

An Emerging Role for Gut-Brain Signaling Involving Ghrelin in Chronic Stress

7

Alexis A. Salcido, Neftali F. Reyes,
Andrea Y. Macias, Serina A. Batson, Dirk W. Beck,
Alexander Friedman, and Ki A. Goosens

Abstract

Our internal and external environments are not stable; these ever-changing contexts produce stress on bodily systems. In response, the body recruits numerous peripheral hormones to bring those systems back within a desired homeostatic range. When our environments change in extreme ways and for prolonged periods of time, a different set of hormonal stress responses are recruited. These chronic stress responses produce adaptive changes but can also drive maladaptation. This chapter begins by reviewing the peripheral hormones

that are recruited as part of the acute stress response and describing their adaptive impact on brain and peripheral function. We then examine new research describing the role of ghrelin, a hormone produced by the gut, in chronic stress. We review the role of ghrelin in hunger and consider how energy deficiency, a state shared by both hunger and stress, might explain why ghrelin is elevated by both. We consider how the unique recruitment of ghrelin during chronic stress mediates responses in the brain that can help an organism respond to future stressors, but also how chronic elevation of ghrelin can produce additional adaptations that contribute to stress-sensitive psychiatric disorders. Lastly, we identify important future areas for research on the biology of ghrelin.

A. A. Salcido · N. F. Reyes · A. Y. Macias ·

S. A. Batson

Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA

D. W. Beck

Computational Science Program, University of Texas at El Paso, El Paso, TX, USA

A. Friedman

Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA

Computational Science Program, University of Texas at El Paso, El Paso, TX, USA

K. A. Goosens (✉)

Departments of Psychiatry and Pharmacological Sciences, Center for Translational Medicine and Pharmacology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA

e-mail: ki.goosens@mssm.edu

Keywords

Ghrelin · Stress · HPA axis · Sympathetic nervous system · Parasympathetic nervous system · Adaptation · Valenced behavior · Appetite · Metabolism · Brain-body

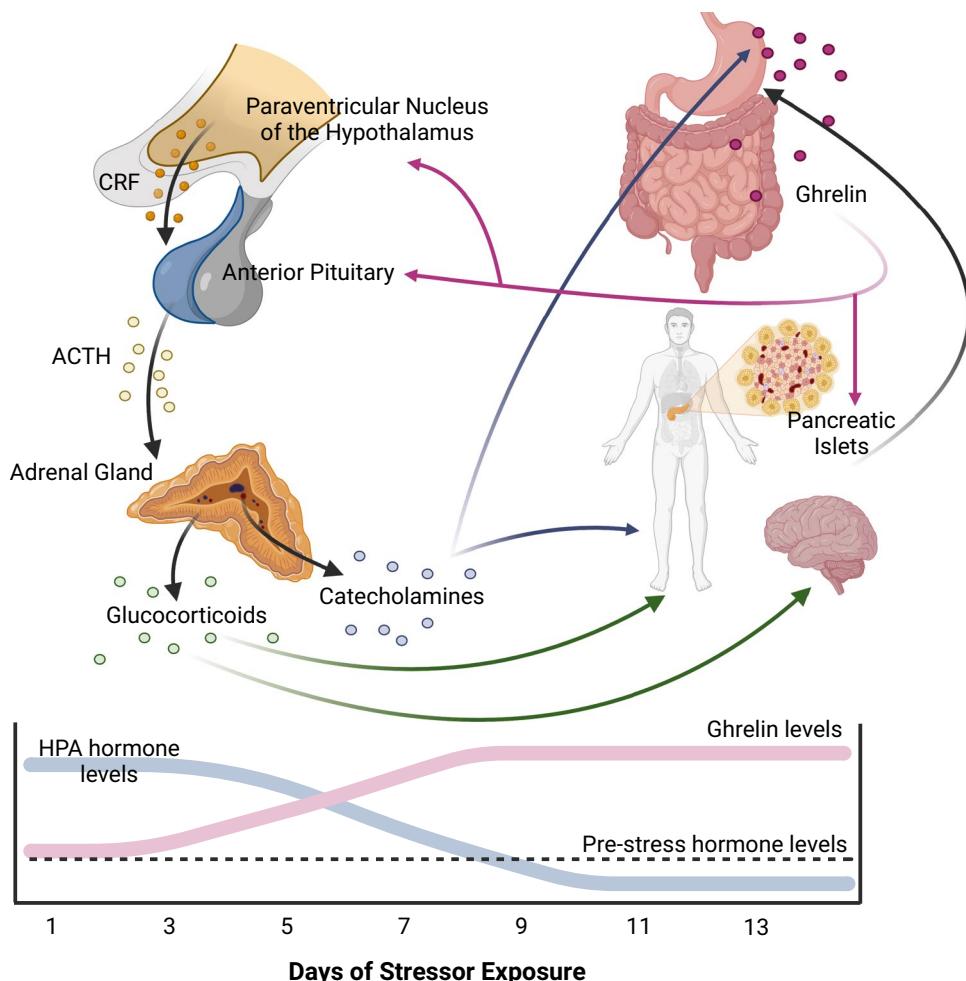
Abbreviation

ACTH Adrenocorticotropic hormone

AUD Alcohol use disorder

BChE Butyrylcholinesterase

BLA	Basolateral amygdala
CRF	Corticotropin-releasing factor
DRD1	Dopamine receptor D1
DRD2	Dopamine receptor D2
DRD5	Dopamine receptor D5
GC	Glucocorticoid
GHSR	Growth-hormone secretagogue receptor
GOAT	Ghrelin <i>O</i> -acyltransferase
GR	Glucocorticoid receptor
GRE	Glucocorticoid response element
HPA	Hypothalamic-pituitary-adrenal
5HT2C	Serotonin 2c receptor
LEAP2	Liver-expressed antimicrobial peptide 2
MC3R	Melanocortin-3 receptor
MDD	Major depressive disorder
MR	Mineralocorticoid receptor
NAc	Nucleus accumbens
PFC	Prefrontal cortex
PTSD	Posttraumatic stress disorder
PVN	Paraventricular nucleus
SNP	Single nucleotide polymorphism
SST5	Somatostatin receptor-5
VTA	Ventral tegmental area


7.1 Defining Stress: Adaptation and Maladaptation

Stress is characterized by a set of bodily responses to a demand or challenge. In everyday language, “stress” typically has a negative connotation, referring to a state of worry or the feeling of being overloaded. Indeed, in medicine, there is clear evidence that prolonged stress exposure elevates the risk of a broad array of diseases (Hughes et al. 2017), including cardiovascular illnesses (Basu et al. 2017; Dong et al. 2004), cancer (Kelly-Irving et al. 2013; Bellis et al. 2015), and psychiatric illnesses (Daníelsdóttir et al. 2024), and conditions such as diarrhea (Zhang et al. 2025), sweating, sleep disturbance (Kalmbach et al. 2018) and increased body temperature (Oka 2015). Thus, some of the responses to stress must contribute to disease. Yet, in science, we have come to appreciate that not all bodily responses to a stressor are “bad” or drive disease risk. Some stress responses may compen-

sate for others, preserving function in the face of biological perturbation (Nestler and Russo 2024). For example, studies of ‘resilient’ individuals, who are able to retain functionality of biological systems despite stress exposure, reveal that they do not return to a pre-stress state after stressor exposure; instead, they actively engage new mechanisms to preserve function. Such mechanisms include stress-associated enhancement of connectivity between the prefrontal cortex (PFC) and nucleus accumbens (NAc), which is linked to greater resilience to stressors (Francis et al. 2015; Bagot et al. 2015). Understanding whether a stress response is adaptive or maladaptive is especially important in clinical contexts, where we want to bolster resilience but blunt pathways that drive maladaptation.

7.2 A Canonical Stress Signaling Pathway in the Periphery: the HPA Axis

One of the best-studied systems for coordinating stress responses is the hypothalamic-pituitary-adrenal (HPA) axis (Fig. 7.1, left). When stressors occur, stress-related neural circuits of the paraventricular nucleus (PVN) of the hypothalamus are activated. Many types of signals can activate the PVN, including internal changes in temperature, blood glucose, or blood pressure and external stimuli such as loud noises or predator cues. A subset of parvocellular neurons in the PVN release corticotropin-releasing factor (CRF) locally within the PVN to induce central stress effects directly. Some CRF-positive PVN neurons send their axons into the median eminence and onward to the portal capillary system of the pituitary. The capillaries allow CRF to be transported to the anterior pituitary, where it binds to receptors on a subset of endocrine cells (corticotrophs) that then exocytose vesicles containing adrenocorticotrophic hormone (ACTH) into the blood. ACTH acts at its receptor in the adrenal glands to drive the secretion of glucocorticoids (GCs; cortisol in humans, corticosterone in rodents) into the bloodstream. Glucocorticoid receptors are found throughout most tissues in

Fig. 7.1 The hormones of the HPA axis and ghrelin axis and their interactions are depicted. The green arrows indicate synergistic stimulatory actions between the two hormonal axes. The lower panel shows the differential recruitment of these axes over the course of a two-week stressor. While the HPA responses typically show habituation, eventually reaching slightly suppressed basal levels, ghrelin levels are not significantly enhanced early in stress exposure but reach roughly double the basal levels after approximately a week of stress exposure. (Created in BioRender. Goosens (2025) <https://BioRender.com/w44p992>)

the periphery and the brain, and thus, stress-induced elevation of GCs is poised to have broad effects.

There are two primary GC receptors: the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). The two receptors can be co-expressed (Herman et al. 1989), but MR has a higher affinity for GCs than does GR (Joëls and de Kloet 2017). Thus, at lower levels of GCs, i.e., under non-stress conditions, MR signaling is expected to dominate. In contrast, when GCs are

elevated, MR signaling reaches an asymptotic level and GR signaling pathways are increasingly recruited with increasing high levels of GCs (Reul et al. 1987).

Both MR and GR are ligand-activated transcription factors (Alvarez de la Rosa et al. 2024). Accordingly, there are many studies showing how activation of MR and GR by GCs causes the receptors to translocate to the nucleus and bind to glucocorticoid response elements (GREs) in open chromatin (John et al. 2011). MR is a tran-

scriptional activator of many genes, including neuropeptides and growth factors (Pascual-Le Tallec and Lombès 2005; Meinel et al. 2014). In contrast, GR can bind to GREs to activate genes or to negative GREs to repress their transcription (Surjit et al. 2011); it is estimated that more than 1% of all transcripts in the human genome are regulated by GR (Wiley et al. 2016). GR can also bind to mRNA to induce degradation (Boo et al. 2024). However, membrane-bound MR can also mediate the rapid effects of GCs on neuronal excitability (Karst et al. 2010, 2005).

GRs also play an important role in terminating the acute HPA stress response, both in terms of ACTH secretion (Jacobson et al. 1988) as well as GC secretion (Herman et al. 2020). Within the PVN, GCs bind to GR to induce endocannabinoid synthesis in the CRF-containing neurons of the PVN, which leads to retrograde inhibition of the excitatory drive entering the PVN (Tasker and Herman 2011; Di et al. 2003). GC activation of the hippocampus (Herman et al. 2003) and PFC (Jones et al. 2011) also terminate HPA-mediated stress hormone responses (Radley and Sawchenko 2011). The multiple robust mechanisms by which GCs terminate their own secretion likely contribute to the observation that repeated stressor exposure produces fairly mild elevations of basal circulating GCs that persist for only a few weeks after stress terminates in rodents (Johnson et al. 2002; Sterleman et al. 2008). In humans with posttraumatic stress disorder (PTSD), there are not clear links between altered GC levels and the disorder; a recent meta-analysis suggests that there is a trend towards observing mild hypocortisolism in PTSD (Sbisa et al. 2023). Interestingly, a recent meta-analysis also suggests that childhood stressors lead to blunted cortisol responses to stressors in adulthood (Brindle et al. 2022). Thus, the contributions of HPA activity to chronic stress responses are unclear.

As an acute stress response, HPA hormones drive multiple short-term adaptations that facilitate coping with stress. These include GC-dependent mobilization of energy stores (Swarbrick et al. 2021), increased cardiovascular tone (Yang and Zhang 2004), analgesia (Lewis et al. 1980), and inhibition of growth (Baxter

1978), immune function (Coutinho and Chapman 2011) and reproduction (Domes et al. 2024). Thus, collectively, the evidence supports a role for the HPA axis in short-term adaptations to acute stress. The decreased recruitment of the HPA axis when a stressor persists across days to weeks (Grissom and Bhatnagar 2009) (Fig. 7.1, lower panel), coupled with the observation that basal HPA activity is not dramatically altered following chronic stress, suggests that the HPA axis may not be the only system altered by chronic stress and that other mechanisms may contribute to changes following chronic stress. However, it is important to note that HPA activity can induce changes in behavior that emerge gradually, perhaps due to the genomic actions of GCs, and also sensitize the HPA axis itself so that a greater HPA response is mounted to subsequent novel stressors (Belda et al. 2015; Akana et al. 1992).

7.3 Additional Stress Signals in the Periphery: Acyl-ghrelin

The peptide hormone acyl-ghrelin, hereafter referred to as ghrelin, was discovered in the search for the ligand of the growth-hormone secretagogue receptor (GHSR) (Kojima et al. 1999). The posttranslational modification of ghrelin, an octanoylated serine, is necessary for it to bind and activate GHSR (Bednarek et al. 2000). GHSR was originally characterized as a receptor that regulated growth hormone secretion from the pituitary (Howard et al. 1996). It was surprising, then, that ghrelin was observed to be predominantly expressed in the stomach and has been subsequently confirmed to be almost exclusively in gastric endocrine cells (Kim et al. 2012; Date et al. 2000), with a smaller population of endocrine cells being in the small intestine (Wierup et al. 2007). A short time after its initial discovery, ghrelin was found to regulate energy balance: the administration of ghrelin promotes food consumption. Additionally, ghrelin is elevated by either short-term fasting (energy depletion) (Hollstein et al. 2022; Schéle et al. 2016) or chronic food restriction (Tezenas du Montcel

et al. 2023; D'Cunha et al. 2020; Méquinion et al. 2013). Lastly, ghrelin increases sharply prior to expected meal times (Cummings et al. 2001) and decreases in a sated state (Tschöp et al. 2000).

Many additional studies confirmed and expanded the role of ghrelin in aspects of appetitive processing. Ghrelin influences the rewarding value of the food itself. In rodent studies using conditioned place preference, administration of ghrelin increased the amount of time rodents spent in the compartment previously paired with access to a high-fat diet (Perello et al. 2010). Consistent with these studies, ghrelin administration also enhances the activity of dopaminergic neurons in the ventral tegmental area (VTA) (Navarro et al. 2022; Cornejo et al. 2018) and enhances dopamine release into the downstream NAc (Jerlhag et al. 2007). Humans receiving intravenous ghrelin rate food cues as more pleasant (Han et al. 2018) and intravenous ghrelin also increases the neural response to food cues in multiple areas thought to encode the incentive value of food (Goldstone et al. 2014). Ghrelin also increases the preference for high-fat, sweet foods in both rodents (Perello et al. 2010; Disse et al. 2010; King et al. 2011; Chuang et al. 2011a; Shimbara et al. 2004) and humans (Zoon et al. 2018) and increases the intake of rewarding food (Egecioglu et al. 2010).

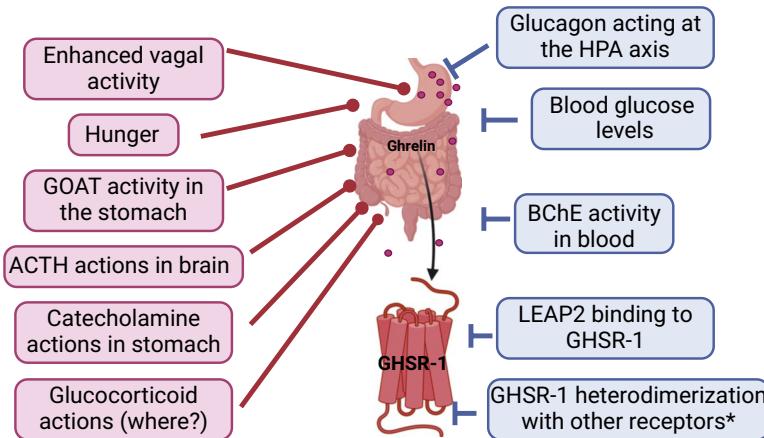
Elevated ghrelin also enhances the motivation to work for rewards. For example, mice who are bar-pressing for high-fat food pellets show a higher breakpoint in a progressive ratio schedule of reinforcement when given peripheral ghrelin injections compared to controls (Perello et al. 2010). Rats receiving peripheral ghrelin injections (Skibicka et al. 2012) or intra-VTA infusion of ghrelin (Skibicka et al. 2011) increase bar presses for sucrose pellets even when sated. Intra-VTA ghrelin in rodents also increases cue-induced reinstatement of bar presses for high-fat food pellets (St-Onge et al. 2016).

Interestingly, the ability of ghrelin to mediate reward appears to extend well beyond food. Ghrelin receptor antagonism reduces drug-induced conditioned place preference for a number of drugs of abuse (Charalambous et al. 2021; Sustkova-Fiserova et al. 2020; Dunn et al. 2019;

Jerlhag and Engel 2011). In male mice, impaired ghrelin signaling decreases interest in female mice in estrus, as well as sexual engagement with female mice (Egecioglu et al. 2016). Intravenous ghrelin enhances the craving for alcohol in alcohol-dependent humans (Leggio et al. 2014). Lastly, intravenous ghrelin administration decreases neural activity in response to anticipation of monetary losses in healthy human subjects (Pietrzak et al. 2023a). However, some types of reward do not seem to be related to ghrelin levels in humans, including social rewards (Sailer et al. 2023) and caressing touch (Pfabigan et al. 2024).

Collectively, the data suggest that elevated levels of ghrelin accompany hunger, a state of energy deficit, and that lower levels of ghrelin are observed with satiety, a state of energy excess (Mani et al. 2019). Interestingly, chronic stress represents another state of energy deficit. Chronic stress tends to produce elevated core body temperature (Marazziti et al. 1992; Oka 2018; Nakamura 2015) and also decreases body weight gain in rodents (Kuti et al. 2022; Shin et al. 2024). It should perhaps, then, not be surprising that ghrelin is elevated after chronic stress exposure in multiple species, including rodents (Lutter et al. 2008; Meyer et al. 2014; Harmatz et al. 2016), fish (Jönsson 2013), horses (Hemmann et al. 2012), and humans (Yousufzai et al. 2018; Jaremka et al. 2014; Malik et al. 2020; Wittekind et al. 2023) (Fig. 7.1), suggesting that elevated ghrelin may be a conserved response to chronic stress. Much like MR and GR, GHSR is found throughout the brain and body (Ueberberg et al. 2009; Mani et al. 2014; Zigman et al. 2006; Guan et al. 1997), which enables the stress-induced change in ghrelin levels to have a widespread impact. Consistent with the idea that stress-induced elevation of ghrelin may produce important behavioral adaptations to cope with the energy deficit produced during a chronic stressor, ghrelin receptor knockout mice do not have the same stress-induced changes in body weight and caloric intake that are observed in wild-type mice, and they also have different neurotransmitter alterations in the brain after stressor exposure (Patterson et al. 2010). Similarly, ghrelin receptor

knockout mice do not exhibit the metabolic adaptations shown by wild-type mice during chronic stress, such as hyperleptinemia and hyperinsulinemia or changes in hypothalamic peptides associated with consummatory behaviors (Patterson et al. 2013).


In addition to the impact of ghrelin on reward processing, an increasingly large body of work supports the idea that ghrelin influences the processing of aversive stimuli (also called punishment or costs). The basolateral amygdala (BLA) is one brain region that is particularly tied to the processing of aversive memories (Perumal and Sah 2021), and it also happens to be a region where GHSR is highly expressed (Meyer et al. 2014; Alvarez-Crespo et al. 2012). Infusing ghrelin into the BLA inhibits the acquisition of conditioned taste aversion memories (Song et al. 2013). It also inhibits the formation of aversive Pavlovian fear conditioning memories (Harmatz et al. 2016). Consistent with these rodent studies, studies in healthy humans show that intravenous ghrelin decreased sensitivity to punishment (loss of monetary reward) in decision-making tasks (Pietrzak et al. 2024, 2023b) and also reduced neural activity during anticipation of monetary losses (Pietrzak et al. 2023b). This suggests that, in unstressed subjects, ghrelin inhibits aversive processing in multiple ways. However, rodents exposed to chronic stress display both higher levels of ghrelin and stronger fear memories than controls (Meyer et al. 2014; Harmatz et al. 2016). This suggests that ghrelin is no longer inhibiting aversive memories effectively after chronic stress exposure. In another aversive domain, chronically high ghrelin is positively associated with symptoms of physiological anxiety in otherwise healthy humans (Wittekind et al. 2022).

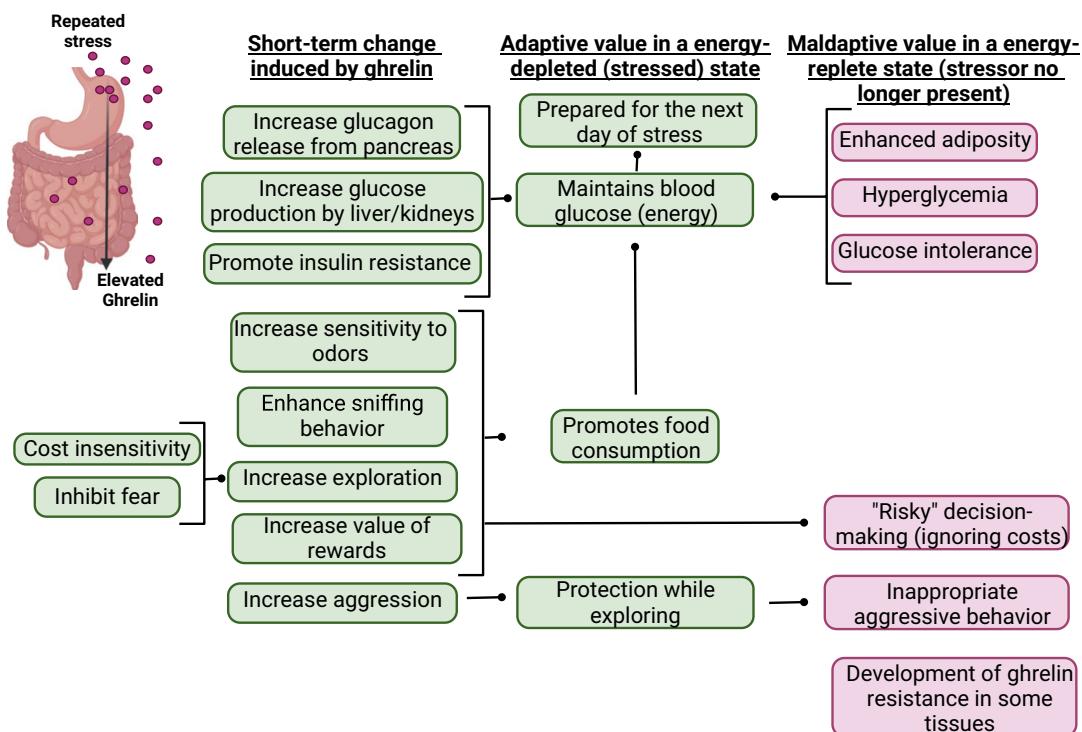
Further studies demonstrated that high levels of ghrelin were associated with a profound loss of GHSR binding sites in the BLA (Harmatz et al. 2016). This functional ‘ghrelin resistance’ is likely a compensatory mechanism by which receptors are downregulated in response to excessive ligand-dependent signaling. However, it should be noted that not all brain regions respond to elevated ghrelin by downregulating GHSR; in fact, in the VTA, GHSR levels are increased

(Smith et al. 2024a). Thus, the elevated ghrelin observed after chronic stress reduces the ability of ghrelin to serve as an endogenous inhibitory signal for aversive processing.

7.4 The Adaptive Values of Persistently Elevated Ghrelin After Chronic Stress

Unlike the HPA axis, ghrelin remains approximately doubled long after stressors cease. Studies have shown elevated ghrelin in rodents for weeks (Lutter et al. 2008; Meyer et al. 2014; Harmatz et al. 2016; Smith et al. 2023; Kumar et al. 2013) to months (Yousufzai et al. 2018) after stressor cessation and there is increased brain penetrance of ghrelin after chronic stress (Smith et al. 2024b). In humans, elevated ghrelin has been demonstrated years after stressor exposure (Malik et al. 2020; Rossi et al. 2021). The increased ghrelin levels could be mediated by increased synthesis, increased release, increased posttranslational octanoylation, decreased breakdown, or a combination of these modulatory factors (see Fig. 7.2 for a summary of possible mechanisms). Excitation of the gastric afferent vagal nerve (Date et al. 2002) and repeated activation of $\beta 1$ -adrenergic receptors (Gupta et al. 2019), likely in the gastric ghrelin cells (Zhao et al. 2010a; Engelstoft et al. 2013), both increase circulating ghrelin, suggesting that increased vagal tone or enhanced catecholaminergic activity might be responsible for chronic stress-induced elevation of ghrelin. However, adrenalectomy, which eliminates the circulating catecholamines released by the adrenal glands, does not prevent stress-induced elevation of ghrelin (Meyer et al. 2014), suggesting that stress may elevate ghrelin via other pathways (for example, through sympathetic inputs to the gut). Ghrelin secretion is negatively regulated by increased blood glucose (Shiiya et al. 2002; Nakagawa et al. 2002). This raises the possibility that repeated hypoglycemia induced by chronic stress could also contribute to enhanced ghrelin secretion. One report demonstrated that gastric ghrelin cells express many types of G protein-

Fig. 7.2 Mechanisms by which stress could potentially elevate ghrelin or its signaling. Pink boxes indicate mechanisms that increase ghrelin. Blue boxes represent mechanisms that suppress ghrelin or its signaling. To enhance ghrelinergic activity, chronic stress would need to increase


the mechanism(s) shown in pink or decrease the mechanism(s) shown in blue, or do both. *It is possible that heterodimerization with some receptors could elevate signaling through GHSR. (Created in BioRender. Goosens (2025) <https://BioRender.com/w23c571>)

coupled receptors (Engelstoft et al. 2013), suggesting that the control of ghrelin secretion is likely even more complex than described above. Regardless of the potential mechanisms, it is not understood how or why these mechanisms remain engaged after stress terminates (see Fig. 7.3 green boxes for a summary of adaptive changes). One potential adaptive value of the persistence of elevated ghrelin is that it renders the organism better prepared for the next encounter with stressors. This theory remains to be tested.

Another important role of elevated ghrelin is to maintain blood glucose levels during times of energy expenditure. Ghrelin may do this by promoting the release of glucagon in the short term (Chuang et al. 2011b), or enhancing growth hormone-mediated stimulation of glucose production in the liver and kidneys and driving insulin resistance (Kim and Park 2017; Zhao et al. 2010b; Zhang et al. 2015). In healthy subjects, glucagon exerts negative feedback to reduce ghrelin levels (Arafat et al. 2006). Administration of exogenous ghrelin is known to elevate blood glucose in both rodents (Chuang et al. 2011b) and humans (Broglio et al. 2001, 2004). It also promotes glucose intolerance (Tong et al. 2010; Page et al. 2018; Dezaki et al. 2004). In these studies, glucose intolerance was observed with acute elevation of ghrelin; it is tempting to specu-

late that chronically elevated ghrelin might produce even greater intolerance and contribute to elevated basal levels of blood glucose. Mice with either low blood levels of ghrelin or low levels of GHSR exhibit mild hypoglycemia after short-term caloric restriction (Longo et al. 2008; Sun et al. 2008) but display dangerously low blood glucose levels during prolonged caloric restriction (Zhao et al. 2010b; Li et al. 2012). It is possible that the energy deficit driven during chronic stress exposure enhances ghrelin levels to maintain blood glucose levels during stressor exposure, but it is not known why this mechanism would remain engaged after stress. It may be that these mechanisms evolved in response to environmental stressors, such as resource scarcity, that displayed less volatility than many contemporary stressors, and thus, having long-term elevations of ghrelin had more beneficial effects than detrimental effects when exposure to stressors was more consistent across time.

By promoting exploration or food-seeking behaviors, elevated ghrelin can also help indirectly to maintain blood glucose levels. Ghrelin signaling in the olfactory bulbs is important for promoting exploratory behavior, even in the absence of fasting, and also helps locate food (Stark et al. 2024). Ghrelin increases sensitivity to food odors in humans (Ginieis et al. 2022;

Fig. 7.3 Beneficial and maladaptive changes that can be mediated by increased ghrelin. The green boxes depict the changes that benefit an organism while remaining in a stressed state. The pink boxes depict the consequences of

these changes when the stressor is no longer experienced. (Created in BioRender. Goosens (2025) <https://BioRender.com/j66v932>)

Tong et al. 2011) and rodents (Tong et al. 2011) and enhances the speed of responding to them (Han et al. 2018). These changes in behavior facilitate the ability to locate and identify foods, which indirectly facilitates the maintenance of blood glucose levels.

Lastly, for some types of stressors, like the presence of conspecifics encroaching on an organism's territory, elevated ghrelin may have an additional adaptive value of promoting aggressive behaviors. Male mice with persistently elevated ghrelin display enhanced aggression towards cagemates (Chen et al. 2015). Conversely, systemic administration of a GHSR antagonist reduced aggressive behaviors displayed by male mice towards conspecific intruder mice (Vestlund et al. 2019). People with antisocial personality disorder have elevated ghrelin (Tasci et al. 2022) and young men with polymorphisms in the ghrelin gene displayed significantly different scores

on a questionnaire measuring overtly aggressive behaviors (Vestlund et al. 2019). To date, such studies have focused only on aggression in males; an important area of future research is to determine whether elevated ghrelin increases aggression in females. Regardless, a ghrelin-dependent increase in aggressive behaviors may help secure environmental resources when there is competition for such resources.

The ghrelin-dependent connection between stress and mechanisms controlling energy levels and growth positions ghrelin as a hub between metabolism and the stress-dependent exacerbation of neuropsychiatric conditions. The mechanisms connecting glucose metabolism and bioenergetics to psychiatric outcomes are *described in Chap. 3, Brain-body Communication in Glucose Metabolism*, and *Chap. 5, Neuronal Synaptic Communication and Mitochondrial Energetics in Human Health and Disease*, of this book.

7.5 Potential Maladaptive Tradeoffs of Persistently Elevated Ghrelin After Stress

As noted above, ghrelin can have many beneficial effects during stressor exposure. Thus, when a stressor is encountered repeatedly (for example, the organism lives in a food-scarce environment), then the behavioral and physiological changes produced by elevated ghrelin may be largely beneficial. However, when stressors are not reliably encountered, such as when an organism moves from a food-scarce (stressful) environment into a food-rich environment (no longer a source of stress), then the persistent physiological changes induced by high ghrelin may instead promote behaviors and physiological changes that are no longer needed (see Fig. 7.3, pink boxes for a summary of potential maladaptation). It is also possible that chronically elevated ghrelin may, itself, drive new adaptations to limit the impact of chronically elevated ghrelin.

There are several examples that one can consider where elevated ghrelin may no longer have beneficial effects in an energy-rich environment. First, ghrelin-induced elevation of blood glucose levels and insulin insensitivity are no longer adaptive when energetic demands return to normal levels following a stressor exposure. In this case, persistently heightened glucose levels and insulin insensitivity can contribute to adiposity and metabolic syndrome, two conditions that can ultimately contribute to diabetes. Indeed, there are strong links between stress exposure and the risk and severity of diabetes (Hackett and Steptoe 2017). Likewise, when ghrelin levels drive aggressive behaviors, it can help secure resources in a resource-scarce environment, but it also exposes the animal to greater potential for injury. In a resource-rich environment, aggression may expose an organism to injury without the positive benefit of increased resources. Also, for humans, who typically do not need to physically fight to gain resources, aggressive behaviors may only put one at risk for breaking the law. Stress exposure is known to increase the development of psychiatric disorders where aggression is a core feature (Veenema 2009). Lastly, while ghrelin

can reduce sensitivity to costs, perhaps contributing to a willingness to explore and forage in new environments, ultimately leading to new food sources, a willingness to take on risk may not be beneficial when resources are not scarce. In humans, stress can increase risk-taking behavior (Reynolds et al. 2013; Pabst et al. 2013).

The adverse impact of ghrelin may be most apparent in enhanced risk for stress-sensitive human psychiatric conditions. In posttraumatic stress disorder (PTSD), which is the human disorder perhaps most closely linked to stress, prior lifetime stress exposure primes an individual for risk of PTSD following subsequent trauma (Catani et al. 2008; Gillespie et al. 2009). Consistent with the idea that elevated ghrelin drives an increased risk of PTSD, adolescents with PTSD have higher ghrelin levels than matched controls without PTSD (Yousufzai et al. 2018). One polymorphism in the ghrelin gene has been associated with PTSD symptom severity (Li et al. 2019).

Alcohol use disorder (AUD) is another stress-sensitive condition (Hughes et al. 2019) with compelling links to ghrelin. Ghrelin is generally positively correlated with alcohol craving in alcohol-dependent individuals (Koopmann et al. 2012, 2019), and intravenous delivery of ghrelin increased alcohol self-administration (Farokhnia et al. 2018) and craving (Leggio et al. 2014) in individuals with AUD. There are also multiple studies showing that polymorphisms in the ghrelin gene are associated with AUD (Landgren et al. 2008, 2010; Suchankova et al. 2016). Several studies suggest that antagonism of GHSR in mice would have beneficial effects on AUD. GHSR antagonism reduces binge-like alcohol drinking in mice (Richardson et al. 2024) and decreases alcohol intake in a two-bottle free choice test in dependent mice (Jerlhag et al. 2009; Kaur and Ryabinin 2010). GHSR antagonism also attenuates relapse consumption of alcohol after abstinence in rodents (Jerlhag et al. 2009; Suchankova et al. 2013), thought to reflect a reduction in alcohol craving. Disappointingly, the first study of a drug with GHSR antagonist activity (Kong et al. 2016) in humans with AUD observed no change in cue-elicited alcohol crav-

ing but did reduce the caloric content of food selected in a virtual food choice task (Faulkner et al. 2024). The role of ghrelin in *AUD* is considered in greater depth in Chap. 8, *Appetite-regulatory peptides ghrelin and GLP-1 in Alcohol Use Disorder*, of this book.

Major depressive disorder (MDD) is another psychiatric condition that is worsened by stressor exposure (Tafet and Nemeroff 2016), especially for childhood trauma (Heim and Nemeroff 2001), but the links to ghrelin are more equivocal for this disorder. Given that childhood trauma is shown to elevate ghrelin (Malik et al. 2020; Rossi et al. 2021), it is not surprising that some studies find elevated ghrelin in adults with MDD (Emül et al. 2007; Ozsoy et al. 2014; Kurt et al. 2007; Algul and Ozcelik 2018). On the other hand, some studies find no differences in ghrelin levels between people with MDD and healthy controls (Giménez-Palop et al. 2012; Matsuo et al. 2012; Schanze et al. 2008). One population that has yet to be examined is people with co-occurring MDD and PTSD. In rodents, the stressors used to induce depression-like behaviors elevate ghrelin reliably (Lutter et al. 2008; Kumar et al. 2013; Gupta et al. 2019), but it has been argued that elevated ghrelin actually buffers against depressive symptoms: stress-exposed GHSR knockout mice show greater stress-induced depressive behaviors than stress-exposed wild-type control mice (Chuang et al. 2011a; Lutter et al. 2008) and elevating ghrelin during stress reduces depression-like behaviors (Huang et al. 2017; Chang et al. 2024; Lu et al. 2019). Consistent with a positive role for ghrelin in depressive symptoms, short-term injections of ghrelin reduced depressive symptoms in men with MDD (Kluge et al. 2011). It is difficult to reconcile these disparate findings. One possibility is that GHSR knockout is functionally equivalent to ‘ghrelin resistance’ induced by high levels of ghrelin in some brain circuits and that loss of ghrelin signaling is what drives depressive behaviors. Another possibility is that the exploratory behaviors promoted by ghrelin may mask some of the depressive behaviors in mice. Yet another possibility is that GHSR knockout in mice is likely to impact signaling through other ligands

in a manner that has nothing to do with ghrelin per se and is instead related to the complex modulatory effects of GHSR on other ligand systems (Shiimura et al. 2025; Ringuet et al. 2022). Further research will be needed to clarify whether elevated ghrelin is beneficial or detrimental to people with MDD and why.

One important reason for discrepancies between preclinical and clinical findings is that the drugs used to modify signaling through GHSR can have very diverse effects, depending on differences in how the compounds bind to GHSR (Shiimura et al. 2025). Both agonists and antagonists can bias G-protein coupling to GHSR (Shiimura et al. 2025). Some of the studies above showing that GHSR antagonism decreased alcohol consumption in preclinical rodent models (Jerlhag et al. 2009; Kaur and Ryabinin 2010) used pure GHSR antagonists, while the human study (Faulkner et al. 2024) used a drug with both inverse agonist (Bhattacharya et al. 2014) and competitive antagonist (Kong et al. 2016) properties. It is likely that the different compounds had distinct effects on GHSR signaling, which may have contributed to the different effects on the consumption of alcohol. Thus, a best practice is to compare the effects of the same drug in pre-clinical and clinical studies and not assume that drugs with similar activities (e.g., receptor antagonists) will exert their effects through the same mechanism.

7.6 Ghrelin: Interactions with the HPA Axis

Complicating the role of ghrelin in stress are multiple studies showing that ghrelin and the HPA axis can bidirectionally impact each other (Fig. 7.1, upper, green arrows). However, it should be noted that virtually all of these studies examine their interaction in healthy, unstressed subjects or subjects exposed to an acute stressor. It has been suggested that HPA-dependent elevation of ghrelin is GC-dependent: activation of the HPA axis with a single exogenous injection of ACTH elevates ghrelin, but this effect is blocked when metyrapone, a drug that blocks glucocorti-

coid synthesis, is administered (Azzam et al. 2017). On the other hand, adrenalectomy does not prevent chronic stress-induced elevation of ghrelin, suggesting that at least for chronic stress, glucocorticoids and circulating catecholamines released from the adrenal glands may not be the primary drivers of increased ghrelin.

In the other direction, ghrelin can modify the HPA axis. Infusion of ghrelin into the brain of chicks can increase ACTH and glucocorticoids (Gastón et al. 2017). Acute food deprivation, which elevates ghrelin, activates the HPA axis (Fernandez et al. 2022). Exogenous systemic ghrelin can activate CRF-positive neurons of the PVN and drive increases in plasma GCs (Fernandez et al. 2023). *Ghsr* mRNA is also observed in ACTH-expressing cells of the anterior pituitary (Reichenbach et al. 2012). In humans with AUD, intravenous administration of ghrelin elevated serum cortisol levels (Haass-Koffler et al. 2019). Thus, studies generally suggest that enhanced ghrelin activity drives increased HPA activity. In agreement with this, studies using methods to reduce ghrelin signaling generally find that a reduction in ghrelin signaling constrains HPA axis activation. For example, ghrelin receptor knockout mice show smaller increases of ACTH and GCs in response to acute stressor exposure compared to wild-type mice (Spencer et al. 2012).

Collectively, these studies suggest that ghrelin and the HPA axis both amplify each other. However, virtually nothing is known about these interactions in the context of chronic stress. In one relevant study, repeated injection of CRF into the PVN drove the elevation of ghrelin (Rayatpour et al. 2023). It is possible that repeated activation of CRF neurons by chronic stress may contribute to elevated ghrelin, especially considering that adrenalectomy enhances (rather than eliminates or reduces) activation of PVN neurons and the expression of CRF heteronuclear RNA in the PVN after acute stress exposure (Imaki et al. 1995; Pace et al. 2009). Yet, much remains to be understood about how the HPA and ghrelin systems interact in the face of chronic stress exposure, considering that the HPA stress response typically habituates for chronic stressors, particu-

larly when the same stressor is experienced repeatedly (Grissom and Bhatnagar 2009; Belda et al. 2020). It is also important to note that the noradrenergic system is an important mediator of stress responses (see *Chap. 2, Noradrenaline Regulation of Brain-body Communication, for an overview of the role of this system in stress responses*), but even less is known about potential bidirectional interactions between this system and ghrelin; thus, we do not address this topic here.

7.7 New Frontiers for the Role of Ghrelin in Stress: Modulation of Ghrelin Signaling

One aspect of stress-associated ghrelin biology that is completely unknown is the mechanism by which ghrelin is persistently elevated. One enzyme that regulates the conversion of acyl-ghrelin to des-acyl-ghrelin is butyrylcholinesterase (BChE) (Chen et al. 2015; Schopfer et al. 2015). Single-nucleotide polymorphisms in the *BChE* gene can considerably alter BChE enzymatic activity (La Du et al. 1990; Jensen et al. 1995; Dantas et al. 2011). While BChE is a ubiquitous enzyme whose levels are unlikely to be appreciably altered by chronic stress, it is possible that individuals with lower BChE activity may be more likely to have elevated ghrelin in response to chronic stress. Conversely, one might expect that individuals with higher BChE activity might be less likely to show elevated ghrelin after chronic stress exposure. These possibilities remain tantalizingly unexplored.

In the stomach, the cells that synthesize ghrelin also post-translationally activate it via the enzyme ghrelin *O*-acyltransferase (GOAT) in a process termed octanoylation (Yang et al. 2008; Gutierrez et al. 2008). In the gut, GOAT octanoylates proghrelin, the precursor molecule to ghrelin, so that proghrelin becomes acyl-ghrelin when cleaved (Yang et al. 2008; Gutierrez et al. 2008). In circulation, acyl-ghrelin is rapidly hydrolyzed into des-acyl-ghrelin (Schopfer et al. 2015), a form that does not act at GHSR (Kojima

et al. 1999; Fernandez et al. 2016). In the brain, locally produced GOAT is capable of converting des-acyl-ghrelin back to acyl-ghrelin (Murtuza and Isokawa 2018). Consistent with the essential role of GOAT in producing acyl-ghrelin and the importance of the stomach in producing the acyl-ghrelin found in circulation, levels of acyl-ghrelin are correlated with GOAT expression in the stomach (Gahete et al. 2010). One possible explanation for the stress-associated increase in ghrelin is increased expression of GOAT in the gut, a possibility that also remains unexplored.

Liver-expressed antimicrobial peptide 2 (LEAP2) is a highly conserved peptide across mammals (Krause et al. 2003) and was originally named because of its structural similarity to other antimicrobial peptides in the liver, as well as its own antimicrobial properties (Henriques et al. 2010). However, it was suggested that LEAP2 likely had other functions (Henriques et al. 2010), and in 2018, it was discovered that LEAP2 is an endogenous inverse agonist and antagonist of GHSR (Ge et al. 2017; M'Kadmi et al. 2019), a role seemingly unrelated to its antimicrobial role. While most circulating LEAP2 comes from the liver, LEAP2 mRNA has been observed in other tissues including gut epithelium (Howard et al. 2010) and brain (Tufvesson-Alm et al. 2024; Islam et al. 2020). The expression of LEAP2 and ghrelin tend to inversely covary with each other (Mani et al. 2019; Islam et al. 2024), suggesting a shared, but opposing, mechanism of regulation. Consistent with inhibitory actions at GHSR, LEAP2 administration has been shown to attenuate many ghrelin-induced physiological changes, including food intake, blood glucose elevation, release of growth hormone, cFos expression in metabolic hypothalamus, and release of dopamine in the NAc (Tufvesson-Alm et al. 2024; Islam et al. 2020, 2024; Lugilde et al. 2022; Mustafá et al. 2021). Conversely, the reduction of endogenous LEAP2 actions enhances the impact of ghrelin and ghrelin-associated functions (Ge et al. 2017; Fei et al. 2024; Bhargava et al. 2023). Insofar as elevated ghrelin accompanies chronic stress, it seems likely that a decrease in LEAP2 accompanies chronic stress, but this has yet to be examined. Likewise, individual variability in

LEAP2 expression may confer either vulnerability or resilience to the adaptations and maladaptation that accompany elevated ghrelin after chronic stress. Specifically, higher LEAP2 levels may protect against the stress-induced changes driven by elevated ghrelin, while lower LEAP2 levels may deepen the impact of elevated ghrelin post-stress.

Single nucleotide polymorphisms (SNPs) are another way that individual humans could have varied responses to chronic stress. SNPs in the genes encoding ghrelin and its receptor have been studied in the context of obesity (Gueorguiev et al. 2009; Mora et al. 2015; Vivenza et al. 2004), but not the context of stress responsivity; however, it is important to note that most studies do not show that ghrelin levels are impacted by studied variants in the ghrelin gene. Similarly, genetic variability in the LEAP2 gene (Andreoli et al. 2024a), some of which do predict LEAP2 levels (Andreoli et al. 2024b), would be interesting to study in the context of ghrelin-sensitive changes that accompany chronic stress.

Lastly, it would be remiss not to note that GHSR has a bidirectional modulatory effect on other types of signals. When GHSR forms heterodimers with other receptor types, it can impact the signaling of both the high level of constitutive activity observed in GHSR (Holst et al. 2003, 2004) as well as ligand-dependent signaling through GHSR. It has been suggested that the dimerization with other receptors may generally attenuate ghrelin-mediated signaling (Schellekens et al. 2013). For example, the serotonin 2c receptor (5HT2C) heterodimerizes with GHSR²¹⁷ and blockade of 5HT2C receptors potentiates the impact of ghrelin on food intake (Schellekens et al. 2015), suggesting that 5HT2C receptor activity limits signaling through GHSR. GHSR can heterodimerize with multiple types of prostanoid receptors, which reduces the constitutive activity of the GHSR (Chow et al. 2008). When GHSR forms heterodimers with the melanocortin-3 receptor (MC3R), it reduces both constitutive and ghrelin-induced signaling through GHSR (Rediger et al. 2011). In one case, instead of attenuating signaling through the GHSR, dimerization changes the type of signaling medi-

ated by GHSR: dimerization with the somatostatin receptor-5 (SST5) shifts the ghrelin receptor-G-protein coupling from $\text{G}\alpha\text{q/11}$ to $\text{G}\alpha\text{i/o}$ in order to drive ghrelin-mediated inhibitory tone in pancreatic β -cells (Park et al. 2012).

GHSR heterodimers can also impact signaling through the receptors that are paired with GHSR, and these interactions are not always ghrelin-dependent. That is, it is clear that GHSR can act as a receptor-modifying protein for other receptors (Ringuet et al. 2022; Hedegaard and Holst 2020). For example, GHSR forms heterodimers with multiple dopamine receptors, including Dopamine D1, D2, and D5 (DRD1, DRD2 and DRD5) (Kern et al. 2015, 2012; Jiang et al. 2006). In hypothalamic neurons, GHSR-DRD2 heterodimerization switches dopamine signaling from inhibitory to excitatory (Kern et al. 2012). GHSR heterodimerizes with the melanocortin-3 receptor (MC3R), where it enhances melanocortin-induced intracellular cAMP accumulation compared to MC3R homodimers (Rediger et al. 2011). GHSR heterodimerization with the oxytocin receptor (OTR) attenuates OTR signaling (Wallace Fitzsimons et al. 2019). In this regard, stress-induced changes in ghrelin levels, which can modify GHSR expression (Harmatz et al. 2016; Smith et al. 2024a), can regulate the availability of GHSR for heterodimerization and thus indirectly impact other types of signaling. Differential heterodimer expression across brain regions may also explain why some brain regions show downregulation of GHSR after chronic stress (Harmatz et al. 2016), while other brain regions show upregulation of GHSR (Smith et al. 2024a). Future research will undoubtedly shed light on these possibilities.

7.8 Conclusions

Chronic stress produces long-lasting enhanced risk for multiple types of disease, suggesting that there are biological changes induced by stress that have maladaptive value. Here, we considered the role of ghrelin in such changes because large increases in ghrelin are observed in multiple species long after chronic stressors cease and ghrelin

receptors are found throughout the periphery and brain. We considered the adaptive value of elevated ghrelin when organisms remain exposed to the stressor but also discussed how physiological changes driven by elevated ghrelin may contribute to disease when the stressor is no longer present. Because the vast majority of ghrelin that acts on the brain comes from the stomach, ghrelin represents a new frontier for connecting the brain and the body during times of energy deficit and energy excess, and the ghrelin system may represent a new frontier for tackling stress-sensitive disease.

Acknowledgments This project was supported by the following: NSF/CAREER (#2235858), NIH/NIDA (#R01DA058653), U-RISE T34GM145529 and G-RISE T32GM144919.

Bibliography

Akana SF, Dallman MF, Bradbury MJ, Scribner KA, Strack AM, Walker CD (1992) Feedback and facilitation in the adrenocortical system: unmasking facilitation by partial inhibition of the glucocorticoid response to prior stress. *Endocrinology* 131(1):57–68. PMID: 1319329

Algul S, Ozcelik O (2018) Evaluating the levels of Nesfatin-1 and ghrelin hormones in patients with moderate and severe major depressive disorders. *Psychiatry Investig* 15(2):214–218. PMCID: PMC5900400

Alvarez de la Rosa D, Ramos-Hernández Z, Weller-Pérez J, Johnson TA, Hager GL (2024) The impact of mineralocorticoid and glucocorticoid receptor interaction on corticosteroid transcriptional outcomes. *Mol Cell Endocrinol* 594:112389. PMID: 39423940

Alvarez-Crespo M, Skibicka KP, Farkas I, Molnár CS, Egecioglu E, Hrabovszky E, Liposits Z, Dickson SL (2012) The amygdala as a neurobiological target for ghrelin in rats: neuroanatomical, electrophysiological and behavioral evidence. *PLoS One* 7(10):e46321. PMCID: PMC3468604

Andreoli MF, Gentreau M, Rukh G, Perello M, Schiöth HB (2024a) Genetic variants of LEAP2 are associated with anthropometric traits and circulating insulin-like growth factor-1 concentration: a UK Biobank study. *Diabetes Obes Metab* 26(9):3565–3575. PMID: 38888057

Andreoli MF, Kruger AL, Sokolov AV, Rukh G, De Francesco PN, Perello M, Schiöth HB (2024b) LEAP2 is associated with impulsivity and reward sensitivity depending on the nutritional status and decreases with protein intake in humans. *Diabetes Obes Metab* 26(10):4734–4743. PMID: 39140219

Arafat AM, Perschel FH, Otto B, Weickert MO, Rochlitz H, Schöfl C, Spranger J, Möhlig M, Pfeiffer AFH (2006) Glucagon suppression of ghrelin secretion is exerted at hypothalamus-pituitary level. *J Clin Endocrinol Metab* 91(9):3528–3533. PMID: 16787987

Azzam I, Gilad S, Limor R, Stern N, Greenman Y (2017) Ghrelin stimulation by hypothalamic-pituitary-adrenal axis activation depends on increasing cortisol levels. *Endocr Connect* 6(8):847–855. PMCID: PMC5682420

Bagot RC, Parise EM, Peña CJ, Zhang HX, Maze I, Chaudhury D, Persaud B, Cachope R, Bolaños-Guzmán CA, Cheer JF, Deisseroth K, Han MH, Nestler EJ (2015) Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. *Nat Commun* 6:7062. PMCID: PMC4430111

Basu A, McLaughlin KA, Misra S, Koenen KC (2017) Childhood maltreatment and health impact: the examples of cardiovascular disease and type 2 diabetes mellitus in adults. *Clin Psychol* 24(2):125–139. PMCID: PMC5578408

Baxter JD (1978) Mechanisms of glucocorticoid inhibition of growth. *Kidney Int* 14(4):330–333. PMID: 366226

Bednarek MA, Feighner SD, Pong SS, McKee KK, Hreniuk DL, Silva MV, Warren VA, Howard AD, Van Der Ploeg LH, Heck JV (2000) Structure-function studies on the new growth hormone-releasing peptide, ghrelin: minimal sequence of ghrelin necessary for activation of growth hormone secretagogue receptor 1a. *J Med Chem* 43(23):4370–4376. PMID: 11087562

Belda X, Fuentes S, Daviu N, Nadal R, Armario A (2015) Stress-induced sensitization: the hypothalamic-pituitary-adrenal axis and beyond. *Stress Amst Neth* 18(3):269–279. PMID: 26300109

Belda X, Fuentes S, Labad J, Nadal R, Armario A (2020) Acute exposure of rats to a severe stressor alters the circadian pattern of corticosterone and sensitizes to a novel stressor: relationship to pre-stress individual differences in resting corticosterone levels. *Horm Behav* 126:104865

Bellis MA, Hughes K, Leckenby N, Hardcastle KA, Perkins C, Lowey H (2015) Measuring mortality and the burden of adult disease associated with adverse childhood experiences in England: a national survey. *J Public Health (Oxf)* 37(3):445–454. PMCID: PMC4552010

Bhargava R, Luur S, Rodriguez Flores M, Emini M, Precht CG, Goldstone AP (2023) Postprandial increases in liver-gut hormone LEAP2 correlate with attenuated eating behavior in adults without obesity. *J Endocr Soc* 7(7):bvad061. PMCID: PMC10243873

Bhattacharya SK, Andrews K, Beveridge R, Cameron KO, Chen C, Dunn M, Fernando D, Gao H, Hepworth D, Jackson VM, Khot V, Kong J, Kosa RE, Lapham K, Loria PM, Londregan AT, McClure KF, Orr STM, Patel J, Rose C, Saenz J, Stock IA, Storer G, VanVolkenburg M, Vrieze D, Wang G, Xiao J, Zhang Y (2014) Discovery of PF-5190457, a potent, selective, and orally bioavailable ghrelin receptor inverse agonist clinical candidate. *ACS Med Chem Lett* 5(5):474–479. PMCID: PMC4027753

Boo SH, Shin MK, Ha H, Woo JS, Kim YK (2024) Transcriptome-wide analysis for glucocorticoid receptor-mediated mRNA decay reveals various classes of target transcripts. *Mol Cells* 47(11):100130

Brindle RC, Pearson A, Ginty AT (2022) Adverse childhood experiences (ACEs) relate to blunted cardiovascular and cortisol reactivity to acute laboratory stress: a systematic review and meta-analysis. *Neurosci Biobehav Rev* 134:104530. PMID: 35031343

Broglio F, Arvat E, Benso A, Gottero C, Muccioli G, Papotti M, van der Lely AJ, Deghenghi R, Ghigo E (2001) Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans. *J Clin Endocrinol Metab* 86(10):5083–5086. PMID: 11600590

Broglio F, Gottero C, Prodam F, Gauna C, Muccioli G, Papotti M, Abribat T, Van Der Lely AJ, Ghigo E (2004) Non-acylated ghrelin counteracts the metabolic but not the neuroendocrine response to acylated ghrelin in humans. *J Clin Endocrinol Metab* 89(6):3062–3065. PMID: 15181099

Catani C, Jacob N, Schauer E, Kohila M, Neuner F (2008) Family violence, war, and natural disasters: a study of the effect of extreme stress on children's mental health in Sri Lanka. *BMC Psychiatry* 8:33. PMCID: PMC2386780

Chang L, Niu F, Li B (2024) Ghrelin/GHSR signaling in the lateral septum ameliorates chronic stress-induced depressive-like behaviors. *Prog Neuropsychopharmacol Biol Psychiatry* 131:110953. PMID: 38278286

Charalambous C, Havlickova T, Lapka M, Puskina N, Šlamberová R, Kuchar M, Sustkova-Fiserova M (2021) Cannabinoid-induced conditioned place preference, intravenous self-administration, and behavioral stimulation influenced by ghrelin receptor antagonism in rats. *Int J Mol Sci* 22(5):2397. PMCID: PMC7957642

Chen VP, Gao Y, Geng L, Parks RJ, Pang YP, Brimijoin S (2015) Plasma butyrylcholinesterase regulates ghrelin to control aggression. *Proc Natl Acad Sci U S A* 112(7):2251–2256

Chow KBS, Leung PK, Cheng CHK, Cheung WT, Wise H (2008) The constitutive activity of ghrelin receptors is decreased by co-expression with vasoactive prostanoid receptors when over-expressed in human embryonic kidney 293 cells. *Int J Biochem Cell Biol* 40(11):2627–2637. PMID: 18573679

Chuang JC, Perello M, Sakata I, Osborne-Lawrence S, Savitt JM, Lutter M, Zigman JM (2011a) Ghrelin mediates stress-induced food-reward behavior in mice. *J Clin Invest* 121(7):2684–2692. PMCID: PMC3223843

Chuang JC, Sakata I, Kohno D, Perello M, Osborne-Lawrence S, Repa JJ, Zigman JM (2011b) Ghrelin

directly stimulates glucagon secretion from pancreatic alpha-cells. *Mol Endocrinol* 25(9):1600–1611. PMID: PMC3165914

Cornejo MP, Barrile F, De Francesco PN, Portiansky EL, Reynaldo M, Perello M (2018) Ghrelin recruits specific subsets of dopamine and GABA neurons of different ventral tegmental area sub-nuclei. *Neuroscience* 392:107–120. PMID: 30268780

Coutinho AE, Chapman KE (2011) The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. *Mol Cell Endocrinol* 335(1):2–13. PMID: PMC3047790

Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. *Diabetes* 50(8):1714–1719

D'Cunha TM, Chisholm A, Hryhorczuk C, Fulton S, Shalev U (2020) A role for leptin and ghrelin in the augmentation of heroin seeking induced by chronic food restriction. *Psychopharmacology* 237(3):787–800. PMID: 31811350

Daníelsdóttir HB, Aspelund T, Shen Q, Halldorsdóttir T, Jakobsdóttir J, Song H, Lu D, Kuja-Halkola R, Larsson H, Fall K, Magnusson PKE, Fang F, Bergstedt J, Valdimarsdóttir UA (2024) Adverse childhood experiences and adult mental health outcomes. *JAMA Psychiatry* 81(6):586–594

Dantas VGL, Furtado-Alle L, Souza RLR, Chautard-Freire-Maia EA (2011) Obesity and variants of the GHRL (ghrelin) and BCHE (butyrylcholinesterase) genes. *Genet Mol Biol* 34(2):205–207. PMID: PMC3115310

Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, Matsukura S, Kangawa K, Nakazato M (2000) Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. *Endocrinology* 141(11):4255–4261. PMID: 11089560

Date Y, Murakami N, Toshinai K, Matsukura S, Niijima A, Matsuo H, Kangawa K, Nakazato M (2002) The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. *Gastroenterology* 123(4):1120–1128. PMID: 12360474

Dezaki K, Hosoda H, Kakei M, Hashiguchi S, Watanabe M, Kangawa K, Yada T (2004) Endogenous ghrelin in pancreatic islets restricts insulin release by attenuating Ca²⁺ signaling in beta-cells: implication in the glycemic control in rodents. *Diabetes* 53(12):3142–3151. PMID: 15561944

Di S, Malcher-Lopes R, Halmos KC, Tasker JG (2003) Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. *J Neurosci* 23(12):4850–4857. PMID: PMC6741208

Disse E, Bussier AL, Veyrat-Durebex C, Deblon N, Pfluger PT, Tschöp MH, Laville M, Rohner-Jeanrenaud F (2010) Peripheral ghrelin enhances sweet taste food consumption and preference, regardless of its caloric content. *Physiol Behav* 101(2):277–281. PMID: 20515700

Domes G, Linnig K, von Dawans B (2024) Gonads under stress: a systematic review and meta-analysis on the effects of acute psychosocial stress on gonadal steroids secretion in humans. *Psychoneuroendocrinology* 164:107004. PMID: 38471257

Dong M, Giles WH, Felitti VJ, Dube SR, Williams JE, Chapman DP, Anda RF (2004) Insights into causal pathways for ischemic heart disease: adverse childhood experiences study. *Circulation* 110(13):1761–1766. PMID: 15381652

Dunn DP, Bastacky JMR, Gray CC, Abtahi S, Currie PJ (2019) Role of mesolimbic ghrelin in the acquisition of cocaine reward. *Neurosci Lett* 709:134367. PMID: 31278962

Egecioglu E, Jerlhag E, Salomé N, Skibicka KP, Haage D, Bohlooly-Y M, Andersson D, Bjursell M, Perrissoud D, Engel JA, Dickson SL (2010) Ghrelin increases intake of rewarding food in rodents. *Addict Biol* 15(3):304–311. PMID: PMC2901520

Egecioglu E, Prieto-Garcia L, Studer E, Westberg L, Jerlhag E (2016) The role of ghrelin signalling for sexual behaviour in male mice. *Addict Biol* 21(2):348–359. PMID: 25475101

Emil HM, Serteser M, Kurt E, Ozbulut O, Guler O, Gecici O (2007) Ghrelin and leptin levels in patients with obsessive-compulsive disorder. *Prog Neuropsychopharmacol Biol Psychiatry* 31(6):1270–1274. PMID: 17597276

Engelstoft MS, Mee PW, Sakata I, Kristensen LV, Husted AS, Osborne-Lawrence S, Piper PK, Walker AK, Pedersen MH, Nøhr MK, Pan J, Sinz CJ, Carrington PE, Akiyama TE, Jones RM, Tang C, Ahmed K, Offermanns S, Egerod KL, Zigman JM, Schwartz TW (2013) Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. *Mol Metab* 2(4):376–392

Farokhnia M, Grodin EN, Lee MR, Oot EN, Blackburn AN, Stangl BL, Schwandt ML, Farinelli LA, Momenan R, Ramchandani VA, Leggio L (2018) Exogenous ghrelin administration increases alcohol self-administration and modulates brain functional activity in heavy-drinking alcohol-dependent individuals. *Mol Psychiatry* 23(10):2029–2038. PMID: 29133954

Faulkner ML, Farokhnia M, Lee MR, Farinelli L, Browning BD, Abshire K, Daurio AM, Munjal V, Deschaine SL, Boukabara SR, Fortney C, Sherman G, Schwandt M, Akhlaghi F, Momenan R, Ross TJ, Persky S, Leggio L (2024) A randomized, double-blind, placebo-controlled study of a GHSR blocker in people with alcohol use disorder. *JCI Insight* 9(24):e182331. PMID: 39704175

Fei Y, Bao Z, Wang Q, Zhu Y, Lu J, Ouyang L, Hu Q, Zhou Y, Chen L (2024) CRISPR/Cas9-induced LEAP2 and GHSR1a knockout mutant zebrafish displayed abnormal growth and impaired lipid metabo-

lism. *Gen Comp Endocrinol* 355:114563. PMID: 38830459

Fernandez G, Cabral A, Cornejo MP, De Francesco PN, Garcia-Romero G, Reynaldo M, Perello M (2016) Des-Acyl ghrelin directly targets the arcuate nucleus in a ghrelin-receptor independent manner and impairs the orexigenic effect of ghrelin. *J Neuroendocrinol* 28(2):12349. PMID: 26661382

Fernandez G, Cabral A, De Francesco PN, Uriarte M, Reynaldo M, Castrogiovanni D, Zubiría G, Giovambattista A, Cantel S, Denoyelle S, Fehrentz JA, Tolle V, Schiöth HB, Perello M (2022) GHSR controls food deprivation-induced activation of CRF neurons of the hypothalamic paraventricular nucleus in a LEAP2-dependent manner. *Cell Mol Life Sci CMSL* 79(5):277. PMCID: PMC11072678

Fernandez G, De Francesco PN, Cornejo MP, Cabral A, Aguggia JP, Duque VJ, Sayar N, Cantel S, Burgos JI, Fehrentz JA, Rorato R, Atasoy D, Mecawi AS, Perello M (2023) Ghrelin action in the PVH of male mice: accessibility, neuronal targets, and CRH neurons activation. *Endocrinology* 164(11):bqad154. PMCID: PMC11491828

Francis TC, Chandra R, Friend DM, Finkel E, Dayrit G, Miranda J, Brooks JM, Iñiguez SD, O'Donnell P, Kravitz A, Lobo MK (2015) Nucleus accumbens medium spiny neuron subtypes mediate depression-related outcomes to social defeat stress. *Biol Psychiatry* 77(3):212–222. PMCID: PMC5534173

Gahete MD, Córdoba-Chacón J, Salvatori R, Castaño JP, Kineman RD, Luque RM (2010) Metabolic regulation of ghrelin O-acyl transferase (GOAT) expression in the mouse hypothalamus, pituitary, and stomach. *Mol Cell Endocrinol* 317(1–2):154–160. PMCID: PMC2819060

Gastón MS, Cid MP, Salvatierra NA (2017) Bicuculline, a GABA_A-receptor antagonist, blocked HPA axis activation induced by ghrelin under an acute stress. *Behav Brain Res* 320:464–472. PMID: 27780724

Ge X, Yang H, Bednarek MA, Galon-Tilleman H, Chen P, Chen M, Lichtman JS, Wang Y, Dalmas O, Yin Y, Tian H, Jermutus L, Grimsby J, Rondinone CM, Konkar A, Kaplan DD (2017) LEAP2 is an endogenous antagonist of the ghrelin receptor. *Cell Metab* 27(2):461–469.e6

Gillespie CF, Bradley B, Mercer K, Smith AK, Conneely K, Gapen M, Weiss T, Schwartz AC, Cubells JF, Ressler KJ (2009) Trauma exposure and stress-related disorders in inner city primary care patients. *Gen Hosp Psychiatry* 31(6):505–514. PMCID: PMC2785858

Giménez-Palop O, Coronas R, Cobo J, Gallart L, Barbero JD, Parra I, Fusté G, Vendrell J, Bueno M, González-Clemente JM, Caixás A (2012) Fasting plasma peptide YY concentrations are increased in patients with major depression who associate weight loss. *J Endocrinol Investigig* 35(7):645–648. PMID: 22183081

Ginieis R, Abeywickrema S, Oey I, Peng M (2022) Testing links of food-related olfactory perception to peripheral ghrelin and leptin concentrations. *Front Nutr* 9:888608. PMCID: PMC9130723

Goldstone AP, Prechtel CG, Scholtz S, Miras AD, Chhina N, Durighel G, Deliran SS, Beckmann C, Ghatei MA, Ashby DR, Waldman AD, Gaylinn BD, Thorner MO, Frost GS, Bloom SR, Bell JD (2014) Ghrelin mimics fasting to enhance human hedonic, orbitofrontal cortex, and hippocampal responses to food. *Am J Clin Nutr* 99(6):1319–1330. PMCID: PMC6410902

Grissom N, Bhatnagar S (2009) Habituation to repeated stress: get used to it. *Neurobiol Learn Mem* 92(2):215–224

Guan XM, Yu H, Palyha OC, McKee KK, Feighner SD, Sirinathsinghji DJ, Smith RG, Van der Ploeg LH, Howard AD (1997) Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. *Brain Res Mol Brain Res* 48(1):23–29. PMID: 9379845

Gueorguiev M, Lecoeur C, Meyre D, Benzinou M, Mein CA, Hinney A, Vatin V, Weill J, Heude B, Hebebrand J, Grossman AB, Korbonits M, Froguel P (2009) Association studies on ghrelin and ghrelin receptor gene polymorphisms with obesity. *Obesity (Silver Spring)* 17(4):745–754. PMID: 19165163

Gupta D, Chuang JC, Mani BK, Shankar K, Rodriguez JA, Osborne-Lawrence S, Metzger NP, Zigman JM (2019) β 1-adrenergic receptors mediate plasma acyl-ghrelin elevation and depressive-like behavior induced by chronic psychosocial stress. *Neuropharmacology* 44(7):1319–1327. PMCID: PMC6785135

Gutierrez JA, Solenberg PJ, Perkins DR, Willency JA, Knierman MD, Jin Z, Witcher DR, Luo S, Onyia JE, Hale JE (2008) Ghrelin octanoylation mediated by an orphan lipid transferase. *Proc Natl Acad Sci U A* 105(17):6320–6325

Haass-Koffler CL, Long VM, Farokhnia M, Magill M, Kenna GA, Swift RM, Leggio L (2019) Intravenous administration of ghrelin increases serum cortisol and aldosterone concentrations in heavy-drinking alcohol-dependent individuals: results from a double-blind, placebo-controlled human laboratory study. *Neuropharmacology* 158:107711

Hackett RA, Steptoe A (2017) Type 2 diabetes mellitus and psychological stress - a modifiable risk factor. *Nat Rev Endocrinol* 13(9):547–560. PMID: 28664919

Han JE, Frasnelli J, Zeighami Y, Larcher K, Boyle J, McConnell T, Malik S, Jones-Gotman M, Dagher A (2018) Ghrelin enhances food odor conditioning in healthy humans: an fMRI study. *Cell Rep* 25(10):2643–2652.e4. PMID: 30517853

Harmatz ES, Stone L, Lim SH, Lee G, McGrath A, Gisabella B, Peng X, Kosoy E, Yao J, Liu E, Machado NJ, Weiner VS, Slocum W, Cunha RA, Goosens KA (2016) Central ghrelin resistance permits the overconsolidation of fear memory. *Biol Psychiatry* 81(12):1003–1013

Hedegaard MA, Holst B (2020) The complex signaling pathways of the ghrelin receptor. *Endocrinology* 161(4):bqaa020

Heim C, Nemeroff CB (2001) The role of childhood trauma in the neurobiology of mood and anxiety dis-

orders: preclinical and clinical studies. *Biol Psychiatry* 49(12):1023–1039. PMID: 11430844

Hemmann K, Raekallio M, Kanerva K, Hänninen L, Pastell M, Palviainen M, Vainio O (2012) Circadian variation in ghrelin and certain stress hormones in cribbiting horses. *Vet J* 193(1):97–102. PMID: 22040804

Henriques ST, Tan CC, Craik DJ, Clark RJ (2010) Structural and functional analysis of human liver-expressed antimicrobial peptide 2. *Chembiochem Eur J Chem Biol* 11(15):2148–2157. PMID: 20845358

Herman JP, Patel PD, Akil H, Watson SJ (1989) Localization and regulation of glucocorticoid and mineralocorticoid receptor messenger RNAs in the hippocampal formation of the rat. *Mol Endocrinol* 3(11):1886–1894. PMID: 2558306

Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, Cullinan WE (2003) Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. *Front Neuroendocrinol* 24(3):151–180. PMID: 14596810

Herman JP, Nawreen N, Smail MA, Cotella EM (2020) Brain mechanisms of HPA axis regulation: neurocircuitry and feedback in context Richard Kvetnansky lecture. *Stress Amst Neth* 23(6):617–632. PMCID: PMC8034599

Hollstein T, Basolo A, Unlu Y, Ando T, Walter M, Krakoff J, Piaggi P (2022) Effects of short-term fasting on Ghrelin/GH/IGF-1 axis in healthy humans: the role of ghrelin in the thrifty phenotype. *J Clin Endocrinol Metab* 107(9):e3769–e3780. PMCID: PMC9387714

Holst B, Cygankiewicz A, Jensen TH, Ankersen M, Schwartz TW (2003) High constitutive signaling of the ghrelin receptor--identification of a potent inverse agonist. *Mol Endocrinol* 17(11):2201–2210. PMID: 12907757

Holst B, Holliday ND, Bach A, Elling CE, Cox HM, Schwartz TW (2004) Common structural basis for constitutive activity of the ghrelin receptor family*. *J Biol Chem* 279(51):53806–53817

Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, Hamelin M, Hreniuk DL, Palyha OC, Anderson J, Paress PS, Diaz C, Chou M, Liu KK, McKee KK, Pong SS, Chaung LY, Elbrecht A, Dashkevicz M, Heavens R, Rigby M, Sirinathsinghji DJ, Dean DC, Melillo DG, Patchett AA, Nargund R, Griffin PR, DeMartino JA, Gupta SK, Schaeffer JM, Smith RG, Van der Ploeg LH (1996) A receptor in pituitary and hypothalamus that functions in growth hormone release. *Science* 273(5277):974–977

Howard A, Townes C, Milona P, Nile CJ, Michailidis G, Hall J (2010) Expression and functional analyses of liver expressed antimicrobial peptide-2 (LEAP-2) variant forms in human tissues. *Cell Immunol* 261(2):128–133. PMID: 20038463

Huang HJ, Zhu XC, Han QQ, Wang YL, Yue N, Wang J, Yu R, Li B, Wu GC, Liu Q, Yu J (2017) Ghrelin alleviates anxiety- and depression-like behaviors induced by chronic unpredictable mild stress in rodents. *Behav Brain Res* 326:33–43. PMID: 28245976

Hughes K, Bellis MA, Hardcastle KA, Sethi D, Butchart A, Mikton C, Jones L, Dunne MP (2017) The effect of multiple adverse childhood experiences on health: a systematic review and meta-analysis. *Lancet Public Health* 2(8):e356–e366. PMID: 29253477

Hughes K, Bellis MA, Sethi D, Andrew R, Yon Y, Wood S, Ford K, Baban A, Boderscova L, Kachaeva M, Makaruk K, Markovic M, Povilaitis R, Raleva M, Terzic N, Veleminsky M, Włodarczyk J, Zakhozva V (2019) Adverse childhood experiences, childhood relationships and associated substance use and mental health in young Europeans. *Eur J Pub Health* 29(4):741–747. PMCID: PMC6660110

Imaki T, Xiao-Quan W, Shibasaki T, Yamada K, Harada S, Chikada N, Naruse M, Demura H (1995) Stress-induced activation of neuronal activity and corticotropin-releasing factor gene expression in the paraventricular nucleus is modulated by glucocorticoids in rats. *J Clin Invest* 96(1):231–238. PMCID: PMC185193

Islam MN, Mita Y, Maruyama K, Tanida R, Zhang W, Sakoda H, Nakazato M (2020) Liver-expressed antimicrobial peptide 2 antagonizes the effect of ghrelin in rodents. *J Endocrinol* 244(1):13–23

Islam MN, Nabekura H, Ueno H, Nishida T, Nanashima A, Sakoda H, Zhang W, Nakazato M (2024) Liver-expressed antimicrobial peptide 2 is a hepatokine regulated by ghrelin, nutrients, and body weight. *Sci Rep* 14(1):24782. PMCID: PMC11494003

Jacobson L, Akana SF, Cascio CS, Shinsako J, Dallman MF (1988) Circadian variations in plasma corticosterone permit normal termination of adrenocorticotropin responses to stress. *Endocrinology* 122(4):1343–1348. PMID: 2831028

Jaremka LM, Belury MA, Andridge RR, Malarkey WB, Glaser R, Christian L, Emery CF, Kiecolt-Glaser JK (2014) Interpersonal stressors predict ghrelin and leptin levels in women. *Psychoneuroendocrinology* 48:178–188. PMCID: PMC4117712

Jensen FS, Skovgaard LT, Viby-Mogensen J (1995) Identification of human plasma cholinesterase variants in 6,688 individuals using biochemical analysis. *Acta Anaesthesiol Scand* 39(2):157–162. PMID: 7793180

Jerlhag E, Engel JA (2011) Ghrelin receptor antagonism attenuates nicotine-induced locomotor stimulation, accumbal dopamine release and conditioned place preference in mice. *Drug Alcohol Depend* 117(2–3):126–131. PMID: 21310553

Jerlhag E, Egecioglu E, Dickson SL, Douhan A, Svensson L, Engel JA (2007) Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. *Addict Biol* 12(1):6–16. PMID: 17407492

Jerlhag E, Egecioglu E, Landgren S, Salomé N, Heilig M, Moechars D, Datta R, Perrissoud D, Dickson SL, Engel JA (2009) Requirement of central ghrelin signaling for alcohol reward. *Proc Natl Acad Sci USA* 106(27):11318–11323. PMCID: PMC2703665

Jiang H, Betancourt L, Smith RG (2006) Ghrelin amplifies dopamine signaling by cross talk involving formation of growth hormone secretagogue receptor/dopamine receptor subtype 1 heterodimers. *Mol Endocrinol Baltim Md* 20(8):1772–1785. PMID: 16601073

Joëls M, de Kloet ER (2017) 30 years of the mineralocorticoid receptor: the brain mineralocorticoid receptor: a saga in three episodes. *J Endocrinol* 234(1):T49–T66. PMID: 28634266

John S, Sabo PJ, Thurman RE, Sung MH, Biddie SC, Johnson TA, Hager GL, Stamatoyannopoulos JA (2011) Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. *Nat Genet* 43(3):264–268. PMCID: PMC6386452

Johnson JD, O'Connor KA, Deak T, Spencer RL, Watkins LR, Maier SF (2002) Prior stressor exposure primes the HPA axis. *Psychoneuroendocrinology* 27(3):353–365. PMID: 11818171

Jones KR, Myers B, Herman JP (2011) Stimulation of the prelimbic cortex differentially modulates neuroendocrine responses to psychogenic and systemic stressors. *Physiol Behav* 104(2):266–271. PMCID: PMC3640446

Jönsson E (2013) The role of ghrelin in energy balance regulation in fish. *Gen Comp Endocrinol* 187:79–85. PMID: 23557643

Kalmbach DA, Anderson JR, Drake CL (2018) The impact of stress on sleep: pathogenic sleep reactivity as a vulnerability to insomnia and circadian disorders. *J Sleep Res* 27(6):e12710. PMCID: PMC7045300

Karst H, Berger S, Turiault M, Tronche F, Schütz G, Joëls M (2005) Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. *Proc Natl Acad Sci USA* 102(52):19204–19207. PMCID: PMC1323174

Karst H, Berger S, Erdmann G, Schütz G, Joëls M (2010) Metaplasticity of amygdalar responses to the stress hormone corticosterone. *Proc Natl Acad Sci U S A* 107(32):14449–14454. PMCID: PMC2922581

Kaur S, Ryabinin AE (2010) Ghrelin receptor antagonism decreases alcohol consumption and activation of periculomotor urocortin-containing neurons. *Alcohol Clin Exp Res* 34(9):1525–1534. PMCID: PMC2929279

Kelly-Irving M, Lepage B, Dedieu D, Lacey R, Cable N, Bartley M, Blane D, Grosclaude P, Lang T, Delpierre C (2013) Childhood adversity as a risk for cancer: findings from the 1958 British birth cohort study. *BMC Public Health* 13:767. PMCID: PMC3765119

Kern A, Albaran-Zeckler R, Walsh HE, Smith RG (2012) Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism. *Neuron* 73(2):317–332. PMCID: PMC3269786

Kern A, Mavrikaki M, Ullrich C, Albaran-Zeckler R, Brantley AF, Smith RG (2015) Hippocampal Dopamine/DRD1 signaling dependent on the ghrelin receptor. *Cell* 163(5):1176–1190. PMCID: PMC4937825

Kim SH, Park MJ (2017) Effects of growth hormone on glucose metabolism and insulin resistance in human. *Ann Pediatr Endocrinol Metab* 22(3):145–152. PMCID: PMC5642081

Kim HH, Jeon TY, Park DY, Kim YJ, Lee SY, Lee JY, Lee JG, Jeong DW, Yi YH, Cho YH, Im SJ, Bae MJ, Choi EJ (2012) Differential expression of ghrelin mRNA according to anatomical portions of human stomach. *Hepato-Gastroenterology* 59(119):2217–2221. PMID: 22366529

King SJ, Isaacs AM, O'Farrell E, Abizaid A (2011) Motivation to obtain preferred foods is enhanced by ghrelin in the ventral tegmental area. *Horm Behav* 60(5):572–580. PMID: 21872601

Kluge M, Schüssler P, Dresler M, Schmidt D, Yassouridis A, Uhr M, Steiger A (2011) Effects of ghrelin on psychopathology, sleep and secretion of cortisol and growth hormone in patients with major depression. *J Psychiatr Res* 45(3):421–426. PMID: 20888580

Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. *Nature* 402(6762):656–660

Kong J, Chuddy J, Stock IA, Loria PM, Straub SV, Vage C, Cameron KO, Bhattacharya SK, Lapham K, McClure KF, Zhang Y, Jackson VM (2016) Pharmacological characterization of the first in class clinical candidate PF-05190457: a selective ghrelin receptor competitive antagonist with inverse agonism that increases vagal afferent firing and glucose-dependent insulin secretion ex vivo. *Br J Pharmacol* 173(9):1452–1464. PMCID: PMC4831304

Koopmann A, von der Goltz C, Grosshans M, Dinter C, Vitale M, Wiedemann K, Kiefer F (2012) The association of the appetitive peptide acetylated ghrelin with alcohol craving in early abstinent alcohol dependent individuals. *Psychoneuroendocrinology* 37(7):980–986. PMID: 22172639

Koopmann A, Bach P, Schuster R, Bumb JM, Vollstädt-Klein S, Reinhard I, Rietschel M, Witt SH, Wiedemann K, Kiefer F (2019) Ghrelin modulates mesolimbic reactivity to alcohol cues in alcohol-addicted subjects: a functional imaging study. *Addict Biol* 24(5):1066–1076. PMID: 29984874

Krause A, Sillard R, Kleemeier B, Klüver E, Maronde E, Conejo-García JR, Forssmann WG, Schulz-Knappe P, Nehls MC, Wattler F, Wattler S, Adermann K (2003) Isolation and biochemical characterization of LEAP-2, a novel blood peptide expressed in the liver. *Protein Sci Publ Protein Soc* 12(1):143–152. PMCID: PMC2312392

Kumar J, Chuang JC, Na ES, Kuperman A, Gillman AG, Mukherjee S, Zigman JM, McClung CA, Lutter M (2013) Differential effects of chronic social stress and fluoxetine on meal patterns in mice. *Appetite* 64:81–88. PMCID: PMC3606634

Kurt E, Guler O, Serteser M, Cansel N, Ozbudut O, Altınbaş K, Alataş G, Savaş H, Gecici O (2007) The effects of electroconvulsive therapy on ghrelin, leptin

and cholesterol levels in patients with mood disorders. *Neurosci Lett* 426(1):49–53. PMID: 17884293

Kuti D, Winkler Z, Horváth K, Juhász B, Szilvásy-Szabó A, Fekete C, Ferenczi S, Kovács KJ (2022) The metabolic stress response: adaptation to acute-, repeated- and chronic challenges in mice. *iScience* 25(8):104693. PMCID: PMC9307515

La Du BN, Bartels CF, Nogueira CP, Hajra A, Lightstone H, Van der Spek A, Lockridge O (1990) Phenotypic and molecular biological analysis of human butyryl-cholinesterase variants. *Clin Biochem* 23(5):423–431. PMID: 2253336

Landgren S, Jerlhag E, Zetterberg H, Gonzalez-Quintela A, Campos J, Olofsson U, Nilsson S, Blennow K, Engel JA (2008) Association of pro-ghrelin and GHS-R1A gene polymorphisms and haplotypes with heavy alcohol use and body mass. *Alcohol Clin Exp Res* 32(12):2054–2061. PMID: 18828808

Landgren S, Jerlhag E, Hallman J, Orelund L, Lissner L, Strandhagen E, Thelle DS, Zetterberg H, Blennow K, Engel JA (2010) Genetic variation of the ghrelin signaling system in females with severe alcohol dependence. *Alcohol Clin Exp Res* 34(9):1519–1524. PMID: 20586762

Leggio L, Zywiak WH, Fricchione SR, Edwards SM, de la Monte SM, Swift RM, Kenna GA (2014) Intravenous ghrelin administration increases alcohol craving in alcohol-dependent heavy drinkers: a preliminary investigation. *Biol Psychiatry* 76(9):734–741. PMCID: PMC4176606

Lewis JW, Cannon JT, Liebeskind JC (1980) Opioid and nonopiod mechanisms of stress analgesia. *Science* 208(4444):623–625. PMID: 7367889

Li RL, Sherbet DP, Elsbernd BL, Goldstein JL, Brown MS, Zhao TJ (2012) Profound hypoglycemia in starved, ghrelin-deficient mice is caused by decreased gluconeogenesis and reversed by lactate or fatty acids. *J Biol Chem* 287(22):17942–17950. PMCID: PMC3365699

Li G, Zhang K, Wang L, Cao C, Fang R, Liu P, Luo S, Liberzon I (2019) The preliminary investigation of orexigenic hormone gene polymorphisms on posttraumatic stress disorder symptoms. *Psychoneuroendocrinology* 100:131–136. PMID: 30326460

Longo KA, Charoenthongtrakul S, Giuliana DJ, Govek EK, McDonagh T, Qi Y, DiStefano PS, Geddes BJ (2008) Improved insulin sensitivity and metabolic flexibility in ghrelin receptor knockout mice. *Regul Pept* 150(1–3):55–61. PMID: 18453014

Lu Y, Niu M, Qiu X, Cao H, Xing B, Sun Y, Zhou Z, Zhou Y (2019) Acute but not chronic calorie restriction defends against stress-related anxiety and despair in a GHS-R1a-Dependent manner. *Neuroscience* 412:94–104. PMID: 31185255

Lugilde J, Casado S, Beiroa D, Cuñarro J, García-Lavandeira M, Álvarez CV, Nogueiras R, Diéguez C, Tovar S (2022) LEAP-2 counteracts ghrelin-induced food intake in a nutrient, growth hormone and age independent manner. *Cells* 11(3):324. PMCID: PMC8834077

Lutter M, Sakata I, Osborne-Lawrence S, Rovinsky SA, Anderson JG, Jung S, Birnbaum S, Yanagisawa M, Elmquist JK, Nestler EJ, Zigman JM (2008) The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress. *Nat Neurosci* 11(7):752–753. PMCID: PMC2765052

M'Kadmi C, Cabral A, Barrile F, Giribaldi J, Cantel S, Damian M, Mary S, Denoyelle S, Dutertre S, Péraldi-Roux S, Neasta J, Oiry C, Banères JL, Marie J, Perello M, Fehrentz JA (2019) N-Terminal Liver-Expressed Antimicrobial Peptide 2 (LEAP2) region exhibits inverse agonist activity toward the ghrelin receptor. *J Med Chem* 62(2):965–973. PMID: 30543423

Malik MO, Shah M, Irfan UI Akbar Yousufzai M, Ullah N, Burgess JA, Goosens KA (2020) Association of Acyl-Ghrelin with posttraumatic stress disorder in adolescents who experienced severe trauma. *JAMA Netw Open* 3(8):e2013946

Mani BK, Walker AK, Lopez Soto EJ, Raingo J, Lee CE, Perelló M, Andrews ZB, Zigman JM (2014) Neuroanatomical characterization of a growth hormone secretagogue receptor-green fluorescent protein reporter mouse. *J Comp Neurol* 522(16):3644–3666. PMCID: PMC4142102

Mani BK, Puzziferri N, He Z, Rodriguez JA, Osborne-Lawrence S, Metzger NP, Chhina N, Gaylinn B, Thorner MO, Thomas EL, Bell JD, Williams KW, Goldstone AP, Zigman JM (2019) LEAP2 changes with body mass and food intake in humans and mice. *J Clin Invest* 129(9):3909–3923. PMCID: PMC6715358

Marazziti D, Di Muro A, Castrogiovanni P (1992) Psychological stress and body temperature changes in humans. *Physiol Behav* 52(2):393–395. PMID: 1326118

Matsuo K, Nakano M, Nakashima M, Watanuki T, Egashira K, Matsubara T, Watanabe Y (2012) Neural correlates of plasma acylated ghrelin level in individuals with major depressive disorder. *Brain Res* 1473:185–192. PMID: 22819931

Meinel S, Gekle M, Grossmann C (2014) Mineralocorticoid receptor signaling: crosstalk with membrane receptors and other modulators. *Steroids* 91:3–10

Méquignon M, Langlet F, Zgheib S, Dickson S, Dehouck B, Chauveau C, Viltart O (2013) Ghrelin: central and peripheral implications in anorexia nervosa. *Front Endocrinol* 4:15. PMCID: PMC3581855

Meyer RM, Burgos-Robles A, Liu E, Correia SS, Goosens KA (2014) A ghrelin-growth hormone axis drives stress-induced vulnerability to enhanced fear. *Mol Psychiatry* 19(12):1284–1294

Mora M, Adam V, Palomera E, Blesa S, Díaz G, Buquet X, Serra-Prat M, Martín-Escudero JC, Palanca A, Chaves JF, Puig-Domingo M (2015) Ghrelin gene variants influence on metabolic syndrome components in aged Spanish population. *PLoS ONE* 10(9):e0136931. PMCID: PMC4573319

Murtuza MI, Isokawa M (2018) Endogenous ghrelin-O-acyltransferase (GOAT) acylates local ghrelin in the hippocampus. *J Neurochem* 144(1):58–67. PMCID: PMC5832437

Mustafá ER, Cordisco González S, Damian M, Cantel S, Denoyelle S, Wagner R, Schiöth HB, Fehrentz JA, Banères JL, Perelló M, Raingo J (2021) LEAP2 impairs the capability of the growth hormone secretagogue receptor to regulate the Dopamine 2 receptor signaling. *Front Pharmacol* 12:712437. PMID: PMC8383165

Nakagawa E, Nagaya N, Okumura H, Enomoto M, Oya H, Ono F, Hosoda H, Kojima M, Kangawa K (2002) Hyperglycaemia suppresses the secretion of ghrelin, a novel growth-hormone-releasing peptide: responses to the intravenous and oral administration of glucose. *Clin Sci Lond Engl* 103(3):325–328. PMID: 12193159

Nakamura K (2015) Neural circuit for psychological stress-induced hyperthermia. *Temperature* 2(3):352–361. PMID: PMC4843917

Navarro G, Rea W, Quiroz C, Moreno E, Gomez D, Wentur CJ, Casadó V, Leggio L, Hearing MC, Ferré S (2022) Complexes of Ghrelin GHS-R1a, GHS-R1b, and dopamine D1 receptors localized in the ventral tegmental area as main mediators of the dopaminergic effects of ghrelin. *J Neurosci Off J Soc Neurosci* 42(6):940–953. PMID: PMC8824505

Nestler EJ, Russo SJ (2024) Neurobiological basis of stress resilience. *Neuron* 112(12):1911–1929. PMID: PMC11189737

Oka T (2015) Psychogenic fever: how psychological stress affects body temperature in the clinical population. *Temp Multidiscip Biomed J* 2(3):368–378. PMID: PMC4843908

Oka T (2018) Stress-induced hyperthermia and hypothermia. *Handb Clin Neurol* 157:599–621. PMID: 30459027

Ozsoy S, Besirli A, Abdulrezzak U, Basturk M (2014) Serum ghrelin and leptin levels in patients with depression and the effects of treatment. *Psychiatry Investig* 11(2):167–172. PMID: PMC4023091

Pabst S, Schoofs D, Pawlikowski M, Brand M, Wolf OT (2013) Paradoxical effects of stress and an executive task on decisions under risk. *Behav Neurosci* 127(3):369–379. PMID: 23544598

Pace TWW, Gaylord RI, Jarvis E, Girotti M, Spencer RL (2009) Differential glucocorticoid effects on stress-induced gene expression in the paraventricular nucleus of the hypothalamus and ACTH secretion in the rat. *Stress* 12(5):400–411

Page LC, Gastaldelli A, Gray SM, D'Alessio DA, Tong J (2018) Interaction of GLP-1 and ghrelin on glucose tolerance in healthy humans. *Diabetes* 67(10):1976–1985. PMID: PMC6152343

Park S, Jiang H, Zhang H, Smith RG (2012) Modification of ghrelin receptor signaling by somatostatin receptor-5 regulates insulin release. *Proc Natl Acad Sci U S A* 109(46):19003–19008. PMID: PMC3503195

Pascual-Le Tallec L, Lombès M (2005) The mineralocorticoid receptor: a journey exploring its diversity and specificity of action. *Mol Endocrinol* 19(9):2211–2221

Patterson ZR, Ducharme R, Anisman H, Abizaid A (2010) Altered metabolic and neurochemical responses to chronic unpredictable stressors in ghrelin receptor-deficient mice. *Eur J Neurosci* 32(4):632–639. PMID: 20597975

Patterson ZR, Khazall R, Mackay H, Anisman H, Abizaid A (2013) Central ghrelin signaling mediates the metabolic response of C57BL/6 male mice to chronic social defeat stress. *Endocrinology* 154(3):1080–1091. PMID: 23341196

Perello M, Sakata I, Birnbaum S, Chuang JC, Osborne-Lawrence S, Rovinsky SA, Woloszyn J, Yanagisawa M, Lutter M, Zigman JM (2010) Ghrelin Increases the rewarding value of high-fat diet in an orexin-independent manner. *Biol Psychiatry* 67(9):880–886

Perumal MB, Sah P (2021) Inhibitory circuits in the basolateral amygdala in aversive learning and memory. *Front Neural Circuits* 15:633235. PMID: PMC8120102

Pfabigan DM, Frogner ER, Schéle E, Thorsby PM, Skålhegg BS, Dickson SL, Sailer U (2024) Ghrelin is related to lower brain reward activation during touch. *Psychophysiology* 61(2):e14443. PMID: 37737514

Pietrzak M, Yngve A, Hamilton JP, Kämpe R, Boehme R, Asratian A, Gauffin E, Löfberg A, Gustavson S, Persson E, Capusan AJ, Leggio L, Perini I, Tinghög G, Heilig M (2023a) A randomized controlled experimental medicine study of ghrelin in value-based decision making. *J Clin Invest* 133(12). Available from: <https://www.jci.org/articles/view/168260>. PMID: 0

Pietrzak M, Yngve A, Hamilton JP, Kämpe R, Boehme R, Asratian A, Gauffin E, Löfberg A, Gustavson S, Persson E, Capusan AJ, Leggio L, Perini I, Tinghög G, Heilig M (2023b) A randomized controlled experimental medicine study of ghrelin in value-based decision making. *J Clin Invest* 133(12):e168260. PMID: PMC10266781

Pietrzak M, Yngve A, Hamilton JP, Asratian A, Gauffin E, Löfberg A, Gustavson S, Persson E, Capusan AJ, Leggio L, Perini I, Tinghög G, Heilig M, Boehme R (2024) Ghrelin decreases sensitivity to negative feedback and increases prediction-error related caudate activity in humans, a randomized controlled trial. *Neuropsychopharmacol* 49(6):1042–1049. PMID: PMC11039644

Radley JJ, Sawchenko PE (2011) A common substrate for prefrontal and hippocampal inhibition of the neuroendocrine stress response. *J Neurosci* 31(26):9683–9695. PMID: PMC3197245

Rayatpour A, Radahmadi M, Izadi MS, Ghasemi M (2023) Effects of sub-chronic CRH administration into the hypothalamic paraventricular and central amygdala nuclei in male rats with a focus on food intake biomarkers. *An Acad Bras Cienc* 95(4):e20200221. PMID: 38088701

Rediger A, Piechowski CL, Yi CX, Tarnow P, Strotmann R, Grüters A, Krude H, Schöneberg T, Tschöp MH, Kleinau G, Biebermann H (2011) Mutually opposite signal modulation by hypothalamic heterodimerization of ghrelin and melanocortin-3 receptors. *J Biol Chem* 286(45):39623–39631. PMID: PMC3234785

Reichenbach A, Steyn FJ, Sleeman MW, Andrews ZB (2012) Ghrelin receptor expression and colocalization

with anterior pituitary hormones using a GHSR-GFP mouse line. *Endocrinology* 153(11):5452–5466

Reul JM, van den Bosch FR, de Kloet ER (1987) Relative occupation of type-I and type-II corticosteroid receptors in rat brain following stress and dexamethasone treatment: functional implications. *J Endocrinol* 115(3):459–467. PMID: 3443807

Reynolds EK, Schreiber WM, Geisel K, MacPherson L, Ernst M, Lejuez CW (2013) Influence of social stress on risk-taking behavior in adolescents. *J Anxiety Disord* 27(3):272–277. PMCID: PMC3693744

Richardson RS, Kryszak LA, Vendruscolo JCM, Koob GF, Vendruscolo LF, Leggio L (2024) GHSR blockade, but not reduction of peripherally circulating ghrelin via $\beta 1$ -adrenergic receptor antagonism, decreases binge-like alcohol drinking in mice. *Mol Psychiatry*. PMID: 39232198

Ringuet MT, Furness JB, Furness SGB (2022) G protein-coupled receptor interactions and modification of signalling involving the ghrelin receptor, GHSR1a. *J Neuroendocrinol* 34(9):e13077

Rossi E, Cassioli E, Gironi V, Idrizaj E, Garella R, Squecco R, Baccari MC, Maggi M, Vignozzi L, Comeglio P, Ricca V, Castellini G (2021) Ghrelin as a possible biomarker and maintaining factor in patients with eating disorders reporting childhood traumatic experiences. *Eur Eat Disord Rev* 29(4):588–599. PMCID: PMC8251850

Sailer U, Riva F, Lieberz J, Campbell-Meiklejohn D, Scheele D, Pfabigan DM (2023) Hungry for compliments? Ghrelin is not associated with neural responses to social rewards or their pleasantness. *Front Psychiatry* 14:1104305. PMCID: PMC10106620

Sbisa AM, Madden K, Toben C, McFarlane AC, Dell L, Lawrence-Wood E (2023) Potential peripheral biomarkers associated with the emergence and presence of posttraumatic stress disorder symptomatology: a systematic review. *Psychoneuroendocrinology* 147:105954

Schanze A, Reulbach U, Scheuchenzuber M, Groschl M, Kornhuber J, Kraus T (2008) Ghrelin and eating disturbances in psychiatric disorders. *Neuropsychobiology* 57(3):126–130. PMID: 18552514

Schélé E, Bake T, Rabasa C, Dickson SL (2016) Centrally administered ghrelin acutely influences food choice in rodents. *PLoS One* 11(2):e0149456. PMCID: PMC4771210

Schellekens H, van Oeffelen WEPA, Dinan TG, Cryan JF (2013) Promiscuous dimerization of the growth hormone secretagogue receptor (GHS-R1a) attenuates ghrelin-mediated signaling. *J Biol Chem* 288(1):181–191. PMCID: PMC3537012

Schellekens H, De Francesco PN, Kandil D, Theeuwes WF, McCarthy T, van Oeffelen WEPA, Perelló M, Giblin L, Dinan TG, Cryan JF (2015) Ghrelin's orexiogenic effect is modulated via a serotonin 2C receptor interaction. *ACS Chem Neurosci* 6(7):1186–1197. PMID: 25727097

Schopfer LM, Lockridge O, Brimijoin S (2015) Pure human butyrylcholinesterase hydrolyzes octanoyl ghrelin to desacyl ghrelin. *Gen Comp Endocrinol* 224:61–68

Shiimura Y, Im D, Tany R, Asada H, Kise R, Kurumiya E, Wakasugi-Masuho H, Yasuda S, Matsui K, Kishikawa JI, Kato T, Murata T, Kojima M, Iwata S, Masuho I (2025) The structure and function of the ghrelin receptor coding for drug actions. *Nat Struct Mol Biol*. PMID: 39833471

Shiiya T, Nakazato M, Mizuta M, Date Y, Mondal MS, Tanaka M, Nozoe SI, Hosoda H, Kangawa K, Matsukura S (2002) Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. *J Clin Endocrinol Metab* 87(1):240–244. PMID: 11788653

Shimbara T, Mondal MS, Kawagoe T, Toshinai K, Koda S, Yamaguchi H, Date Y, Nakazato M (2004) Central administration of ghrelin preferentially enhances fat ingestion. *Neurosci Lett* 369(1):75–79. PMID: 15380311

Shin HS, Lee SH, Moon HJ, So YH, Jang HJ, Lee KH, Ahn C, Jung EM (2024) Prolonged stress response induced by chronic stress and corticosterone exposure causes adult neurogenesis inhibition and astrocyte loss in mouse hippocampus. *Brain Res Bull* 208:110903

Skibicka KP, Hansson C, Alvarez-Crespo M, Friberg PA, Dickson SL (2011) Ghrelin directly targets the ventral tegmental area to increase food motivation. *Neuroscience* 180:129–137. PMID: 21335062

Skibicka KP, Hansson C, Egecioglu E, Dickson SL (2012) Role of ghrelin in food reward: impact of ghrelin on sucrose self-administration and mesolimbic dopamine and acetylcholine receptor gene expression. *Addict Biol* 17(1):95–107. PMCID: PMC3298643

Smith A, Hyland L, Al-Ansari H, Watts B, Silver Z, Wang L, Dahir M, Akgun A, Telfer A, Abizaid A (2023) Metabolic, neuroendocrine and behavioral effects of social defeat in male and female mice using the chronic non-discriminatory social defeat stress model. *Horm Behav* 155:105412. PMID: 37633226

Smith A, Rodrigues T, Wallace C, Mezher K, MacAulay B, Prowse R, Hyland L, Abizaid A (2024a) Growth Hormone Secretagogue Receptor (GHSR) Signaling in the Ventral Tegmental Area (VTA) mediates feeding produced by chronic social defeat stress in male mice. *Neuroscience* 547:17–27. PMID: 38583506

Smith A, MacAulay B, Scheufen J, Hudak A, Abizaid A (2024b) Chronic social defeat stress increases brain permeability to ghrelin in male mice. *eNeuro* 11(7):ENEURO.0093-24.2024. PMCID: PMC11253241

Song L, Zhu Q, Liu T, Yu M, Xiao K, Kong Q, Zhao R, Li GD, Zhou Y (2013) Ghrelin modulates lateral amygdala neuronal firing and blocks acquisition for conditioned taste aversion. *PLoS One* 8(6):e65422. PMCID: PMC3676403

Spencer SJ, Xu L, Clarke MA, Lemus M, Reichenbach A, Geenen B, Kozicic T, Andrews ZB (2012) Ghrelin regulates the hypothalamic-pituitary-adrenal axis and restricts anxiety after acute stress. *Biol Psychiatry* 72(6):457–465. PMID: 22521145

Stark R, Dempsey H, Kleeman E, Sassi M, Osborne-Lawrence S, Sheybani-Delou S, Rushby HJ, Mirth CK, Austin-Muttitt K, Mullins J, Zigman JM, Davies JS, Andrews ZB (2024) Hunger signalling in the olfactory bulb primes exploration, food-seeking and peripheral metabolism. *Mol Metab* 89:102025. PMID: PMC11471258

Sterleman V, Ganea K, Liebl C, Harbich D, Alam S, Holsboer F, Müller MB, Schmidt MV (2008) Long-term behavioral and neuroendocrine alterations following chronic social stress in mice: implications for stress-related disorders. *Horm Behav* 53(2):386–394. PMID: 18096163

St-Onge V, Watts A, Abizaid A (2016) Ghrelin enhances cue-induced bar pressing for high fat food. *Horm Behav* 78:141–149. PMID: 26592452

Suchankova P, Steensland P, Fredriksson I, Engel JA, Jerlhag E (2013) Ghrelin receptor (GHS-R1A) antagonism suppresses both alcohol consumption and the alcohol deprivation effect in rats following long-term voluntary alcohol consumption. *PLoS One* 8(8):e71284s

Suchankova P, Nilsson S, von der Pahlen B, Santtila P, Sandnabba K, Johansson A, Jern P, Engel JA, Jerlhag E (2016) Genetic variation of the growth hormone secretagogue receptor gene is associated with alcohol use disorders identification test scores and smoking. *Addict Biol* 21(2):481–488. PMID: PMC5033010

Sun Y, Butte NF, Garcia JM, Smith RG (2008) Characterization of adult ghrelin and ghrelin receptor knockout mice under positive and negative energy balance. *Endocrinology* 149(2):843–850. PMID: PMC2219310

Surjit M, Ganti KP, Mukherji A, Ye T, Hua G, Metzger D, Li M, Chambon P (2011) Widespread negative response elements mediate direct repression by agonist-ligated glucocorticoid receptor. *Cell* 145(2):224–241. PMID: 21496643

Sustkova-Fiserova M, Puskina N, Havlickova T, Lapka M, Syslova K, Pohorala V, Charalambous C (2020) Ghrelin receptor antagonism of fentanyl-induced conditioned place preference, intravenous self-administration, and dopamine release in the nucleus accumbens in rats. *Addict Biol* 25(6):e12845. PMID: 31696597

Swarbrick M, Zhou H, Seibel M (2021) MECHANISMS IN ENDOCRINOLOGY: local and systemic effects of glucocorticoids on metabolism: new lessons from animal models. *Eur J Endocrinol* 185(5):R113–R129. PMID: 34478405

Tafet GE, Nemeroff CB (2016) The links between stress and depression: psychoneuroendocrinological, genetic, and environmental interactions. *J Neuropsychiatry Clin Neurosci. American Psychiatric Publishing* 28(2):77–88

Tasci G, Kaya S, Kalayci M, Atmaca M (2022) Increased ghrelin and decreased leptin levels in patients with antisocial personality disorder. *J Affect Disord* 317:22–28. PMID: 36028010

Tasker JG, Herman JP (2011) Mechanisms of rapid glucocorticoid feedback inhibition of the hypothalamic-pituitary-adrenal axis. *Stress Amst Neth* 14(4):398–406. PMID: PMC4675656

Tezenas du Montcel C, Cao J, Mattioni J, Hamelin H, Lebrun N, Ramoz N, Gorwood P, Tolle V, Viltart O (2023) Chronic food restriction in mice and increased systemic ghrelin induce preference for running wheel activity. *Psychoneuroendocrinology* 155:106311. PMID: 37295225

Tong J, Prigeon RL, Davis HW, Bidlingmaier M, Kahn SE, Cummings DE, Tschöp MH, D'Alessio D (2010) Ghrelin suppresses glucose-stimulated insulin secretion and deteriorates glucose tolerance in healthy humans. *Diabetes* 59(9):2145–2151. PMID: PMC2927935

Tong J, Mannea E, Aimé P, Pfluger PT, Yi CX, Castaneda TR, Davis HW, Ren X, Pixley S, Benoit S, Julliard K, Woods SC, Horvath TL, Sleeman MM, D'Alessio D, Obici S, Frank R, Tschöp MH (2011) Ghrelin enhances olfactory sensitivity and exploratory sniffing in rodents and humans. *J Neurosci* 31(15):5841–5846. PMID: PMC3089941

Tschöp M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. *Nature*. Nature Publishing Group 407(6806):908–913

Tufvesson-Alm M, Zhang Q, Aranäs C, Blid Sköldheden S, Edvardsson CE, Jerlhag E (2024) Decoding the influence of central LEAP2 on food intake and its effect on accumbal dopamine release. *Prog Neurobiol* 236:102615. PMID: 38641041

Ueberberg B, Unger N, Saeger W, Mann K, Petersenn S (2009) Expression of ghrelin and its receptor in human tissues. *Horm Metab Res* 41(11):814–821. PMID: 19670151

Veenema AH (2009) Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: what can we learn from animal models? *Front Neuroendocrinol* 30(4):497–518

Vestlund J, Winsa-Jörnulf J, Hovey D, Lundström S, Lichtenstein P, Anckarsäter H, Studer E, Suchankova P, Westberg L, Jerlhag E (2019) Ghrelin and aggressive behaviours-evidence from preclinical and human genetic studies. *Psychoneuroendocrinology* 104:80–88. PMID: 30818255

Vivenza D, Rapa A, Castellino N, Bellone S, Petri A, Vacca G, Aimaretti G, Broglia F, Bona G (2004) Ghrelin gene polymorphisms and ghrelin, insulin, IGF-I, leptin and anthropometric data in children and adolescents. *Eur J Endocrinol* 151(1):127–133

Wallace Fitzsimons SE, Chruścicka B, Druelle C, Stamou P, Nally K, Dinan TG, Cryan JF, Schellekens H (2019) A ghrelin receptor and oxytocin receptor heterocomplex impairs oxytocin mediated signalling. *Neuropharmacology* 152:90–101. PMID: 30582955

Wierup N, Björkqvist M, Weström B, Pierzynowski S, Sundler F, Sjölund K (2007) Ghrelin and motilin are cosecreted from a prominent endocrine cell population in the small intestine. *J Clin Endocrinol Metab* 92(9):3573–3581. PMID: 17595255

Wiley JW, Higgins GA, Athey BD (2016) Stress and glucocorticoid receptor transcriptional programming in time and space: implications for the brain-gut axis. *Neurogastroenterol Motil* 28(1):12–25. PMID: PMC4688904

Wittekind DA, Kratzsch J, Mergl R, Riedel-Heller S, Witte AV, Villringer A, Kluge M (2022) Serum ghrelin is positively associated with physiological anxiety but negatively associated with pathological anxiety in humans: data from a large community-based study. *Psychoneuroendocrinology* 140:105728. PMID: 35305404

Wittekind DA, Kratzsch J, Mergl R, Wirkner K, Baber R, Sander C, Witte AV, Villringer A, Kluge M (2023) Childhood sexual abuse is associated with higher total ghrelin serum levels in adulthood: results from a large, population-based study. *Transl Psychiatry* 13(1):219. PMID: PMC10287627

Yang S, Zhang L (2004) Glucocorticoids and vascular reactivity. *Curr Vasc Pharmacol* 2(1):1–12. PMID: 15320828

Yang J, Brown MS, Liang G, Grishin NV, Goldstein JL (2008) Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. *Cell* 132(3):387–396. PMID: 18267071

Yousufzai M, Harmatz ES, Shah M, Malik MO, Goosens KA (2018) Ghrelin is a persistent biomarker for chronic stress exposure in adolescent rats and humans. *Transl Psychiatry* 8(1):74

Zhang Y, Fang F, Goldstein JL, Brown MS, Zhao TJ (2015) Reduced autophagy in livers of fasted, fat-depleted, ghrelin-deficient mice: reversal by growth hormone. *Proc Natl Acad Sci USA* 112(4):1226–1231. PMID: PMC4313810

Zhang L, Wang HL, Zhang YF, Mao XT, Wu TT, Huang ZH, Jiang WJ, Fan KQ, Liu DD, Yang B, Zhuang MH, Huang GM, Liang Y, Zhu SJ, Zhong JY, Xu GY, Li XM, Cao Q, Li YY, Jin J (2025) Stress triggers irritable bowel syndrome with diarrhea through a spermidine-mediated decline in type I interferon. *Cell Metab* 37(1):87–103.e10. PMID: 39366386

Zhao TJ, Sakata I, Li RL, Liang G, Richardson JA, Brown MS, Goldstein JL, Zigman JM (2010a) Ghrelin secretion stimulated by $\{\beta\}1$ -adrenergic receptors in cultured ghrelinoma cells and in fasted mice. *Proc Natl Acad Sci USA* 107(36):15868–15873. PMID: PMC2936616

Zhao TJ, Liang G, Li RL, Xie X, Sleeman MW, Murphy AJ, Valenzuela DM, Yancopoulos GD, Goldstein JL, Brown MS (2010b) Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice. *Proc Natl Acad Sci USA* 107(16):7467–7472. PMID: PMC2867684

Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK (2006) Expression of ghrelin receptor mRNA in the rat and the mouse brain. *J Comp Neurol* 494(3):528–548. PMID: PMC4524499

Zoon HFA, de Bruijn SEM, Smeets PAM, de Graaf C, Janssen IMC, Schijns W, Aarts EO, Jager G, Boesveldt S (2018) Altered neural responsiveness to food cues in relation to food preferences, but not appetite-related hormone concentrations after RYGB-surgery. *Behav Brain Res* 353:194–202. PMID: 30041007