
Characterizing and Optimizing the End-to-End

Performance of Multi-Agent Reinforcement

Learning Systems

Kailash Gogineni∗, Yongsheng Mei∗, Karthikeya Gogineni†, Peng Wei∗, Tian Lan∗, Guru Venkataramani∗

∗George Washington University, USA †Independent

Abstract— Multi-Agent Reinforcement Learning Systems
(MARL) can unlock the potential to model and control mul-
tiple autonomous decision-making agents simultaneously. During
online training, MARL algorithms involve performance-intensive
computations, such as exploration and exploitation phases origi-
nating from a large observation-action space and a huge number
of training steps. Understanding and mitigating the MARL
performance limiters is key to their practical adoption.

In this paper, we first present a detailed workload characteri-
zation of MARL workloads under different multi-agent settings.
Our experimental analysis identifies a critical performance bot-
tleneck that affects scaling within the mini-batch sampling on
transition data. To mitigate this issue, we explore a series of
optimization strategies. First, we investigate cache locality-aware
sampling that prioritizes intra-agent neighbor transitions over
other randomly picked transition data samples within the base-
line MARL algorithms. Next, we explore importance sampling
techniques that preserve the learning performance/distribution
and capture the neighbors of important transitions. Finally, we
design an additional algorithmic optimization that reorganizes
the transition data layout to improve the cache locality between
different agents during the mini-batch sampling process.

We evaluate our optimizations using popular MARL work-
loads on multi-agent particle games. Our work highlights several
opportunities for enhancing the performance of multi-agent sys-
tems, with end-to-end training time improvements ranging from
8.2% (3 agents) to 20.5% (24 agents) compared to the baseline
MADDPG, affirming the usefulness of deeply understanding
MARL performance bottlenecks and mitigating them effectively.

Index Terms—Multi-Agent Systems, Performance Analysis,
Reinforcement Learning, Performance Optimization

I. INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) algorithms

are a new and evolving class of algorithms that can tackle

real-world problems involving complex inter-agent interac-

tions and decision-making in a shared environment. These

settings are vastly different from single-agent RL scenarios and

involve joint state-action spaces with multiple agents either

cooperatively or competitively engaging with other agents in

a shared environment. Consequently, as the number of agents

grows, the state-action space expands exponentially, presenting

unique computational complexities [1]. Applications of MARL

span various domains, such as coordinating robot fleets [2],

[3], transportation management [4], [5], game AI [6], [7],

autonomous driving, recommendation systems, large language

models, aviation, and search-and-rescue drone missions, to

name a few [8]–[14].

In MARL [15], [16], individual agents optimize their actions

and interactions with the environment. They decide their

actions based on the current observations and evaluate state-

action pairs using reward functions. The function determining

the action is known as a policy, and the agents seek to find

optimal policies that maximize their total accumulative (dis-

counted) rewards. The function representing the reward esti-

mates is known as the value function.

In the context of large-scale MARL involving approximately

50 agents working on a competitive task, our experiments

show that it takes up to seven days to train to reach 1 million

time steps and achieve optimal policy, even on the latest high-

performance Nvidia Ampere architecture [17]. This severely

limits the practical use of MARL in real-world systems and

poses significant computational challenges, especially as the

number of agents scales higher.

Multi-agent learning workloads typically follow the Cen-

tralized Training Decentralized Execution (CTDE) model and

consist of two main stages: action selection, which efficiently

runs on the GPU due to its parallel processing demands, and

update all trainers, where the sampling phase, characterized

by irregular accesses, is CPU-bound, while the actor-critic

network updates are GPU-bound. In the action selection stage,

as depicted in Figure 1, each agent in the environment has its

own actor network (AN), which generates actions based on

its current observation. Agents simultaneously execute these

actions in a shared environment and receive rewards and

the next state as the output. The experiences of each agent

are stored in a replay buffer, which is essential for back-

propagation. During the mini-batch sampling phase, each agent

collects historical transition data of all other agents stored in

the experience replay buffer. This sampling approach allows

the algorithm to reuse transition data for updating the current

policy. During training, each agent has a centralized critic that

calculates Q-values (based on global information) to update the

decentralized actors using the joint observation-action space of

all agents. In the update all trainers phase, both the actor and

critic networks are updated following the target Q calculation

and the mini-batch sampling phase.

As the number of agents grows linearly, our performance

analysis of key MARL workloads (MADDPG [18] and

MATD3 [19]) on the recent Nvidia RTX 3090, CPU-GPU ar-

chitecture [17] demonstrated a prominent trend: the update all

trainers phase dominates the overall MARL performance (up

to ≈80%), surpassing all other phases significantly (Figure 2).

This key finding prompted us to conduct a more granular

analysis, breaking down the update all trainers phase into its

constituent modules: mini-batch sampling, target Q calcula-

tion, and Q loss - P loss. In our analysis, the sampling phase

was found to be the dominating component of the overall

MARL training times. (Figure 3).

Action Space
Action

Choices

Prey

Landmark 1

Landmark 2Predator 1

Predator 2

Environment
Action Execution

Rewards and new states

Experience
Replay BufferStore experiences

(obsi, acti, rewardsi, next obsi, donei)

Action
selection

A
ge

n
ts

1

2

N

Mini-
batch

sampling Calculation

Target
Q

Actor-Critic
Update()

3

Update
all

trainers

 1 AN1 ?

Agent 1

Agent 2
Agent N

Fig. 1: MARL architecture and its typical implementation

using a decentralized actor and a centralized critic.

To address the MARL performance bottlenecks, we delve

into various avenues for performance optimization. First,

a cache locality-aware sampling accelerates transition data

access latencies by including the neighboring intra-agent

transitions for the training phase. Second, we explore an

information-prioritized locality-aware sampling that empha-

sizes certain information-rich transition data indices to main-

tain algorithmic learning performance. Third, we also explore

data layout reorganization in the experience replay buffer

to accelerate the sampling process between the agents. This

technique involves rearranging the transition data of all agents

in a locality-aware order to achieve better performance.

In summary, our paper makes the following contributions:

• We systematically study the performance profiles of

training phases within two state-of-the-art multi-agent

reinforcement learning systems (MADDPG and MATD3)

using two multi-agent particle environments with 3 to 24

agents on Nvidia Ampere Architecture (RTX 3090) [17].

For the first time, our performance analysis presents key

insights into the computational bottlenecks confronting

several MARL algorithms from a systems perspective.

• We present performance enhancement opportunities for

hardware-level and algorithmic optimizations to improve

the runtime of a key performance limiter within MARL,

namely the mini-batch sampling phase. Our proposed

optimizations include: 1 Cache locality-aware neigh-

bor data sampling to improve intra-agent memory ac-

cesses, 2 Information prioritized cache locality-aware

sampling to improve the sampling distribution, and 3

Transition data layout reorganization to improve the inter-

agent cache locality.

• Our experimental results demonstrate end-to-end training

time acceleration (1.2× for 24 agents), with performance

improvements ranging from 8.2% (3 agents) to 20.5% (24

agents) compared to the baseline MARL workload -

MADDPG, and attains an average 2× faster sampling

compared to existing prioritization approaches (PER-

MADDPG) while preserving the mean scores in both

cooperative and competitive tasks. Finally, our transition

data layout reorganization strategy shows promise of a

steadily rising trend (from a slowdown of 37% for 3

agents to a speedup of 25.84% for 24 agents) in the

sampling phase for a predator-prey environment for the

MADDPG algorithm.

II. BACKGROUND

In this section, we introduce our MARL workloads and

multi-agent particle environments [18].

A. Multi-Agent Reinforcement Learning

Typically, MARL settings with N agents is defined by a set

of states, S = S1×...×SN , a set of actions A = A1×...×AN .

Each agent selects its action by using a policy πθi : Oi×Ai →

[0, 1]. The state transition (T : S × A1 × A2 × ... × AN)

function produces the next state S
′

, given the current state

and actions for each agent. The reward, Ri : S ×Ai → R for

each agent is a function of global state and action of all other

agents, with the aim of maximizing its own expected return

Ri =
∑T

t=0 γ
trti , where γ denotes the discount factor and T

is the time horizon.

MADDPG. In MADDPG [18], each agent learns an in-

dividual policy that maps the observation to its action to

maximize the expected return, which is approximated by

the critic. MADDPG lets the critic of agent i to be trained

by minimizing the loss with the target Q-value and yi us-

ing L(θi) = IED[(Qi(S,A1, ...An) − y2i], and yi = ri +
γQi(S

′

, A
′

1, ...A
′

n)a′

j
=π(o

′

j
), where S and A1, ...An represent

the joint observations and actions respectively. D is the expe-

rience replay buffer that stores the samples of observations,

actions, rewards, and new observations for all the agents

obtained after the training episodes. The MARL framework

has four networks- actor, critic, target actor, and target critic.

Qi and π(o
′

j) are the target networks for the stable learning

of critic (Qi) and actor networks. The target actor estimates

the next action from the policy using the state output by the

actor network. The target critic aggregates the output from the

target actor to compute the target Q-values, which update the

critic network and assess the quality of the actions taken by

agents. The target networks help achieve training stability.

3 6 12 24
0%

20%

40%

60%

80%

100% 4% 4% 3% 2%

34%
46%

61%
76%

62%
50%

36%
22%

Number of agents

(%
)
T
ra
in
in
g
T
im

e
(a) MADDPG Predator-Prey

3 6 12 24
0%

20%

40%

60%

80%

100% 1% 1%

31%
44%

57%

73%

68%
55%

43%

27%

Number of agents

(b) MADDPG Cooperative Navigation

Action Selection Update all trainers Other segments

3 6 12 24
0%

20%

40%

60%

80%

100%
1% 1% 1% 1%

37%
49%

63%
78%

62%
50%

36%
21%

Number of agents

(c) MATD3 Predator-Prey

3 6 12 24
0%

20%

40%

60%

80%

100% 6% 4% 2% 1%

32%
43%

58%
73%

62%
53%

40%
26%

Number of agents

(d) MATD3 Cooperative Navigation

Fig. 2: End-to-end training time percentage breakdown for two MARL workloads, both involving 3 to 24 agents for Predator-

Prey and Cooperative Navigation multi-agent particle games. The total training times are detailed in Table I.

3 6 12 24
0%

20%

40%

60%

80%

100%
12% 8% 6% 6%

11%
9% 8% 6%

18%
19% 21% 23%

59% 64% 65% 65%

Number of agents

(%
)
T
ra
in
in
g
T
im

e

(a) MADDPG Predator-Prey

3 6 12 24
0%

20%

40%

60%

80%

100%
13% 10% 9% 6%

13%
11% 9% 9%

17%
19% 21% 24%

57% 60% 61% 61%

Number of agents

(b) MADDPG Cooperative Navigation

Mini-batch sampling Target Q calculation Q loss P loss

3 6 12 24
0%

20%

40%

60%

80%

100%
11% 8% 7% 6%

15%
12% 10% 9%

18%
20% 22% 24%

56% 60% 61% 61%

Number of agents

(c) MATD3 Predator-Prey

3 6 12 24
0%

20%

40%

60%

80%

100%
8% 7% 5% 5%

19%
15% 12% 8%

18%
20%

23%
25%

55% 58% 60% 62%

Number of agents

(d) MATD3 Cooperative Navigation

Fig. 3: Training time breakdown within update all trainers on two different MARL workloads with 3 to 24 agents for Predator-

Prey and Cooperative Navigation multi-agent particle games.

MATD3. MATD3 [19] uses the twin delayed critics to tackle

the over-estimation bias problem [19] and incorporates small

amounts of noise to the actions sampled from the buffer. As

the change of critic values needs to be reflected in the policies

of other agents, MATD3 employs delayed policy updates for

target networks and the policies to obtain an accurate critic

before using it to update the actor network.

MADDPG and MATD3 find utility in a variety of domains,

such as UAV systems, distributed control, robotic teams, and

automated trading, as highlighted by several studies [16], [20]–

[24].

B. Multi-Agent Player Games

In many practical multi-agent scenarios, several agents

simultaneously explore a common environment and perform

competitive (e.g., predator-prey), cooperative (e.g., cooperative

navigation), and mixed tasks [16], [18]. In cooperative setups,

all agents share observations, and training is conducted cen-

trally. In contrast, each agent aims to outperform its adver-

saries in competitive settings.

We explore a range of 2D tasks involving agents in co-

operative and competitive scenarios [18]. Agents interact with

landmarks and other agents in a shared environment to achieve

various goals. The observation space of the agents is a high-

TABLE I: End-to-end training times for MADDPG and

MATD3 with varying numbers of agents trained for 60,000

episodes in Predator-Prey and Cooperative Navigation tasks.

Environment Algorithm Training Time (sec)

Predator-Prey

MADDPG

3 Agents 3365.99
6 Agents 8504.99

12 Agents 23406.16
24 Agents 82768.15
MATD3
3 Agents 3838.97
6 Agents 9039.11

12 Agents 24678.43
24 Agents 80123.24

Cooperative
Navigation

MADDPG

3 Agents 2403.64
6 Agents 5888.64

12 Agents 15722.43
24 Agents 52421.81
MATD3

3 Agents 2785.53
6 Agents 6369.42

12 Agents 17081.71
24 Agents 55371.91

level feature vector containing relative distances to other

agents, along with additional information like communication

and velocity [18]. For decision-making, agents have discrete

action space and typically include five actions corresponding

to static, move right, move left, move up or down.

We chose predator-prey tasks (competitive) and cooperative

navigation tasks (cooperative) to conduct a comprehensive

workload characterization and validate the effectiveness of

our optimization techniques [18] and emphasize variations in

training time complexity (predator-prey tasks take approxi-

mately 1.5× longer training time compared to cooperative

tasks). In predator-prey tasks, N predators work cooperatively

to block the way of M fast-paced prey agents. The prey

agents are environment-controlled and try to avoid collisions

with predators. On the other hand, in cooperative navigation

tasks, N agents work together to reach L landmarks, and the

rewards encourage the agents to get closer to the landmarks

in these settings.

For the predator-prey environment, when there are 3 agents,

the observation spaces are as follows: Agent 1 (Predator) has

an observation space of Box(16,), agent 2 (Predator) has

Box(16,), agent 3 (Predator) has Box(16,), and agent

4 (Prey) has Box(14,). For example, Box(16,) would rep-

resent a 16-dimensional continuous space containing floating-

point values. This flexibility allows agents to have a fine-

grained perception of the environment or to make precise and

nuanced decisions. In a larger-scale scenario with 24 agents,

each agent (Predator) has a Box(98,) observation space,

except for agents 25 to 32 (Preys), which have Box(96,).

Moving on to the cooperative navigation environment, for 3

agents, each agent’s observation space is Box(18,), and the

number of available actions is 5. With 6 agents, each agent

has Box(36,) as their observation space. In a scenario with

12 agents, the observation space for each agent is Box(72,),

and in a 24-agent setup, each agent has an observation space

of Box(144,).

III. MARL PERFORMANCE PROFILE

Our performance analysis1 shows super-linear trend in var-

ious performance metrics (besides total training time): total

instructions increase by 3− 4×, cache misses by 2.5− 4.5×,

and dTLB load misses by 3 − 4× on average for both

cooperative and competitive games (Figure 4). As discussed

in Section II-B, the predator-prey tasks exert a much stronger

influence than cooperative tasks due to collaboration between

the predator agents. They collaborate to maximize their shared

return and capture the prey.

Specifically, within mini-batch sampling (the largest time

consumer), every agent samples a set of mini-batch samples

uniformly from the replay buffers of other agents and then

updates its critic network. Each agent performs lookup-read-

write operations, and this process scales with the number of

agents, denoted as N , and is repeated for all N agents. As

a result, the time complexity to collect the transition set is

O(N2B), where B represents the batch size. From Figure 4,

we note that a similar computational bottleneck is observed

in cooperative scenarios where all the agents are trained

1We omit the environment interactions phase for the characterization study since it

primarily depends on task complexity.

Branch

misses

iTLB load

misses

dTLB load

misses

Cache

misses

0

2

4

6

8

3.1 3.1

3.5 3.53.4
3.2

4.0 4.1

3.5
3.3

4.0

4.6

2.4

1.7

2.9

2.5

3.3
3.5

4.3
4.5

3.4 3.5

4.3

4.9

G
ro
w
th

ra
te

(N
×
)

3 to 6 agents-PP 6 to 12 agents-PP 12 to 24 agents-PP

3 to 6 agents-CN 6 to 12 agents-CN 12 to 24 agents-CN

Fig. 4: Hardware Performance analysis of update all train-

ers averaged across two MARL workloads (MADDPG &

MATD3) as the number of agents increases linearly. These

workloads are trained using the Predator-Prey (PP) and Coop-

erative Navigation (CN) environments.

collectively to reach landmarks while avoiding collisions with

each other.

Figure 5 illustrates the simplified view of the mini-batch

sampling phase where each agent selects a batch of transitions

(size=1024) from all other agent’s replay buffers. Each agent

trainer iterates through different agent IDs. The indices array

maps the random reference points for each agent ID to retrieve

transitions from the replay buffer. The model parameters in

the multi-agent setting determine the number of samples and

agents.

To analyze the memory access behavior, we profiled the

training time growth of the sampling phase. As expected, we

found that as the number of agents increases linearly, the run-

time grows by approximately 3×. A careful examination led

us to the conclusion that the sampling phase involves only

one level of indirection (as shown in Figure 5), achieved by

mapping the indices array reference points to the replay buffer

storage locations. But, it is also worth noting that the actor and

critic networks are periodically updated, causing the sampling

stage to be called millions of times (iterations), which puts

pressure on the cache bandwidth and capacity. This pressure

arises because, for each iteration, the indices array dynamically

changes to explore a broad state-action space, which can result

in highly irregular memory accesses.

The target Q calculation phase is second largest time-

consuming phase within update all trainers. Note that, in

Figure 3, the computation time as a percentage within update

all trainers increases with the number of agents for target Q,

whereas the run-time proportion of Q loss - P loss decreases

slightly.

Each agent performs the next action calculation, target Q

next, and target Q values as a function of all other agents’

joint observation-action space. To calculate the next action, the

agent i uses its policy network to determine the next action-a’

from the next state-S’. In this phase, each agent’s policy net-

work involves multiplication/addition operations with input-

weight matrix resulting in performance impact. The obtained

a’ and S’ data are aggregated and concatenated into a single

vector in order to compute the target Q next amongst the

cooperating agents. The input space (dimension) for the Q-

1
2
3
i

N

1
2
3
i

N

Agent
trainers

Agent
IDs

Common reference
indices array

0 457
1 7024

......
121 65
122 11036
123 5387
124 24
125 900
......

1023 4021

Mini-batch
sampled

transitions

.... Ti
Mem[Agent_1] T24

...... Ti
Mem[Agent_1] T900

...... Ti
Mem[Agent_1] T7024

...... Ti
Mem[Agent_1] T11036

......

...... 1 million

Ti
T24
Ti

T900
Ti

T7024
Ti

T11036
......

1 million

....
Mem[Agent_2]

....

....
Mem[Agent_N]
Mem[Agent_N]

Ti
T24
Ti

T900
Ti

T7024
Ti

T11036
......

1 million

Replay buffers of
various agents

Fig. 5: Illustration of mini-batch sampling phase, where

1024 (batch size) transitions are captured for each agent as

a function of all other agents. This process involves ran-

dom memory accesses, where the reference points from the

common indices array are used to retrieve transitions from

specific memory locations in the replay buffer storage, with a

maximum size of 1 million.

function increases quadratically with the number of agents [1].

The target critic values for each agent i are computed using

target Q next values from the target actor network. We note

that each agent has to read the other agent’s policy values; as

such, for N agents, there are N × (N − 1) memory lookup

operations corresponding to the next action-a’.

Backpropagation is the third largest phase of update all

trainers. This phase is dominated by the back-propagation of

the critic network that computes the mean-squared error loss

between the target critic and critic networks, and the actor

network is updated by minimizing the Q values (critic net-

work). As the number of agents increases, the main challenge

is the trainable parameters increase, and N policy and N critic

networks are built for all N agents, which incurs extra time to

update the weights for each agent.

A. Scalability Tests

In our study, we aimed to observe the update all trainers

trend in MADDPG when using the predator-prey environment.

We conducted tests on the Nvidia Ampere Architecture [17]

to assess scalability and profiled the training time. Scalability

is crucial as it allows systems to handle increased workloads

efficiently, ensuring optimal performance and adaptability in

various scenarios. In applications like robotics, scalability

enhances operational efficiency and reliability, enabling simul-

taneous task execution and obstacle management. In Figure 6,

we notice an exponential increase in the total training time

to 3.5 days for 48 agents; 7 days including environment

interactions (shown on the y-axis). Also, the overall contri-

bution from update all trainers modules ranges from 34% to

87% as we increase the number of agents. This growth rate

is especially noteworthy in MARL with a larger number of

agents, primarily due to the expanding size of the observation-

action space [25], [26]. For instance, for a single experience

tuple from a 3-agent setup with an observation space of

[Box(16,), Box(16,), Box(16,), Box(14,)] in

the predator-prey environment, upgrading to a 24-agent config-

0% 20% 40% 60% 80% 100%

N=3

[3366s]

N=6

[8505s]

N=12

[23406s]

N=24

[82768s]

N=48

[326782s]

4%

4%

3%

2%

1%

34%

46%

61%

76%

87%

62%

50%

36%

22%

12%

Action selection Update all trainers Other segments

Fig. 6: The breakdown of training time for the MADDPG

workload is presented, spanning from 3 to 48 agents in a

Competitive environment, specifically Predator-Prey. The total

training time of MARL algorithms, depicted in seconds, is

displayed on the y-axis within square brackets.

uration results in an approximate sixfold expansion (6×) of the

observation space. Conversely, in a cooperative setting, where

agents cooperate instead of competing, the observation space

expands by a factor of eight (8×). Contrary to cooperative

tasks, in the predator-prey task, agents must balance coopera-

tion and competition to optimize their collective performance

with predator-prey agents, emphasizing scalability issues with

the increase in the number of agents.

B. Our Key Findings

In summary, we make the following key observations from

MARL performance characterization:

1) As the number of agents increases, the overall MARL

training time for updating all trainers grows in a super-

linear fashion primarily due to the increasing observation

space and amount of interactions with all the neighboring

agents in a shared environment.

2) The transition data sampling phase dominates the overall

training time of the MARL training, which is largely

influenced by irregularity in memory access patterns on

account of the index values within the mini-batch.

3) For the sampling phase, the number of cache misses

on average grows by more than 3× (approx.) for both

the cooperative and competitive scenarios, and that could

vary significantly based on lookup patterns as each agent

has to gather all other agents’ transition data. Cache

misses are indicative of the working set sizes, and they

become particularly relevant in large-scale multi-agent

models involving 12 or more agents. In such cases, the

sampling phase entails significant data movement and

gathering operations.

4) As the number of agents increases from 3 to 24, the

dimension of Q function and target Q also grows ex-

ponentially due to the significant increase in the size of

observation space (number of float values).

IV. OPPORTUNITIES FOR MARL PERFORMANCE

OPTIMIZATION

This section explores several opportunities for optimizing

the key performance bottleneck stemming from the mini-batch

sampling phase identified in our performance profiling studies

(Section III). First, we customize the sampling process to

streamline the address fetch patterns and guide the hardware

prefetcher to improve its efficiency. Second, we present a new

optimization strategy called information-prioritized locality-

aware sampling. In contrast to randomly selecting transitions,

this method chooses neighbors from the replay buffer asso-

ciated with high-priority transitions to improve the learning

efficiency. Third, we reconsider how we store transitions from

all agents since it can directly affect the computation time

spent on the sampling phase. To tackle this issue, we explore

an algorithmic optimization - data layout reorganization.

A. Intra-Agent Cache-aware Mini-batch Sampling

The default random mini-batch sampling used in MARL

algorithms incurs high training time because each agent must

gather random transitions from other agents in order to update

their critic and actor networks.

The sampling stage has the index buffer, which stores the

lookup indices for each agent’s replay buffer. Due to the

difficulty in predicting these random memory addresses ahead

of time, the memory requests in the mini-batch sampling phase

encounter load misses for every reference point in the index

array, with cache prefetchers having little ability to predict

these indices ahead of time. Therefore, there is a need to

design cache-aware sampling strategies that could assist the

hardware prefetcher in reducing expensive trips up and down

the memory hierarchy.

Algorithm 1 demonstrates the intra-agent cache locality-

aware sampling approach. We modify the sampling phase

implementation of MARL workloads. Initially, every

agent trainer gathers a list of random reference points,

MB_idx (1024 random reference points are uniformly

sampled based on the replay buffer storage size). For

each agent, our intra-agent cache-aware approach selects a

reference point (idx) and then accesses all transitions from

idx to idx+ neighbors. This process involves retrieving the

transitions within that range from the replay buffer storage

and obtaining the corresponding output data.

Algorithm 1: Cache locality-aware sampling

Input: Mini-batch indices MB_idx; replay buffer D;

neighbors n; num_agents

Output: Final list (mini-batch transitions)

for agent_id in agent_trainers do
MB_idx ← random.sample(len(D), batch size)

for agent← 1, 2, . . . , num_agents do

for idx in MB_idx do
Output data ← D[idx : idx+ neighbors]
Final list.append(Output data)

Figure 7 depicts the new workflow from our intra-agent

cache locality-aware sampling. We effectively steer the hard-

ware prefetcher towards fetching transition data (memory

accesses that follow a sequential pattern from the chosen

reference point) from contiguous memory locations into the

cache. Our experimental analysis (Section VI-A) demonstrates

that this simple optimization can significantly improve perfor-

mance while preserving the MARL reward values observed

with random mini-batch sampling.

B. Algorithmic Optimizations

We explore additional opportunities for performance opti-

mization to tune MARL algorithms in the sampling phase,

which dominates their overall training time.

1) Information Prioritized Locality-aware Sampling: When

estimating the expected value using stochastic updates, it is

important that the updates correspond to the same distribution

as expected. However, cache locality-aware sampling can

introduce bias by changing this distribution in an uncontrolled

way, ultimately altering the solution to which the estimates

will converge. To tackle this issue and obtain the performance

guarantee, we apply the importance-sampling weights on top

of the baseline MARL workload provided in the following

lemma 1.

R1 R2 R3 R4 R5 R6 R7 R8 R9

R10 R11 R12 R13 R14 R15 R16 R17 R18

R19 R20 R21 R22 R23 R23 R24 R25

Replay Buffer

R1 R2 R3 R4 R5 R6 R7 R8 R9

R10 R11 R12 R13 R14 R15 R16 R17 R18

R19 R20 R21 R22 R23 R23 R24 R25

Replay Buffer

Cache-
aware

sampling

Random
sampling

Fig. 7: Illustration of random sampling and cache locality-

aware sampling. The reference points (R2, R5, R8, R12) are

highlighted in red. Transitions associated with each reference

point are shown in blue, with one neighbor highlighted for

each reference point.

Prior studies have considered prioritized experience replay

to improve training efficiency and rewards [27], [28]. These

strategies involve assigning weights to transitions that enhance

the sampling performance and algorithm efficiency. In our

approach, we also study how to incorporate a prioritization

scheme into our framework, which we attempt to combine

with the cache locality-aware sampling technique mentioned

earlier. To elaborate, we first generate the common indices

array set using proportional sampling [27], with the likelihood

of selecting an index influenced by the priority associated with

that index. Subsequently, we employ a predictor to determine

the optimal neighbors for the selected priority reference based

on the normalized weight (0 to 1). This process continues

until the batch size (1024) is reached to update the actor-critic

networks.

The predictor takes a normalized weight as input and

returns a list of optimal neighbors based on the value of the

weight (specific to each reference point). This determination

is made based on set threshold levels of granularity.

Lemma 1: The importance-sampling weights at step i for

eliminating the bias of changing the sampling strategy are

given by:

wi =

(

1

N
·

1

P (i)

)β

, (1)

where N is the buffer size and P (i) is the cache locality-

aware sampling probability. β represents the compensation

parameter. When β = 1, it indicates full compensation, akin

to importance sampling [27].

Lemma 1 provides the weights that can be incorporated into

the learning by updating the weighted temporal-difference and

adjusts the sampling probabilities of experiences to prioritize

and sample those experiences more frequently during training.

This process involves selecting reference points from a list

of experiences based on a randomly generated value within

the range of cumulative priorities. We then calculate the

weights for those indices using importance sampling and use

a predictor to determine the optimal neighbors in the training

phase [27].

2) Transition Data Layout Reorganization: Here, we re-

consider how the transitions (experiences) are stored in the

experience replay buffer. We redesign the replay buffer as

key-value stores, i.e., instead of storing transitions separately

for each agent in distant memory locations, we transform the

replay buffer into a hash map with key-value pairs. The key

represents the index, and the corresponding values include

transition data histories of all agents sequentially. This mod-

ification significantly reduces the sampling phase overheads

from being proportional to the number of agents, N , times

the length of mini-batch indices, m, to just a single loop

iterating m times. The baseline sampling approach had a time

complexity of O(N.m). The new approach using the key-value

pairs has a time complexity of O(m), resulting in a significant

performance improvement, especially as the number of agents

increases. By leveraging this locality-aware key-value table,

we can prefetch data for multiple agents simultaneously rather

than sampling each agent’s data individually.

V. IMPLEMENTATION

We implement our proposed optimizations discussed in Sec-

tion IV on the baseline MARL workloads: MADDPG2 [18],

and MATD33 [19]. We use the popular multi-agent particle

environment developed by OpenAI4 as our learning framework

and show the performance improvements in cooperative and

competitive scenarios. The MARL stages, such as the action

selection (neural network computations), are executed on the

2https://github.com/openai/maddpg
3https://github.com/JohannesAck/MATD3implementation
4https://github.com/openai/multiagent-particle-envs

GPU due to its parallel processing capabilities. On the other

hand, the mini-batch sampling phase is CPU-bound, while the

actor-critic updates usually run on the GPU.

Evaluation: 1 To evaluate our cache-aware mini-batch

sampling optimization (Section IV-A), we compare our per-

formance with baseline multi-agent learning methods, namely

MADDPG and MATD3, which are foundational algorithms

in various applications. 2 To evaluate our importance-based

optimization (Section IV-B1), we integrate our cache locality-

aware sampling into the existing prioritization approaches [27]

for MARL workloads. Subsequently, we compare our informa-

tion prioritized locality-aware sampling (Section IV-B1) with

the state-of-the-art prioritization schemes (PER-MADDPG

and PER-MATD3 [29]) that have low overhead in terms of

weight computation. 3 We compare the data layout reor-

ganization approach (Section IV-B2) to the baseline MARL

workload, MADDPG.

Hardware: We evaluate our approach on an NVIDIA RTX

3090. The full platform description can be found in Table II.

The server runs Ubuntu Linux 20.04.5 LTS and is equipped

with CUDA 9.0, cuDNN 7.6.5, PCIe Express v4.0, and the

NCCL v2.8.4 communication library. The Python version used

is 3.7.15, and the machine supports TensorFlow (v2.11.0),

TensorFlow-GPU (v2.1.0), and OpenAI GYM (v0.10.5). Per-

formance profiles were observed using the Perf [30] tool and

NVProf [31] to profile the hardware behavior in a multi-

core (using all cores) configuration. The hardware prefetcher

is enabled by default, and all CPU cores are operated at their

maximum frequency.

TABLE II: Evaluation Platform.

Device NVIDIA Geforce RTX 3090

Architecture Ampere

Power 350 W

CUDA Cores 10496

Base Clock 1.40 GHz

Device Memory 24 GB, 384-bit bus, GDDR6X

Host AMD Ryzen 3975WX

L1 Cache size 2 MiB (split between L1d and L1i)

L2 Cache size 16 MiB

L3 Cache size 128 MiB (shared)

TLB size 3072 4K pages

Cores / Threads 32 Cores / 64 Threads

Main Memory 512 GB, 2200 MHz, 64-bit bus, DDR4

Software Settings: The actor and critic networks are param-

eterized by a two-layer ReLU MLP with 64 units per layer,

and the mini-batch size is 1024 for sampling the transitions.

In all of our experiments, we use Adam optimizer [32] with

a learning rate of 0.01, maximum episode length as 25 (max

episodes to reach the terminal state), and τ = 0.01 for updating

the target networks. γ is the discount factor, which is set to

0.95. The size of the replay buffer is 1 million, and the network

parameters are updated after every 100 samples added to the

replay buffer. The workloads are trained for 60K episodes

without using explicit vector instructions for parallelization of

the action selection phase. We use the default hyper-parameters

recommended by the state-of-the-art baselines.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance benefits of our

optimization techniques.

A. Performance Improvements: Mini-batch Sampling Phase &

End-to-end Training Time

We begin by studying our cache-aware sampling optimiza-

tion, where we pick different numbers of neighbor transition

data samples in the experience replay buffer to understand the

relative performance gains. Figure 8 shows the performance

improvements in two scenarios: one with 64 neighbors and 16

reference points to optimize spatial locality and another with

16 neighbors and 64 reference points to sufficiently preserve

the randomness property of sampling in the transitions.

Compared to the baseline MADDPG, our proposed opti-

mization significantly reduces the sampling phase training time

by 37.2% for the predator-prey environment with 24 agents

(64 neighbors and 16 reference points). This improvement

is consistent across predator-prey and cooperative navigation

scenarios, each involving 3-6-12-24 agent configurations5. Fig-

ure 9 shows the end-to-end training time reduction compared

to the baseline MARL workloads. We observe that as the

number of agents grows from 3 to 24 for a competitive

task, the training time reduces from 8.2% to 20.5%, which

shows that our optimization improves the end-to-end training

time by about 1.2× for a 24-agent setting. Furthermore,

as the frequency of sampling function calls increases, the

performance gains in end-to-end training time become more

pronounced with our cache-aware optimization.

Similar to MADDPG, in the case of MATD3, for 3 and 6

agents in a predator-prey environment, we observe a sampling

phase time reduction of 36% with 16 neighbors and 64

reference points. Another key finding is that cache-aware

MATD3 also exhibits superior performance compared to the

baseline MATD3 within the sampling phase, consequently

translating into overall performance improvements. The end-

to-end training time reduction for MATD3 with 16 neighbors

and 64 reference points in predator-prey environment ranges

from 6.8% to 10.25% for 3 to 6 agents, respectively.

Using the Perf tool, we profile the mini-batch sampling

phase to obtain low-level CPU metrics. By implementing

our cache locality-aware optimization within MADDPG, we

significantly reduced cache misses. Specifically, we observed

a decrease of approximately 16.1%, 21.8%, 25%, and 29%

in cache misses when dealing with 3, 6, 12, and 24 agents,

respectively. These improvements were particularly prominent

when we had 16 neighbors and 64 reference points (more

randomness) in a predator-prey scenario.

Figure 10 illustrates the game scores achieved during

the training iterations, depicting the average reward for all

agents in multi-agent settings. It is worth noting that in

the cooperative navigation environment with 12 agents, our

cache-aware optimization shows slight degradation (the point

5Given the limitations in available space, we present charts related to MADDPG as

a representative MARL workload. We observed similar trends in MATD3 as well.

3 agents 6 agents 12 agents 24 agents
0%

20%

40%

60%

80%

100%

35.3
28.4 29.6

35.0
39.4

33.2 32.9
37.234.9 32.8 30.7 31.0

37.5 37.2 33.8 33.4

Number of agents n

%
T
ra
in
in
g
ti
m
e
re
d
u
ct
io
n

MADDPG-PP (neighbors=16; ref=64)

MADDPG-PP (neighbors=64; ref=16)

MADDPG-CN (neighbors=16; ref=64)

MADDPG-CN (neighbors=64; ref=16)

Fig. 8: Comparing the mini-batch sampling phase for MAD-

DPG across various environments: PP (Predator-Prey) and CN

(Cooperative Navigation). We utilize 16 neighbors with 64

reference points and 64 neighbors with 16 reference points.

3 agents 6 agents 12 agents 24 agents
0%

20%

40%

60%

80%

100%

7.8 7.6
11.1

19.1

8.2 8.6
12.1

20.5

6.1 7.5
10.9 14.1

6.5 9.5 11.9
16.6

Number of agents n

%
T
ra
in
in
g
ti
m
e
re
d
u
ct
io
n

MADDPG-PP (neighbors=16; ref=64)

MADDPG-PP (neighbors=64; ref=16)

MADDPG-CN (neighbors=16; ref=64)

MADDPG-CN (neighbors=64; ref=16)

Fig. 9: Comparing the total training time for MADDPG across

various environments: PP (Predator-Prey) and CN (Coopera-

tive Navigation). We utilize 16 neighbors with 64 reference

points and 64 neighbors with 16 reference points.

where the curve starts to converge) in rewards when altering

the uniform distribution. To address this bias and maintain

the distribution while improving performance, we introduce

information-prioritized sampling. Figure 11 demonstrates that

this approach enhances the learning performance by giving

priority to experiences with a significant impact on overall

rewards while improving the training time through selecting

the neighbor samples that preserve spatial locality. The trend

in competitive tasks is relatively uneven, but this instability

is inherited from the baseline. We note that MARL training

can be unstable in some environments due to complex inter-

agent interactions and may need hyper-parameter tuning to

successfully train for optimal policies.

B. Cross-validation

To understand how our optimizations perform across

different CPU-GPU architectures, we consider an Intel

i7-9700K CPU with 8 cores and a Nvidia Pascal micro-

architecture (GTX 1070 - GPU enabled). To evaluate the

compute-heavy multi-agent setting, we test MADDPG with

the predator-prey environment. Both Figure 12 and Figure 13

illustrate the performance benefits (training time reduction)

achieved through the application of our proposed optimization

across different computing platforms.

10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

60
00
0

40

60

80

100

120

140

160

180

200

Episodes

Mean Episode Reward

Baseline_MADDPG N16_R64_MADDPG N64_R16_MADDPG

(a) PP-6 agents

0

1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

6
0
0
0
0

−4500

−4000

−3500

−3000

Episodes

Mean Episode Reward

Baseline_MADDPG N16_R64_MADDPG N64_R16_MADDPG

(b) CN-6 agents

0
10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

60
00
0

−26000

−24000

−22000

−20000

−18000

Episodes

Mean Episode Reward

Baseline_MADDPG N16_R64_MADDPG N64_R16_MADDPG

(c) CN-12 agents

Fig. 10: The training outcomes for multi-agent games using the baseline MADDPG workload; adopting cache-aware sampling

with two settings: one with n = 16 and ref = 64 (which enhances randomness), and another with n = 64 and ref = 16
(focusing on optimizing spatial locality). The environments include PP (Predator-Prey) and CN (Cooperative Navigation).

1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

6
0
0
0
0

10

20

30

40

50

60

Episodes

Episodic Reward (Agent-specific)

Baseline_MADDPG_PER IP_MADDPG

(a) PP-6 agents

0

1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

6
0
0
0
0

−6000

−5000

−4000

−3000

Episodes

Mean Episode Reward

Baseline_MADDPG_PER IP_MADDPG

(b) CN-6 agents

0

1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

6
0
0
0
0

−35000

−30000

−25000

−20000

Episodes

Mean Episode Reward

Baseline_MADDPG_PER IP_MADDPG

(c) CN-12 agents

Fig. 11: Results from Multi-Agent Reinforcement Learning (MARL) training using the PER-MADDPG algorithm with a

prioritized sampling of information, conducted in both the Predator-Prey (PP) and Cooperative Navigation (CN) tasks, involving

scenarios with 3 to 12 agents. In the Predator-Prey task, only the rewards for the predator agents are presented to illustrate the

reward variations. On the other hand, in cooperative tasks, where agents work together, the emphasis lies on presenting the

average scores achieved without detailing individual rewards.

An interesting observation is that using the CPU in isolation

yields notable performance gains, surpassing the improve-

ments attained from a system equipped with a GTX 1070. This

phenomenon arises due to the intricacies of enabling CPU-

GPU computation, which involves frequent data transfer and

exerts pressure on memory and PCIe bandwidth. This effect

becomes more pronounced when dealing with a smaller num-

ber of agents, attributed to insufficient data and computation

to engage the GPU’s processing capacity completely.

3 agents 6 agents 12 agents

0%

20%

40%

60%

80%

100%

40.1
32.8 34.9

9.9 15.2 17.0

45.1
37.5 38.4

12.1 16.7 18.5

Number of agents n

%
T
ra
in
in
g
ti
m
e
re
d
u
c
ti
o
n

MADDPG-PP-MBS (neighbors=16; ref=64)

MADDPG-PP-TT (neighbors=16; ref=64)

MADDPG-PP-MBS (neighbors=64; ref=16)

MADDPG-PP-TT (neighbors=64; ref=16)

Fig. 12: Mini-batch sampling phase (MBS) and total training

time (TT) savings on Intel i7-9700K CPU with 8 cores

evaluated on MADDPG with predator-prey environment.

3 agents 6 agents 12 agents

0%

20%

40%

60%

80%

100%

23.0
31.7 36.2

2.9 6.1
12.3

25.2
32.8

39.2

3.2 6.5
13.3

Number of agents n

%
T
ra
in
in
g
ti
m
e
re
d
u
c
ti
o
n

MADDPG-PP-MBS (neighbors=16; ref=64)

MADDPG-PP-TT (neighbors=16; ref=64)

MADDPG-PP-MBS (neighbors=64; ref=16)

MADDPG-PP-TT (neighbors=64; ref=16)

Fig. 13: Mini-batch sampling phase (MBS) and total training

time (TT) savings on CPU-GPU (Nvidia Pascal-GTX 1070)

evaluated on MADDPG with predator-prey environment.

C. Additional Opportunities for Performance Optimization

1) Information prioritized locality-aware sampling:

We evaluate the end-to-end performance benefits of our

information-prioritized locality-aware sampling and compare

it to the state-of-the-art prioritized version of MADDPG, as

algorithmic optimization involves calculating the weights and

updating priorities in the training phase. In our evaluation

setup, we adjust the selection of neighboring reference points

based on their values. If a reference point’s value is below

0.33 (T1), we pick one neighbor (N1). When the reference

point value falls between 0.33 (T1) and 0.66 (T2), we opt for

two neighbors (N2). If a reference point’s normalized priority

surpasses 0.66 (T2), we choose four neighbors (N3). These

parameters collectively allow our algorithm to adaptively de-

termine the number of neighbors selected, improving learning

efficiency in multi-agent reinforcement learning. Averaging

across 3, 6, and 12 agents, we observed 2× improvement in the

efficiency of the mini-batch sampling phase for MADDPG in

both competitive and cooperative. Figure 11 illustrates reward

curves plotted over 60,000 episodes. This graph validates

that our optimizations perform comparably to the state-of-

the-art baseline, as indicated in the results. The curve in red

is our optimization on top of PER [27], and the curve in

blue is the baseline (PER-MADDPG [27]). This is achieved

by strategically selecting the reference points that have high

priority and combining them with cache-aware sampling to

enable the hardware prefetcher to operate efficiently.

2) Data layout reorganization: Figure 14 shows the train-

ing time reduction for the mini-batch sampling phase. In cases

involving 3 and 6 agents, the dominant factor in performance

profile is the transition data layout reorganization phase,

and we observe performance slowdown. This is because the

time required for data reshaping must be combined with the

layout reorganization time. However, in the case of 24 agents

within the predator-prey environment, a substantial reduction

of approximately 25.8% in the time taken for the sampling

phase becomes noticeable (Figure 14). If we focus solely on

inter-agent sampling and exclude data reshaping, we achieve

a speedup of about 1.36×-2.26×-4.41×-9.55× for 3-6-12-

24 agents respectively in competitive environments. Similarly,

in cooperative scenarios, we can achieve speedups of 1.18×-

1.71×-3.44×-7.03× for 3-6-12-24 agents, respectively.

VII. RELATED WORK

Prior work have analyzed performance enhancing methods

for training and inference times through software-hardware

optimizations [33], [34]. To accelerate the single-agent RL

algorithms using CPU-GPU platforms, several methods are

proposed [35]–[42]. QuaRL [35] observed that quantizing the

policies to ≤ 8 bits led to performance improvements and

−100 −50 0 50 100

3 agents

6 agents

12 agents

24 agents

−63.8%

−19.7%

4.8%

15.23%

−37.1%

−10.35%

9.3%

25.8%

Percentage improvements

Cooperative Navigation

Predator-Prey

Fig. 14: Reduction in training time for the mini-batch sampling

phase (MADDPG workload) after enabling transition data

layout reorganization on predator-prey & cooperative tasks.

carbon emission reduction compared to full precision training

only in single-agent settings. WarpDrive [42], provides high-

throughput and scales almost linearly to many agents and

run thousands of parallel environment simulations. However,

our work emphasizes multi-agent scenarios where inter-agent

communication within a common shared environment is piv-

otal, and these scenarios are directly applicable to real-world

applications. AccMER [43], on the other hand, minimizes the

transition data movement of cooperative MARL workloads by

repeatedly reusing the transitions for a window of n steps.

However, this approach specifically targets prioritized MARL

workloads and cooperative tasks.

Prior studies, like FA3C [33], have focused on acceler-

ating multiple parallel worker scenarios, where each agent

is controlled independently within their own environments

using single-agent RL algorithms. iSwitch [34] reduces the

end-to-end network latency for synchronous training but also

improves the convergence with faster weight updates for

asynchronous training. However, MARL algorithms involve

significant inter-agent interactions and related computations in

a single shared environment. Agents in such MARL settings

usually have a large observation-action space. To the best

of our knowledge, this is the first work to present insights

into comprehensive performance profiling that encompasses

multiple agents from a systems perspective.

Most of the existing literature has extensively discussed the

challenges related to memory accesses in various applications,

including recommendation systems, RL and large language

models [44]–[48]. To tackle these issues, previous efforts have

explored Processing-In-Memory/Near-Memory techniques to

accelerate the inference and training phases. However, these

approaches require significant changes to the hardware in

terms of commercialization and adapting to rapidly evolving

model designs. In contrast, we introduce two cost-effective

methods for adapting the software to improve memory access

prediction and optimize cache usage with hardware hints.

VIII. CONCLUSION

We present a detailed performance analysis of a new class

of algorithms originating from the domain of Multi-Agent

Reinforcement Learning (MARL). These workloads are com-

putationally intensive and can run for several days, even for

a relatively small number of agents (48) on the latest high-

performance GPUs. We proposed and studied several opti-

mizations to address the performance concerns that guide the

hardware prefetchers to reduce the end-to-end training time.

Our experimental results demonstrate end-to-end training time

acceleration, with improvements ranging from 8.2% (3 agents)

to 20.5% (24 agents) compared to the state-of-the-art MAD-

DPG algorithm. Further, we achieve 2× speedup (sampling

phase) for our information prioritized sampling compared to

PER-MADDPG.

ACKNOWLEDGMENT

This research is based on work supported by the National

Science Foundation under grant CCF-2114415.

REFERENCES

[1] H. U. Sheikh and L. Bölöni, “Multi-agent reinforcement learning for
problems with combined individual and team reward,” in IJCNN. IEEE,
2020, pp. 1–8.

[2] G. Swamy, S. Reddy, S. Levine, and A. D. Dragan, “Scaled autonomy:
Enabling human operators to control robot fleets,” in 2020 IEEE

International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 5942–5948.

[3] Y. Yuan, J. Hao, F. Ni, Y. Mu, Y. Zheng, Y. Hu, J. Liu, Y. Chen, and
C. Fan, “Euclid: Towards efficient unsupervised reinforcement learning
with multi-choice dynamics model,” arXiv preprint arXiv:2210.00498,
2022.

[4] A. L. Bazzan, “Opportunities for multiagent systems and multiagent
reinforcement learning in traffic control,” Autonomous Agents and Multi-

Agent Systems, vol. 18, pp. 342–375, 2009.

[5] F. Ni, J. Hao, J. Lu, X. Tong, M. Yuan, J. Duan, Y. Ma, and K. He,
“A multi-graph attributed reinforcement learning based optimization
algorithm for large-scale hybrid flow shop scheduling problem,” in
Proceedings of the 27th ACM SIGKDD Conference on Knowledge

Discovery & Data Mining, 2021, pp. 3441–3451.

[6] H. Jianye, X. Hao, H. Mao, W. Wang, Y. Yang, D. Li, Y. Zheng, and
Z. Wang, “Boosting multiagent reinforcement learning via permutation
invariant and permutation equivariant networks,” in The Eleventh Inter-

national Conference on Learning Representations, 2022.

[7] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse et al., “Dota 2 with large
scale deep reinforcement learning,” arXiv preprint arXiv:1912.06680,
2019.

[8] S. Gronauer and K. Diepold, “Multi-agent deep reinforcement learning:
a survey,” Artificial Intelligence Review, pp. 1–49, 2022.

[9] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learning:
A selective overview of theories and algorithms,” Handbook of Rein-

forcement Learning and Control, pp. 321–384, 2021.

[10] M. Wen, J. Kuba, R. Lin, W. Zhang, Y. Wen, J. Wang, and Y. Yang,
“Multi-agent reinforcement learning is a sequence modeling problem,”
Advances in Neural Information Processing Systems, vol. 35, pp.
16 509–16 521, 2022.

[11] M. W. Brittain, X. Yang, and P. Wei, “Autonomous separation assurance
with deep multi-agent reinforcement learning,” Journal of Aerospace

Information Systems, vol. 18, no. 12, pp. 890–905, 2021.

[12] P. Razzaghi, A. Tabrizian, W. Guo, S. Chen, A. Taye, E. Thompson,
A. Bregeon, A. Baheri, and P. Wei, “A survey on reinforcement learning
in aviation applications,” arXiv preprint arXiv:2211.02147, 2022.

[13] Q. Wu, G. Bansal, J. Zhang, Y. Wu, S. Zhang, E. Zhu, B. Li, L. Jiang,
X. Zhang, and C. Wang, “Autogen: Enabling next-gen llm applications
via multi-agent conversation framework,” 2023.

[14] Y. Mei, H. Zhou, and T. Lan, “Projection-optimal monotonic value
function factorization in multi-agent reinforcement learning,” in Pro-

ceedings of the 2024 International Conference on Autonomous Agents

and Multiagent Systems, 2024.

[15] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[16] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey
of multiagent reinforcement learning,” IEEE Transactions on Systems,

Man, and Cybernetics, Part C (Applications and Reviews), vol. 38, no. 2,
pp. 156–172, 2008.

[17] “NVIDIA Ampere Architecture,” https://www.nvidia.com/content/PDF/
nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf.

[18] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” NeurIPS, vol. 30, 2017.

[19] J. Ackermann, V. Gabler, T. Osa, and M. Sugiyama, “Reducing overes-
timation bias in multi-agent domains using double centralized critics,”
NeurIPS Deep RL Workshop, 2019.

[20] T. Li, K. Zhu, N. C. Luong, D. Niyato, Q. Wu, Y. Zhang, and B. Chen,
“Applications of multi-agent reinforcement learning in future internet:
A comprehensive survey,” IEEE Communications Surveys & Tutorials,
vol. 24, no. 2, pp. 1240–1279, 2022.

[21] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, “Deep reinforcement
learning for multiagent systems: A review of challenges, solutions, and
applications,” IEEE transactions on cybernetics, vol. 50, no. 9, pp. 3826–
3839, 2020.

[22] A. Oroojlooy and D. Hajinezhad, “A review of cooperative multi-agent
deep reinforcement learning,” Applied Intelligence, vol. 53, no. 11, pp.
13 677–13 722, 2023.

[23] A. Feriani and E. Hossain, “Single and multi-agent deep reinforcement
learning for ai-enabled wireless networks: A tutorial,” IEEE Communi-

cations Surveys & Tutorials, vol. 23, no. 2, pp. 1226–1252, 2021.

[24] S. Gu, L. Yang, Y. Du, G. Chen, F. Walter, J. Wang, Y. Yang, and
A. Knoll, “A review of safe reinforcement learning: Methods, theory
and applications,” arXiv preprint arXiv:2205.10330, 2022.

[25] K. Gogineni, P. Wei, T. Lan, and G. Venkataramani, “Scalability
Bottlenecks in Multi-Agent Reinforcement Learning Systems,” arXiv

preprint arXiv:2302.05007, 2023.

[26] ——, “Towards efficient multi-agent learning systems,” arXiv preprint

arXiv:2305.13411, 2023.

[27] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015.

[28] Y. Mei, H. Zhou, T. Lan, G. Venkataramani, and P. Wei, “MAC-
PO: Multi-agent experience replay via collective priority optimization,”
in Proceedings of the 2023 International Conference on Autonomous

Agents and Multiagent Systems, 2023, pp. 466–475.

[29] J. Ackermann, “Tensorflow-2 implementation of multi-agent re-
inforcement learning approaches,” https://github.com/JohannesAck/
tf2multiagentrl, 2020.

[30] V. Ramos, “Performance counters api for python,” https://pypi.org/
project/performance-features/, May 2019.

[31] Nvidia-Profiler-12.3, “Nvidia profiler user’s guide,” https://docs.nvidia.
com/cuda/profiler-users-guide/index.html, 2023.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[33] H. Cho, P. Oh, J. Park, W. Jung, and J. Lee, “Fa3c: Fpga-accelerated
deep reinforcement learning,” in ASPLOS, 2019, pp. 499–513.

[34] Y. Li, I.-J. Liu, Y. Yuan, D. Chen, A. Schwing, and J. Huang, “Accel-
erating distributed reinforcement learning with in-switch computing,”
in Proceedings of the 46th International Symposium on Computer

Architecture, 2019, pp. 279–291.

[35] S. Krishnan, M. Lam, S. Chitlangia, Z. Wan, G. Barth-Maron, A. Faust,
and V. J. Reddi, “QuaRL: Quantization for fast and environmentally
sustainable reinforcement learning,” 2022.

[36] B. Wang, J. Xie, and N. Atanasov, “DARL1N: Distributed multi-
Agent Reinforcement Learning with One-hop Neighbors,” CoRR

abs/2202.09019, 2022.

[37] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz,
“GA3C: GPU-based A3C for deep reinforcement learning,” CoRR

abs/1611.06256, 2016.

[38] M. Zhou, Z. Wan, H. Wang, M. Wen, R. Wu, Y. Wen, Y. Yang, Y. Yu,
J. Wang, and W. Zhang, “Malib: A parallel framework for population-
based multi-agent reinforcement learning.” J. Mach. Learn. Res., vol. 24,
pp. 150–1, 2023.

[39] V. Egorov and A. Shpilman, “Scalable multi-agent model-based rein-
forcement learning,” arXiv preprint arXiv:2205.15023, 2022.

[40] A. V. Clemente, H. N. Castejón, and A. Chandra, “Efficient
parallel methods for deep reinforcement learning,” arXiv preprint

arXiv:1705.04862, 2017.

[41] J. Björck, X. Chen, C. De Sa, C. P. Gomes, and K. Weinberger,
“Low-precision reinforcement learning: running soft actor-critic in half
precision,” in International Conference on Machine Learning. PMLR,
2021, pp. 980–991.

[42] T. Lan, S. Srinivasa, H. Wang, and S. Zheng, “Warpdrive: fast end-to-
end deep multi-agent reinforcement learning on a gpu,” The Journal of

Machine Learning Research, vol. 23, no. 1, pp. 14 225–14 230, 2022.

[43] K. Gogineni, Y. Mei, P. Wei, T. Lan, and G. Venkataramani, “AccMER:
Accelerating Multi-Agent Experience Replay with Cache Locality-aware
Prioritization,” 2023.

[44] C. Guo, J. Tang, W. Hu, J. Leng, C. Zhang, F. Yang, Y. Liu, M. Guo,
and Y. Zhu, “Olive: Accelerating large language models via hardware-
friendly outlier-victim pair quantization,” in Proceedings of the 50th

Annual International Symposium on Computer Architecture, 2023, pp.
1–15.

[45] U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks,
B. Cottel, K. Hazelwood, M. Hempstead, B. Jia et al., “The architectural
implications of facebook’s dnn-based personalized recommendation,” in
2020 IEEE International Symposium on High Performance Computer

Architecture (HPCA). IEEE, 2020, pp. 488–501.

[46] L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril,
A. Firoozshahian, K. Hazelwood, B. Jia, H.-H. S. Lee et al., “Recnmp:
Accelerating personalized recommendation with near-memory process-
ing,” in 2020 ACM/IEEE 47th Annual International Symposium on

Computer Architecture (ISCA). IEEE, 2020, pp. 790–803.
[47] M. Wilkening, U. Gupta, S. Hsia, C. Trippel, C.-J. Wu, D. Brooks,

and G.-Y. Wei, “Recssd: near data processing for solid state drive
based recommendation inference,” in Proceedings of the 26th ACM

International Conference on Architectural Support for Programming

Languages and Operating Systems, 2021, pp. 717–729.
[48] K. Gogineni, S. S. Dayapule, J. Gómez-Luna, K. Gogineni, P. Wei,

T. Lan, M. Sadrosadati, O. Mutlu, and G. Venkataramani, “Swiftrl:
Towards efficient reinforcement learning on real processing-in-memory
systems,” arXiv preprint arXiv:2405.03967, 2024.

	Introduction
	Background
	Multi-Agent Reinforcement Learning
	Multi-Agent Player Games

	MARL Performance Profile
	Scalability Tests
	Our Key Findings

	Opportunities for MARL Performance Optimization
	Intra-Agent Cache-aware Mini-batch Sampling
	Algorithmic Optimizations
	Information Prioritized Locality-aware Sampling
	Transition Data Layout Reorganization

	Implementation
	Performance Evaluation
	Performance Improvements: Mini-batch Sampling Phase & End-to-end Training Time
	Cross-validation
	Additional Opportunities for Performance Optimization
	Information prioritized locality-aware sampling
	Data layout reorganization

	Related Work
	Conclusion
	References

