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Abstract

Our internal and external environments are not 
stable; these ever-changing contexts produce 
stress on bodily systems. In response, the 
body recruits numerous peripheral hormones 
to bring those systems back within a desired 
homeostatic range. When our environments 
change in extreme ways and for prolonged 
periods of time, a different set of hormonal 
stress responses are recruited. These chronic 
stress responses produce adaptive changes but 
can also drive maladaptation. This chapter 
begins by reviewing the peripheral hormones 

that are recruited as part of the acute stress 
response and describing their adaptive impact 
on brain and peripheral function. We then 
examine new research describing the role of 
ghrelin, a hormone produced by the gut, in 
chronic stress. We review the role of ghrelin in 
hunger and consider how energy deficiency, a 
state shared by both hunger and stress, might 
explain why ghrelin is elevated by both. We 
consider how the unique recruitment of ghre-
lin during chronic stress mediates responses in 
the brain that can help an organism respond to 
future stressors, but also how chronic eleva-
tion of ghrelin can produce additional adapta-
tions that contribute to stress-sensitive 
psychiatric disorders. Lastly, we identify 
important future areas for research on the biol-
ogy of ghrelin.
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BLA	 Basolateral amygdala
CRF	 Corticotropin-releasing factor
DRD1	 Dopamine receptor D1
DRD2	 Dopamine receptor D2
DRD5	 Dopamine receptor D5
GC	 Glucocorticoid
GHSR	 Growth-hormone secretagogue receptor
GOAT	 Ghrelin O-acyltransferase
GR 	 Glucocorticoid receptor
GRE	 Glucocorticoid response element
HPA 	 Hypothalamic-pituitary-adrenal
5HT2C	 Serotonin 2c receptor
LEAP2	 Liver-expressed antimicrobial peptide 

2
MC3R	 Melanocortin-3 receptor
MDD	 Major depressive disorder
MR	 Mineralocorticoid receptor
NAc	 Nucleus accumbens
PFC	 Prefrontal cortex
PTSD	 Posttraumatic stress disorder
PVN	 Paraventricular nucleus
SNP	 Single nucleotide polymorphism
SST5	 Somatostatin receptor-5
VTA	 Ventral tegmental area

7.1	� Defining Stress: Adaptation 
and Maladaptation

Stress is characterized by a set of bodily responses 
to a demand or challenge. In everyday language, 
“stress” typically has a negative connotation, 
referring to a state of worry or the feeling of 
being overloaded. Indeed, in medicine, there is 
clear evidence that prolonged stress exposure 
elevates the risk of a broad array of diseases 
(Hughes et  al. 2017), including cardiovascular 
illnesses (Basu et  al. 2017; Dong et  al. 2004), 
cancer (Kelly-Irving et  al. 2013; Bellis et  al. 
2015), and psychiatric illnesses (Daníelsdóttir 
et  al. 2024), and conditions such as diarrhea 
(Zhang et al. 2025), sweating, sleep disturbance 
(Kalmbach et al. 2018) and increased body tem-
perature (Oka 2015). Thus, some of the responses 
to stress must contribute to disease. Yet, in sci-
ence, we have come to appreciate that not all 
bodily responses to a stressor are “bad” or drive 
disease risk. Some stress responses may compen-

sate for others, preserving function in the face of 
biological perturbation (Nestler and Russo 2024). 
For example, studies of ‘resilient’ individuals, 
who are able to retain functionality of biological 
systems despite stress exposure, reveal that they 
do not return to a pre-stress state after stressor 
exposure; instead, they actively engage new 
mechanisms to preserve function. Such mecha-
nisms include stress-associated enhancement of 
connectivity between the prefrontal cortex (PFC) 
and nucleus accumbens (NAc), which is linked to 
greater resilience to stressors (Francis et al. 2015; 
Bagot et  al. 2015). Understanding whether a 
stress response is adaptive or maladaptive is 
especially important in clinical contexts, where 
we want to bolster resilience but blunt pathways 
that drive maladaptation.

7.2	� A Canonical Stress Signaling 
Pathway in the Periphery: 
the HPA Axis

One of the best-studied systems for coordinating 
stress responses is the hypothalamic-pituitary-
adrenal (HPA) axis (Fig. 7.1, left). When stress-
ors occur, stress-related neural circuits of the 
paraventricular nucleus (PVN) of the hypothala-
mus are activated. Many types of signals can acti-
vate the PVN, including internal changes in 
temperature, blood glucose, or blood pressure 
and external stimuli such as loud noises or preda-
tor cues. A subset of parvocellular neurons in the 
PVN release corticotropin-releasing factor (CRF) 
locally within the PVN to induce central stress 
effects directly. Some CRF-positive PVN neu-
rons send their axons into the median eminence 
and onward to the portal capillary system of the 
pituitary. The capillaries allow CRF to be trans-
ported to the anterior pituitary, where it binds to 
receptors on a subset of endocrine cells 
(corticotrophs) that then exocytose vesicles con-
taining adrenocorticotropic hormone (ACTH) 
into the blood. ACTH acts at its receptor in the 
adrenal glands to drive the secretion of glucocor-
ticoids (GCs; cortisol in humans, corticosterone 
in rodents) into the bloodstream. Glucocorticoid 
receptors are found throughout most tissues in 
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Fig. 7.1  The hormones of the HPA axis and ghrelin axis 
and their interactions are depicted. The green arrows indi-
cate synergistic stimulatory actions between the two hor-
monal axes. The lower panel shows the differential 
recruitment of these axes over the course of a two-week 
stressor. While the HPA responses typically show habitu-

ation, eventually reaching slightly suppressed basal levels, 
ghrelin levels are not significantly enhanced early in stress 
exposure but reach roughly double the basal levels after 
approximately a week of stress exposure. (Created in 
BioRender. Goosens (2025) https://BioRender.com/
w44p992)

the periphery and the brain, and thus, stress-
induced elevation of GCs is poised to have broad 
effects.

There are two primary GC receptors: the min-
eralocorticoid receptor (MR) and the glucocorti-
coid receptor (GR). The two receptors can be 
co-expressed (Herman et al. 1989), but MR has a 
higher affinity for GCs than does GR (Joëls and 
de Kloet 2017). Thus, at lower levels of GCs, i.e., 
under non-stress conditions, MR signaling is 
expected to dominate. In contrast, when GCs are 

elevated, MR signaling reaches an asymptotic 
level and GR signaling pathways are increasingly 
recruited with increasing high levels of GCs 
(Reul et al. 1987).

Both MR and GR are ligand-activated tran-
scription factors (Alvarez de la Rosa et al. 2024). 
Accordingly, there are many studies showing 
how activation of MR and GR by GCs causes the 
receptors to translocate to the nucleus and bind to 
glucocorticoid response elements (GREs) in 
open chromatin (John et al. 2011). MR is a tran-
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scriptional activator of many genes, including 
neuropeptides and growth factors (Pascual-Le 
Tallec and Lombès 2005; Meinel et al. 2014). In 
contrast, GR can bind to GREs to activate genes 
or to negative GREs to repress their transcription 
(Surjit et al. 2011); it is estimated that more than 
1% of all transcripts in the human genome are 
regulated by GR (Wiley et al. 2016). GR can also 
bind to mRNA to induce degradation (Boo et al. 
2024). However, membrane-bound MR can also 
mediate the rapid effects of GCs on neuronal 
excitability (Karst et al. 2010, 2005).

GRs also play an important role in terminating 
the acute HPA stress response, both in terms of 
ACTH secretion (Jacobson et al. 1988) as well as 
GC secretion (Herman et  al. 2020). Within the 
PVN, GCs bind to GR to induce endocannabi-
noid synthesis in the CRF-containing neurons of 
the PVN, which leads to retrograde inhibition of 
the excitatory drive entering the PVN (Tasker and 
Herman 2011; Di et al. 2003). GC activation of 
the hippocampus (Herman et al. 2003) and PFC 
(Jones et al. 2011) also terminate HPA-mediated 
stress hormone responses (Radley and Sawchenko 
2011). The multiple robust mechanisms by which 
GCs terminate their own secretion likely contrib-
ute to the observation that repeated stressor expo-
sure produces fairly mild elevations of basal 
circulating GCs that persist for only a few weeks 
after stress terminates in rodents (Johnson et al. 
2002; Sterlemann et  al. 2008). In humans with 
posttraumatic stress disorder (PTSD), there are 
not clear links between altered GC levels and the 
disorder; a recent meta-analysis suggests that 
there is a trend towards observing mild hypocor-
tisolism in PTSD (Sbisa et al. 2023). Interestingly, 
a recent meta-analysis also suggests that child-
hood stressors lead to blunted cortisol responses 
to stressors in adulthood (Brindle et  al. 2022). 
Thus, the contributions of HPA activity to chronic 
stress responses are unclear.

As an acute stress response, HPA hormones 
drive multiple short-term adaptations that facili-
tate coping with stress. These include 
GC-dependent mobilization of energy stores 
(Swarbrick et al. 2021), increased cardiovascular 
tone (Yang and Zhang 2004), analgesia (Lewis 
et  al. 1980), and inhibition of growth (Baxter 

1978), immune function (Coutinho and Chapman 
2011) and reproduction (Domes et  al. 2024). 
Thus, collectively, the evidence supports a role 
for the HPA axis in short-term adaptations to 
acute stress. The decreased recruitment of the 
HPA axis when a stressor persists across days to 
weeks (Grissom and Bhatnagar 2009) (Fig. 7.1, 
lower panel), coupled with the observation that 
basal HPA activity is not dramatically altered fol-
lowing chronic stress, suggests that the HPA axis 
may not be the only system altered by chronic 
stress and that other mechanisms may contribute 
to changes following chronic stress. However, it 
is important to note that HPA activity can induce 
changes in behavior that emerge gradually, per-
haps due to the genomic actions of GCs, and also 
sensitize the HPA axis itself so that a greater HPA 
response is mounted to subsequent novel stress-
ors (Belda et al. 2015; Akana et al. 1992).

7.3	� Additional Stress Signals 
in the Periphery: 
Acyl-ghrelin

The peptide hormone acyl-ghrelin, hereafter 
referred to as ghrelin, was discovered in the 
search for the ligand of the growth-hormone 
secretagogue receptor (GHSR) (Kojima et  al. 
1999). The posttranslational modification of 
ghrelin, an octanoylated serine, is necessary for it 
to bind and activate GHSR (Bednarek et  al. 
2000). GHSR was originally characterized as a 
receptor that regulated growth hormone secretion 
from the pituitary (Howard et  al. 1996). It was 
surprising, then, that ghrelin was observed to be 
predominantly expressed in the stomach and has 
been subsequently confirmed to be almost exclu-
sively in gastric endocrine cells (Kim et al. 2012; 
Date et  al. 2000), with a smaller population of 
endocrine cells being in the small intestine 
(Wierup et al. 2007). A short time after its initial 
discovery, ghrelin was found to regulate energy 
balance: the administration of ghrelin promotes 
food consumption. Additionally, ghrelin is ele-
vated by either short-term fasting (energy deple-
tion) (Hollstein et al. 2022; Schéle et al. 2016) or 
chronic food restriction (Tezenas du Montcel 
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et al. 2023; D’Cunha et al. 2020; Méquinion et al. 
2013). Lastly, ghrelin increases sharply prior to 
expected meal times (Cummings et al. 2001) and 
decreases in a sated state (Tschöp et al. 2000).

Many additional studies confirmed and 
expanded the role of ghrelin in aspects of appeti-
tive processing. Ghrelin influences the rewarding 
value of the food itself. In rodent studies using 
conditioned place preference, administration of 
ghrelin increased the amount of time rodents 
spent in the compartment previously paired with 
access to a high-fat diet (Perello et  al. 2010). 
Consistent with these studies, ghrelin administra-
tion also enhances the activity of dopaminergic 
neurons in the ventral tegmental area (VTA) 
(Navarro et  al. 2022; Cornejo et  al. 2018) and 
enhances dopamine release into the downstream 
NAc (Jerlhag et  al. 2007). Humans receiving 
intravenous ghrelin rate food cues as more pleas-
ant (Han et al. 2018) and intravenous ghrelin also 
increases the neural response to food cues in mul-
tiple areas thought to encode the incentive value 
of food (Goldstone et  al. 2014). Ghrelin also 
increases the preference for high-fat, sweet foods 
in both rodents (Perello et al. 2010; Disse et al. 
2010; King et  al. 2011; Chuang et  al. 2011a; 
Shimbara et  al. 2004) and humans (Zoon et  al. 
2018) and increases the intake of rewarding food 
(Egecioglu et al. 2010).

Elevated ghrelin also enhances the motivation 
to work for rewards. For example, mice who are 
bar-pressing for high-fat food pellets show a 
higher breakpoint in a progressive ratio schedule 
of reinforcement when given peripheral ghrelin 
injections compared to controls (Perello et  al. 
2010). Rats receiving peripheral ghrelin injec-
tions (Skibicka et al. 2012) or intra-VTA infusion 
of ghrelin (Skibicka et  al. 2011) increase bar 
presses for sucrose pellets even when satiated. 
Intra-VTA ghrelin in rodents also increases cue-
induced reinstatement of bar presses for high-fat 
food pellets (St-Onge et al. 2016).

Interestingly, the ability of ghrelin to mediate 
reward appears to extend well beyond food. 
Ghrelin receptor antagonism reduces drug-
induced conditioned place preference for a num-
ber of drugs of abuse (Charalambous et al. 2021; 
Sustkova-Fiserova et al. 2020; Dunn et al. 2019; 

Jerlhag and Engel 2011). In male mice, impaired 
ghrelin signaling decreases interest in female 
mice in estrus, as well as sexual engagement with 
female mice (Egecioglu et al. 2016). Intravenous 
ghrelin enhances the craving for alcohol in 
alcohol-dependent humans (Leggio et al. 2014). 
Lastly, intravenous ghrelin administration 
decreases neural activity in response to anticipa-
tion of monetary losses in healthy human sub-
jects (Pietrzak et al. 2023a). However, some types 
of reward do not seem to be related to ghrelin 
levels in humans, including social rewards (Sailer 
et al. 2023) and caressing touch (Pfabigan et al. 
2024).

Collectively, the data suggest that elevated 
levels of ghrelin accompany hunger, a state of 
energy deficit, and that lower levels of ghrelin are 
observed with satiety, a state of energy excess 
(Mani et  al. 2019). Interestingly, chronic stress 
represents another state of energy deficit. Chronic 
stress tends to produce elevated core body tem-
perature (Marazziti et  al. 1992; Oka 2018; 
Nakamura 2015) and also decreases body weight 
gain in rodents (Kuti et al. 2022; Shin et al. 2024). 
It should perhaps, then, not be surprising that 
ghrelin is elevated after chronic stress exposure 
in multiple species, including rodents (Lutter 
et  al. 2008; Meyer et  al. 2014; Harmatz et  al. 
2016), fish (Jönsson 2013), horses (Hemmann 
et al. 2012), and humans (Yousufzai et al. 2018; 
Jaremka et al. 2014; Malik et al. 2020; Wittekind 
et  al. 2023) (Fig.  7.1), suggesting that elevated 
ghrelin may be a conserved response to chronic 
stress. Much like MR and GR, GHSR is found 
throughout the brain and body (Ueberberg et al. 
2009; Mani et al. 2014; Zigman et al. 2006; Guan 
et  al. 1997), which enables the stress-induced 
change in ghrelin levels to have a widespread 
impact. Consistent with the idea that 
stress-induced elevation of ghrelin may produce 
important behavioral adaptations to cope with the 
energy deficit produced during a chronic stressor, 
ghrelin receptor knockout mice do not have the 
same stress-induced changes in body weight and 
caloric intake that are observed in wild-type 
mice, and they also have different neurotransmit-
ter alterations in the brain after stressor exposure 
(Patterson et al. 2010). Similarly, ghrelin receptor 
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knockout mice do not exhibit the metabolic adap-
tions shown by wild-type mice during chronic 
stress, such as hyperleptinemia and hyperinsu-
linemia or changes in hypothalamic peptides 
associated with consummatory behaviors 
(Patterson et al. 2013).

In addition to the impact of ghrelin on reward 
processing, an increasingly large body of work 
supports the idea that ghrelin influences the pro-
cessing of aversive stimuli (also called punish-
ment or costs). The basolateral amygdala (BLA) 
is one brain region that is particularly tied to the 
processing of aversive memories (Perumal and 
Sah 2021), and it also happens to be a region 
where GHSR is highly expressed (Meyer et  al. 
2014; Alvarez-Crespo et al. 2012). Infusing ghre-
lin into the BLA inhibits the acquisition of condi-
tioned taste aversion memories (Song et  al. 
2013). It also inhibits the formation of aversive 
Pavlovian fear conditioning memories (Harmatz 
et al. 2016). Consistent with these rodent studies, 
studies in healthy humans show that intravenous 
ghrelin decreased sensitivity to punishment (loss 
of monetary reward) in decision-making tasks 
(Pietrzak et  al. 2024, 2023b) and also reduced 
neural activity during anticipation of monetary 
losses (Pietrzak et al. 2023b). This suggests that, 
in unstressed subjects, ghrelin inhibits aversive 
processing in multiple ways. However, rodents 
exposed to chronic stress display both higher lev-
els of ghrelin and stronger fear memories than 
controls (Meyer et al. 2014; Harmatz et al. 2016). 
This suggests that ghrelin is no longer inhibiting 
aversive memories effectively after chronic stress 
exposure. In another aversive domain, chroni-
cally high ghrelin is positively associated with 
symptoms of physiological anxiety in otherwise 
healthy humans (Wittekind et al. 2022).

Further studies demonstrated that high levels 
of ghrelin were associated with a profound loss 
of GHSR binding sites in the BLA (Harmatz 
et al. 2016). This functional ‘ghrelin resistance’ 
is likely a compensatory mechanism by which 
receptors are downregulated in response to exces-
sive ligand-dependent signaling. However, it 
should be noted that not all brain regions respond 
to elevated ghrelin by downregulating GHSR; in 
fact, in the VTA, GHSR levels are increased 

(Smith et  al. 2024a). Thus, the elevated ghrelin 
observed after chronic stress reduces the ability 
of ghrelin to serve as an endogenous inhibitory 
signal for aversive processing.

7.4	� The Adaptive Values 
of Persistently Elevated 
Ghrelin After Chronic Stress

Unlike the HPA axis, ghrelin remains approxi-
mately doubled long after stressors cease. Studies 
have shown elevated ghrelin in rodents for weeks 
(Lutter et al. 2008; Meyer et al. 2014; Harmatz 
et al. 2016; Smith et al. 2023; Kumar et al. 2013) 
to months (Yousufzai et  al. 2018) after stressor 
cessation and there is increased brain penetrance 
of ghrelin after chronic stress (Smith et  al. 
2024b). In humans, elevated ghrelin has been 
demonstrated years after stressor exposure 
(Malik et  al. 2020; Rossi et  al. 2021). The 
increased ghrelin levels could be mediated by 
increased synthesis, increased release, increased 
posttranslational octanoylation, decreased break-
down, or a combination of these modulatory fac-
tors (see Fig.  7.2 for a summary of possible 
mechanisms). Excitation of the gastric afferent 
vagal nerve (Date et al. 2002) and repeated acti-
vation of β1-adrenergic receptors (Gupta et  al. 
2019), likely in the gastric ghrelin cells (Zhao 
et al. 2010a; Engelstoft et al. 2013), both increase 
circulating ghrelin, suggesting that increased 
vagal tone or enhanced catecholaminergic activ-
ity might be responsible for chronic stress-
induced elevation of ghrelin. However, 
adrenalectomy, which eliminates the circulating 
catecholamines released by the adrenal glands, 
does not prevent stress-induced elevation of 
ghrelin (Meyer et al. 2014), suggesting that stress 
may elevate ghrelin via other pathways (for 
example, through sympathetic inputs to the gut). 
Ghrelin secretion is negatively regulated by 
increased blood glucose (Shiiya et  al. 2002; 
Nakagawa et al. 2002). This raises the possibility 
that repeated hypoglycemia induced by chronic 
stress could also contribute to enhanced ghrelin 
secretion. One report demonstrated that gastric 
ghrelin cells express many types of G protein-
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Fig. 7.2  Mechanisms by which stress could potentially 
elevate ghrelin or its signaling. Pink boxes indicate mech-
anisms that increase ghrelin. Blue boxes represent mecha-
nisms that suppress ghrelin or its signaling. To enhance 
ghrelinergic activity, chronic stress would need to increase 

the mechanism(s) shown in pink or decrease the 
mechanism(s) shown in blue, or do both. *It is possible 
that heterodimerization with some receptors could elevate 
signaling through GHSR. (Created in BioRender. Goosens 
(2025) https://BioRender.com/w23c571)

coupled receptors (Engelstoft et  al. 2013), sug-
gesting that the control of ghrelin secretion is 
likely even more complex than described above. 
Regardless of the potential mechanisms, it is not 
understood how or why these mechanisms remain 
engaged after stress terminates (see Fig. 7.3 green 
boxes for a summary of adaptive changes). One 
potential adaptive value of the persistence of ele-
vated ghrelin is that it renders the organism better 
prepared for the next encounter with stressors. 
This theory remains to be tested.

Another important role of elevated ghrelin is 
to maintain blood glucose levels during times of 
energy expenditure. Ghrelin may do this by pro-
moting the release of glucagon in the short term 
(Chuang et  al. 2011b), or enhancing growth 
hormone-mediated stimulation of glucose pro-
duction in the liver and kidneys and driving insu-
lin resistance (Kim and Park 2017; Zhao et  al. 
2010b; Zhang et  al. 2015). In healthy subjects, 
glucagon exerts negative feedback to reduce 
ghrelin levels (Arafat et al. 2006). Administration 
of exogenous ghrelin is known to elevate blood 
glucose in both rodents (Chuang et  al. 2011b) 
and humans (Broglio et al. 2001, 2004). It also 
promotes glucose intolerance (Tong et al. 2010; 
Page et  al. 2018; Dezaki et  al. 2004). In these 
studies, glucose intolerance was observed with 
acute elevation of ghrelin; it is tempting to specu-

late that chronically elevated ghrelin might pro-
duce even greater intolerance and contribute to 
elevated basal levels of blood glucose. Mice with 
either low blood levels of ghrelin or low levels of 
GHSR exhibit mild hypoglycemia after short-
term caloric restriction (Longo et al. 2008; Sun 
et  al. 2008) but display dangerously low blood 
glucose levels during prolonged caloric restric-
tion (Zhao et al. 2010b; Li et al. 2012). It is pos-
sible that the energy deficit driven during chronic 
stress exposure enhances ghrelin levels to main-
tain blood glucose levels during stressor expo-
sure, but it is not known why this mechanism 
would remain engaged after stress. It may be that 
these mechanisms evolved in response to envi-
ronmental stressors, such as resource scarcity, 
that displayed less volatility than many contem-
porary stressors, and thus, having long-term ele-
vations of ghrelin had more beneficial effects 
than detrimental effects when exposure to stress-
ors was more consistent across time.

By promoting exploration or food-seeking 
behaviors, elevated ghrelin can also help indi-
rectly to maintain blood glucose levels. Ghrelin 
signaling in the olfactory bulbs is important for 
promoting exploratory behavior, even in the 
absence of fasting, and also helps locate food 
(Stark et al. 2024). Ghrelin increases sensitivity 
to food odors in humans (Ginieis et  al. 2022; 
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stressed state. The pink boxes depict the consequences of 

these changes when the stressor is no longer experienced. 
(Created in BioRender. Goosens (2025) https://BioRender.
com/j66v932)

Tong et al. 2011) and rodents (Tong et al. 2011) 
and enhances the speed of responding to them 
(Han et  al. 2018). These changes in behavior 
facilitate the ability to locate and identify foods, 
which indirectly facilitates the maintenance of 
blood glucose levels.

Lastly, for some types of stressors, like the 
presence of conspecifics encroaching on an 
organism’s territory, elevated ghrelin may have 
an additional adaptive value of promoting aggres-
sive behaviors. Male mice with persistently ele-
vated ghrelin display enhanced aggression 
towards cagemates (Chen et al. 2015). Conversely, 
systemic administration of a GHSR antagonist 
reduced aggressive behaviors displayed by male 
mice towards conspecific intruder mice (Vestlund 
et  al. 2019). People with antisocial personality 
disorder have elevated ghrelin (Tasci et al. 2022) 
and young men with polymorphisms in the ghre-
lin gene displayed significantly different scores 

on a questionnaire measuring overtly aggressive 
behaviors (Vestlund et  al. 2019). To date, such 
studies have focused only on aggression in males; 
an important area of future research is to deter-
mine whether elevated ghrelin increases aggres-
sion in females. Regardless, a ghrelin-dependent 
increase in aggressive behaviors may help secure 
environmental resources when there is competi-
tion for such resources.

The ghrelin-dependent connection between 
stress and mechanisms controlling energy levels 
and growth positions ghrelin as a hub between 
metabolism and the stress-dependent exacerbation 
of neuropsychiatric conditions. The mechanisms 
connecting glucose metabolism and bioenergetics 
to psychiatric outcomes are described in  
Chap. 3, Brain-body Communication in Glucose 
Metabolism, and Chap. 5, Neuronal Synaptic 
Communication and Mitochondrial Energetics in 
Human Health and Disease, of this book.
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7.5	� Potential Maladaptive 
Tradeoffs of Persistently 
Elevated Ghrelin After Stress

As noted above, ghrelin can have many beneficial 
effects during stressor exposure. Thus, when a 
stressor is encountered repeatedly (for example, 
the organism lives in a food-scarce environment), 
then the behavioral and physiological changes 
produced by elevated ghrelin may be largely ben-
eficial. However, when stressors are not reliably 
encountered, such as when an organism moves 
from a food-scarce (stressful) environment into a 
food-rich environment (no longer a source of 
stress), then the persistent physiological changes 
induced by high ghrelin may instead promote 
behaviors and physiological changes that are no 
longer needed (see Fig.  7.3, pink boxes for a 
summary of potential maladaptation). It is also 
possible that chronically elevated ghrelin may, 
itself, drive new adaptations to limit the impact of 
chronically elevated ghrelin.

There are several examples that one can con-
sider where elevated ghrelin may no longer have 
beneficial effects in an energy-rich environment. 
First, ghrelin-induced elevation of blood glucose 
levels and insulin insensitivity are no longer 
adaptive when energetic demands return to nor-
mal levels following a stressor exposure. In this 
case, persistently heightened glucose levels and 
insulin insensitivity can contribute to adiposity 
and metabolic syndrome, two conditions that can 
ultimately contribute to diabetes. Indeed, there 
are strong links between stress exposure and the 
risk and severity of diabetes (Hackett and Steptoe 
2017). Likewise, when ghrelin levels drive 
aggressive behaviors, it can help secure resources 
in a resource-scarce environment, but it also 
exposes the animal to greater potential for injury. 
In a resource-rich environment, aggression may 
expose an organism to injury without the positive 
benefit of increased resources. Also, for humans, 
who typically do not need to physically fight to 
gain resources, aggressive behaviors may only 
put one at risk for breaking the law. Stress expo-
sure is known to increase the development of 
psychiatric disorders where aggression is a core 
feature (Veenema 2009). Lastly, while ghrelin 

can reduce sensitivity to costs, perhaps contribut-
ing to a willingness to explore and forage in new 
environments, ultimately leading to new food 
sources, a willingness to take on risk may not be 
beneficial when resources are not scarce. In 
humans, stress can increase risk-taking behavior 
(Reynolds et al. 2013; Pabst et al. 2013).

The adverse impact of ghrelin may be most 
apparent in enhanced risk for stress-sensitive 
human psychiatric conditions. In posttraumatic 
stress disorder (PTSD), which is the human dis-
order perhaps most closely linked to stress, prior 
lifetime stress exposure primes an individual for 
risk of PTSD following subsequent trauma 
(Catani et  al. 2008; Gillespie et  al. 2009). 
Consistent with the idea that elevated ghrelin 
drives an increased risk of PTSD, adolescents 
with PTSD have higher ghrelin levels than 
matched controls without PTSD (Yousufzai et al. 
2018). One polymorphism in the ghrelin gene has 
been associated with PTSD symptom severity (Li 
et al. 2019).

Alcohol use disorder (AUD) is another stress-
sensitive condition (Hughes et  al. 2019) with 
compelling links to ghrelin. Ghrelin is generally 
positively correlated with alcohol craving in 
alcohol-dependent individuals (Koopmann et al. 
2012, 2019), and intravenous delivery of ghrelin 
increased alcohol self-administration (Farokhnia 
et al. 2018) and craving (Leggio et al. 2014) in 
individuals with AUD.  There are also multiple 
studies showing that polymorphisms in the ghre-
lin gene are associated with AUD (Landgren 
et  al. 2008, 2010; Suchankova et  al. 2016). 
Several studies suggest that antagonism of GHSR 
in mice would have beneficial effects on 
AUD.  GHSR antagonism reduces binge-like 
alcohol drinking in mice (Richardson et al. 2024) 
and decreases alcohol intake in a two-bottle free 
choice test in dependent mice (Jerlhag et  al. 
2009; Kaur and Ryabinin 2010). GHSR antago-
nism also attenuates relapse consumption of 
alcohol after abstinence in rodents (Jerlhag et al. 
2009; Suchankova et al. 2013), thought to reflect 
a reduction in alcohol craving. Disappointingly, 
the first study of a drug with GHSR antagonist 
activity (Kong et al. 2016) in humans with AUD 
observed no change in cue-elicited alcohol crav-
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ing but did reduce the caloric content of food 
selected in a virtual food choice task (Faulkner 
et al. 2024). The role of ghrelin in AUD is consid-
ered in greater depth in Chap. 8, Appetite-
regulatory peptides ghrelin and GLP-1 in Alcohol 
Use Disorder, of this book.

Major depressive disorder (MDD) is another 
psychiatric condition that is worsened by stressor 
exposure (Tafet and Nemeroff 2016), especially 
for childhood trauma (Heim and Nemeroff 2001), 
but the links to ghrelin are more equivocal for 
this disorder. Given that childhood trauma is 
shown to elevate ghrelin (Malik et al. 2020; Rossi 
et al. 2021), it is not surprising that some studies 
find elevated ghrelin in adults with MDD (Emül 
et al. 2007; Ozsoy et al. 2014; Kurt et al. 2007; 
Algul and Ozcelik 2018). On the other hand, 
some studies find no differences in ghrelin levels 
between people with MDD and healthy controls 
(Giménez-Palop et al. 2012; Matsuo et al. 2012; 
Schanze et al. 2008). One population that has yet 
to be examined is people with co-occurring MDD 
and PTSD.  In rodents, the stressors used to 
induce depression-like behaviors elevate ghrelin 
reliably (Lutter et  al. 2008; Kumar et  al. 2013; 
Gupta et  al. 2019), but it has been argued that 
elevated ghrelin actually buffers against depres-
sive symptoms: stress-exposed GHSR knockout 
mice show greater stress-induced depressive 
behaviors than stress-exposed wild-type control 
mice (Chuang et al. 2011a; Lutter et al. 2008) and 
elevating ghrelin during stress reduces 
depression-like behaviors (Huang et  al. 2017; 
Chang et  al. 2024; Lu et  al. 2019). Consistent 
with a positive role for ghrelin in depressive 
symptoms, short-term injections of ghrelin 
reduced depressive symptoms in men with MDD 
(Kluge et  al. 2011). It is difficult to reconcile 
these disparate findings. One possibility is that 
GHSR knockout is functionally equivalent to 
‘ghrelin resistance’ induced by high levels of 
ghrelin in some brain circuits and that loss of 
ghrelin signaling is what drives depressive behav-
iors. Another possibility is that the exploratory 
behaviors promoted by ghrelin may mask some 
of the depressive behaviors in mice. Yet another 
possibility is that GHSR knockout in mice is 
likely to impact signaling through other ligands 

in a manner that has nothing to do with ghrelin 
per se and is instead related to the complex mod-
ulatory effects of GHSR on other ligand systems 
(Shiimura et  al. 2025; Ringuet et  al. 2022). 
Further research will be needed to clarify whether 
elevated ghrelin is beneficial or detrimental to 
people with MDD and why.

One important reason for discrepancies 
between preclinical and clinical findings is that 
the drugs used to modify signaling through 
GHSR can have very diverse effects, depending 
on differences in how the compounds bind to 
GHSR (Shiimura et al. 2025). Both agonists and 
antagonists can bias G-protein coupling to GHSR 
(Shiimura et al. 2025). Some of the studies above 
showing that GHSR antagonism decreased alco-
hol consumption in preclinical rodent models 
(Jerlhag et  al. 2009; Kaur and Ryabinin 2010) 
used pure GHSR antagonists, while the human 
study (Faulkner et al. 2024) used a drug with both 
inverse agonist (Bhattacharya et  al. 2014) and 
competitive antagonist (Kong et al. 2016) proper-
ties. It is likely that the different compounds had 
distinct effects on GHSR signaling, which may 
have contributed to the different effects on the 
consumption of alcohol. Thus, a best practice is 
to compare the effects of the same drug in pre-
clinical and clinical studies and not assume that 
drugs with similar activities (e.g., receptor antag-
onists) will exert their effects through the same 
mechanism.

7.6	� Ghrelin: Interactions 
with the HPA Axis

Complicating the role of ghrelin in stress are 
multiple studies showing that ghrelin and the 
HPA axis can bidirectionally impact each other 
(Fig.  7.1, upper, green arrows). However, it 
should be noted that virtually all of these studies 
examine their interaction in healthy, unstressed 
subjects or subjects exposed to an acute stressor. 
It has been suggested that HPA-dependent eleva-
tion of ghrelin is GC-dependent: activation of the 
HPA axis with a single exogenous injection of 
ACTH elevates ghrelin, but this effect is blocked 
when metyrapone, a drug that blocks glucocorti-
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coid synthesis, is administered (Azzam et  al. 
2017). On the other hand, adrenalectomy does 
not prevent chronic stress-induced elevation of 
ghrelin, suggesting that at least for chronic stress, 
glucocorticoids and circulating catecholamines 
released from the adrenal glands may not be the 
primary drivers of increased ghrelin.

In the other direction, ghrelin can modify the 
HPA axis. Infusion of ghrelin into the brain of 
chicks can increase ACTH and glucocorticoids 
(Gastón et  al. 2017). Acute food deprivation, 
which elevates ghrelin, activates the HPA axis 
(Fernandez et  al. 2022). Exogenous systemic 
ghrelin can activate CRF-positive neurons of the 
PVN and drive increases in plasma GCs 
(Fernandez et  al. 2023). Ghsr mRNA is also 
observed in ACTH-expressing cells of the ante-
rior pituitary (Reichenbach et  al. 2012). In 
humans with AUD, intravenous administration 
of ghrelin elevated serum cortisol levels (Haass-
Koffler et al. 2019). Thus, studies generally sug-
gest that enhanced ghrelin activity drives 
increased HPA activity. In agreement with this, 
studies using methods to reduce ghrelin signal-
ing generally find that a reduction in ghrelin sig-
naling constrains HPA axis activation. For 
example, ghrelin receptor knockout mice show 
smaller increases of ACTH and GCs in response 
to acute stressor exposure compared to wild-type 
mice (Spencer et al. 2012).

Collectively, these studies suggest that ghrelin 
and the HPA axis both amplify each other. 
However, virtually nothing is known about these 
interactions in the context of chronic stress. In 
one relevant study, repeated injection of CRF into 
the PVN drove the elevation of ghrelin (Rayatpour 
et al. 2023). It is possible that repeated activation 
of CRF neurons by chronic stress may contribute 
to elevated ghrelin, especially considering that 
adrenalectomy enhances (rather than eliminates 
or reduces) activation of PVN neurons and the 
expression of CRF heteronuclear RNA in the 
PVN after acute stress exposure (Imaki et  al. 
1995; Pace et al. 2009). Yet, much remains to be 
understood about how the HPA and ghrelin sys-
tems interact in the face of chronic stress expo-
sure, considering that the HPA stress response 
typically habituates for chronic stressors, particu-

larly when the same stressor is experienced 
repeatedly (Grissom and Bhatnagar 2009; Belda 
et al. 2020). It is also important to note that the 
noradrenergic system is an important mediator of 
stress responses (see Chap. 2, Noradrenaline 
Regulation of Brain-body Communication, for an 
overview of the role of this system in stress 
responses), but even less is known about poten-
tial bidirectional interactions between this system 
and ghrelin; thus, we do not address this topic 
here.

7.7	� New Frontiers for the Role 
of Ghrelin in Stress: 
Modulation of Ghrelin 
Signaling

One aspect of stress-associated ghrelin biology 
that is completely unknown is the mechanism by 
which ghrelin is persistently elevated. One 
enzyme that regulates the conversion of acyl-
ghrelin to des-acyl-ghrelin is butyrylcholinester-
ase (BChE) (Chen et  al. 2015; Schopfer et  al. 
2015). Single-nucleotide polymorphisms in the 
BCHE gene can considerably alter BChE enzy-
matic activity (La Du et  al. 1990; Jensen et  al. 
1995; Dantas et al. 2011). While BChE is a ubiq-
uitous enzyme whose levels are unlikely to be 
appreciably altered by chronic stress, it is possi-
ble that individuals with lower BChE activity 
may be more likely to have elevated ghrelin in 
response to chronic stress. Conversely, one might 
expect that individuals with higher BChE activity 
might be less likely to show elevated ghrelin after 
chronic stress exposure. These possibilities 
remain tantalizingly unexplored.

In the stomach, the cells that synthesize ghre-
lin also post-translationally activate it via the 
enzyme ghrelin O-acyltransferase (GOAT) in a 
process termed octanoylation (Yang et al. 2008; 
Gutierrez et  al. 2008). In the gut, GOAT 
octanoylates proghrelin, the precursor molecule 
to ghrelin, so that proghrelin becomes acyl-
ghrelin when cleaved (Yang et al. 2008; Gutierrez 
et al. 2008). In circulation, acyl-ghrelin is rapidly 
hydrolyzed into des-acyl-ghrelin (Schopfer et al. 
2015), a form that does not act at GHSR (Kojima 
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et al. 1999; Fernandez et al. 2016). In the brain, 
locally produced GOAT is capable of converting 
des-acyl-ghrelin back to acyl-ghrelin (Murtuza 
and Isokawa 2018). Consistent with the essential 
role of GOAT in producing acyl-ghrelin and the 
importance of the stomach in producing the acyl-
ghrelin found in circulation, levels of acyl-ghrelin 
are correlated with GOAT expression in the 
stomach (Gahete et al. 2010). One possible expla-
nation for the stress-associated increase in ghre-
lin is increased expression of GOAT in the gut, a 
possibility that also remains unexplored.

Liver-expressed antimicrobial peptide 2 
(LEAP2) is a highly conserved peptide across 
mammals (Krause et al. 2003) and was originally 
named because of its structural similarity to other 
antimicrobial peptides in the liver, as well as its 
own antimicrobial properties (Henriques et  al. 
2010). However, it was suggested that LEAP2 
likely had other functions (Henriques et al. 2010), 
and in 2018, it was discovered that LEAP2 is an 
endogenous inverse agonist and antagonist of 
GHSR (Ge et al. 2017; M’Kadmi et al. 2019), a 
role seemingly unrelated to its antimicrobial role. 
While most circulating LEAP2 comes from the 
liver, LEAP2 mRNA has been observed in other 
tissues including gut epithelium (Howard et  al. 
2010) and brain (Tufvesson-Alm et  al. 2024; 
Islam et al. 2020). The expression of LEAP2 and 
ghrelin tend to inversely covary with each other 
(Mani et al. 2019; Islam et al. 2024), suggesting a 
shared, but opposing, mechanism of regulation. 
Consistent with inhibitory actions at GHSR, 
LEAP2 administration has been shown to attenu-
ate many ghrelin-induced physiological changes, 
including food intake, blood glucose elevation, 
release of growth hormone, cFos expression in 
metabolic hypothalamus, and release of dopa-
mine in the NAc (Tufvesson-Alm et  al. 2024; 
Islam et  al. 2020, 2024; Lugilde et  al. 2022; 
Mustafá et al. 2021). Conversely, the reduction of 
endogenous LEAP2 actions enhances the impact 
of ghrelin and ghrelin-associated functions (Ge 
et al. 2017; Fei et al. 2024; Bhargava et al. 2023). 
Insofar as elevated ghrelin accompanies chronic 
stress, it seems likely that a decrease in LEAP2 
accompanies chronic stress, but this has yet to be 
examined. Likewise, individual variability in 

LEAP2 expression may confer either vulnerabil-
ity or resilience to the adaptations and maladap-
tation that accompany elevated ghrelin after 
chronic stress. Specifically, higher LEAP2 levels 
may protect against the stress-induced changes 
driven by elevated ghrelin, while lower LEAP2 
levels may deepen the impact of elevated ghrelin 
post-stress.

Single nucleotide polymorphisms (SNPs) are 
another way that individual humans could have 
varied responses to chronic stress. SNPs in the 
genes encoding ghrelin and its receptor have 
been studied in the context of obesity (Gueorguiev 
et al. 2009; Mora et al. 2015; Vivenza et al. 2004), 
but not the context of stress responsivity; how-
ever, it is important to note that most studies do 
not show that ghrelin levels are impacted by stud-
ied variants in the ghrelin gene. Similarly, genetic 
variability in the LEAP2 gene (Andreoli et  al. 
2024a), some of which do predict LEAP2 levels 
(Andreoli et al. 2024b), would be interesting to 
study in the context of ghrelin-sensitive changes 
that accompany chronic stress.

Lastly, it would be remiss not to note that 
GHSR has a bidirectional modulatory effect on 
other types of signals. When GHSR forms het-
erodimers with other receptor types, it can impact 
the signaling of both the high level of constitutive 
activity observed in GHSR (Holst et  al. 2003, 
2004) as well as ligand-dependent signaling 
through GHSR.  It has been suggested that the 
dimerization with other receptors may generally 
attenuate ghrelin-mediated signaling (Schellekens 
et al. 2013). For example, the serotonin 2c recep-
tor (5HT2C) heterodimerizes with GHSR217 and 
blockade of 5HT2C receptors potentiates the 
impact of ghrelin on food intake (Schellekens 
et  al. 2015), suggesting that 5HT2C receptor 
activity limits signaling through GHSR.  GHSR 
can heterodimerize with multiple types of pros-
tanoid receptors, which reduces the constitutive 
activity of the GHSR (Chow et al. 2008). When 
GHSR forms heterodimers with the melanocor-
tin-3 receptor (MC3R), it reduces both constitu-
tive and ghrelin-induced signaling through 
GHSR (Rediger et al. 2011). In one case, instead 
of attenuating signaling through the GHSR, 
dimerization changes the type of signaling medi-
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ated by GHSR: dimerization with the somatosta-
tin receptor-5 (SST5) shifts the ghrelin 
receptor-G-protein coupling from Gαq11 to 
Gαi/o in order to drive ghrelin-mediated inhibi-
tory tone in pancreatic β-cells (Park et al. 2012).

GHSR heterodimers can also impact signaling 
through the receptors that are paired with GHSR, 
and these interactions are not always ghrelin-
dependent. That is, it is clear that GHSR can act 
as a receptor-modifying protein for other recep-
tors (Ringuet et  al. 2022; Hedegaard and Holst 
2020). For example, GHSR forms heterodimers 
with multiple dopamine receptors, including 
Dopamine D1, D2, and D5 (DRD1, DRD2 and 
DRD5) (Kern et al. 2015, 2012; Jiang et al. 2006). 
In hypothalamic neurons, GHSR-DRD2 het-
erodimerization switches dopamine signaling 
from inhibitory to excitatory (Kern et al. 2012). 
GHSR heterodimerizes with the melanocortin-3 
receptor (MC3R), where it enhances 
melanocortin-induced intracellular cAMP accu-
mulation compared to MC3R homodimers 
(Rediger et al. 2011). GHSR heterodimerization 
with the oxytocin receptor (OTR) attenuates OTR 
signaling (Wallace Fitzsimons et al. 2019). In this 
regard, stress-induced changes in ghrelin levels, 
which can modify GHSR expression (Harmatz 
et al. 2016; Smith et al. 2024a), can regulate the 
availability of GHSR for heterodimerization and 
thus indirectly impact other types of signaling. 
Differential heterodimer expression across brain 
regions may also explain why some brain regions 
show downregulation of GHSR after chronic 
stress (Harmatz et  al. 2016), while other brain 
regions show upregulation of GHSR (Smith et al. 
2024a). Future research will undoubtedly shed 
light on these possibilities.

7.8	� Conclusions

Chronic stress produces long-lasting enhanced 
risk for multiple types of disease, suggesting that 
there are biological changes induced by stress 
that have maladaptive value. Here, we considered 
the role of ghrelin in such changes because large 
increases in ghrelin are observed in multiple spe-
cies long after chronic stressors cease and ghrelin 

receptors are found throughout the periphery and 
brain. We considered the adaptive value of ele-
vated ghrelin when organisms remain exposed to 
the stressor but also discussed how physiological 
changes driven by elevated ghrelin may contrib-
ute to disease when the stressor is no longer pres-
ent. Because the vast majority of ghrelin that acts 
on the brain comes from the stomach, ghrelin 
represents a new frontier for connecting the brain 
and the body during times of energy deficit and 
energy excess, and the ghrelin system may repre-
sent a new frontier for tackling stress-sensitive 
disease.
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