
Morten Tryland

2

Editor

3

Arctic One Health

Challenges for Northern Animals
and People

4

5

6

 Springer

9

8

A Holistic Approach to One Health in the Arctic

1

2

Arleigh Reynolds, Susan Kutz, and Tessa Baker

3

1 What Is One Health?

4

The concept of One Health recognizes the interdependence of human, animal, and environmental health, and that a holistic approach to the wellbeing of all will lead to improved health outcomes and enhanced resilience. As the discipline is evolving, our understanding of the interdependence of animal, human and environmental health has broadened with the realization that none of these can be truly healthy unless they are all simultaneously healthy (Hueffer et al. 2019). At the time of this writing, the world is engulfed in a pandemic that has globally affected every aspect of life. The causes and impacts of this pandemic are a powerful example of a One Health issue. As we look to understand the causes of such problems it becomes immediately apparent that such understanding will require expertise from many disciplines and the ability to share that knowledge not just across academic disciplines, industries, and government sectors, but across cultures as well.

The term “One Health” was adopted by the veterinary and human medical professions to identify the relationship between human and animal health, and the influence the environment exerts on this relationship (Gibbs 2014; Zinsstag et al. 2010). Between 65 and 70% of emerging diseases in humans are of zoonotic origin (Wendt et al. 2015). The way we impact our environment and how that influences human–animal interactions play significant roles in how these diseases develop and spread. Human sourced drivers such as loss of biodiversity, repurposing of wildlife habitat, the expansion of large intensive livestock enterprises, and rapid

A. Reynolds (✉)

Center for One Health Research, University of Alaska Fairbanks, Fairbanks, AK, USA
e-mail: ajreynolds@alaska.edu

S. Kutz · T. Baker

Faculty of Veterinary Medicine, Department of Ecosystem and Public Health, University of
Calgary, Calgary, AB, Canada
e-mail: skutz@ucalgary.ca; tessa.baker1@ucalgary.ca

Fig. 1 A holistic approach to One Health in the circumpolar North

25 anthropogenic driven climate and environmental change, all impact the potential for
26 endemic wildlife pathogens to become zoonotic disease threats (Zinsstag et al. 2010;
27 Gibbs 2014; Wendt et al. 2015; Hueffer et al. 2013).

28 While human and animal health professions have only relatively recently developed
29 and adopted the term One Health, concepts and ideas, recognizing the interconnectedness of all living beings and their environment, have been at the core of
30 Indigenous worldviews for millennia (Kutz and Tomaselli 2019; Jack et al. 2020).
31 Such an inclusive and holistic approach views health as more than the absence of
32 disease, but rather as a state of individual and community well-being with a focus not
33 only on physical health, but on behavioral, emotional, cultural, and spiritual health as
34 well. Taking this holistic approach to health and applying it to the One Health
35 paradigm, as presented in Fig. 1, allows us to bring in expertise across natural and
36 social sciences and synergize western science with traditional Indigenous Ways of
37 Knowing. Such a broad and, at the same time, deep integration of knowledge and
38 experience provides opportunities to understand large issues like food safety, security,
39 and sovereignty, zoonotic disease threats, and environmental contamination at

their roots and engage diverse stakeholders to build effective solutions (Ruscio et al. 41
2015). 42

Two-eyed seeing, or Etuaptmunk, as stated by Mi'kmaq elder Elder Albert 43
Marshall is an Indigenous concept that truly encompasses the spirit of One Health. 44
It means "learning to see from one eye with the strengths of Indigenous 45
knowledges...and from the other eye with the strengths of Western 46
knowledges...and learning to use both these eyes together, for the benefit of all" 47
(Denny and Fanning 2016). This concept explicitly acknowledges and values the 48
views of different participants, recognizing the value of incorporating different 49
worldviews. The two-eyed seeing approach has been increasingly applied to wildlife 50
co-management where Indigenous rightsholders, government wildlife managers, 51
and academics are coming together to better understand wildlife health in a more 52
holistic and inclusive manner (Box 1). This approach leads to greater depths of 53
understanding of complex issues and better informed decision-making. It responds 54
to the call and requirements of many governments and conservation agencies to 55
include Indigenous knowledge in decision-making, and importantly, it also responds 56
to the calls of the UN Declaration on the Rights of Indigenous Peoples as well as the 57
Truth and Reconciliation Commission, Canada. 58

AU1

2 The Role of the Veterinarian in One Health

59

For many reasons, veterinarians are uniquely suited to facilitate the transfer and 60
application of this knowledge between disciplines, sectors, and across cultures at the 61
interface of human, animal, and environmental health. Broadly, veterinarians are 62
trained in comparative medicine, understanding health, and the vast array of 63
determinants of health, across numerous species. Veterinarians have an intricate 64
knowledge of physiology, anatomy, and pathology at an individual level, yet at the 65
same time, are trained in animal welfare, herd health, public health and population 66
medicine, understanding the epidemiology and control of disease at a population 67
level, as well as the socio-economic and environmental factors that will influence the 68
implementation and efficacy of health interventions. Veterinarians are adept at 69
communicating with clients across a very broad socio-economic spectrum and 70
adjusting their communication and treatment offerings to meet the needs and 71
capacity of their clients. 72

Working within the public health domain, veterinarians are trained to identify 73
zoonotic disease threats and frequently have a deeper understanding of the occur- 74
rence and prevention of the common domestic animal-derived zoonoses than their 75
human health counterparts. Veterinarians also routinely work with (or as) wildlife 76
and infectious disease researchers in the surveillance for zoonotic diseases and their 77
vectors of transmission. 78

Veterinarians also play a critical role in ensuring food and water safety. In urban 79
and non-remote areas veterinarians inspect animal sources of food for safety 80
concerns. They play an important role in food safety in subsistence areas, where 81
climate change, contaminant exposure, and emerging zoonotic diseases are 82

83 threatening food safety and security in Northern communities in new rapidly chang-
84 ing ways. These challenges require adjustments in the application of both Traditional
85 and Western ways of knowing to effectively monitor and manage. Due to their
86 training and the natural connections they develop with people around animals,
87 veterinarians can also serve as liaisons between community members and research
88 and government agencies, including health and social welfare, as well as facilitators
89 of knowledge transfer and best-practice implementation from these sources back to
90 the communities involved. The breadth of people and organizations that
91 veterinarians work with around individual and population health of wild and domes-
92 tic animals results in working relationships that span a multitude of stakeholders in
93 local, regional and national sectors.

94 **3 One Health Concerns in the Circumpolar North**

95 The Arctic has unique, sensitive ecosystems that are undergoing rapid change and
96 this is profoundly influencing socio-ecological systems. The rate of Arctic climate
97 warming is occurring at twice the rate of that experienced at lower latitudes
98 (USGCRP 2018) (see also chapter “Climate Change in Northern Regions”). Simul-
99 taneously, the region is increasingly stressed by amplifying anthropogenic distur-
100 bance in the way of landscape change, shipping, and accelerating economic
101 development. The flora and fauna of the Arctic are adapted to a highly seasonal
102 environment with extremes in temperature and humidity and as this landscape
103 changes the stressors on the endemic flora and fauna increase and invasive species
104 become more common. At the same time, across many Arctic taxa, species diversity
105 is low and there is little redundancy, thus challenging the capacity of the Arctic
106 ecosystem as we know it to cope with these increasing pressures. For the people of
107 the Arctic, these changes are superimposed over a population where poverty,
108 marginalization, and food security are common. The complex interacting factors
109 and rapidly changing socio-ecological system in the Arctic leads to many complex
110 challenges that are ideally suited for a One Health approach.

111 Healthy domestic and wild animals are central to ecosystem health as well as to
112 the physical, mental, and economic health of people (Fig. 1). In the following
113 sections, we explore the One Health issues around these relationships (Fig. 2).

AU2

114 **3.1 Zoonotic Diseases**

115 Many Northern communities are at least partially dependent upon subsistence
116 activities for their dietary needs and cultural activities. This engages people and
117 wildlife in an intimate relationship that may pose risks for emerging and endemic
118 zoonoses. For example, tularemia from muskrats, anisakis and tapeworm from fish,
119 echinococcosis and rabies from wild or domestic canids, and brucellosis and anthrax
120 from caribou, reindeer or bison, are all recognized, and relatively common, zoonoses
121 found around the Arctic (see also related chapters in this book). Less well understood

Fig. 2 Wildlife and One Health. Wildlife is central to One Health relationships in the circumpolar North. The history, culture, health and livelihoods of northern Indigenous peoples are intricately woven with that of the wildlife with which they co-exist. Around the Arctic, a diversity of wildlife species have served as a source of food, clothing, and tools, played a central role in cultural activities and transgenerational learning, and provided trade and economic opportunities. These fundamental contributions of wildlife to the health of Arctic peoples continues today. Figure designed by Renate Schlaht

potential zoonoses in the Arctic include pathogens such as *Erysipelothrix*, 122 *Leptospira*, 123 *Chlamydia*, 124 Q-fever (*Coxiella burnetii*), 125 Orf virus, 126 a variety of 127 arboviruses (arthropod-borne; viruses transmitted by blood-sucking insects), 128 tick- 129 borne pathogens and others. 130 While we most often focus on zoonotic disease in 131 people, pathogen transmission can occur in the opposite direction, as is thought to 132 have occurred for *Giardia* in muskoxen where the human genotype is found 133 circulating in muskoxen on Banks Island (Kutz et al. 2008). 134 Other proposed/potential- 135 emerging risks include COVID-19, where spill-over from people has caused 136 widespread outbreaks in farmed mink (Munnink et al. 2020).

Many endemic zoonotic diseases have long been known and recognized by 131 Indigenous peoples. In some cases, the knowledge of how to prepare food in a 132 way to prevent transmission has been passed down through generations, and for 133 others, public messaging efforts to reduce transmission have been implemented 134 broadly for over a century. However, the decline of intergenerational knowledge 135 sharing, in Canada largely an outcome of children being removed from their homes 136

137 to attend residential school, together with overly zealous news reports and public
138 health messaging around potential wildlife zoonoses, has led to a decline in confi-
139 dence in subsistence or “country” foods. For example, elders are frequently heard
140 saying that what is a ‘normal’ abnormality and ‘what is safe to eat’ have not been
141 passed down to the youth, leading to excessive wastage of meat derived from
142 wildlife. Similarly, reports from the press and in social media of ‘mad cow disease’,
143 ‘bird flu’ and ‘killer cat parasites’ can lead to inappropriate fear about the safety of
144 country foods. Thus, in this case, it is not the reality of country food safety that is of
145 concern, rather it is a perception that may lead to people no longer trusting the food
146 source that has sustained them for generations.

147 However, zoonotic pathogens can pose significant health risks to communities in
148 the circumpolar North. Climate change is one of the main drivers behind the
149 emergence of many zoonotic diseases and their vectors globally. At northern
150 latitudes, warming temperatures support enhanced survival of invasive tick species
151 and the northern spread of the diseases they carry (Waits et al. 2018). The release of
152 pathogens frozen in permafrost, including from historical burial sites, is also of
153 potential concern under climate change conditions (National Academies of Sciences,
154 Engineering and Medicine 2020). For more information, see chapter “Anthrax in the
155 North”.

156 The remote location of many northern communities makes it challenging to
157 monitor zoonotic risks via conventional means. The two-eyed approach described
158 above provides a platform for integrating traditional knowledge with Western
159 science to create a synergetic knowledge base that is more comprehensive than
160 either would be separately. Recent development of a network for local citizens to
161 report anomalies has improved data collection and potential early recognition of
162 emerging zoonotic threats across the Circumpolar North. The Local Environmental
163 Observer or LEO network, (www.leonetwork.org), sponsored by the Alaska Native
164 Tribal Health Consortium connects local observers with scientists, government
165 agencies and health care providers. This network has been used to alert experts at
166 research, government agency, and health care hubs of marine mammal die-offs,
167 unexpected post-mortem observations by hunters, emerging disease vectors, and
168 unusual environmental events that occur hundreds of kilometers away in remote
169 areas from which they would otherwise have very limited access to information.
170 Recent advances in convenient, minimally invasive surveillance techniques such as
171 filter paper whole blood sampling (see Box 1) can be used by hunters to monitor
172 harvested wildlife for endemic and emerging diseases and give researchers and
173 communities early warning for potential zoonotic threats. This has also been used
174 in reindeer herding, with field necropsies conducted by herders. These new
175 technologies help tie rural communities with urban research centers and greatly
176 broaden information gathering to the benefit of all parties involved.

4 Food Safety, Security, and Sovereignty

177

Rapid environmental changes have made food safety increasingly difficult to 178 achieve in Northern communities over the past 30 years. As the Arctic warms and 179 weather patterns change, traditional means of food storage have been challenged 180 severely. Ice cellars that have been used to preserve food for generations are failing 181 across the circumpolar north (Brubaker et al. 2009). Unusually wet summers have at 182 times made it difficult to make dried fish (see Fig. 3). In lower latitudes veterinarians 183 inspect animals used for food. Many northern communities are under-served in 184 veterinary services due to their small population and remote location, and so do 185 not have access to veterinary inspectors to ensure that the animals they consume are 186 safe to eat. 187

Climate change has also threatened the safety of marine-based foods. Warming 188 ocean temperatures have increased the duration and severity of harmful algal blooms 189 resulting in dangerously high levels of paralytic and amnesic toxins in filter-feeding 190 shellfish. These changes have also supported the growth of the offending organisms 191 further north than has been previously observed. In 2019, hazardous levels of these 192 toxins were measured in shellfish on the northwestern coast of Alaska. Simulta- 193 neously, significant levels of these toxins were also measured in walrus and 194 Bowhead whales on the northwestern and northern coastal areas of Alaska (Lefebvre 195 et al. 2016). 196

Fig. 3 Fish drying in Emmonak Alaska. Photo courtesy of Dr. Walkie Charles

197 As described below, the Arctic has become a sink for many persistent toxins
198 produced in the industrial centers of lower latitudes. Bioaccumulation of mercury
199 and persistent organic pollutants have led to harmful contaminant levels in apex
200 predators such as seals, polar bears, and northern pike (Atwell et al. 1998; Fisk et al.
201 2001; Braune et al. 2005) (see also chapters “Arctic Ecosystems, Wildlife and Man:
202 Threats from Persistent Organic Pollutants and Mercury”, “Oil Spills in the Arctic”,
203 “Nuclear Radiation”, and “Rabies in the Arctic”). As these problems have evolved,
204 concerns regarding the safety of traditional or country foods have led to confusion on
205 the safety of these dietary choices. In the Yukon-Kuskokwim area of Alaska, an area
206 where fish make up the majority of calories and protein of a primarily subsistence-
207 based diet, reports of high mercury levels in northern pike and other key species has
208 led to a syndrome referred to as “fish fear” and resulted in families moving away
209 from traditional foods and towards a more “western” diet. A four-decade-long
210 retrospective study of women in this area showed a progressive decline in plasma
211 vitamin D levels which were concomitantly associated with a significant increase in
212 pediatric rickets in the region (O’Brien et al. 2017; Singleton et al. 2015). Collabora-
213 tive work between researchers, health care providers, and community members has
214 concluded that although it is important to monitor contaminant levels in subsistence
215 species, people were healthier eating these traditional foods (Mehruba et al. 2016).
216 Rather than switching diets, food safety could be attained by regulating the way in
217 which these foods were selected stored, and prepared. One example of such a
218 recommendation aimed at reducing mercury exposure is to continue eating Northern
219 Pike, but to avoid the larger fish, and focus on eating more small fish (Berner 2019).

220 Northern communities have a high rate of food insecurity (Huet et al. 2017).
221 Socio-economic, infrastructural, regulatory, and environmental changes have nega-
222 tively impacted food security in the North (Hueffer et al. 2019). These changes may
223 also require hunters to cover greater distances to access game resources. Shifts to a
224 cash economy and reliance upon using mechanized transportation may make
225 harvesting more efficient but also puts time restraints on those that have to work to
226 pay for these conveniences (Hueffer et al. 2019). The resulting challenges in access
227 to subsistence food sources have negative impacts on food security, cultural
228 practices, knowledge transfer, and mental and behavioral health. For communities
229 off the road system, conventional foods often must be transported by air or barge at
230 considerable cost. Household incomes in these areas are often below national
231 averages impairing the ability to purchase high-priced food items (Huet et al.
232 2017). Many of these communities still rely heavily on subsistence foods for the
233 majority of their caloric intake (Johnson et al. 2019).

234 Unprecedentedly rapid environmental changes have challenged long-standing
235 traditional knowledge on game movements, salmon returns, berry ripening times,
236 and most hazardously, travel on ice. Severe and widespread population declines of
237 caribou have left ‘caribou people’, those Indigenous groups that rely heavily on
238 caribou for subsistence, without one of their main sources of food. In the fall of 2020,
239 the Yukon river chum and silver salmon runs experienced an unprecedented col-
240 lypse. Commercial harvests reported for this period were 97% lower than the 5-year
241 average. Traditionally, millions of both species return at this time of year when it is

AU3

easy to preserve them for use as winter food for humans and their dog teams. The 242
catastrophic failure of this run has put both people and their dogs in a position of 243
severe food insecurity. 244

No discussion of food security in the North would be complete without including 245
the concept of food sovereignty. Access to habitat for reindeer grazing and plant and 246
berry harvesting and to fish and game resources that are central to subsistence living 247
is being challenged by rapid environmental change, socioeconomic shifts, and 248
competition from both commercial and expanding urban personal use harvesting. 249
The Inuit Circumpolar Council has addressed this issue very thoroughly in two 250
documents relating to food security and food sovereignty, and the readers are 251
directed to these resources for a more in-depth coverage of this issue (ICC 2015, 252
2020). Government regulation of these resources often does not consider traditional 253
knowledge of the resource and traditional harvesting practices. This often results in a 254
conflict when population assessments differ between traditional harvesters and 255
western scientists. Traditional knowledge applied in this sense is often more adept 256
at predicting and detecting population changes by evaluation of harvested animal 257
body condition and overall health, than the technologically driven modelling 258
methods often used by government agencies which set regulations (Kutz and 259
Tomaselli 2019). The assessments used to make these regulations are frequently 260
based on measurements made over a few places and a few days due to cost and time 261
restrictions. In contrast, subsistence hunters are constantly on the land and observing 262
the movement and state of the animals they rely upon and often have a more 263
complete temporal and spatial understanding of these populations than the biologists 264
formulating harvest regulations. Kutz and Tomaselli (2019) describe a “two-eyed” 265
approach” to wildlife management that integrates Traditional and Western knowl- 266
edge in a way that combines the information bases and cooperatively generates 267
solutions that may be superior to those reached by either alone. Under this approach, 268
traditional knowledge holders can combine their knowledge with scientists and 269
develop a more comprehensive model for understanding and predicting the state of 270
fish and game populations (Box 1). For a more detailed description of the harvesting 271
and storage of traditional foods please see chapter “Traditional Conservation 272
Methods and Food Habits in the Arctic”. 273

In northern Canada, community members, academics, and government wild- 274
life agencies have come together to implement a collaborative wildlife health 275
surveillance program. The communities of Ulukhaktok, Northwest Territories, 276
Kugluktuk and Ekaluktutiak, Nunavut, rely heavily on local caribou and 277
muskox populations (Tomaselli et al. 2018a, b; Hanke et al. 2021; Di 278
Francesco et al. 2021). In response to community concerns about the health 279
and population trajectories of these species, community-based caribou and 280
muskox health surveillance programs were established with the hunters and 281
trappers organizations in all three communities. These programs are multi- 282

(continued)

283 pronged, bringing traditional knowledge and scientific knowledge together to
284 understand wildlife population health, disease, and zoonoses. They consist of:
285 (1) baseline wildlife health interviews h (2) hunter-based sampling and
286 (3) ongoing annual interviews. Baseline interviews on the past and current
287 health and population status of caribou and/or muskoxen are done using a
288 combination of individual and group interviews and participatory epidemiol-
289 ogy methods (e.g., Tomaselli et al. 2017). This process documents important
290 information on the ecology, health, and trajectory of the populations, identifies
291 community concerns, and forms the basis for further monitoring and
292 investigations. Harvesters are provided with standardized field-friendly sam-
293 pling kits that they use to collect samples and data from caribou and muskoxen
294 that they harvest for subsistence or through local guides/outfitting operations.
295 Kits consist of data sheets, pre-labeled sampling bags, and Nobuto filter paper
296 strips for blood collection (Fig. 4).

AU4

297 Samples are initially processed in the community by a hired monitor with
298 the hunters and trappers organization and/or government wildlife employees
299 and then sent for further laboratory analyses. Various health indicators, such as
300 infectious disease, stress, nutritional status, genetics, and condition, are deter-
301 mined and the results are brought back to the community in the forms of
302 presentations and reports with key community partners as co-authors on final
303 publications. Ongoing annual interviews are used to document the Indigenous
304 knowledge on population health and trends. These interviews serve to track
305 populations from year to year in real time and identify changes and concerns
306 on a much more rapid time scale than may be detected by the infrequent
307 population surveys. Together, these three steps bring local, traditional and
308 scientific knowledge together to establish historical baselines and trends,
309 document the current status of the populations, and detect any new/emerging
310 conditions, diseases, or concerns. Extensive co-learning is manifested through
311 training of hunters on sampling, monitors on sample processing, scientists/
312 graduate students on traditional harvest methods, animal uses, and knowledge
313 of the land, and the general public on wildlife health and disease. Through this
314 enhanced interaction among community, government and academic partners
315 there is ongoing knowledge sharing, trust building, and vastly improved
316 communication networks which leads to more effective co-management.

317 Conventional western approaches to the management of these resources may also
318 impose time and individual harvest limits which may not fit the new migration
319 patterns of the animals or the traditional cultural practices of the local Indigenous
320 people. Indigenous culture has developed practices over millennia that harvest fish
321 and game in a manner that takes only what is needed, shares with those in need, and
322 leaves behind sufficient animals to maintain a healthy population (Fig. 5). Tradi-
323 tional harvests take place at the time the animals are available and when the
324 conditions are most favorable to preserve them. Conflict often arises when harvest

Fig. 4 Muskox samples collected through community-based wildlife health surveillance program. Blood on filter paper allows the easy collection of blood that can then be frozen immediately (e.g., at ambient winter temperatures). Blood collected on filter paper can be used to do a variety of serological assays, as well as DNA isolation. The ease of sampling in the field, which does not require test tubes or any technical or time sensitivity makes it a simple, yet elegant tool for hunter-based wildlife health surveillance

windows are set that do not incorporate traditional practices. An example of this 325 conflict can be seen when a salmon harvest opening occurs during a rainy period 326 when the fish cannot be dried (Fig. 3). Traditional practices would not support 327 harvesting and potentially wasting the fish but would allow people to fish when 328 the conditions are correct for preserving the catch. Governmental regulations often 329 place limits on game harvest to protect over-harvesting, particularly under 330 circumstances when species may be susceptible to this problem. These regulations 331 are often based on single person allotments for hunters who are in the field only a few 332 days each year and are appropriate for urban households. Indigenous harvesting is 333 often focused on providing food for the whole community. Indigenous hunters 334 usually share their harvest with others outside their household and particularly 335 with elders who may be physically limited. These conflicts are another place 336 where co-production of knowledge may be engaged to support regulations that 337 work optimally for all involved. The prioritization of subsistence resource use brings 338 us back to the concept of food sovereignty as an integral part of food security in areas 339 where Indigenous people have lived for millennia but now may not have say over 340 their access to traditional foods. As described below, the operationalization of One 341 Health as a bridge between Indigenous worldview and Western Science may provide 342 a platform for this type of policy development. 343

Fig. 5 The Yup'ik Men's Dance Fan. This fan is used in ceremonial dance. The fan represents the human hand with each feather representing a finger. The space underneath the feathers represents the Yup'ik cultural practice of taking only what you need and leaving the rest behind for others that come after and also to maintain sustainable wildlife and plant populations for generations to come. Photo courtesy of Dr. Walkie Charles

344 **5 Contaminant Monitoring**

345 The Arctic Council Arctic Monitoring and Assessment Programme working group
346 (AMAP) has demonstrated that the Arctic is a sink for Anthropogenic pollution and
347 climate change (Gibson et al. 2016). Ocean and atmospheric currents bring organic
348 and heavy metal contaminants from lower latitudes, where they are generated by
349 industrial societies, to the Arctic, where they accumulate in the physical environment
350 and bioaccumulate in the food web (Fisk et al. 2001; Braune et al. 2005; Atwell et al.
351 1998). Climate change has exacerbated the movement and impact of these
352 contaminants (Braune et al. 2005). The recent and rapid accumulation of these
353 toxins has resulted in many new stressors upon Arctic ecosystems threatening the
354 survival of several species and endangering the safety of subsistence food sources.

355 For over 20 years the AMAP working group has monitored contaminant levels in
356 humans and sentinel species across the Arctic (Gibson et al. 2016). These studies
357 have found significant and potentially health-threatening concentrations of industri-
358 ally produced mercury and persistent organic pollutants (POPs) in humans and apex

predators such as polar bears, seals, narwhals, and northern pike. Mercury accumulation can impair central nervous system functions and therefore affect cognition and locomotion which may decrease hunting efficiency and result in aberrant behavior (Black et al. 2016). POPs have multi-systemic effects. They can alter hormone transportation and receptor activity resulting in decreased fertility, enhanced rates of miscarriage, low birthweight, and enhanced neonatal mortality (Black et al. 2016). They also impair immune function and enhance the risk of developing certain forms of neoplasia. Climate change has enhanced not only the transport of these contaminants to the Arctic but also their impact. Shrinking sea ice has forced marine mammals to swim further than normally required to obtain food and shelter, causing an enhanced utilization of lipid depots and resulting in mobilization of lipophilic compounds during periods of high stress.

Species such as seals, narwhals, and even polar bears have traditionally been staples in the subsistence diets of coastal inhabitants across the Circumpolar North. This puts these people at the highest position in the food chain and therefore at the greatest risk of the bioaccumulatory impacts of these toxins. POP concentrations in Inuit living in Eastern Greenland are among the highest measured anywhere and have been associated with an increased incidence of cancer and immune-related issues in this population (Gibson et al. 2016).

Contaminant accumulation in the Arctic is a clear example of an issue that can be addressed well through a One Health lens. AMAP, CAFF, and ACAP have incorporated a One Health approach by combining environmental monitoring with the monitoring of humans and sentinel animal species. Programs that monitor sentinel species in the food web such as seals, narwhals, and polar bears, provide an understanding of the trends and severity of contaminant bioaccumulation in the food web. Monitoring companion sentinel species, such as sled dogs, may also provide useful information in developing dietary recommendations for people living a subsistence lifestyle in these areas. Studies of sled dogs have been useful in determining mercury and POP bioaccumulation (Sonne et al. 2017; Dunlap et al. 2011) as these dogs often eat similar diets to the humans they live and work with. The relatively higher metabolic rate of these dogs in comparison to their human counterparts may also permit scientists to see health issues in the dogs before they become problems in people.

6 Mental and Behavioral Health and Well-Being

392

In Indigenous populations, rapid social and economic change associated with colonization and assimilation practices has been associated with pervasive social issues including suicide, substance abuse, and domestic violence (Hueffer et al. 2019). Loss of language (Krauss 1980; Gone 2013), cultural practices, and cultural knowledge have been associated with a severe increase in the incidence of these problems. Added to these stressors are rapid environmental changes which have impacted, traditional activities such as travel on ice, hunting, fishing, and gathering of plant resources. When traditional knowledge struggles to accommodate rapid rates and

393

394

395

396

397

398

399

400

401 previously unexperienced types of environmental change, it can adversely affect the
402 self-esteem of resource providers and the self-efficacy of a society. Indigenous
403 people have lived in and stewarded their traditional lands for millennia. Indigenous
404 worldview has historically seen the terrestrial and marine environments and the flora
405 and fauna they encompass as benefactors which people are not only dependent upon
406 but also inseparable and indivisible from. When such cultural foundations change
407 from being benefactors to becoming threats in the form of contaminated foods,
408 unreliable fish and game populations, and unsafe or unreliable ice conditions, this
409 challenges belief systems and can result in severe and negative impacts on mental
410 and behavioral health and well-being.

411 Suicide is now the leading cause of death for Alaska Native people between the
412 ages of 15 and 25 (Berman 2014; Hicks 2007) and in Canada, the suicide rate of Inuit
413 is approximately 9 times that of non-Indigenous Canadians (Kumar and Tjepkema
414 2019). Prior to 1950, suicide was rare and most common among aged men that no
415 longer felt capable of contributing to the needs of their community. Conventional
416 approaches, which isolate and treat individuals perceived to be at high risk, have
417 done little to prevent the continuation of these issues (Hicks 2007). Recent
418 approaches focusing on building strengths rather than managing outcomes have
419 begun to show promise (Rasmus et al. 2019; Rivkin et al. 2019). Reintroduction
420 or retention of cultural practices, transfer of traditional ways of knowing, and fluency
421 in the original language are all traits common to Indigenous communities that have
422 shown resilience to suicide in the Circumpolar North (Rivkin et al. 2019). Recently,
423 programs, using a One Health approach, have shown real promise in preventing
424 negative mental and behavioral health outcomes in Northern Indigenous
425 communities. These community-based programs incorporate the relationship and
426 inseparable nature of the human, animal, and environmental health as foundations of
427 strengths that can be used to build resilience to these problems. One prominent
428 example of this is the Alaska Native Cultural Hub for Resilience Research
429 (ANCHRR). This NIH-funded community-based program partners University
430 (UAF) researchers with community members and elders to study and define best
431 practices in resilient communities and share them with communities that are strug-
432 gling. Instead of identifying and isolating at-risk individuals, which may exacerbate
433 the issues by focusing on these individuals as being “different,” this program
434 emphasizes building strengths through cultural activities, sharing of personal stories,
435 and transfer of traditional knowledge. This work is often done out on the land during
436 hunting, fishing, or berry picking activities. In this way, potentially susceptible youth
437 are “wrapped in a blanket of community support and strength” that builds self-
438 efficacy and self-esteem through gaining proficiency in skills and acknowledgement
439 of accomplishments from respected community members.

440 Other examples of such programs are the Frank Attla Youth and Sled Dog Care
441 Program (FAYSDCP) and the Alaska Care and Husbandry Instruction for Lifelong
442 Living (ACHILL) described in the chapter “Dogs and People: Providing Veterinary
443 Services to Remote Arctic Communities” (Veterinary medicine in remote arctic
444 communities). These community-based programs holistically address mental and
445 behavioral issues by simultaneously addressing environmental and animal health.

AU5

The interdependence of the One health triad is central to the culture and knowledge 446
base of these communities and so this approach addresses the human health issues at 447
their root causes rather than treating their outcomes. Veterinarians, who by the nature 448
of their education are trained in preventive health care and understand the value of 449
the human–animal bond, are essential stakeholders in the development and imple- 450
mentation of these One Health processes. 451

7 Operationalizing One Health

452

The One Health approach to describing, understanding, and managing large issues 453
that span the interface between human, animal, and environmental health is gaining 454
support from community members, health care professionals, academics, govern- 455
mental agencies, and NGOs across the globe (Ruscio et al. 2015; Arctic Council 456
SDWG 2017). This approach is particularly relevant in the Circumpolar North where 457
environmental changes are happening at a rate that has been unprecedented and 458
making it difficult for social and ecological systems to adapt in a healthy manner. 459
Although these changes pose a tremendous challenge to northern communities, they 460
simultaneously present an opportunity to understand and address related changes 461
that are happening to a lesser degree at lower latitudes. 462

While One Health is being embraced as the way to work on these “Wicked 463
Problems,” it is often easier to conceptualize this approach than to operationalize it 464
(Vesterinen et al. 2019). Putting One Health into action requires stakeholders to 465
work across disciplines and cultures and work in a constructionist approach that 466
addresses issues starting at the community perspective and working outwards. Each 467
part of this strategy requires a paradigm shift from conventional academic and 468
scientific approaches to problem-solving. This paradigm shift is simultaneously the 469
greatest potential strength and the greatest potential challenge encountered in 470
operationalizing One Health. 471

For centuries, western scientists have used a reductionist approach to study and 472
solve problems. This method entails breaking down or reducing problems to a single 473
underlying cause and has been used to identify individual pathogens as the cause of a 474
disease, or a single gene mutation as the source of an error in metabolism. Many of 475
the hallmark successes of modern science have resulted from this approach which 476
has become the default method of scientific problem-solving. While reductionist 477
reasoning has worked well for single-issue problems, this approach falls short when 478
addressing issues which may have multiple causes and interactions. 479

“Wicked problems” require knowledge that not only penetrates deeply into a 480
single discipline but also spans across all of the disciplines involved. At this writing 481
(May 2021), vaccines against the COVID-19 have arrived and are being used to 482
control the pandemic which has spanned the globe and affected nearly every aspect 483
of life. These vaccines may well stem the spread and effects of the virus but their 484
development and implementation will not help us understand why this catastrophe 485
occurred in the first place and what we might be able to do to prevent or mitigate the 486
next pandemic from gaining a foothold. For this, we must understand how 487

488 anthropogenic environmental changes have impacted wildlife populations that serve
489 as potential reservoirs for emerging zoonotic threats and how these are influenced by
490 current livestock husbandry, cultural, social, and economic practices. This under-
491 standing requires a constructionist approach that integrates information across
492 disciplines and cultures and approaches the issue from the perspective of the
493 communities involved in a bottom-up, rather than top-down, prescriptive approach.
494 One Health applied in this manner supports the gathering of knowledge both broadly
495 and deeply, and the solutions acquired are likely to be effective because they have
496 arisen with the input of the communities where they will be implemented.

497 Working across disciplines challenges the current paradigm under which research
498 and problem management are conducted. Instead of working within a single disci-
499 pline and communicating findings to others with similar education and training,
500 those working in a One Health approach must be capable of both giving and
501 receiving information to and from those with different backgrounds than their
502 own. This can be challenging even across conventional western disciplines. Natural
503 scientists use different methodology and terminology in their work than that used by
504 social scientists, and these differences require significant adjustments when studies
505 are designed to incorporate both approaches. Bridging the gap across cultural
506 knowledge systems in a “Two eyed approach” is another example of the advantages
507 and challenges associated with working outside of conventional western scientific
508 methods (Kutz and Tomaselli 2019). Scientists are often uncomfortable transferring
509 the implications of their work outside of their own narrow fields of study, however,
510 science communication to non-scientists, such as community members and policy
511 makers, is central to the success of a One Health approach. The shortfall in science
512 literacy and the resulting negative impacts from non-adherence to CDC
513 recommendations led to the world’s greatest per capita case and fatality rates in
514 the United States during the first 9 months of the COVID-19 pandemic. This
515 example serves as a warning to all involved for the need to improve science
516 communication between researchers, medical professionals, and the general public
517 (Eysenbach 2020).

518 While there is no handbook for operationalizing One Health, several systems
519 have been developed for use as a platform to begin the process. The US CDC has
520 developed a One Health Zoonotic Disease Prioritization process (CDC-OHZDP) for
521 emerging zoonotic disease threats (Salyer et al. 2017). This process uses a workshop
522 format and engages stakeholders including community members, academic
523 researchers, health care providers, and those working for government agencies.
524 The process and its application in regional, national, and international situations
525 have been published in peer-reviewed journals (Salyer et al. 2017). The CDC
526 co-sponsored such a workshop with the UAF Center for One Health Research
527 (COHR) in March of 2019 to prioritize emerging zoonotic disease threats in Alaska.
528 The top seven threats identified in this workshop are listed in Table 1. This was the
529 first time this process had been implemented in the Circumpolar North and serves as
530 an example of what could be developed in other Arctic countries. The resulting
531 report can be used to support surveillance and research efforts focused on these

Table 1 Priority zoonotic diseases selected in Alaska by participants in the One Health Zoonotic Disease Prioritization workshop conducted May 20–21, 2019. Reproduced from Goroyka et al. (2020)

Zoonotic disease	Human disease burden	Animal disease burden	Diagnostics, treatment and prevention
Amnesic shellfish poisoning/paralytic shellfish poisoning	Between 1973 and 1996 over 200 cases of paralytic shellfish poisoning were reported in Alaska and were attributed to more than 70 outbreaks across the state ¹	Nearly all molluscan shellfish in Alaska are affected by paralytic shellfish poisoning and the Alaska Department of Environmental Conservation regularly tests commercially harvested shellfish ² In a recent study by the University of Alaska SE, PSP measurements in mussels at sites around Juneau reached 4500 micrograms per 100 grams of shellfish. This level is fatal to a person after only consuming a few mussels ³	Clinical diagnosis is based on recent shellfish ingestion and the presence of clinical manifestations of toxicity such as nausea, vomiting, paresthesia, dysarthria, dysphagia, and weakness. The toxin can also be confirmed in a clinical specimen such as blood or urine ¹ To stay safe, clean shellfish thoroughly, removing all butter and discarding the gut. Also only consume shellfish sold commercially and routinely tested as cooking and freezing will not destroy the toxin ⁴ Treatment for severe cases is the use of a mechanical respirator and oxygen ⁴
Zoonotic influenza	There have been no human infections with Asian HPAI H5N1 virus reported in the United States. However, sporadic human infections with avian influenza A (H7) viruses have been identified in the United States ⁵ Since 2010, 466 cases of swine flu have been reported in the United States ⁶	H1N1 and H3N2 swine flu viruses are endemic among pig populations in the US with outbreaks normally occurring in colder weather months ⁷ As part of a large-scale Avian influenza surveillance study from 2007–2011, researchers reported a mean apparent prevalence of avian influenza virus of 11.4% within wild birds. Prevalence was	As a general precaution, people should avoid wild birds, contact with domestic birds that appear ill or have died, and avoid contact with surfaces that appear to be contaminated with feces from wild birds ¹⁰ One mode of prevention is via the seasonal flu vaccine which can be given to humans and animals The best way to prevent infection is to

(continued)

Table 1 (continued)

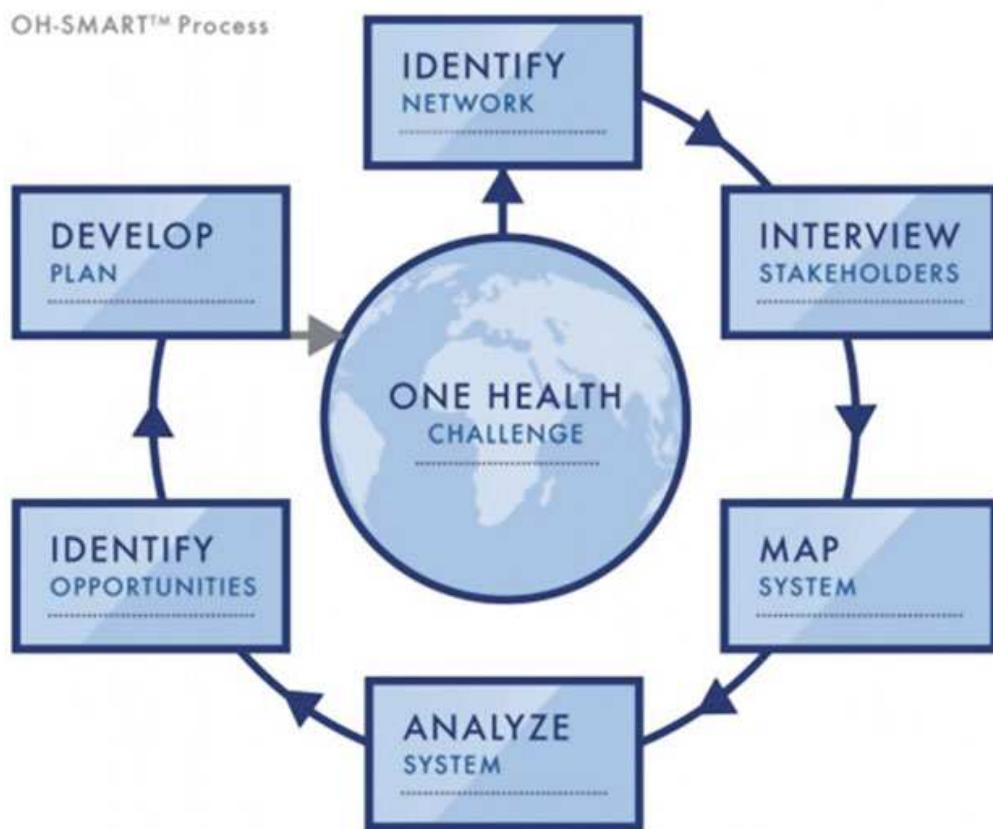
	Zoonotic disease	Human disease burden	Animal disease burden	Diagnostics, treatment and prevention
t.5			highest in dabbling ducks whose mean prevalence was 15.8% ⁸ As part of the USDA ongoing surveillance for swine, over 120,000 samples have been tested between 2010 and 2016 resulting in over 10,000 positive cases for influenza ⁹	avoid sources of exposure specifically contact with infected poultry ⁵ Treatment includes antiviral drugs and continued monitoring ¹⁰ Diagnosis for influenza and novel types of zoonotic influenza includes respiratory specimens for laboratory testing using PCR ¹¹
t.4	Rabies	Three human cases have been reported in Alaska since 1914 but none have been reported since 1942 ¹²	Between 15 and 50 cases of wildlife cases are reported each year in Alaska. Rabies is enzootic among the fox populations in the North and West regions in Alaska. There have been periodic epizootics documented every 3 to 5 years ¹²	Rabies is diagnosed in animals using direct fluorescent antibody tests. Several rapid laboratory tests are required for diagnosis in humans There is a vaccine available to both animals and humans. Following any contact or bite from a rabid animal, medical attention is immediately necessary Prophylaxis is the immediate treatment; however, following the onset of clinical symptoms, there is no treatment, and the disease is fatal ¹³
t.5	Cryptosporidiosis/Giardiasis	A recent study reported a 28.8% seroprevalence of cryptosporidium in people with or without wild bird contact in Alaska. The same study reported an 18.9% seroprevalence of Giardia intestinalis in the same	One study looking at the prevalence of cryptosporidium and giardia subspecies found that prevalence was highest among ring seals (22.6% cryptosporidium, 64.5% giardia) and right whales (24.5%	Both cryptosporidiosis and giardiasis are diagnosed through microscopic analysis of stool samples. In both cases, PCR can be used to determine species. Those with competent immune systems will recover

(continued)

Table 1 (continued)

Zoonotic disease	Human disease burden	Animal disease burden	Diagnostics, treatment and prevention
	population ¹⁴ From 2001–2010, there were 1042 human cases of giardiasis reported. Annual rates of giardiasis in Alaska have repeatedly been higher than in the rest of the United States ¹² Another study looking at the prevalence among Alaska residents found the prevalence of giardia antibody was highest among subsistence hunters and their families at 30% ¹⁵	cryptosporidium, 71.4% giardia) ¹⁵	from cryptosporidiosis without treatment, fluid replacement and nitazoxanide may be recommended. For giardiasis metronidazole, tinidazole, and nitazoxanide are recommended. Prevention for both are primarily good hygiene practices and avoiding contaminated food and water ^{16,17}
Toxoplasmosis	A 2019 study reported a 2.9% seroprevalence for <i>Toxoplasma gondii</i> in people with or without wild bird contact in Alaska ¹⁴	A recent study looking at seroprevalence among sea otters reported 32% of sea otters tested positive for <i>T. gondii</i> ¹⁸ Another study looking at serum antibody prevalence for <i>T. gondii</i> within Alaska wildlife reported 23% positive among moose, 43% for black bears, 9% for wolves, and 7% for Dall sheep ¹⁹	Toxoplasmosis is primarily diagnosed through serologic testing. Healthy individuals typically do not require treatment to recover. However, pyrimethamine and sulfadiazine, plus folinic acid can be administered. Prevention includes cooking foods to proper temperatures and avoiding contact with cat feces ²⁰
Brucellosis	A 2019 study reported a 0.1% seroprevalence for <i>Brucella</i> spp. in people with or without wild bird contact in Alaska ¹⁴	There are 10 species of <i>Brucella</i> recognized in animals ¹² One recent study looking at seroprevalence of <i>Brucella</i> in Alaskan harbor seals found that overall, 52% of adult seals tested positive for antibody seroprevalence ²¹	Diagnosing brucellosis is done through bacterial isolation in blood cultures and serologic testing There is no standardized diagnostic tests for different species of animals ¹² Antibiotics, generally doxycycline and

(continued)


Table 1 (continued)

	Zoonotic disease	Human disease burden	Animal disease burden	Diagnostics, treatment and prevention
t.9			A study looking at serum antibody prevalences for <i>Brucella</i> among caribou, wolves, and bears reported the highest prevalence in the northwest region of Alaska ²²	rifampin, are given to treat the infection. Brucellosis can be prevented by avoiding the consumption of undercooked meat and unpasteurized dairy products. Additionally, those handling animal tissues should wear protective clothing ²³ . Prevention includes vaccination of domestic livestock ¹²
t.8	Q Fever	A recent study reported an 8.3% seroprevalence of <i>Coxiella burnetii</i> in people with or without wild bird contact in Alaska ¹⁴	A 2015 study reported a 17% seroprevalence of <i>Coxiella burnetii</i> in live seemingly healthy northern sea otters <i>Enhydra lutris kenyoni</i> of Alaska ²⁴ . Another study in 2013 found an 80% seroprevalence in northern fur seals of Alaska ²⁵	Q fever is diagnosed through a blood test. The majority of those infected are able to recover without treatment. But, a 2-week course of doxycycline may be recommended. Prevention methods for Q fever include avoiding contact with animals and refrain from consuming raw milk products ²⁶
t.9				AU6

532 diseases and the policy and funding necessary for this work to proceed (<https://www.cdc.gov/onehealth/pdfs/Alaska-508.pdf>).

533 The CD-OHZDPP is the first step in operationalizing One Health as it can play a
 534 key role in prioritizing One Health issues. Once an issue, such as a zoonotic disease
 535 threat has been identified, the next step is to use a One Health approach to analyze
 536 and manage it. The One Health Systems Mapping and Analysis Toolkit Process
 537 (OH-SMART) uses systems mapping and analysis to achieve these goals
 538 (Vesterinen et al. 2019). OH-SMART was developed in a joint effort between the
 539 University of Minnesota and the USDA to analyze and facilitate communication and
 540 collaboration across government agencies and other stakeholders as presented in
 541 Fig. 6.

542 Beginning with an identified One Health challenge, the first step is to identify the
 543 network of stakeholders that will be involved in the process. These stakeholders are
 544 then interviewed to determine their approach to the issue and which other

Fig. 6 The OH-SMART model. Used with permission of the authors (Vesterinen et al. 2019)

stakeholders they collaborate with and the depth of these collaborations. These 546 interviews are then placed on a swim lane map so that the flow of resources, data, 547 and lines of communication can be followed. The map is analyzed for best practices 548 and discrepancies. Opportunities are identified for improving and strengthening the 549 system. These are best practices which can be institutionalization or otherwise made 550 stronger and discrepancies which can be resolved. These opportunities are 551 prioritized based upon the impact, resource requirement, feasibility, and 552 sustainability of doing so. In the final step, action plans are developed to implement 553 the highest priority opportunities as identified by the group. This is an iterative 554 process at all levels, and each progressive step will often uncover new components 555 of previous steps which need to be considered to improve the effectiveness of the 556 outcomes. 557

This technique can be applied in a several-day, in-place workshop, or over a 558 longer period of time by distance. It can address problems retrospectively, prospec- 559 tively, or while they are occurring. Retrospective analysis seeks to understand what 560 went well and what can be improved for future situations. Prospective analysis helps 561 prepare One Health workers for potential future problems by analyzing the current 562 system for efficiencies and improvements. OH-SMART analysis during a situation 563 helps workers analyze how well the system in place is working and to make needed 564

565 adjustments in real time. For a detailed description of the OH-SMART process and
566 its implementation, the readers are referred to Vesterinen et al. (2019).

567 While the OH-SMART technique was developed to assist in the sectoral analysis
568 of a system focused on government agencies, it can be applied to community-based
569 problems as well. In this case, the first step is to develop an understanding of the
570 problem from the perspective of the community that is experiencing it. This entails
571 time and relationship building and often results in a different focus than would have
572 been the case if the problem and questions to be analyzed were determined by those
573 working outside of the community. How well the first step engages community
574 collaboration and support will determine the community's engagement in further
575 steps and the potential overall success of the process. Engaging communities at the
576 onset and in this manner also provides an opportunity to bring Traditional Ways of
577 Knowing into the discussion and support its incorporation in future steps of the
578 process. This approach is now being utilized in academic programs in Alaska
579 (<https://www.uaf.edu/onehealth/education/master.php>).

580 Veterinarians are uniquely suited as facilitators of operationalizing One Health.
581 They are trained to communicate scientific concepts to lay clients and do so as an
582 integral aspect of their daily practice. They have public health training, are used to
583 working with government and regulatory agencies, and across disciplines and
584 specialties within and outside of their profession. They are frontline workers in
585 animal welfare, zoonotic disease surveillance, reporting, and treatment and in the
586 maintenance of food safety and security. Their daily job encompasses the interface
587 of human, animal, and environmental health, and so, they have a working knowledge
588 in all areas of One Health and familiarity of communicating that knowledge across
589 disciplines and cultures. This emerging role for veterinarians is demonstrated in the
590 inclusion of One Health in the mission statement of veterinary colleges across the
591 globe. As One Health becomes a more conventional approach to understanding and
592 managing large, complicated issues at the interface of human, animal, and environ-
593 mental health, veterinarians will be increasingly called upon to facilitate and imple-
594 ment the operationalization of One Health. This will be especially true in the North
595 where people still have close ties to the land and the animals they live with and
596 depend upon, and, during a time when these relationships continue to change
597 rapidly.

598 The Arctic is experiencing environmental, social, and economic change at a
599 historically unprecedentedly rapid rate. This poses great challenges and, simulta-
600 neously, great opportunities to operationalize paradigm shifts supporting adaptation
601 and resilience to these changes and which can then serve as a management model for
602 similar changes that are occurring more gradually on a global scale. Addressing
603 these issues effectively requires a One Health approach that integrates knowledge
604 across disciplines and cultures, recognizes the interdependence of human, animal,
605 and environmental health, and begins the process from a community-based
606 perspective.

References

607 AU7

Arctic Council Sustainable Development Working Group (2017) One Health: Operationalizing One Health in the Arctic. DWG, Tromsø 608
Atwell L, Hobson KA, Welch HE (1998) Biomagnification and bioaccumulation of mercury in arctic marine food web: insights from stable nitrogen isotope analysis. *Can J Fish Aquat Sci* 610
55:1114–1121 611
Berman M (2014) Suicide among young Alaska native men: community risk factors and alcohol control. *Am J Public Health* 104(Suppl 3):S329–335. <https://doi.org/10.2105/AJPH.2013.301503> 613
614
615
Berner J (2019) One Health One Future conference presentation. Fairbanks, Alaska November 616
5, 2019 617
Black S, Duigan P, Akeegok J et al (2016) Marine animal health in a changing environment. In: Cook S, Hall, D, Liljebelke K (eds) One Health case studies. 5M Publishing, Sheffield, pp 618
164–165 619
620
Braune BM, Outridge PM, Fisk AT et al (2005) Persistent organic pollutants and mercury in marine 621
biota of the Canadian Arctic: an overview of spatial and temporal trends. *Sci Total Environ* 622
351–352:4–56. <https://doi.org/10.1016/j.scitotenv.2004.10.034> 623
Brubaker M, Bell J, Rollin A (2009) Climate change effects on traditional Inupiaq food cellars. 624
Center for Climate Change and Health, Bulletin No.1, October 19. Alaska Native Medical 625
Center, Anchorage Alaska 626
Center for Disease Control (2021) Workshop summary: one health zoonotic disease prioritization 627
for multisectorial engagement in Alaska. CDC. Available via <https://www.cdc.gov/onehealth/pdfs/Alaska-508.pdf>. Accessed 1 June 2021 628
629
Denny SK, Fanning LM (2016) A Mi'kmaw perspective on advancing Salmon governance in Nova 630
Scotia, Canada: setting the stage for collaborative co-existence. *Int Indig Policy J* 7(3). <https://doi.org/10.18584/iipj.2016.7.3.4> 631
632
Di Francesco J, Hanke A, Milton T et al (2021) Documenting indigenous knowledge to identify and 633
understand the stressors of muskoxen (*Ovibos moschatus*) in Nunavut, Canada. *Arctic* (in press) 634
Dunlap KL, Reynolds AJ, Gerlach SC et al (2011) Mercury interferes with endogenous antioxidant 635
levels in Yukon River subsistence-fed sled dogs. *Environ Res Lett* 6(4):044015. <https://doi.org/10.1088/1748-9326/6/4/044015> 636
637
Eysenbach G (2020) How to fight an infodemic: the four pillars of infodemic management. *J Med 638
Internet Res* 22(6). <https://doi.org/10.2196/21820> 639
639
Fisk AT, Hobson KA, Norstrom RJ (2001) Influence of chemical and biological factors on trophic 640
transfer of persistent organic pollutants in the northwater polynya marine food web. *Environ Sci 641
Technol* 35(4):732–738. <https://doi.org/10.1021/es001459w> (Erratum in: *Environ Sci Technol* 642
35(8):1700) 643
Gibbs EPJ (2014) The evolution of One Health: a decade of progress and challenges for the future. 644
Vet Rec 174(4):85–91 645
645
Gibson J, Adlard B, Olafsdottir K et al (2016) Levels and trends of contaminants in humans of the 646
Arctic. *Int J Circumpolar Health* 75:33804. <https://doi.org/10.3402/ijch.v75.33804> 647
647
Gone JP (2013) Redressing first nations historical trauma: theorizing mechanisms for indigenous 648
culture as mental health treatment. *Transcult Psychiatry* 50(5):683–706. <https://doi.org/10.1177/1363461513487669> 649
650
Hanke AH, Angohiatok M, Leclerc L-M et al (2021) A caribou decline foreshadowed by Inuit in the 651
Central Canadian Arctic: a retrospective analysis. *Arctic* (in press) 652
652
Hicks J (2007) The social determinants of elevated rates of suicide among Inuit youth. *Indig Affairs* 653
4:30–37 654
Hueffer K, Parkinson AJ, Gerlach R et al (2013) Zoonotic infections in Alaska: disease prevalence, 655
potential impact of climate change, and recommended actions for earlier disease detection, 656
research, prevention, and control. *Int J Circumpolar Health* 72:1–11 657

658 Hueffer K, Ehrlander M, Eyz K et al (2019) One Health in the circumpolar North. *Int J Circumpolar Health* 78:1. <https://doi.org/10.1080/22423982.2019.1607502>

660 Huet C, Ford JD, Edge VL et al (2017) Food insecurity and food consumption by season in
661 households with children in an Arctic city: a cross-sectional study. *BMC Public Health* 17
662 (1):578. <https://doi.org/10.1186/s12889-017-4393-6>

663 Inuit Circumpolar Council (2015) Alaskan Inuit food security conceptual framework: how to assess
664 the Arctic from and Inuit perspective; summary and recommendations report. Inuit Circumpolar
665 Council – Alaska. Available via <https://iccalaska.org/wp-icc/wp-content/uploads/2016/03/Food-Security-Summary-and-Recommendations-Report.pdf>. Accessed 01 April 2020

666 Inuit Circumpolar Council (2020) Food sovereignty and self governance: Inuit role in managing
667 Arctic marine resources. Inuit Circumpolar Council – Alaska. Available via https://iccalaska.org/wp-icc/wp-content/uploads/2020/09/FSSG-Report_LR.pdf. Accessed 01 Nov 2020

668 Jack JC, Gonet J, Mease A et al (2020) Traditional knowledge underlies One Health. *Science* 369
669 (6511):1576. <https://doi.org/10.1126/science>

670 Johnson JS, Nobmann ED, Asay E et al (2019) Dietary intake of Alaska native people in two
671 regions and implications for health: the Alaska native dietary and subsistence food assessment
672 project. *Int J Circumpolar Health* 68(2):109–122. <https://doi.org/10.3402/ijch.v68i2.18320>

673 Krauss ME (1980) Alaska native languages, past, present, and future. *Alaska Native Lang Center*
674 4:1–121

675 Kumar MB, Tjepkema M (2019) Suicide among First Nations people, Métis and Inuit (2011–2016):
676 Findings from the 2011 Canadian Census Health and Environment Cohort (CanCHEC). *Statistics
677 Canada*. 99-011-X2019001. ISBN 978-0-660-31402-0. <https://www150.statcan.gc.ca/n1/en/catalogue/99-011-X2019001>

678 Kutz S, Tomaselli M (2019) “Two-eyed seeing” supports wildlife health – bridging indigenous and
679 scientific knowledge improves wildlife surveillance and fosters reconciliation. *Science* 364
680 (6446):1135–1137

681 Kutz SJ, Thompson RA, Polley L et al (2008) *Giardia* assemblage A: human genotype in muskoxen
682 in the Canadian Arctic. *Parasites Vect* 1(32). <https://doi.org/10.1186/1756-3305-1-32>

683 Lefebvre KA, Quakenbush L, Frame E et al (2016) Prevalence of algal toxins in Alaskan marine
684 mammals foraging in a changing arctic and subarctic environment. *Harmful Algae* 55:13–24.
685 <https://doi.org/10.1016/j.hal.2016.01.007>

686 Mehruba A, Ridpath A, Berner J et al (2016) Medical toxicology and public health – update on
687 research and activities at the Centers for Disease Control and Prevention and the Agency for
688 Toxic Substances and Disease Registry. *J Med Toxicol* 12(3):315–317

689 Munnink BBO, Sikkema RS, Nieuwenhuijse DF et al (2020) Jumping back and forth:
690 anthropozoonotic and zoonotic transmission of SARS-CoV-2 on mink farms. *bioRxiv*. <https://doi.org/10.1101/2020.09.01.277152>

691 National Academies of Sciences, Engineering, and Medicine (2020) Understanding and responding
692 to global health security risks from microbial threats in the Arctic: proceedings of a workshop.
693 The National Academies Press, Washington, DC. <https://doi.org/10.17226/25887>

694 O’Brien DM, Thummel KE, Bulkow LR et al (2017) Declines in traditional marine food intake and
695 vitamin D levels from the 1960s to present in young Alaska native women. *Public Health Nutr*
696 20(10):1738–1745. <https://doi.org/10.1017/S1368980016001853>

697 Rasmus SM, Trickett E, Charles B et al (2019) The qasgiq model as an indigenous intervention:
698 using the cultural logic of contexts to build protective factors for Alaska native suicide and
699 alcohol misuse prevention 25(1)

700 Rivkin I, Lopez EDS, Trimble JE et al (2019) Cultural values, coping, and hope in Yup’ik
701 communities facing rapid cultural change 47(3)

702 Ruscio BA, Brubaker M, Glasser J et al (2015) One health – a strategy for resilience in a changing
703 Arctic. *Int J Circumpolar Health* 74:27913

704 Salyer SJ, Silver R, Simone K et al (2017) Prioritizing zoonoses for global health capacity building-
705 themes from one health zoonotic disease workshops in 7 countries, 2014–2016. *Emerg Infect
706 Dis* (13):S55–64. <https://doi.org/10.3201/eid2313.170418>

Singleton R, Lescher R, Gessner BD et al (2015) Rickets and vitamin D deficiency in Alaska native children. <i>J Pediatr Endocrinol Metab</i> 28(7–8):815–823. https://doi.org/10.1515/jpem-2014-0446	711
	712
	713
Sonne C, Letcher RJ, Jenssen BM et al (2017) A veterinary perspective on One Health in the Arctic. <i>Acta Vet Scand</i> 59(1):84. https://doi.org/10.1186/s13028-017-0353-5	714
	715
Tomaselli M, Kutz SJ, Gerlach C et al (2017) Local knowledge to enhance wildlife population health surveillance: conserving muskoxen and caribou in the Canadian Arctic. <i>Biol Conserv</i> 217 (1):337–348. https://doi.org/10.1016/j.biocon.2017.11.010	716
	717
	718
Tomaselli M, Gerlach SC, Kutz SJ et al. (2018a) Community of Iqaluktutiaq. Iqaluktutiaq voices: local perspectives about the importance of muskoxen, contemporary and traditional use and practices. <i>Arctic</i> 71(1):1–4	719
	720
	721
Tomaselli M, Kutz S, Gerlach C et al (2018b) Local knowledge to enhance wildlife population health surveillance: conserving muskoxen and caribou in the Canadian Arctic. <i>Biol Conserv</i> 217:337–348	722
	723
	724
USGCRP (U.S. Global Change Research Program) (2018) Fourth National Climate Assess II:1–470	725
	726
Vesterinen HM, Dutcher TV, Errecaborde KM et al (2019) Strengthening multi-sectoral collaboration on critical health issues: one health systems mapping and analysis resource toolkit (OH-SMART) for operationalizing one health. <i>PLoS One</i> 14(7). https://doi.org/10.1371/journal.pone.0219197	727
	728
	729
	730
Waits A, Emelyanova A, Oksanen A et al (2018) Human infectious diseases and the changing climate in the Arctic. <i>Environ Int</i> 121:703–713	731
	732
Wendt A, Kreienbrock L, Campe A (2015) Zoonotic disease surveillance – inventory of systems integrating human and animal disease. <i>Zoonoses Public Health</i> 62(1):61–74	733
	734
Zinsstag J, Schekking E, Waltner-Toews D et al (2010) From “one medicine” to “one health” and systemic approaches to health and well-being. <i>Prev Vet Med</i> 101(3–4):148–156	735
	736

Author Queries

Chapter No.: 2 467147_1_En

Query Refs.	Details Required	Author's response
AU1	The citation “Denny et al. 2016” has been changed to “Denny and Fanning 2016” to match the author name/date in the reference list. Please check if the change is fine in this occurrence and modify the subsequent occurrences, if necessary.	
AU2	Please check and confirm that the inserted citation of Figs. 2 and 4 are appropriate.	
AU3	The citation “Johnson et al. 2009” has been changed to “Johnson et al. 2019” to match the author name/date in the reference list. Please check if the change is fine in this occurrence and modify the subsequent occurrences, if necessary.	
AU4	The citation “Tomaselli, 2017” has been changed to “Tomaselli et al. 2017” to match the author name/date in the reference list. Please check if the change is fine in this occurrence and modify the subsequent occurrences, if necessary.	
AU5	The citation “Kumar 2019” has been changed to “Kumar and Tjepkema 2019” to match the author name/date in the reference list. Please check if the change is fine in this occurrence and modify the subsequent occurrences, if necessary.	
AU6	Please check and clarify that the footnote 1-26 are cited in Table 1 but not provided the significance for those citation.	
AU7	Reference "Center for Disease Control (2021)" was not cited anywhere in the text. Please provide in text citation or delete the reference from the reference list.	