However, the two certainty indices are new metrics that is a unique contribution of this 
paper. These indices assume a threshold and work with classifiers (machine learning 
classification algorithms) that produces a probability for each possible condition in a 
module. For such classifiers, the condition with the highest assigned probability is 
considered the prediction condition and its assigned probability can be considered its 
prediction certainty. If the OPCI for a classifier is 0.95 for a threshold of 0.90, this means 
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95 out of 100 predictions made had a prediction probability/certainty higher than 0.90. 
The NCCI works similarly, but only considers the normal condition predictions. These 
certainty indices reflect the confidence of the predictions by the machine learning 
algorithm, which the operator can use to evaluate classifier performance. Interestingly, 
the NCCI has implications for novel fault detection capabilities. If the NCCI is close to 
1.0, then future classification predictions that are lower than the threshold could be 
labelled as novel faults that would require further action by a human operator. Formulas 
for the OPCI and NCCI are shown below. 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
∑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃>𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

∑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
  Equation 1 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
∑𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃>𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

∑𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
  Equation 2 

3. Results and Discussion 
To evaluate the effectiveness of the framework, a base case is considered where a machine 
learning model is developed to use all 53 of the input variables in the TEP for predicting 
all 22 possible conditions (i.e., normal condition plus 21 fault types). With the framework 
applied, the ML development task is much simpler after modularization; for the case of 
the reactor module in Figure 6, the classifier only needs to classify 5 conditions (i.e., 
normal condition plus 4 fault types) from 16 input variables.  
 
To determine the impact of the d-separation concept in the modularization workflow, a 
modified case of the framework was considered so that for each module, all the TEP 
variables would be used as input to determine the faults that are local to the central node 
of the module. For the reactor module in Figure 6, this would be using all 53 input 
variables to classify the 5 conditions considered in the module. This results in three cases 
that can be considered when evaluating the CM performance of each module. The details 
of these three cases when evaluating the reactor module is summarized in Table 1. 
Table 1. Reactor Module Comparison Cases 

 Base Case Modular Case Modified Modular Case 
No. of Faults 21 4 4 
No. of Input Variables 53 4 53 

Table 2. Performance Summary for Reactor Module Faults 
 Base Case Modular Case Modified Modular Case 
Fault Detection Rate (%) 99-100 88-99 80-100 
False Alarm Rate (%) 19-67 0-1 0-2 
Accuracy (%) 33-99 89-100 94-99 
NCCI 0.57-0.70 0.97-1.00 0.98-1.00 
OPCI 0.33-0.89 0.95-1.00 0.92-1.00 

 
For the faults local to the reactor module, the base case performance can be summarized 
in Table 2. While the fault detection rate is perfect, the other metrics, particularly the high 
rates of false alarms, make it unusable for condition monitoring. On the contrary, the 
modular cases show better performance across all metrics, with negligible false alarm 
rates and high certainty indices which indicate novel fault detection capabilities. For 
brevity, the performance summaries of the other modules would not be explicitly shown 
in this paper, albeit the aforementioned trends still hold for other modules. Overall, there 
seem to be no significant difference between the two modular cases, except for some 
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faults like fault 5 which saw a lower false alarm rate by 14% compared to the modified 
modular case.  

4. Conclusions 
The condition monitoring system development framework that was originally developed 
for a continuous pharmaceutical tableting line proved to be effective for the Tennessee 
Eastman Process. The process representation workflow allowed the incorporation of 
process knowledge into machine learning model development. The ensuing 
modularization of the process representation simplified the machine learning model 
development task, which resulted in high performance classifiers that have novel fault 
detection potential.  
 
For the impact of applying d-separation in the modularization workflow, it was not 
significant across all faults, although it yielded major improvements for some. Ultimately, 
this case study validates the applicability of the development framework across two 
different kinds of continuous manufacturing processes and suggests that it could be 
effective for other kinds of continuous processes. 
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