Characterizing and Optimizing the End-to-End
Performance of Multi-Agent Reinforcement
Learning Systems

Kailash Gogineni*, Yongsheng Mei*, Karthikeya Gogineni’, Peng Wei*, Tian Lan*, Guru Venkataramani*

*George Washington University, USA

Abstract— Multi-Agent Reinforcement Learning Systems
(MARL) can unlock the potential to model and control mul-
tiple autonomous decision-making agents simultaneously. During
online training, MARL algorithms involve performance-intensive
computations, such as exploration and exploitation phases origi-
nating from a large observation-action space and a huge number
of training steps. Understanding and mitigating the MARL
performance limiters is key to their practical adoption.

In this paper, we first present a detailed workload characteri-
zation of MARL workloads under different multi-agent settings.
Our experimental analysis identifies a critical performance bot-
tleneck that affects scaling within the mini-batch sampling on
transition data. To mitigate this issue, we explore a series of
optimization strategies. First, we investigate cache locality-aware
sampling that prioritizes intra-agent neighbor transitions over
other randomly picked transition data samples within the base-
line MARL algorithms. Next, we explore importance sampling
techniques that preserve the learning performance/distribution
and capture the neighbors of important transitions. Finally, we
design an additional algorithmic optimization that reorganizes
the transition data layout to improve the cache locality between
different agents during the mini-batch sampling process.

We evaluate our optimizations using popular MARL work-
loads on multi-agent particle games. Our work highlights several
opportunities for enhancing the performance of multi-agent sys-
tems, with end-to-end training time improvements ranging from
8.2% (3 agents) to 20.5% (24 agents) compared to the baseline
MADDPG, affirming the usefulness of deeply understanding
MARL performance bottlenecks and mitigating them effectively.

Index Terms—Multi-Agent Systems, Performance Analysis,
Reinforcement Learning, Performance Optimization

I. INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) algorithms
are a new and evolving class of algorithms that can tackle
real-world problems involving complex inter-agent interac-
tions and decision-making in a shared environment. These
settings are vastly different from single-agent RL scenarios and
involve joint state-action spaces with multiple agents either
cooperatively or competitively engaging with other agents in
a shared environment. Consequently, as the number of agents
grows, the state-action space expands exponentially, presenting
unique computational complexities [1]. Applications of MARL
span various domains, such as coordinating robot fleets [2],
[3], transportation management [4], [5], game AI [6], [7],
autonomous driving, recommendation systems, large language
models, aviation, and search-and-rescue drone missions, to
name a few [8]-[14].

fIndependent

In MARL [15], [16], individual agents optimize their actions
and interactions with the environment. They decide their
actions based on the current observations and evaluate state-
action pairs using reward functions. The function determining
the action is known as a policy, and the agents seek to find
optimal policies that maximize their total accumulative (dis-
counted) rewards. The function representing the reward esti-
mates is known as the value function.

In the context of large-scale MARL involving approximately
50 agents working on a competitive task, our experiments
show that it takes up to seven days to train to reach 1 million
time steps and achieve optimal policy, even on the latest high-
performance Nvidia Ampere architecture [17]. This severely
limits the practical use of MARL in real-world systems and
poses significant computational challenges, especially as the
number of agents scales higher.

Multi-agent learning workloads typically follow the Cen-
tralized Training Decentralized Execution (CTDE) model and
consist of two main stages: action selection, which efficiently
runs on the GPU due to its parallel processing demands, and
update all trainers, where the sampling phase, characterized
by irregular accesses, is CPU-bound, while the actor-critic
network updates are GPU-bound. In the action selection stage,
as depicted in Figure 1, each agent in the environment has its
own actor network (AN), which generates actions based on
its current observation. Agents simultaneously execute these
actions in a shared environment and receive rewards and
the next state as the output. The experiences of each agent
are stored in a replay buffer, which is essential for back-
propagation. During the mini-batch sampling phase, each agent
collects historical transition data of all other agents stored in
the experience replay buffer. This sampling approach allows
the algorithm to reuse transition data for updating the current
policy. During training, each agent has a centralized critic that
calculates Q-values (based on global information) to update the
decentralized actors using the joint observation-action space of
all agents. In the update all trainers phase, both the actor and
critic networks are updated following the target Q calculation
and the mini-batch sampling phase.

As the number of agents grows linearly, our performance
analysis of key MARL workloads (MADDPG [18] and
MATD?3 [19]) on the recent Nvidia RTX 3090, CPU-GPU ar-
chitecture [17] demonstrated a prominent trend: the update all
trainers phase dominates the overall MARL performance (up

to ~80%), surpassing all other phases significantly (Figure 2).
This key finding prompted us to conduct a more granular
analysis, breaking down the update all trainers phase into its
constituent modules: mini-batch sampling, target Q calcula-
tion, and Q loss - P loss. In our analysis, the sampling phase
was found to be the dominating component of the overall
MARL training times. (Figure 3).

Rewards and new states

17 Action

Agent N J

Agent 2 l

Agent 1]

cang— (e || |
‘\\w —A =) 1 = I

. . Environment
| Action Execution fTT
> Experience
Store experiences Replay Buffer

(obsj, actj, rewardsj, next obsj, donej)

— Actor-Criti 3
@ o Mini- Tanget ¢ o:iat;;) ¢ Update
5; ‘ batc!l Calculation == b e.l“
b, sampling ‘trainers

Fig. 1: MARL architecture and its typical implementation
using a decentralized actor and a centralized critic.

To address the MARL performance bottlenecks, we delve
into various avenues for performance optimization. First,
a cache locality-aware sampling accelerates transition data
access latencies by including the neighboring intra-agent
transitions for the training phase. Second, we explore an
information-prioritized locality-aware sampling that empha-
sizes certain information-rich transition data indices to main-
tain algorithmic learning performance. Third, we also explore
data layout reorganization in the experience replay buffer
to accelerate the sampling process between the agents. This
technique involves rearranging the transition data of all agents
in a locality-aware order to achieve better performance.

In summary, our paper makes the following contributions:

o We systematically study the performance profiles of

training phases within two state-of-the-art multi-agent
reinforcement learning systems (MADDPG and MATD3)
using two multi-agent particle environments with 3 to 24
agents on Nvidia Ampere Architecture (RTX 3090) [17].
For the first time, our performance analysis presents key
insights into the computational bottlenecks confronting
several MARL algorithms from a systems perspective.

« We present performance enhancement opportunities for

hardware-level and algorithmic optimizations to improve

the runtime of a key performance limiter within MARL,
namely the mini-batch sampling phase. Our proposed
optimizations include: (1) Cache locality-aware neigh-
bor data sampling to improve intra-agent memory ac-
cesses, (2) Information prioritized cache locality-aware
sampling to improve the sampling distribution, and (3)
Transition data layout reorganization to improve the inter-
agent cache locality.

o Our experimental results demonstrate end-to-end training
time acceleration (1.2x for 24 agents), with performance
improvements ranging from 8.2% (3 agents) to 20.5% (24
agents) compared to the baseline MARL workload -
MADDPG, and attains an average 2x faster sampling
compared to existing prioritization approaches (PER-
MADDPG) while preserving the mean scores in both
cooperative and competitive tasks. Finally, our transition
data layout reorganization strategy shows promise of a
steadily rising trend (from a slowdown of 37% for 3
agents to a speedup of 25.84% for 24 agents) in the
sampling phase for a predator-prey environment for the
MADDPG algorithm.

II. BACKGROUND

In this section, we introduce our MARL workloads and
multi-agent particle environments [18].

A. Multi-Agent Reinforcement Learning

Typically, MARL settings with [V agents is defined by a set
of states, S = 51 x...x Sy, asetof actions A = A; x...x An.
Each agent selects its action by using a policy 7, : O; X A; —
[0,1]. The state transition (" : S X A; X Ag X ... X An)
function produces the next state s, given the current state
and actions for each agent. The reward, R; : S x A; — R for
each agent is a function of global state and action of all other
agents, with the aim of maximizing its own expected return
R; = ZZ;O y'rt, where v denotes the discount factor and 7'
is the time horizon.

MADDPG. In MADDPG [18], each agent learns an in-
dividual policy that maps the observation to its action to
maximize the expected return, which is approximated by
the critic. MADDPG lets the critic of agent ¢ to be trained
by minimizing the loss with the target Q-value and y; us-
ing E(/Hi)/: HE,D[(Qi(S,Al,...An) —y?, and y; = r; +
7Q,(S, Ay, "'An)a’.:ﬁ(of.)’ where S and Aj,...A, represent
the joint observations and actions respectively. D is the expe-
rience replay buffer that stores the samples of observations,
actions, rewards, and new observations for all the agents
obtained after the training episodes. The MARL framework
has four networks- actor, critic, target actor, and target critic.
Q, and ﬁ(o;-) are the target networks for the stable learning
of critic (Q);) and actor networks. The target actor estimates
the next action from the policy using the state output by the
actor network. The target critic aggregates the output from the
target actor to compute the target Q-values, which update the
critic network and assess the quality of the actions taken by
agents. The target networks help achieve training stability.

(a) MADDPG Predator-Prey (b) MADDPG Cooperative Navigation

(¢) MATD3 Predator-Prey (d) MATD3 Cooperative Navigation

2 %19 %19 2% 1%
100% - 2L oo e LA oo e A A X oonf A e LA
i 31% A% ;
g SO% MR L - 80% | - 80% S Liow 4 80% | [s 1
B 0 DA, 63% 58%
o iy S T e 8% i
2 0% | 1 60% |- 1 60% |- 1 60% |- 1
= RRRRE
= 40% | o 0% |- 1 0% - 1 0% |-] 1
= ’ 62% P ’ 68% ’ 62% S "’ 62% =
= 50% 55% - 50% 53% o
‘ 43% 40%|
20% |- 36% 1 o |- 1 o 36% 1 900 | |
20% e 20% 27% 20% ST 20% 26%
; 0 o o
0% 3 6 12 2 0% 3 6 2 2 0% 3 6 2 2 0% 3 6 12 24

Number of agents Number of agents

Number of agents Number of agents

‘ Action Selection Update all trainers

Other segments

Fig. 2: End-to-end training time percentage breakdown for two
Prey and Cooperative Navigation multi-agent particle games. T

(a) MADDPG Predator-Prey (b) MADDPG Cooperative Navigation

MARL workloads, both involving 3 to 24 agents for Predator-
he total training times are detailed in Table I.

(¢) MATD3 Predator-Prey (d) MATD3 Cooperative Navigation

T T T T T T T
100% - -100% - -100% - o] 1100% |- N
1O0%
o 80% 70 - 80% - - 80% - - 80% |- N
s 219 23% 40
2 19%]| (2% e el 29| |2 0| |22 |20 20%
- Eosesss [oo g s » 11% 18% 18% &
= 60% - 60% -] 1 60% — - 60% |- ot I b
El Beaass|
= 40% |- - 40% - - 40% - | 40% - b
= 500 | |64%| |65%| |65% 57| |60%| |61%| |61% 56| |60%| |61%| |61% ssv| |ss%| |60%| |62%
20% - 20% - - 20% - - 20% - N
o, o, o7, 0
0% 3 6 12 24 0% 3 6 12 24 0% 3 6 12 24 0% 3 6 12 24
Number of agents Number of agents Number of agents Number of agents
‘ Mini-batch sampling Target Q calculation P loss

Fig. 3: Training time breakdown within update all trainers on two different MARL workloads with 3 to 24 agents for Predator-

Prey and Cooperative Navigation multi-agent particle games.

MATD3. MATD3 [19] uses the twin delayed critics to tackle
the over-estimation bias problem [19] and incorporates small
amounts of noise to the actions sampled from the buffer. As
the change of critic values needs to be reflected in the policies
of other agents, MATD3 employs delayed policy updates for
target networks and the policies to obtain an accurate critic
before using it to update the actor network.

MADDPG and MATD3 find utility in a variety of domains,
such as UAV systems, distributed control, robotic teams, and
automated trading, as highlighted by several studies [16], [20]-
[24].

B. Multi-Agent Player Games

In many practical multi-agent scenarios, several agents
simultaneously explore a common environment and perform
competitive (e.g., predator-prey), cooperative (e.g., cooperative
navigation), and mixed tasks [16], [18]. In cooperative setups,
all agents share observations, and training is conducted cen-
trally. In contrast, each agent aims to outperform its adver-
saries in competitive settings.

We explore a range of 2D tasks involving agents in co-
operative and competitive scenarios [18]. Agents interact with
landmarks and other agents in a shared environment to achieve
various goals. The observation space of the agents is a high-

TABLE I: End-to-end training times for MADDPG and
MATD3 with varying numbers of agents trained for 60,000

episodes in Predator-Prey and Cooperative Navigation tasks.
Envir ent Algorithm | Training Time (sec)
MADDPG
3 Agents 3365.99
6 Agents 8504.99
12 Agents 23406.16
Predator-Prey 34 Agents 8276815
MATD3
3 Agents 3838.97
6 Agents 9039.11
12 Agents 24678.43
24 Agents 80123.24
MADDPG
3 Agents 2403.64
6 Agents 5888.64
Cooperative 12 Agents 15722.43
Navigation 24 Agents 52421.81
MATD3
3 Agents 2785.53
6 Agents 6369.42
12 Agents 17081.71
24 Agents 55371.91

level feature vector containing relative distances to other
agents, along with additional information like communication
and velocity [18]. For decision-making, agents have discrete
action space and typically include five actions corresponding

to static, move right, move left, move up or down.

We chose predator-prey tasks (competitive) and cooperative
navigation tasks (cooperative) to conduct a comprehensive
workload characterization and validate the effectiveness of
our optimization techniques [18] and emphasize variations in
training time complexity (predator-prey tasks take approxi-
mately 1.5x longer training time compared to cooperative
tasks). In predator-prey tasks, N predators work cooperatively
to block the way of M fast-paced prey agents. The prey
agents are environment-controlled and try to avoid collisions
with predators. On the other hand, in cooperative navigation
tasks, N agents work together to reach L landmarks, and the
rewards encourage the agents to get closer to the landmarks
in these settings.

For the predator-prey environment, when there are 3 agents,
the observation spaces are as follows: Agent 1 (Predator) has
an observation space of Box (16,), agent 2 (Predator) has
Box (16,), agent 3 (Predator) has Box (16,), and agent
4 (Prey) has Box (14,) . For example, Box (16,) would rep-
resent a 16-dimensional continuous space containing floating-
point values. This flexibility allows agents to have a fine-
grained perception of the environment or to make precise and
nuanced decisions. In a larger-scale scenario with 24 agents,
each agent (Predator) has a Box (98,) observation space,
except for agents 25 to 32 (Preys), which have Box (96,).

Moving on to the cooperative navigation environment, for 3
agents, each agent’s observation space is Box (18,), and the
number of available actions is 5. With 6 agents, each agent
has Box (36,) as their observation space. In a scenario with
12 agents, the observation space for each agent is Box (72,),
and in a 24-agent setup, each agent has an observation space
of Box (144,).

III. MARL PERFORMANCE PROFILE

Our performance analysis' shows super-linear trend in var-
ious performance metrics (besides total training time): total
instructions increase by 3 — 4, cache misses by 2.5 —4.5x,
and dTLB load misses by 3 — 4x on average for both
cooperative and competitive games (Figure 4). As discussed
in Section II-B, the predator-prey tasks exert a much stronger
influence than cooperative tasks due to collaboration between
the predator agents. They collaborate to maximize their shared
return and capture the prey.

Specifically, within mini-batch sampling (the largest time
consumer), every agent samples a set of mini-batch samples
uniformly from the replay buffers of other agents and then
updates its critic network. Each agent performs lookup-read-
write operations, and this process scales with the number of
agents, denoted as N, and is repeated for all N agents. As
a result, the time complexity to collect the transition set is
O(N?B), where B represents the batch size. From Figure 4,
we note that a similar computational bottleneck is observed
in cooperative scenarios where all the agents are trained

IWe omit the environment interactions phase for the characterization study since it
primarily depends on task complexity.

. . . .
3 to 6 agents-PP [-:if) to 12 agents-PP 12 to 24 agents-PP
[m] 3 to 6 agents-CN 6 to 12 agents-CN 12 to 24 agents-CN

4.34.3 46 45

Growth rate (Nx)
=~

dTLB load
misses

Cache
misses

iTLB load
misses

Branch
misses

Fig. 4: Hardware Performance analysis of update all train-
ers averaged across two MARL workloads (MADDPG &
MATD3) as the number of agents increases linearly. These
workloads are trained using the Predator-Prey (PP) and Coop-
erative Navigation (CN) environments.

collectively to reach landmarks while avoiding collisions with
each other.

Figure 5 illustrates the simplified view of the mini-batch
sampling phase where each agent selects a batch of transitions
(size=1024) from all other agent’s replay buffers. Each agent
trainer iterates through different agent IDs. The indices array
maps the random reference points for each agent ID to retrieve
transitions from the replay buffer. The model parameters in
the multi-agent setting determine the number of samples and
agents.

To analyze the memory access behavior, we profiled the
training time growth of the sampling phase. As expected, we
found that as the number of agents increases linearly, the run-
time grows by approximately 3x. A careful examination led
us to the conclusion that the sampling phase involves only
one level of indirection (as shown in Figure 5), achieved by
mapping the indices array reference points to the replay buffer
storage locations. But, it is also worth noting that the actor and
critic networks are periodically updated, causing the sampling
stage to be called millions of times (iterations), which puts
pressure on the cache bandwidth and capacity. This pressure
arises because, for each iteration, the indices array dynamically
changes to explore a broad state-action space, which can result
in highly irregular memory accesses.

The target Q calculation phase is second largest time-
consuming phase within update all trainers. Note that, in
Figure 3, the computation time as a percentage within update
all trainers increases with the number of agents for target Q,
whereas the run-time proportion of Q loss - P loss decreases
slightly.

Each agent performs the next action calculation, target Q
next, and target Q values as a function of all other agents’
joint observation-action space. To calculate the next action, the
agent ¢ uses its policy network to determine the next action-a’
from the next state-S’. In this phase, each agent’s policy net-
work involves multiplication/addition operations with input-
weight matrix resulting in performance impact. The obtained
a’ and S’ data are aggregated and concatenated into a single
vector in order to compute the target Q next amongst the
cooperating agents. The input space (dimension) for the Q-

Mem|Agent_N] 24

Common reference
indices array T
0 457 Tj T900 Ti

1 7024 em[Agent_1] T24 Ti T11036

1 s v %
\: P AN T
%121 65 M 1 million

2 2
3 3
i i

IMem[Agent N|| -~ Tj
- T T900
Mem[Agent 2] T24 Ti

Agent Agent
trainers IDs

Mini-batch
sampled

Y2z nosel Y| T;
Tl 123 5387
124 24 [/ \| ... T
125 900 T11036

1million | .-

.~ Replay butfers of
various agents

1023 4021 | | . 1 million | .-~

Fig. 5: Illustration of mini-batch sampling phase, where
1024 (batch size) transitions are captured for each agent as
a function of all other agents. This process involves ran-
dom memory accesses, where the reference points from the
common indices array are used to retrieve transitions from
specific memory locations in the replay buffer storage, with a
maximum size of 1 million.

function increases quadratically with the number of agents [1].
The target critic values for each agent ¢ are computed using
target Q next values from the target actor network. We note
that each agent has to read the other agent’s policy values; as
such, for N agents, there are N x (N — 1) memory lookup
operations corresponding to the next action-a’.

Backpropagation is the third largest phase of update all
trainers. This phase is dominated by the back-propagation of
the critic network that computes the mean-squared error loss
between the target critic and critic networks, and the actor
network is updated by minimizing the Q values (critic net-
work). As the number of agents increases, the main challenge
is the trainable parameters increase, and N policy and N critic
networks are built for all N agents, which incurs extra time to
update the weights for each agent.

A. Scalability Tests

In our study, we aimed to observe the update all trainers
trend in MADDPG when using the predator-prey environment.
We conducted tests on the Nvidia Ampere Architecture [17]
to assess scalability and profiled the training time. Scalability
is crucial as it allows systems to handle increased workloads
efficiently, ensuring optimal performance and adaptability in
various scenarios. In applications like robotics, scalability
enhances operational efficiency and reliability, enabling simul-
taneous task execution and obstacle management. In Figure 6,
we notice an exponential increase in the total training time
to 3.5 days for 48 agents; 7 days including environment
interactions (shown on the y-axis). Also, the overall contri-
bution from update all trainers modules ranges from 34% to
87% as we increase the number of agents. This growth rate
is especially noteworthy in MARL with a larger number of
agents, primarily due to the expanding size of the observation-
action space [25], [26]. For instance, for a single experience
tuple from a 3-agent setup with an observation space of
[Box (16,), Box(16,), Box(16,), Box(l4,)] in
the predator-prey environment, upgrading to a 24-agent config-

’ Action selection 55 Update all trainers Other segments

12% 1%
N=A§ e
[326782s] poi
N=24 |
[82768s]
N=12 |
[23406s]
N=6 |
[85055]

22%

36% 61% 3%

N=3 |
33665

0% 20%

Fig. 6: The breakdown of training time for the MADDPG
workload is presented, spanning from 3 to 48 agents in a
Competitive environment, specifically Predator-Prey. The total
training time of MARL algorithms, depicted in seconds, is
displayed on the y-axis within square brackets.

40% 60% 80% 100%

uration results in an approximate sixfold expansion (6x) of the
observation space. Conversely, in a cooperative setting, where
agents cooperate instead of competing, the observation space
expands by a factor of eight (8x). Contrary to cooperative
tasks, in the predator-prey task, agents must balance coopera-
tion and competition to optimize their collective performance
with predator-prey agents, emphasizing scalability issues with
the increase in the number of agents.

B. Our Key Findings

In summary, we make the following key observations from
MARL performance characterization:

1) As the number of agents increases, the overall MARL
training time for updating all trainers grows in a super-
linear fashion primarily due to the increasing observation
space and amount of interactions with all the neighboring
agents in a shared environment.

2) The transition data sampling phase dominates the overall
training time of the MARL training, which is largely
influenced by irregularity in memory access patterns on
account of the index values within the mini-batch.

3) For the sampling phase, the number of cache misses
on average grows by more than 3x (approx.) for both
the cooperative and competitive scenarios, and that could
vary significantly based on lookup patterns as each agent
has to gather all other agents’ transition data. Cache
misses are indicative of the working set sizes, and they
become particularly relevant in large-scale multi-agent
models involving 12 or more agents. In such cases, the
sampling phase entails significant data movement and
gathering operations.

4) As the number of agents increases from 3 to 24, the
dimension of Q function and target Q also grows ex-
ponentially due to the significant increase in the size of
observation space (number of float values).

IV. OPPORTUNITIES FOR MARL PERFORMANCE
OPTIMIZATION

This section explores several opportunities for optimizing
the key performance bottleneck stemming from the mini-batch
sampling phase identified in our performance profiling studies
(Section III). First, we customize the sampling process to
streamline the address fetch patterns and guide the hardware
prefetcher to improve its efficiency. Second, we present a new
optimization strategy called information-prioritized locality-
aware sampling. In contrast to randomly selecting transitions,
this method chooses neighbors from the replay buffer asso-
ciated with high-priority transitions to improve the learning
efficiency. Third, we reconsider how we store transitions from
all agents since it can directly affect the computation time
spent on the sampling phase. To tackle this issue, we explore
an algorithmic optimization - data layout reorganization.

A. Intra-Agent Cache-aware Mini-batch Sampling

The default random mini-batch sampling used in MARL
algorithms incurs high training time because each agent must
gather random transitions from other agents in order to update
their critic and actor networks.

The sampling stage has the index buffer, which stores the
lookup indices for each agent’s replay buffer. Due to the
difficulty in predicting these random memory addresses ahead
of time, the memory requests in the mini-batch sampling phase
encounter load misses for every reference point in the index
array, with cache prefetchers having little ability to predict
these indices ahead of time. Therefore, there is a need to
design cache-aware sampling strategies that could assist the
hardware prefetcher in reducing expensive trips up and down
the memory hierarchy.

Algorithm 1 demonstrates the intra-agent cache locality-
aware sampling approach. We modify the sampling phase
implementation of MARL workloads. Initially, every
agent trainer gathers a list of random reference points,
MB_idx (1024 random reference points are uniformly
sampled based on the replay buffer storage size). For
each agent, our intra-agent cache-aware approach selects a
reference point (¢dx) and then accesses all transitions from
idz to idx 4 neitghbors. This process involves retrieving the
transitions within that range from the replay buffer storage
and obtaining the corresponding output data.

Algorithm 1: Cache locality-aware sampling
Input: Mini-batch indices M B_idzx; replay buffer D;
neighbors n; num_agents
Output: Final list (mini-batch transitions)

for agent_id in agent_trainers do
M B_idx < random.sample(len(D), batch size)
for agent < 1,2, ..., num_agents do
for idx in M B_idx do
Output data < Dlidz : idx + neighbors]
Final list.append(Output data)

Figure 7 depicts the new workflow from our intra-agent
cache locality-aware sampling. We effectively steer the hard-
ware prefetcher towards fetching transition data (memory
accesses that follow a sequential pattern from the chosen
reference point) from contiguous memory locations into the
cache. Our experimental analysis (Section VI-A) demonstrates
that this simple optimization can significantly improve perfor-
mance while preserving the MARL reward values observed
with random mini-batch sampling.

B. Algorithmic Optimizations

We explore additional opportunities for performance opti-
mization to tune MARL algorithms in the sampling phase,
which dominates their overall training time.

1) Information Prioritized Locality-aware Sampling: When
estimating the expected value using stochastic updates, it is
important that the updates correspond to the same distribution
as expected. However, cache locality-aware sampling can
introduce bias by changing this distribution in an uncontrolled
way, ultimately altering the solution to which the estimates
will converge. To tackle this issue and obtain the performance
guarantee, we apply the importance-sampling weights on top
of the baseline MARL workload provided in the following
lemma 1.

T T T R Ty e
o] iR R R RS s R s Random

sampling
T e
Replay Buffer
I P T IR IR T
Cache-

aware

RIS)Rz} R RS

Replay Buffer

sampling

Fig. 7: Illustration of random sampling and cache locality-
aware sampling. The reference points (R2, R5, R8, R12) are
highlighted in red. Transitions associated with each reference
point are shown in blue, with one neighbor highlighted for
each reference point.

Prior studies have considered prioritized experience replay
to improve training efficiency and rewards [27], [28]. These
strategies involve assigning weights to transitions that enhance
the sampling performance and algorithm efficiency. In our
approach, we also study how to incorporate a prioritization
scheme into our framework, which we attempt to combine
with the cache locality-aware sampling technique mentioned
earlier. To elaborate, we first generate the common indices
array set using proportional sampling [27], with the likelihood
of selecting an index influenced by the priority associated with
that index. Subsequently, we employ a predictor to determine
the optimal neighbors for the selected priority reference based
on the normalized weight (0 to 1). This process continues

until the batch size (1024) is reached to update the actor-critic
networks.

The predictor takes a normalized weight as input and
returns a list of optimal neighbors based on the value of the
weight (specific to each reference point). This determination
is made based on set threshold levels of granularity.

Lemma 1: The importance-sampling weights at step ¢ for
eliminating the bias of changing the sampling strategy are

given by:
11\
o= (5 7) v

where N is the buffer size and P(i) is the cache locality-
aware sampling probability. § represents the compensation
parameter. When 5 = 1, it indicates full compensation, akin
to importance sampling [27].

Lemma 1 provides the weights that can be incorporated into
the learning by updating the weighted temporal-difference and
adjusts the sampling probabilities of experiences to prioritize
and sample those experiences more frequently during training.
This process involves selecting reference points from a list
of experiences based on a randomly generated value within
the range of cumulative priorities. We then calculate the
weights for those indices using importance sampling and use
a predictor to determine the optimal neighbors in the training
phase [27].

2) Transition Data Layout Reorganization: Here, we re-
consider how the transitions (experiences) are stored in the
experience replay buffer. We redesign the replay buffer as
key-value stores, i.e., instead of storing transitions separately
for each agent in distant memory locations, we transform the
replay buffer into a hash map with key-value pairs. The key
represents the index, and the corresponding values include
transition data histories of all agents sequentially. This mod-
ification significantly reduces the sampling phase overheads
from being proportional to the number of agents, N, times
the length of mini-batch indices, m, to just a single loop
iterating m times. The baseline sampling approach had a time
complexity of O(NN.m). The new approach using the key-value
pairs has a time complexity of O(m), resulting in a significant
performance improvement, especially as the number of agents
increases. By leveraging this locality-aware key-value table,
we can prefetch data for multiple agents simultaneously rather
than sampling each agent’s data individually.

V. IMPLEMENTATION

We implement our proposed optimizations discussed in Sec-
tion IV on the baseline MARL workloads: MADDPG? [18],
and MATD3? [19]. We use the popular multi-agent particle
environment developed by OpenAl* as our learning framework
and show the performance improvements in cooperative and
competitive scenarios. The MARL stages, such as the action
selection (neural network computations), are executed on the

2hltps://github.com/openai/maddpg
3 https://github.com/JohannesAck/MATD3implementation
4https://github.com/openai/multiagent— particle-envs

GPU due to its parallel processing capabilities. On the other
hand, the mini-batch sampling phase is CPU-bound, while the
actor-critic updates usually run on the GPU.

Evaluation: (1) To evaluate our cache-aware mini-batch
sampling optimization (Section IV-A), we compare our per-
formance with baseline multi-agent learning methods, namely
MADDPG and MATD3, which are foundational algorithms
in various applications. (2) To evaluate our importance-based
optimization (Section IV-B1), we integrate our cache locality-
aware sampling into the existing prioritization approaches [27]
for MARL workloads. Subsequently, we compare our informa-
tion prioritized locality-aware sampling (Section IV-B1) with
the state-of-the-art prioritization schemes (PER-MADDPG
and PER-MATD?3 [29]) that have low overhead in terms of
weight computation. (3) We compare the data layout reor-
ganization approach (Section IV-B2) to the baseline MARL
workload, MADDPG.

Hardware: We evaluate our approach on an NVIDIA RTX
3090. The full platform description can be found in Table II.
The server runs Ubuntu Linux 20.04.5 LTS and is equipped
with CUDA 9.0, cuDNN 7.6.5, PCle Express v4.0, and the
NCCL v2.8.4 communication library. The Python version used
is 3.7.15, and the machine supports TensorFlow (v2.11.0),
TensorFlow-GPU (v2.1.0), and OpenAl GYM (v0.10.5). Per-
formance profiles were observed using the Perf [30] tool and
NVProf [31] to profile the hardware behavior in a multi-
core (using all cores) configuration. The hardware prefetcher
is enabled by default, and all CPU cores are operated at their
maximum frequency.

TABLE II: Evaluation Platform.

[Device | NVIDIA Geforce RTX 3090
Architecture Ampere
Power 350 W
CUDA Cores 10496
Base Clock 1.40 GHz
Device Memory | 24 GB, 384-bit bus, GDDR6X
[Host [AMD Ryzen 3975WX |

L1 Cache size
L2 Cache size
L3 Cache size

2 MiB (split between L1d and L1i)
16 MiB
128 MiB (shared)

TLB size 3072 4K pages
Cores / Threads | 32 Cores / 64 Threads
Main Memory 512 GB, 2200 MHz, 64-bit bus, DDR4

Software Settings: The actor and critic networks are param-
eterized by a two-layer ReLU MLP with 64 units per layer,
and the mini-batch size is 1024 for sampling the transitions.
In all of our experiments, we use Adam optimizer [32] with
a learning rate of 0.01, maximum episode length as 25 (max
episodes to reach the terminal state), and 7 = 0.01 for updating
the target networks. « is the discount factor, which is set to
0.95. The size of the replay buffer is 1 million, and the network
parameters are updated after every 100 samples added to the
replay buffer. The workloads are trained for 60K episodes
without using explicit vector instructions for parallelization of
the action selection phase. We use the default hyper-parameters
recommended by the state-of-the-art baselines.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance benefits of our
optimization techniques.

A. Performance Improvements: Mini-batch Sampling Phase &
End-to-end Training Time

We begin by studying our cache-aware sampling optimiza-
tion, where we pick different numbers of neighbor transition
data samples in the experience replay buffer to understand the
relative performance gains. Figure 8 shows the performance
improvements in two scenarios: one with 64 neighbors and 16
reference points to optimize spatial locality and another with
16 neighbors and 64 reference points to sufficiently preserve
the randomness property of sampling in the transitions.

Compared to the baseline MADDPG, our proposed opti-
mization significantly reduces the sampling phase training time
by 37.2% for the predator-prey environment with 24 agents
(64 neighbors and 16 reference points). This improvement
is consistent across predator-prey and cooperative navigation
scenarios, each involving 3-6-12-24 agent configurations’. Fig-
ure 9 shows the end-to-end training time reduction compared
to the baseline MARL workloads. We observe that as the
number of agents grows from 3 to 24 for a competitive
task, the training time reduces from 8.2% to 20.5%, which
shows that our optimization improves the end-to-end training
time by about 1.2x for a 24-agent setting. Furthermore,
as the frequency of sampling function calls increases, the
performance gains in end-to-end training time become more
pronounced with our cache-aware optimization.

Similar to MADDPG, in the case of MATD3, for 3 and 6
agents in a predator-prey environment, we observe a sampling
phase time reduction of 36% with 16 neighbors and 64
reference points. Another key finding is that cache-aware
MATD?3 also exhibits superior performance compared to the
baseline MATD3 within the sampling phase, consequently
translating into overall performance improvements. The end-
to-end training time reduction for MATD3 with 16 neighbors
and 64 reference points in predator-prey environment ranges
from 6.8% to 10.25% for 3 to 6 agents, respectively.

Using the Perf tool, we profile the mini-batch sampling
phase to obtain low-level CPU metrics. By implementing
our cache locality-aware optimization within MADDPG, we
significantly reduced cache misses. Specifically, we observed
a decrease of approximately 16.1%, 21.8%, 25%, and 29%
in cache misses when dealing with 3, 6, 12, and 24 agents,
respectively. These improvements were particularly prominent
when we had 16 neighbors and 64 reference points (more
randomness) in a predator-prey scenario.

Figure 10 illustrates the game scores achieved during
the training iterations, depicting the average reward for all
agents in multi-agent settings. It is worth noting that in
the cooperative navigation environment with 12 agents, our
cache-aware optimization shows slight degradation (the point

5Given the limitations in available space, we present charts related to MADDPG as
a representative MARL workload. We observed similar trends in MATD3 as well.

MADDPG-PP (neighbors=16; ref=64
MADDPG-PP (neighbors=64; ref=16
EMADDPG-CN (neighbors=16; ref=64
™l MADDPG-CON (neighbors=64; ref=16

as 37.2
28.4 33.2 32.8 29

100%
80% |-
60% |-
40% |35 34.9 37.5
20%

i | EL:

3 agents

)
)
)
)

6 32.9 30.7 33.8

6 agents 12 agents 24 agents

35.0 37.2

% Training time reduction

Number of agents n

Fig. 8: Comparing the mini-batch sampling phase for MAD-
DPG across various environments: PP (Predator-Prey) and CN
(Cooperative Navigation). We utilize 16 neighbors with 64
reference points and 64 neighbors with 16 reference points.

Ll
24 agents

=
Q

E 100% MADDPG-PP (neighbors=16; ref=64)

3 s0% | [MADDPG-PP (neighbors=64; ref=16)

& 0 E=IMADDPG-CN (neighbors=16; ref=64)

2 60% | ™ml MADDPG-CN (neighbors=64; ref=16)

o 40% |

8 19.120.5 -
2 20%[g5 g9 76 86 75 9.5 111121109119 =3 mg 141 166
= 8 82 61 65 7.6 86 7. BlEE

& plmEon memetw FEEM

N

3 agents 6 agents 12 agents

Number of agents n

Fig. 9: Comparing the total training time for MADDPG across
various environments: PP (Predator-Prey) and CN (Coopera-
tive Navigation). We utilize 16 neighbors with 64 reference
points and 64 neighbors with 16 reference points.

where the curve starts to converge) in rewards when altering
the uniform distribution. To address this bias and maintain
the distribution while improving performance, we introduce
information-prioritized sampling. Figure 11 demonstrates that
this approach enhances the learning performance by giving
priority to experiences with a significant impact on overall
rewards while improving the training time through selecting
the neighbor samples that preserve spatial locality. The trend
in competitive tasks is relatively uneven, but this instability
is inherited from the baseline. We note that MARL training
can be unstable in some environments due to complex inter-
agent interactions and may need hyper-parameter tuning to
successfully train for optimal policies.

B. Cross-validation

To understand how our optimizations perform across
different CPU-GPU architectures, we consider an Intel
i7-9700K CPU with 8 cores and a Nvidia Pascal micro-
architecture (GTX 1070 - GPU enabled). To evaluate the
compute-heavy multi-agent setting, we test MADDPG with
the predator-prey environment. Both Figure 12 and Figure 13
illustrate the performance benefits (training time reduction)
achieved through the application of our proposed optimization
across different computing platforms.

-o-Baseline_ MADDPG -=-N16_R64_MADDPG —+ N64_R16_MADDPG -o-Baseline_ MADDPG -s-N16_R(

64_MADDPG + N64_R16_MADDPG - Bascline_ MADDPG -s-N16_R64_MADDPG —+ N64_R16_MADDPG

300 |Mean Episode Reward 000 | Mean Episode Reward Mean Episode Reward
180 o 5 Beongeietd ~18000 ¢ B, YR
2 T 4
160 3500 ~20000 i' f
140
oo |
22000
120
~1000 |
100 21000 |
80
60 o —26000 | |
0 Episodes . . . - Dpisodes, Episodes
. N \ N \ \) \)
W W@ W R VoW

(a) PP-6 agents

(b) CN-6 agents

(c) CN-12 agents

Fig. 10: The training outcomes for multi-agent games using the baseline MADDPG workload; adopting cache-aware sampling
with two settings: one with n = 16 and ref = 64 (which enhances randomness), and another with n = 64 and ref = 16
(focusing on optimizing spatial locality). The environments include PP (Predator-Prey) and CN (Cooperative Navigation).

—e-Baseline_ MADDPG_PER-s-1P_MADDPG

lic Reward (Agent-specific)

p Mean Episode Reward

60 & 3000

—e-Baseline_ MADDPG_PER -=-IP_ MADDPG

—e-Baseline_ MADDPG_PER-=-IP_MADDPG

Mean Episode Reward

50
—4000
40

—5000

—6000

10 1d

Episodes

Episodes Episodes

N
S

N
N S
N

S
N
5

%

(a) PP-6 agents

Fig. 11: Results from Multi-Agent Reinforcement Learning

(b) CN-6 agents

N N S
& S N
N Ny N

S S S S s
N N s N & N

(c) CN-12 agents

(MARL) training using the PER-MADDPG algorithm with a

prioritized sampling of information, conducted in both the Predator-Prey (PP) and Cooperative Navigation (CN) tasks, involving

scenarios with 3 to 12 agents. In the Predator-Prey task, only

the rewards for the predator agents are presented to illustrate the

reward variations. On the other hand, in cooperative tasks, where agents work together, the emphasis lies on presenting the

average scores achieved without detailing individual rewards.

An interesting observation is that using the CPU in isolation
yields notable performance gains, surpassing the improve-
ments attained from a system equipped with a GTX 1070. This
phenomenon arises due to the intricacies of enabling CPU-
GPU computation, which involves frequent data transfer and
exerts pressure on memory and PCle bandwidth. This effect
becomes more pronounced when dealing with a smaller num-
ber of agents, attributed to insufficient data and computation
to engage the GPU’s processing capacity completely.

MADDPG-PP-MBS (neighbors=16; ref=64)
MADDPG-PP-TT (neighbors=16; ref=64)
EIMADDPG-PP-MBS (neighbors=64; ref=16)
Pl MADDPG-PP-TT (neighbors=64; ref=16)

38.4

100%

80%

60%

37.5

34.9

40%

18.5

=

17.0

T

20%
0%

9.9 12.1

EeEE]
T
3 agents

i
T
12 agents

% Training time reduction

6 agents

Number of agents n

Fig. 12: Mini-batch sampling phase (MBS) and total training
time (TT) savings on Intel i7-9700K CPU with 8 cores
evaluated on MADDPG with predator-prey environment.

.§ EXIMADDPG-PP-MBS (neighbors=16; ref=64)

g 100% EHMADDPG-PP-TT (neighbors=16; ref=64)

E 80% - EIMADDPG-PP-MBS (neighbors=64; ref=16) o
9 0% PB MADDPG-PP-TT (neighbors=64; ref=16) |
g 4

S aonl 328 362 392

w 0% 952 317

EO20% | 20 . 6.1 6.5 12.3 133 -
E =120 mn = W B =
INS 3 agents 6 agents 12 agents

Number of agents n

Fig. 13: Mini-batch sampling phase (MBS) and total training
time (TT) savings on CPU-GPU (Nvidia Pascal-GTX 1070)
evaluated on MADDPG with predator-prey environment.

C. Additional Opportunities for Performance Optimization

1) Information prioritized locality-aware sampling:
We evaluate the end-to-end performance benefits of our
information-prioritized locality-aware sampling and compare
it to the state-of-the-art prioritized version of MADDPG, as
algorithmic optimization involves calculating the weights and
updating priorities in the training phase. In our evaluation
setup, we adjust the selection of neighboring reference points
based on their values. If a reference point’s value is below
0.33 (11), we pick one neighbor (N1). When the reference
point value falls between 0.33 (77) and 0.66 (7%), we opt for

two neighbors (IV2). If a reference point’s normalized priority
surpasses 0.66 (7T%), we choose four neighbors (/N3). These
parameters collectively allow our algorithm to adaptively de-
termine the number of neighbors selected, improving learning
efficiency in multi-agent reinforcement learning. Averaging
across 3, 6, and 12 agents, we observed 2x improvement in the
efficiency of the mini-batch sampling phase for MADDPG in
both competitive and cooperative. Figure 11 illustrates reward
curves plotted over 60,000 episodes. This graph validates
that our optimizations perform comparably to the state-of-
the-art baseline, as indicated in the results. The curve in red
is our optimization on top of PER [27], and the curve in
blue is the baseline (PER-MADDPG [27]). This is achieved
by strategically selecting the reference points that have high
priority and combining them with cache-aware sampling to
enable the hardware prefetcher to operate efficiently.

2) Data layout reorganization: Figure 14 shows the train-
ing time reduction for the mini-batch sampling phase. In cases
involving 3 and 6 agents, the dominant factor in performance
profile is the transition data layout reorganization phase,
and we observe performance slowdown. This is because the
time required for data reshaping must be combined with the
layout reorganization time. However, in the case of 24 agents
within the predator-prey environment, a substantial reduction
of approximately 25.8% in the time taken for the sampling
phase becomes noticeable (Figure 14). If we focus solely on
inter-agent sampling and exclude data reshaping, we achieve
a speedup of about 1.36x-2.26x-4.41x-9.55x for 3-6-12-
24 agents respectively in competitive environments. Similarly,
in cooperative scenarios, we can achieve speedups of 1.18x-
1.71x-3.44x-7.03x for 3-6-12-24 agents, respectively.

VII. RELATED WORK

Prior work have analyzed performance enhancing methods
for training and inference times through software-hardware
optimizations [33], [34]. To accelerate the single-agent RL
algorithms using CPU-GPU platforms, several methods are
proposed [35]-[42]. QuaRL [35] observed that quantizing the
policies to < 8 bits led to performance improvements and

‘ W] 25.8%
24 agents —| 15.23% n
(W 9.3%
12 agents —| [l 4.8% I
—-10.35% W]
6 agents | —19.7% Eﬁﬁfff — -
Cooperative Navigation
o]
—37.1% m = Predator-Prey
3 agents | —63.8% (1272707575050, 0) =2
| | | | |
—100 —50 0 50 100

Percentage improvements

Fig. 14: Reduction in training time for the mini-batch sampling
phase (MADDPG workload) after enabling transition data
layout reorganization on predator-prey & cooperative tasks.

carbon emission reduction compared to full precision training
only in single-agent settings. WarpDrive [42], provides high-
throughput and scales almost linearly to many agents and
run thousands of parallel environment simulations. However,
our work emphasizes multi-agent scenarios where inter-agent
communication within a common shared environment is piv-
otal, and these scenarios are directly applicable to real-world
applications. AccMER [43], on the other hand, minimizes the
transition data movement of cooperative MARL workloads by
repeatedly reusing the transitions for a window of n steps.
However, this approach specifically targets prioritized MARL
workloads and cooperative tasks.

Prior studies, like FA3C [33], have focused on acceler-
ating multiple parallel worker scenarios, where each agent
is controlled independently within their own environments
using single-agent RL algorithms. iSwitch [34] reduces the
end-to-end network latency for synchronous training but also
improves the convergence with faster weight updates for
asynchronous training. However, MARL algorithms involve
significant inter-agent interactions and related computations in
a single shared environment. Agents in such MARL settings
usually have a large observation-action space. To the best
of our knowledge, this is the first work to present insights
into comprehensive performance profiling that encompasses
multiple agents from a systems perspective.

Most of the existing literature has extensively discussed the
challenges related to memory accesses in various applications,
including recommendation systems, RL and large language
models [44]-[48]. To tackle these issues, previous efforts have
explored Processing-In-Memory/Near-Memory techniques to
accelerate the inference and training phases. However, these
approaches require significant changes to the hardware in
terms of commercialization and adapting to rapidly evolving
model designs. In contrast, we introduce two cost-effective
methods for adapting the software to improve memory access
prediction and optimize cache usage with hardware hints.

VIII. CONCLUSION

We present a detailed performance analysis of a new class
of algorithms originating from the domain of Multi-Agent
Reinforcement Learning (MARL). These workloads are com-
putationally intensive and can run for several days, even for
a relatively small number of agents (48) on the latest high-
performance GPUs. We proposed and studied several opti-
mizations to address the performance concerns that guide the
hardware prefetchers to reduce the end-to-end training time.
Our experimental results demonstrate end-to-end training time
acceleration, with improvements ranging from 8.2% (3 agents)
to 20.5% (24 agents) compared to the state-of-the-art MAD-
DPG algorithm. Further, we achieve 2x speedup (sampling
phase) for our information prioritized sampling compared to
PER-MADDPG.

ACKNOWLEDGMENT

This research is based on work supported by the National
Science Foundation under grant CCF-2114415.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

H. U. Sheikh and L. B6loni, “Multi-agent reinforcement learning for
problems with combined individual and team reward,” in IJ/JCNN. IEEE,
2020, pp. 1-8.

G. Swamy, S. Reddy, S. Levine, and A. D. Dragan, “Scaled autonomy:
Enabling human operators to control robot fleets,” in 2020 I[EEE
International Conference on Robotics and Automation (ICRA). 1EEE,
2020, pp. 5942-5948.

Y. Yuan, J. Hao, E. Ni, Y. Mu, Y. Zheng, Y. Hu, J. Liu, Y. Chen, and
C. Fan, “Euclid: Towards efficient unsupervised reinforcement learning
with multi-choice dynamics model,” arXiv preprint arXiv:2210.00498,
2022.

A. L. Bazzan, “Opportunities for multiagent systems and multiagent
reinforcement learning in traffic control,” Autonomous Agents and Multi-
Agent Systems, vol. 18, pp. 342-375, 2009.

F. Ni, J. Hao, J. Lu, X. Tong, M. Yuan, J. Duan, Y. Ma, and K. He,
“A multi-graph attributed reinforcement learning based optimization
algorithm for large-scale hybrid flow shop scheduling problem,” in
Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, 2021, pp. 3441-3451.

H. Jianye, X. Hao, H. Mao, W. Wang, Y. Yang, D. Li, Y. Zheng, and
Z. Wang, “Boosting multiagent reinforcement learning via permutation
invariant and permutation equivariant networks,” in The Eleventh Inter-
national Conference on Learning Representations, 2022.

C. Berner, G. Brockman, B. Chan, V. Cheung, P. D¢biak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse et al., “Dota 2 with large
scale deep reinforcement learning,” arXiv preprint arXiv:1912.06680,
2019.

S. Gronauer and K. Diepold, “Multi-agent deep reinforcement learning:
a survey,” Artificial Intelligence Review, pp. 1-49, 2022.

K. Zhang, Z. Yang, and T. Bagar, “Multi-agent reinforcement learning:
A selective overview of theories and algorithms,” Handbook of Rein-

forcement Learning and Control, pp. 321-384, 2021.

M. Wen, J. Kuba, R. Lin, W. Zhang, Y. Wen, J. Wang, and Y. Yang,
“Multi-agent reinforcement learning is a sequence modeling problem,”
Advances in Neural Information Processing Systems, vol. 35, pp.
16509-16 521, 2022.

M. W. Brittain, X. Yang, and P. Wei, “Autonomous separation assurance
with deep multi-agent reinforcement learning,” Journal of Aerospace
Information Systems, vol. 18, no. 12, pp. 890-905, 2021.

P. Razzaghi, A. Tabrizian, W. Guo, S. Chen, A. Taye, E. Thompson,
A. Bregeon, A. Baheri, and P. Wei, “A survey on reinforcement learning
in aviation applications,” arXiv preprint arXiv:2211.02147, 2022.

Q. Wu, G. Bansal, J. Zhang, Y. Wu, S. Zhang, E. Zhu, B. Li, L. Jiang,
X. Zhang, and C. Wang, “Autogen: Enabling next-gen llm applications
via multi-agent conversation framework,” 2023.

Y. Mei, H. Zhou, and T. Lan, “Projection-optimal monotonic value
function factorization in multi-agent reinforcement learning,” in Pro-
ceedings of the 2024 International Conference on Autonomous Agents
and Multiagent Systems, 2024.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey
of multiagent reinforcement learning,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 38, no. 2,
pp. 156-172, 2008.

“NVIDIA Ampere Architecture,” https://www.nvidia.com/content/PDF/
nvidia-ampere- ga- 102- gpu-architecture- whitepaper-v2.pdf.

R. Lowe, Y. 1. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” NeurIPS, vol. 30, 2017.

J. Ackermann, V. Gabler, T. Osa, and M. Sugiyama, “Reducing overes-
timation bias in multi-agent domains using double centralized critics,”
NeurIPS Deep RL Workshop, 2019.

T. Li, K. Zhu, N. C. Luong, D. Niyato, Q. Wu, Y. Zhang, and B. Chen,
“Applications of multi-agent reinforcement learning in future internet:
A comprehensive survey,” IEEE Communications Surveys & Tutorials,
vol. 24, no. 2, pp. 1240-1279, 2022.

T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, “Deep reinforcement
learning for multiagent systems: A review of challenges, solutions, and
applications,” IEEE transactions on cybernetics, vol. 50, no. 9, pp. 3826—
3839, 2020.

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

A. Oroojlooy and D. Hajinezhad, “A review of cooperative multi-agent
deep reinforcement learning,” Applied Intelligence, vol. 53, no. 11, pp.
13677-13722, 2023.

A. Feriani and E. Hossain, “Single and multi-agent deep reinforcement
learning for ai-enabled wireless networks: A tutorial,” IEEE Communi-
cations Surveys & Tutorials, vol. 23, no. 2, pp. 1226-1252, 2021.

S. Gu, L. Yang, Y. Du, G. Chen, F. Walter, J. Wang, Y. Yang, and
A. Knoll, “A review of safe reinforcement learning: Methods, theory
and applications,” arXiv preprint arXiv:2205.10330, 2022.

K. Gogineni, P. Wei, T. Lan, and G. Venkataramani, “Scalability
Bottlenecks in Multi-Agent Reinforcement Learning Systems,” arXiv
preprint arXiv:2302.05007, 2023.

——, “Towards efficient multi-agent learning systems,” arXiv preprint
arXiv:2305.13411, 2023.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015.

Y. Mei, H. Zhou, T. Lan, G. Venkataramani, and P. Wei, “MAC-
PO: Multi-agent experience replay via collective priority optimization,”
in Proceedings of the 2023 International Conference on Autonomous
Agents and Multiagent Systems, 2023, pp. 466-475.

J. Ackermann, “Tensorflow-2 implementation of multi-agent re-
inforcement learning approaches,” https://github.com/JohannesAck/
tf2multiagentrl, 2020.

V. Ramos, “Performance counters api for python,” https://pypi.org/
project/performance-features/, May 2019.

Nvidia-Profiler-12.3, “Nvidia profiler user’s guide,” https://docs.nvidia.
com/cuda/profiler-users- guide/index.html, 2023.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

H. Cho, P. Oh, J. Park, W. Jung, and J. Lee, “Fa3c: Fpga-accelerated
deep reinforcement learning,” in ASPLOS, 2019, pp. 499-513.

Y. Li, I.-J. Liu, Y. Yuan, D. Chen, A. Schwing, and J. Huang, “Accel-
erating distributed reinforcement learning with in-switch computing,”
in Proceedings of the 46th International Symposium on Computer
Architecture, 2019, pp. 279-291.

S. Krishnan, M. Lam, S. Chitlangia, Z. Wan, G. Barth-Maron, A. Faust,
and V. J. Reddi, “QuaRL: Quantization for fast and environmentally
sustainable reinforcement learning,” 2022.

B. Wang, J. Xie, and N. Atanasov, “DARLIN: Distributed multi-
Agent Reinforcement Learning with One-hop Neighbors,” CoRR
abs/2202.09019, 2022.

M. Babaeizadeh, 1. Frosio, S. Tyree, J. Clemons, and J. Kautz,
“GA3C: GPU-based A3C for deep reinforcement learning,” CoRR
abs/1611.06256, 2016.

M. Zhou, Z. Wan, H. Wang, M. Wen, R. Wu, Y. Wen, Y. Yang, Y. Yu,
J. Wang, and W. Zhang, “Malib: A parallel framework for population-
based multi-agent reinforcement learning.” J. Mach. Learn. Res., vol. 24,
pp. 150-1, 2023.

V. Egorov and A. Shpilman, “Scalable multi-agent model-based rein-
forcement learning,” arXiv preprint arXiv:2205.15023, 2022.

A. V. Clemente, H. N. Castejon, and A. Chandra, “Efficient
parallel methods for deep reinforcement learning,” arXiv preprint
arXiv:1705.04862, 2017.

J. Bjorck, X. Chen, C. De Sa, C. P. Gomes, and K. Weinberger,
“Low-precision reinforcement learning: running soft actor-critic in half
precision,” in International Conference on Machine Learning. PMLR,
2021, pp. 980-991.

T. Lan, S. Srinivasa, H. Wang, and S. Zheng, “Warpdrive: fast end-to-
end deep multi-agent reinforcement learning on a gpu,” The Journal of
Machine Learning Research, vol. 23, no. 1, pp. 14225-14230, 2022.
K. Gogineni, Y. Mei, P. Wei, T. Lan, and G. Venkataramani, “AccMER:
Accelerating Multi-Agent Experience Replay with Cache Locality-aware
Prioritization,” 2023.

C. Guo, J. Tang, W. Hu, J. Leng, C. Zhang, F. Yang, Y. Liu, M. Guo,
and Y. Zhu, “Olive: Accelerating large language models via hardware-
friendly outlier-victim pair quantization,” in Proceedings of the 50th
Annual International Symposium on Computer Architecture, 2023, pp.
1-15.

U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks,
B. Cottel, K. Hazelwood, M. Hempstead, B. Jia et al., “The architectural
implications of facebook’s dnn-based personalized recommendation,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 1EEE, 2020, pp. 488-501.

[46] L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril,

[47]

(48]

A. Firoozshahian, K. Hazelwood, B. Jia, H.-H. S. Lee et al., “Recnmp:
Accelerating personalized recommendation with near-memory process-
ing,” in 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA). 1EEE, 2020, pp. 790-803.

M. Wilkening, U. Gupta, S. Hsia, C. Trippel, C.-J. Wu, D. Brooks,
and G.-Y. Wei, “Recssd: near data processing for solid state drive
based recommendation inference,” in Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2021, pp. 717-729.

K. Gogineni, S. S. Dayapule, J. Gémez-Luna, K. Gogineni, P. Wei,
T. Lan, M. Sadrosadati, O. Mutlu, and G. Venkataramani, “Swiftrl:
Towards efficient reinforcement learning on real processing-in-memory
systems,” arXiv preprint arXiv:2405.03967, 2024.

	Introduction
	Background
	Multi-Agent Reinforcement Learning
	Multi-Agent Player Games

	MARL Performance Profile
	Scalability Tests
	Our Key Findings

	Opportunities for MARL Performance Optimization
	Intra-Agent Cache-aware Mini-batch Sampling
	Algorithmic Optimizations
	Information Prioritized Locality-aware Sampling
	Transition Data Layout Reorganization

	Implementation
	Performance Evaluation
	Performance Improvements: Mini-batch Sampling Phase & End-to-end Training Time
	Cross-validation
	Additional Opportunities for Performance Optimization
	Information prioritized locality-aware sampling
	Data layout reorganization

	Related Work
	Conclusion
	References

