
Antonis Kokossis, Michael C. Georgiadis, Efstratios N. Pistikopoulos (Eds.)
PROCEEDINGS OF THE 33rd European Symposium on Computer Aided Process Engineering
(ESCAPE33), June 18-21, 2023, Athens, Greece
© 2023 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/B978-0-443-15274-0.50251-1

Modular Development of Condition Monitoring
Systems for the Tennessee Eastman Process
Rexonni B. Lagare,a Marcial Gonzalez,b Zoltan K. Nagy,a Gintaras V. Reklaitisa
aDavidson School of Chemical Engineering, Purdue University, West Lafayette, IN
47907, USA
bSchool of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA

Abstract
This paper presents a condition monitoring system development framework that
incorporates process knowledge to enhance the performance of machine learning models.
Essentially, the framework uses information about the process to create a representation
of the process condition, which can be broken down into modules using concepts
borrowed from probabilistic graphical modeling. These modules represent simpler
problems for fault detection and diagnosis, which allows traditional machine learning
(ML) models to perform better without the need for a larger set of training data. Using
the Tennessee Eastman Process (TEP) as a case study, the framework was shown to
improve detection and diagnosis of all fault types in the TEP fault library under relevant
metrics for evaluating condition monitoring systems.

Keywords: Tennessee Eastman Process, Machine Learning, Condition Monitoring, Fault
Detection and Diagnosis, Condition-based Maintenance

1. Introduction
Continuous manufacturing processes often require a condition-based maintenance
approach in order to fully realize its benefits. This requires the effective implementation
of a condition monitoring (CM) system that can holistically oversee the condition of a
process.(Schenkendorf, 2016) It is often challenging to obtain a mechanistic model of the
condition of a process, so most of the work in literature focused on data-driven methods
such as machine learning (ML).(Yin et al., 2012) The workflow for this development can
be visualized in Figure 1, where data from the equipment and sensors of a continuous
tableting line are used to train a ML model that can detect and diagnose faults. Given the
right dataset, this workflow can be very effective in creating high performing fault
detection and diagnosis algorithms. The problem is real scenarios rarely have the right
dataset available. Hence, it is often the case that traditional ML models developed in this
manner underperform, and the course of action is to acquire a better dataset, which might
be prohibitively expensive, and/or to use a better ML model.

Another course of action that one could take is to build on the existing knowledge about
the process to develop a mechanistic model. However, level of process knowledge that is
required to do this could be even more expensive than acquiring a better dataset for
training a machine learning model. Hence, any available process knowledge is often
neglected because it is not enough for mechanistic modeling, and modeling efforts would
be directly to a purely data-driven approach. An innovative solution would be to find a
way to apply this knowledge in enhancing the performance of the ML model development
workflow in Figure 1. Such a framework was developed and found to be effective for a
continuous pharmaceutical tableting pilot plant. (Lagare et al., 2022a)

 R. B. Lagare et al.

Figure 1. Machine Learning Model Development Workflow Applied
to the Continuous Tableting Pilot Plant at Purdue University

It is now interesting to question the limitations of the framework, especially in its
applicability towards larger processes with a larger fault library. For this purpose, the
Tennessee Eastman Process (TEP) will be considered,(Downs and Vogel, 1993) which is
a very different process than a continuous tableting line. First, the material streams are no
longer solids, but either liquids or gases. The TEP also has more chemical components
and chemical transformations are involved. There are more unit operations in the TEP
and to add to its complexity, includes a recycle stream, which the pharmaceutical solids
processing system does not have. Finally, the fault library of the TEP is much larger, with
22 conditions that need to be determined from 53 input variables taken from sensors and
equipment across the process. (Chiang et al., 2000)

As expected, the condition monitoring system for the TEP, developed using workflow in
Figure 1, showed poor performance using metrics relevant to condition monitoring. This
study shows that the condition monitoring system development framework, which will
be discussed in Section 2.1, was effective in improving the performance of the machine
learning models in monitoring the condition of the process.

2. Methods
2.1. Condition Monitoring System Development Framework
The proposed framework adds several steps to the ML model development workflow in
Figure 1, which is now depicted as a node (white) in Figure 2. The two additional steps,
i.e., representation and modularization, is mainly responsible for improving the ensuing
ML model development step and will be the main subject of this paper.

Figure 2. Proposed Condition Monitoring System Development Workflow

The final step of the proposed framework—integration—is critical in holistically
interpreting the predictions of the modules. The result is a more robust condition
monitoring system that can still function amid sensor maintenance repairs, reducing the
need for product diversions and/or process shutdowns.(Lagare et al., 2022b)
2.1.1. Process Representation
Process representation is the first step in the CM system development framework. This
step is responsible for incorporating available process knowledge into the workflow, and
its key components are shown in Figure 3.

 1580

Based on these components, the minimum process knowledge requirement to be able to
perform process representation is a process flow diagram (PFD). The PFD shows the
material transformations that taking place, the unit operations responsible for the material
transformations, the locations of the measured and manipulated variables, and the
locations of the faults in the fault library. Based on the PFD of the TEP (Chiang et al.,
2000), the process condition may be represented as in Figure 4.

Figure 3. Process Representation Workflow

Figure 4. Process Condition Representation of the TEP depicting material and unit operation
condition as blue and green nodes respectively. (The numbers in straight brackets are the designated
numbers of the measured variables, and the numbers in curly brackets are the designated numbers
of the manipulated variables)

2.1.2. Process Modularization
Once the process representation is available, it is now possible to modularize the
process—i.e., break it down into smaller sections. Although there would be countless
ways to do this, there are logical limitations to this combinatorics problem. First, a module
must contain at least one fault. Without a fault, there is no condition monitoring job. It is
thus interesting to see in Figure 4 that the faults are not dispersed throughout the process
but are concentrated on certain nodes. With this first constraint, one can see that the
condition representation of the TEP can be broken down into five modules, where the
nodes that contain the fault can be considered the central node of the module.

Nodes directly adjacent to the central node may be included in the module, especially if
the central node does not have input variables for ML model development. If these
secondary nodes, do not have any measured variables, then other nodes that are directly
adjacent to the secondary nodes may be added to the module. This process may be
repeated until the added node has a measured variable or if there are no more nodes to
add. This methodology is represented in Figure 5, and is consistent with the concept of d-
separation in probabilistic graphical modeling, where observations in one probabilistic
variable/node removes the probabilistic relationship between the parent and the child of

Modular Development of Condition Monitoring Systems for the
Tennessee Eastman Process

1581

the observed node.(Bishop and Nasrabadi, 2006) Hence, if a measured variable is
involved in an added node, adding a node that is conditionally dependent on that measured
variable becomes unnecessary since it gives you no further information about the central
node that involves the faults for the module.

Figure 5. Methodology for modularization of process condition representation

Figure 6. Reactor Condition Module

Figure 7. Stream 2 Condition Module

Another noteworthy implication of the workflow in Figure 5 is that only the central nodes
are mutually exclusive among the modules, and the measured/manipulated variables in
the secondary nodes may be shared. An example of a module based on the reactor
condition as the central node is shown in Figure 6 and a module based on the feed stream
condition is shown in Figure 7. Notice that both modules have “Stream 6” condition node
as a secondary node. The dashed lines indicate the conditional independence of the central
node to the rest of the condition nodes in the process condition representation.
2.1.3. Machine Learning Model Development Workflow
After the modularization step, ML classifiers are developed using the Model Builder
feature by the ML.NET application. Model Builder can take the labelled input variables
from each condition module to explore different traditional machine algorithms (i.e., not
neural networks) and recommend the best one based appropriate classification
metrics.(Microsoft, 2022)
2.2. Performance Metrics for Condition Monitoring
In this study, condition monitoring performance will be determined using five metrics:
fault detection rate, false alarm rate, accuracy, normal condition certainty index (NCCI),
and the overall prediction certainty index (OPCI). Fault detection rate, false alarm rate,
and accuracy are standard metrics used for evaluating classifiers(Fawcett, 2006) and fault
detection algorithms for the TEP.(Yin et al., 2012)

However, the two certainty indices are new metrics that is a unique contribution of this
paper. These indices assume a threshold and work with classifiers (machine learning
classification algorithms) that produces a probability for each possible condition in a
module. For such classifiers, the condition with the highest assigned probability is
considered the prediction condition and its assigned probability can be considered its
prediction certainty. If the OPCI for a classifier is 0.95 for a threshold of 0.90, this means

 R. B. Lagare et al.1582

95 out of 100 predictions made had a prediction probability/certainty higher than 0.90.
The NCCI works similarly, but only considers the normal condition predictions. These
certainty indices reflect the confidence of the predictions by the machine learning
algorithm, which the operator can use to evaluate classifier performance. Interestingly,
the NCCI has implications for novel fault detection capabilities. If the NCCI is close to
1.0, then future classification predictions that are lower than the threshold could be
labelled as novel faults that would require further action by a human operator. Formulas
for the OPCI and NCCI are shown below.

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
∑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃>𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

∑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 Equation 1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
∑𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃>𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

∑𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 Equation 2

3. Results and Discussion
To evaluate the effectiveness of the framework, a base case is considered where a machine
learning model is developed to use all 53 of the input variables in the TEP for predicting
all 22 possible conditions (i.e., normal condition plus 21 fault types). With the framework
applied, the ML development task is much simpler after modularization; for the case of
the reactor module in Figure 6, the classifier only needs to classify 5 conditions (i.e.,
normal condition plus 4 fault types) from 16 input variables.

To determine the impact of the d-separation concept in the modularization workflow, a
modified case of the framework was considered so that for each module, all the TEP
variables would be used as input to determine the faults that are local to the central node
of the module. For the reactor module in Figure 6, this would be using all 53 input
variables to classify the 5 conditions considered in the module. This results in three cases
that can be considered when evaluating the CM performance of each module. The details
of these three cases when evaluating the reactor module is summarized in Table 1.
Table 1. Reactor Module Comparison Cases

 Base Case Modular Case Modified Modular Case
No. of Faults 21 4 4
No. of Input Variables 53 4 53

Table 2. Performance Summary for Reactor Module Faults
 Base Case Modular Case Modified Modular Case
Fault Detection Rate (%) 99-100 88-99 80-100
False Alarm Rate (%) 19-67 0-1 0-2
Accuracy (%) 33-99 89-100 94-99
NCCI 0.57-0.70 0.97-1.00 0.98-1.00
OPCI 0.33-0.89 0.95-1.00 0.92-1.00

For the faults local to the reactor module, the base case performance can be summarized
in Table 2. While the fault detection rate is perfect, the other metrics, particularly the high
rates of false alarms, make it unusable for condition monitoring. On the contrary, the
modular cases show better performance across all metrics, with negligible false alarm
rates and high certainty indices which indicate novel fault detection capabilities. For
brevity, the performance summaries of the other modules would not be explicitly shown
in this paper, albeit the aforementioned trends still hold for other modules. Overall, there
seem to be no significant difference between the two modular cases, except for some

Modular Development of Condition Monitoring Systems for the
Tennessee Eastman Process

1583

faults like fault 5 which saw a lower false alarm rate by 14% compared to the modified
modular case.

4. Conclusions
The condition monitoring system development framework that was originally developed
for a continuous pharmaceutical tableting line proved to be effective for the Tennessee
Eastman Process. The process representation workflow allowed the incorporation of
process knowledge into machine learning model development. The ensuing
modularization of the process representation simplified the machine learning model
development task, which resulted in high performance classifiers that have novel fault
detection potential.

For the impact of applying d-separation in the modularization workflow, it was not
significant across all faults, although it yielded major improvements for some. Ultimately,
this case study validates the applicability of the development framework across two
different kinds of continuous manufacturing processes and suggests that it could be
effective for other kinds of continuous processes.

5. Acknowledgements
The authors acknowledge Dr. Ziyan Sheriff for sharing valuable insights and knowledge
about the Tennessee Eastman Process, which proved valuable in shaping the direction of
this research.

This work was supported by the NSF under grant #2140452.

References
Bishop, C.M., Nasrabadi, N.M., 2006. Pattern recognition and machine learning. Springer.
Chiang, L.H., Russell, E.L., Braatz, R.D., 2000. Fault detection and diagnosis in industrial

systems. Springer Science & Business Media.
Downs, J.J., Vogel, E.F., 1993. A plant-wide industrial process control problem. Comput Chem

Eng 17, 245–255.
Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recognit Lett 27, 861–874.
Lagare, R.B., Nagy, Z., Reklaitis, G. v., 2022a. Applying process knowledge for more powerful

data-driven condition monitoring systems. Under preparation.
Lagare, R.B., Sheriff, M.Z., Gonzalez, M., Nagy, Z., Reklaitis, G. v., 2022b. A Comprehensive

Framework for the Modular Development of Condition Monitoring Systems for a Continuous
Dry Granulation Line. Computer Aided Chemical Engineering 49, 1543–1548.

Microsoft, 2022. What is ML.NET and how does it work? [WWW Document]. URL
https://learn.microsoft.com/en-us/dotnet/machine-learning/how-does-mldotnet-
work?WT.mc_id=dotnet-35129-website (accessed 12.1.22).

Schenkendorf, R., 2016. Supporting the shift towards continuous pharmaceutical manufacturing
by condition monitoring. Conference on Control and Fault-Tolerant Systems, SysTol 2016-
November, 593–598.

Yin, S., Ding, S.X., Haghani, A., Hao, H., Zhang, P., 2012. A comparison study of basic data-
driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman
process. J Process Control 22, 1567–1581.

 R. B. Lagare et al.R. B. Lagare et al.1584

