
i
a

a
2
t
w
t
t
i

Spatial Statistics 64 (2024) 100866 

A
2
(

Contents lists available at ScienceDirect

Spatial Statistics

journal homepage: www.elsevier.com/locate/spasta

A flexible class of priors for orthonormal matrices with basis
function-specific structure
Joshua S. North a,∗, Mark D. Risser a, F. Jay Breidt b

a Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
b Department of Statistics and Data Science, NORC at the University of Chicago, 1155 East 60th St, 2nd Floor, Chicago, IL, 60637, USA

A R T I C L E I N F O

Dataset link: https://github.com/jsnowynorth/
BayesianSVD.jl, https://github.com/jsnowyno
rth/BayesianSVD.jl, https://cds.climate.copern
cus.eu/datasets/reanalysis-era5-single-levels?t
b=overview

Keywords:
Bayesian singular value decomposition
Probabilistic low-rank representation
Probabilistic basis functions
Stiefel manifold
Spatio-temporal random effect

A B S T R A C T

Statistical modeling of high-dimensional matrix-valued data motivates the use of a low-rank
representation that simultaneously summarizes key characteristics of the data and enables
dimension reduction. Low-rank representations commonly factor the original data into the
product of orthonormal basis functions and weights, where each basis function represents
an independent feature of the data. However, the basis functions in these factorizations are
typically computed using algorithmic methods that cannot quantify uncertainty or account for
basis function correlation structure a priori. While there exist Bayesian methods that allow for a
common correlation structure across basis functions, empirical examples motivate the need for
basis function-specific dependence structure. We propose a prior distribution for orthonormal
matrices that can explicitly model basis function-specific structure. The prior is used within
a general probabilistic model for singular value decomposition to conduct posterior inference
on the basis functions while accounting for measurement error and fixed effects. We discuss
how the prior specification can be used for various scenarios and demonstrate favorable model
properties through synthetic data examples. Finally, we apply our method to two-meter air
temperature data from the Pacific Northwest, enhancing our understanding of the Earth system’s
internal variability.

1. Introduction

1.1. Orthonormal matrices in statistical modeling

Within the field of statistics, orthonormal matrices are the cornerstone of many modeling approaches, including exploratory data
nalysis, factor analysis (Harman and Harman, 1976; Mulaik, 2009), principal component analysis (PCA; Hotelling, 1933; Jolliffe,
002), singular value decomposition (SVD; Stewart, 1993), and proper orthogonal decomposition (POD; Berkooz, 1993). Each of
hese techniques uses orthonormal matrices to decompose matrix-valued data with the goal of summarizing its key characteristics as
ell as dimension reduction (Kambhatla and Leen, 1997) and data compression (Chen et al., 2022). Across many areas of science,

echnology, and medicine, orthonormal matrix factorizations of data are highly useful because the measurements of interest in
hese fields often arise from lower-dimensional processes with physically interpretable structures. Examples include factor analysis
n physiological studies (Fabrigar et al., 1999), PCA in geography (Roden et al., 2015) and ecology (Jackson, 1993; Peres-Neto et al.,

2003), and SVD and PCA for medical imaging (Smith et al., 2014).

∗ Corresponding author.
E-mail addresses: jsnorth@lbl.gov (J.S. North), mdrisser@lbl.gov (M.D. Risser), breidt-jay@norc.org (F.J. Breidt).
https://doi.org/10.1016/j.spasta.2024.100866
Received 28 May 2024; Received in revised form 25 October 2024; Accepted 29 October 2024
vailable online 12 November 2024 
211-6753/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
 http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/spasta
https://www.elsevier.com/locate/spasta
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://github.com/jsnowynorth/BayesianSVD.jl
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
mailto:jsnorth@lbl.gov
mailto:mdrisser@lbl.gov
mailto:breidt-jay@norc.org
https://doi.org/10.1016/j.spasta.2024.100866
https://doi.org/10.1016/j.spasta.2024.100866
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spasta.2024.100866&domain=pdf
http://creativecommons.org/licenses/by/4.0/


J.S. North et al. Spatial Statistics 64 (2024) 100866 
For mean-zero data 𝐘 ∈ R𝑛×𝑚, SVD decomposes 𝐘 = 𝐔𝐃𝐕′, where 𝐔 ∈ R𝑛×𝑙 is an orthonormal matrix, 𝐃 ∈ R𝑙×𝑙 is a diagonal
matrix, 𝐕 ∈ R𝑚×𝑙 is an orthonormal matrix, and 𝑙 = min{𝑛, 𝑚}. Within this manuscript, 𝑛 will denote the number of spatial locations
and 𝑚 the number of temporal replicates. Alternatively, PCA decomposes 𝐘𝐘′ = 𝐀𝐁𝐀′, where now 𝐀 ∈ R𝑛×𝑙 is an orthonormal
matrix whose columns are the eigenvectors of 𝐘𝐘′, 𝐁 ∈ R𝑙×𝑙 is a diagonal matrix whose elements are the eigenvalues of 𝐘𝐘′, and
𝑙 = min{𝑛, 𝑚}. Note that the equivalence between SVD and PCA comes from 𝐘𝐘′ =

(

𝐔𝐃𝐕′) (𝐕𝐃′𝐔′) = 𝐔𝐃𝐃′𝐔′ = 𝐀𝐁𝐀′, where the
diagonal elements of 𝐃 are the square root of the eigenvalues of 𝐘𝐘′, the columns of 𝐔 are the eigenvectors of 𝐘𝐘′, and the columns
of 𝐕 are the eigenvectors of 𝐘′𝐘.

In the climate sciences where data are spatially- and temporally-oriented, the columns of orthonormal matrices define empirical
orthogonal functions (EOFs; Lorenz, 1956; North et al., 1982; Hannachi et al., 2007), which are analogous to PCA. EOFs are used
to summarize modes of climate variability (see, e.g., Thompson and Wallace, 2000; Mantua and Hare, 2002), identify the drivers
of extreme weather events (Grotjahn et al., 2016), and quantify human-induced changes to the global climate system (O’Brien and
Deser, 2023). Additionally, spatial modeling of climate data often uses EOFs to incorporate spatial and temporal information via
spatially-indexed basis functions and spatial random effects (Stroud et al., 2001; Nychka et al., 2002; Cressie and Johannesson,
2006, 2008).

1.2. Inference and challenges

The basis functions contained in the orthonormal matrices 𝐔 and 𝐕 and the elements of 𝐃 are traditionally computed via iterative
methods (Golub and Kahan, 1965; Demmel and Kahan, 1990), which we refer to as classical SVD (C-SVD or C-PCA) henceforth.
However, these classical procedures have several important limitations. First, when 𝑛 is large with respect to 𝑚, the basis functions
contained in the orthonormal matrices estimated from C-SVD can be noisy and therefore lose their physical interpretation (Wang and
Huang, 2017). C-SVD and C-PCA are not able to distinguish between measurement and signal variation, which means that estimates
of the basis functions are heavily influenced by the presence of measurement noise (Bailey, 2012; Epps and Krivitzky, 2019).
Furthermore, since their algorithms are deterministic, C-PCA and C-SVD do not provide measures of uncertainty in either the basis
functions or their weights. Finally, the estimated basis functions only exhibit dependence or structure implicitly via data correlations
since C-PCA and C-SVD cannot take advantage of explicit structure that may be present in the data generating mechanisms.

A variety of approaches have been developed to address limitations associated with C-SVD and C-PCA. Regarding the issue of
noise, large 𝑛 with small 𝑚, and structure in the basis functions, a regularized PCA approach can be adopted (Shen and Huang, 2008;
Zou et al., 2006; Jolliffe et al., 2002). Wang and Huang (2017) extend the regularization approach by incorporating smoothness
and local features into their penalization using smoothing splines and an 𝓁1 penalty, producing spatially explicit orthogonal basis
functions. To further account for uncertainty quantification in the basis function, one possibility is to take a Bayesian approach and
specify a prior distribution for the orthonormal matrix. The set of orthonormal matrices 𝑘,𝑛 = {𝐗 ∈ R𝑛×𝑘 ∶ 𝐗′𝐗 = 𝐈𝑘}, where 𝐈𝑘 is the
𝑘× 𝑘 identity matrix, is called the Stiefel manifold (Chikuse, 2003). Considerable effort has been put into understanding theoretical
properties associated with distributions on the Stiefel manifold and optimal methods for computation and sampling (Mardia and
Jupp, 1999; Chikuse, 2003; Hoff, 2007, 2009; Byrne and Girolami, 2013; Wang and Gelfand, 2013, 2014; Hernandez-Stumpfhauser
et al., 2017; Pourzanjani et al., 2021; Jauch et al., 2021). Hoff (2007) developed a uniform prior for orthonormal basis functions
(the invariant or uniform measure on the Stiefel manifold) that enables the specification of a Bayesian SVD model, and showed how
to sample from the full conditional distributions of the model. However, the approach in Hoff (2007) requires sampling from the
von Mises–Fisher (or Bingam–von Mises–Fisher) distributions, which can be difficult, and does not allow for the basis functions to be
structured. Additionally, support for these distributions in probabilistic programming languages such as Stan is limited (Carpenter
et al., 2017), providing yet another barrier for implementation. Hoff (2009) and Byrne and Girolami (2013) propose tractable
methods for sampling from von Mises–Fisher distributions, but these require the underlying statistical model to abide by specific
conditions and forms which limits the application areas. Recent work by Pourzanjani et al. (2021) and Jauch et al. (2021) addresses
both sampling and flexibility of distributions on the Stiefel manifold by simulating unconstrained random vectors (i.e., not orthogonal
and not unit-length) and then transforming these draws to be orthonormal via an appropriate Jacobian to obtain samples on the
Stiefel manifold. Importantly, these methods are computationally efficient, can be incorporated into probabilistic programming
languages, and allow for the basis functions to be modeled dependently. However, the dependence structure is limited in that it is
shared across the basis functions and is unable to accommodate the basis function-specific structures that are present in real-world
data sets.

Particularly in the climate sciences, the physical structures summarized by orthonormal matrices have different scales (e.g., spa-
tial or temporal), wherein the leading modes or basis functions reflect larger-scale variability while the later modes reflect finer-scale
variability. To illustrate this, we calculated the SVD of monthly maximum two-meter air temperature from a 0.25◦ × 0.25◦ longitude-
latitude grid over the United States Pacific Northwest from 1979 through 2022 (see Section 5 for details on the data) using standard
statistical software. We then estimate the length-scale of a Gaussian variogram for each spatial and temporal basis function, the
columns of the left- and right- singular matrices, respectively. Fig. 1 shows empirical estimates of the length-scale for each basis
function for 𝐔 and 𝐕 in panels (a) and (b), respectively. From this figure it is clear the length-scale of the leading modes for both the
left- and right- singular matrices is at least one order of magnitude larger than that of the later modes, following a quasi-exponentially
decreasing trend. This suggests estimating a common spatial or temporal structure for all of the basis functions will miss important
features of the data, resulting in oversmoothing and underfitting for the leading modes and undersmoothing and overfitting for the

later modes.
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Fig. 1. Estimated length-scale from a fitted Gaussian variogram for each spatial and temporal basis function computed from the singular value decomposition
f the two-meter air surface temperature data described in Section 5.

.3. Contributions

Here, we develop a prior distribution for orthonormal matrices that enables basis function specific structure and construct a
robabilistic model for SVD. The resulting full conditional distributions for the basis functions are available in closed form, yielding
n analytically straightforward posterior for sampling orthonormal matrices. Furthermore, we discuss how the prior can be used
or a variety of modeling purposes. Our prior is in general not uniformly distributed on 𝑘,𝑛 (although the uniform distribution is a
pecial case) and we are able to impart information into the prior through our specification of a correlation matrix. We show how
he correlation matrix can be specified to either impart smoothing onto the basis functions (producing results similar to Wang and
uang, 2017) or recover the prior developed by Hoff (2007), and also demonstrate how the mean of the full conditional distributions

or the basis functions of our probabilistic SVD model coincides with the classical approach (C-SVD) under certain conditions. Our
esulting prior, along with the proposed Bayesian hierarchical model, is quite general and allows each basis function to have a
nique dependence structure that is learned from the data, which has not been previously possible.

The remainder of the manuscript is organized as follows. Section 2 develops the prior distribution for orthonormal matrices.
ection 3 proposes a general probabilistic model for matrix factorizations with a specific focus on SVD and then expands other

possible modeling choices. Three simulation studies are conducted in Section 4, where we show the importance of basis function-
specific structure, the model rank and signal-to-noise ratios, and the impact a linear trend has on basis function recovery. In Section 5,
we apply our probabilistic model for SVD to decompose monthly maximum two-meter air temperature into its major modes of
variability and provide uncertainty bounds for these modes, allowing better understanding of the spatial relationships in the data
and illustrating the importance of basis function-specific structure. Section 6 concludes the paper.

2. A prior distribution for orthonormal matrices with basis function-specific structure

We construct a prior distribution for matrices on the Stiefel manifold 𝑘,𝑛 that is conjugate with a normal likelihood model. The
prior is constructed from the projected normal distribution that has been augmented with a latent length (see Wang and Gelfand,
2013, 2014; Hernandez-Stumpfhauser et al., 2017 and the references therein for details on the projected normal).

2.1. Generating mechanism

One method of drawing an orthonormal matrix from the uniform distribution on 𝑘,𝑛 is outlined in the appendix of Hoff (2007).
As part of the construction, the underlying normal distribution from which the orthonormal matrix is generated specifies the identity
matrix as the covariance, and the resulting distribution is uniform on 𝑘,𝑛. Here, we extend this generating mechanism to allow for
structure in its covariance, specific to each column, such that the prior implied by Hoff (2007) is a special case. By construction,
the resulting distribution is not necessarily uniform on 𝑘,𝑛.

For fixed 𝑘, let 𝐳𝑖
𝑖𝑛𝑑 𝑒𝑝.∼ N𝑛(𝟎,𝜴𝑖) be the base generating random variable and 𝜴𝑖 ∼ 𝜋𝛺 the covariance matrix for the 𝑖th random

variable, for 𝑖 = 1, 2,… , 𝑘, where 𝜋𝛺 is a valid distribution for symmetric positive definite matrices. Define 𝐏0 = 𝐈𝑛, 𝐱1 = 𝐏0𝐳1, and

𝐗𝑖 = [𝐱1,… , 𝐱𝑖], 𝐏𝑖 = 𝐈𝑛 − 𝐗𝑖(𝐗′
𝑖𝐗𝑖)−1𝐗′

𝑖 , 𝐱𝑖+1 = 𝐏𝑖𝐳𝑖+1
or 𝑖 = 1, 2,… , 𝑘 − 1. Then 𝐱𝑖|𝐗𝑖−1 ∼ N𝑛(𝟎,𝐏𝑖−1𝜴𝑖𝐏′

𝑖−1) and 𝐱′𝑖𝐱𝑗 = 0 for 𝑖 ≠ 𝑗. Further, define

𝐰𝑖 =
𝐱𝑖

(𝐱′𝑖𝐱𝑖)1∕2
, 𝐖𝑖 = [𝐰1,… ,𝐰𝑖] (1)

for 𝑖 = 1, 2,… , 𝑘. By construction, 𝐖𝑘 ∈ 𝑘,𝑛 is an orthonormal matrix. The conditional distributions of each column given the
receding columns are 𝐰𝑖|𝐖𝑖−1 ∼ PN𝑛(𝟎,𝐏𝑖−1𝜴𝑖𝐏′

𝑖−1), where PN𝑛(⋅, ⋅) denotes the 𝑛-dimensional projected normal distribution (Wang
nd Gelfand, 2013, 2014; Hernandez-Stumpfhauser et al., 2017).

Let 𝑑
= denote equality in distribution. We now provide two key properties associated with the distribution of 𝐖 ≡ 𝐖𝑘 based on

he constructed matrix 𝐗 ≡ 𝐗𝑘, with proofs deferred to Appendix A.1.

roposition 1. The columns of 𝐖 = 𝐗(𝐗′𝐗)−1∕2 are exchangeable. That is, for any permutation 𝜋 of the set {1,… , 𝑘}, 𝑝([𝐰1,… ,𝐰𝑘])
𝑑
=

([𝐰𝜋(1),… ,𝐰𝜋(𝑘)]).
3 
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roposition 2. 𝐰𝑖|𝐖𝑖−1
𝑑
= 𝐍𝑖−1𝐰̃𝑖|𝐖𝑖−1 where the columns of the 𝑛× (𝑛− 𝑖+ 1) matrix 𝐍𝑖−1 form an orthonormal basis for the null space

of 𝐖𝑖−1 and 𝐰̃𝑖, the projected weight function, satisfies 𝐰̃𝑖|𝐖𝑖−1 ∼ 𝑃 𝑁𝑛−𝑖+1(𝟎,𝐍′
𝑖−1𝜴𝑖𝐍𝑖−1).

Proposition 1 implies the columns of 𝐖 are exchangeable, and therefore the conditional distribution 𝐰𝑖|𝐖𝑄 is invariant to
he choice of subset of columns 𝑄 ⊂ {1,… , 𝑘}. When Proposition 1 is taken with Proposition 2, the conditional distribution of
𝑖|𝐖𝑄 given any subset of columns 𝑄 is equal in distribution to 𝐍𝑄𝐰̃𝑖, where 𝐍𝑄 is an orthonormal basis for the null space of 𝐖𝑄
nd 𝐰̃𝑖|𝐖𝑄 ∼ PN𝑛−|𝑄|+1(𝟎,𝐍′

𝑄𝜴𝑖𝐍𝑄). Therefore, we now focus on a prior distribution for 𝐰̃𝑖, the projected weight function, where
̃𝑖|𝐖−𝑖 ∼ PN𝑛−𝑘+1(𝟎,𝐍′

𝑖𝜴𝑖𝐍𝑖) (i.e., 𝑄 = {1,… , 𝑖 − 1, 𝑖 + 1,… , 𝑘}) and the columns of 𝐍𝑖 span the null space of 𝐖−𝑖.

.2. Projected normal prior distribution

From the construction in Section 2.1, we have 𝐰̃𝑖|𝐖−𝑖 ∼ PN𝑛−𝑘+1(𝟎,𝐍′
𝑖𝜴𝑖𝐍𝑖). However, sampling from a high-dimensional

projected normal distribution is difficult because of the form of the density function. To make sampling from the projected normal
tractable, we augment the distribution 𝐰̃𝑖|𝐖−𝑖 using a latent length variable 𝑟𝑖. The joint distribution of (𝑟𝑖, 𝐰̃𝑖)|𝐖−𝑖 can be derived
y transforming the random variable 𝐱𝑖 to spherical coordinates (see supplement S.5), where the density function is

𝑝(𝑟𝑖, 𝐰̃𝑖|𝐖−𝑖) = (2𝜋)−(𝑛−𝑘+1)∕2|𝐍′
𝑖𝜴𝑖𝐍𝑖|

−1∕2 exp
{

−1
2
(𝑟𝑖𝐰̃𝑖)′(𝐍′

𝑖𝜴𝑖𝐍𝑖)−1(𝑟𝑖𝐰̃𝑖)
}

𝑟𝑛−𝑘𝑖 I(𝐰̃𝑖 ∈ 1,𝑛−𝑘+1), (2)

which we denote as 𝑟𝑖𝐰̃𝑖|𝐖−𝑖 ∼ SPN𝑛−𝑘+1(𝜴𝑖) where SPN stands for structured projected normal. The indicator function I(𝐰̃𝑖 ∈ 1,𝑛−𝑘+1)
s an integrating constant that is independent of the angle of 𝐰̃𝑖 and dependent only on its length. Note for 𝑘 = 1, the Stiefel

manifold 1,𝑛 is the 𝑛 − 1-dimensional unit sphere and 1,𝑛 ≡ S𝑛−1. The length variable 𝑟𝑖 can be sampled using either a slice
ampler (Hernandez-Stumpfhauser et al., 2017) or a Metropolis–Hastings algorithm. However, we have found the slice sampler
as numerical issues when 𝑛 is large, and use a Metropolis–Hastings within Gibbs algorithm (see supplement S.1) for all examples
resented herein.

The SPN prior is convenient because if the data distribution is normal, the resulting full conditional distribution is proportional
o a normal, which is easy to sample from (see Section 3.1 and supplement S.1 for more detail).

.3. Incorporating explicit structure into the prior

From our formulation of the prior, we have the ability to specify or estimate the correlation structure for the projected basis
unctions. The non-informative choice is 𝜴𝑖 = 𝜎2𝑖 𝐈𝑛, implying there is no dependence between the elements of the basis functions. As
iscussed in the supplement (S.3), in this case the generating mechanism is equivalent to that proposed by Hoff (2007), resulting in
̃𝑖 being distributed uniformly on the (𝑛− 𝑘+ 1)-dimensional sphere and the prior being equivalent to Hoff (2007). A more general
hoice is to model 𝜴𝑖 = 𝜎2𝑖 𝐂𝑖, where 𝐂𝑖 is a positive-definite correlation matrix that specifies structure among the elements in the
th basis function and 𝜎2𝑖 is a scaling parameter related to 𝑟𝑖. In either case, 𝜎2𝑖 does not impact the marginal distribution of 𝐰̃𝑖 or
𝑖 because they are of unit length; however, 𝜎2𝑖 does affect the joint distribution (2) of (𝑟𝑖, 𝐰̃𝑖) and the full conditional distributions

𝑝(𝐰̃𝑖|⋅) and 𝑝(𝑟𝑖|⋅) and needs to be accounted for when conducting inference (see supplement section S.2 for details).
For structured basis functions, in most cases 𝐂𝑖 ≡ 𝐂(𝜽𝑖) will depend on hyperparameters 𝜽𝑖 that can either be specified or learned

within the hierarchical model. Across many areas of science, including spatial statistics, machine learning, and emulation of complex
physical models, the elements of 𝐂𝑖 are modeled via kernel functions 𝐶𝜃(⋅, ⋅) that are positive definite on the domain specified by
the input space . For example, when  ⊂ R𝑑 , a popular choice is the Matérn kernel

𝐶𝜈 ,𝜌(𝐬, 𝐬′) = 21−𝜈
𝛤 (𝜈)

(

2𝜈
‖𝐬 − 𝐬′‖

𝜌

)𝜈
𝐽𝜈

(

2𝜈
‖𝐬 − 𝐬′‖

𝜌

)

, (3)

defined for 𝐬, 𝐬′ ∈ , where 𝛤 is the gamma function, 𝐽𝜈 is the Bessel function of the second kind, and 𝜽 = {𝜈 , 𝜌} are hyperparameters
that describe the differentiability and length-scale of the implied stochastic process, respectively. Special cases of the Matérn kernel
are for 𝜈 = 0.5, in which (3) simplifies to the exponential kernel 𝐶0.5,𝜌(𝐬, 𝐬′) = exp{−‖𝐬 − 𝐬′‖∕𝜌}, and the limit as 𝜈 → ∞, in which
(3) reduces to the squared exponential or Gaussian kernel 𝐶∞,𝜌(𝐬, 𝐬′) = exp{−‖𝐬 − 𝐬′‖2∕𝜌}. Kernel functions like the Matérn are
useful for modeling generic dependence because they are highly flexible, depend on only a few hyperparameters (each of which is
interpretable), yield data-driven smoothing that can characterize nonlinear structures in the underlying data, and require minimal
a priori or subjective specification. Furthermore, such kernel functions do not require offline tuning of bandwidth or regularization
parameters (as is needed in, e.g., smoothing splines; see Wang and Huang, 2017) since these aspects of the kernel can be inferred
from the data within the Bayesian hierarchical model.

3. General probabilistic model

Define 𝐙 ∈ R𝑛×𝑚 to be the observed data which is modeled as

𝐙|𝐌,𝐘,𝜮,𝜱 ∼ MN𝑛×𝑚(𝐌 + 𝐘,𝜮,𝜱), (4)

where 𝐌 ∈ R𝑛×𝑚, 𝐘 ∈ R𝑛×𝑚, 𝜮 ∈ R𝑛×𝑛, and 𝜱 ∈ R𝑚×𝑚. MN denotes the matrix normal distribution, where 𝐌 + 𝐘 is the mean of 𝐙,
𝜮 is the covariance matrix for the rows of 𝐙, 𝜱 is the covariance matrix for the columns of 𝐙, and the density function is

𝑝(𝐙|𝐌,𝐘,𝜮,𝜱) = 1 exp
{

−1 tr
[

𝜱−1(𝐙 −𝐌 − 𝐘)′𝜮−1(𝐙 −𝐌 − 𝐘)
]

}

. (5)

(2𝜋)𝑛𝑚∕2|𝜱|

𝑛∕2
|𝜮|

𝑚∕2 2

4 
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q. (4) is a mixed-effects model, where 𝐌 is a fixed-effect mean structure that is dependent on observed covariates, which we discuss
n Section 3.2.2, and 𝐘 is a ‘‘smooth’’ random effect that we will represent using basis functions and weights. Generally, we assume

is a mean zero random effect and explains any discrepancy in 𝐙 not explained by 𝐌. We now specify a non-parametric model for
the random effects 𝐘 using singular value decomposition and the prior distribution proposed in Section 2.2.

.1. A probabilistic model for singular value decomposition

For now, we assume the mean of 𝐙 is zero (i.e., 𝐌 = 𝟎) and focus on a model for 𝐘. In models such as (4), the process 𝐘 can be
represented as a reduced-rank process. One example of a reduced-rank model is the singular value decomposition (SVD) 𝐘 = 𝐔𝐃𝐕′

where we set 𝑘 < 𝑙 (typically 𝑘 ≪ 𝑙) where 𝑘 is some pre-specified value. This results in 𝐘 ≈ 𝐔𝐃𝐕′, where now 𝐔 ∈ R𝑛×𝑘, 𝐃 ∈ R𝑘×𝑘,
and 𝐕 ∈ R𝑚×𝑘 are of reduced dimension. In traditional SVD (similarly in PCA), the amount of variance explained by each component
can be used to inform the value of 𝑘. For now, we will assume 𝑘 is fixed and refer the reader to Section 3.1.3 for further discussion.

In (4), 𝜱 represents the covariance between replicate observations (columns) and 𝜮 represents the covariance within observations
(rows). We make the simplifying assumption 𝜱 = 𝐈𝑚 (i.e., independence between replicates) and model all variation in the data
through 𝜮 = 𝜎2𝐈𝑛. This simplification can be relaxed if desired, e.g., by allowing 𝜱 or 𝜮 to be a structured non-diagonal covariance
matrix. The resulting probability model is 𝐙 ∼ MN𝑛×𝑚(𝐔𝐃𝐕′, 𝜎2𝐈𝑛, 𝐈𝑚), where 𝜎2 now accounts for the approximation of choosing
𝑘 ≪ 𝑙 and the density function is

𝑝(𝐙|𝐔,𝐃,𝐕, 𝜎2𝐈𝑛, 𝐈𝑚) = 1
(2𝜋 𝜎2)𝑛𝑚∕2 exp

{

− 1
2𝜎2

tr
[

(𝐙 − 𝐔𝐃𝐕′)′(𝐙 − 𝐔𝐃𝐕′)
]

}

. (6)

3.1.1. Model priors
To complete our model specification, we assign priors to 𝐔,𝐃,𝐕, 𝜎2, all hyperparameters associated with the proposed prior, and

stimate the model parameters using Bayesian techniques (the full hierarchical model is presented as one equation in the supplement
eqn. S.1)). For 𝜎2, the data variance parameter, we assign the non-informative half-t prior on the standard deviation as proposed
y Huang and Wand (2013); specifically 𝜎 ∼ 𝐻 𝑎𝑙 𝑓 -𝑡(1, 𝐴).

Recall from Section 2.2 that 𝐮𝑖|𝐔−𝑖
𝑑
= 𝐍𝑢

𝑖 𝐮̃𝑖|𝐔−𝑖 and 𝐯𝑖|𝐕−𝑖
𝑑
= 𝐍𝑣

𝑖 𝐯𝑖|𝐕−𝑖 where the columns of 𝐍𝑢
𝑖 and 𝐍𝑣

𝑖 span the null space of 𝐔−𝑖
nd 𝐕−𝑖, respectively. We specify the prior distributions

𝑑𝑖𝐮̃𝑖|𝐔−𝑖 ∼ SPN𝑛−𝑘+1(𝜴𝑢
𝑖 )

𝑑𝑖𝐯𝑖|𝐕−𝑖 ∼ SPN𝑚−𝑘+1(𝜴𝑣
𝑖 )

𝑑𝑖 ∼ Uniform(0,∞).

(7)

efine 𝐔−𝑖 ≡ [𝐮1,… ,𝐮𝑖−1,𝐮𝑖+1,… ,𝐮𝑘], 𝐕−𝑖 ≡ [𝐯1,… , 𝐯𝑖−1, 𝐯𝑖+1,… , 𝐯𝑘], 𝐃−𝑖 ≡ diag(𝑑1,… , 𝑑𝑖−1, 𝑑𝑖+1,… , 𝑑𝑘), and 𝐄−𝑖 ≡ 𝐙 − 𝐔−𝑖𝐃−𝑖𝐕′
−𝑖,

o that 𝐙 − 𝐔𝐃𝐕′ = 𝐄−𝑖 − 𝑑𝑖𝐮𝑖𝐯′𝑖 . Factoring the trace of the exponent of (6),

tr[(𝐙 − 𝐔𝐃𝐕′)′(𝐙 − 𝐔𝐃𝐕′)] = tr[(𝐄−𝑖 − 𝑑𝑖𝐮𝑖𝐯′𝑖)
′(𝐄−𝑖 − 𝑑𝑖𝐮𝑖𝐯′𝑖)]

= tr[𝐄′
−𝑖𝐄−𝑖 − 2𝑑𝑖𝐯𝑖𝐮′𝑖𝐄−𝑖 + 𝑑2𝑖 𝐯𝑖𝐮

′
𝑖𝐮𝑖𝐯

′
𝑖]

= tr[𝐄′
−𝑖𝐄−𝑖 − 2𝑑𝑖𝐮′𝑖𝐄−𝑖𝐯𝑖 + 𝑑2𝑖 𝐯

′
𝑖𝐯𝑖𝐮

′
𝑖𝐮𝑖].

he distribution 𝐙 ∼ MN𝑛×𝑚(𝐔𝐃𝐕′, 𝜎2𝐈𝑛, 𝐈𝑚) can then be written

𝑝(𝐙|𝐮𝑖, 𝐯𝑖, 𝑑𝑖,𝐔−𝑖,𝐃−𝑖,𝐕−𝑖, 𝜎2) = (8)
1

(2𝜋 𝜎2)𝑛𝑚∕2 exp
{

− 1
2𝜎2

tr
[

𝐄′
−𝑖𝐄−𝑖 − 2𝑑𝑖𝐮′𝑖𝐄−𝑖𝐯𝑖 + 𝑑2𝑖 𝐯

′
𝑖𝐯𝑖𝐮

′
𝑖𝐮𝑖

]

}

,

which enables inference on the columns of 𝐔 and 𝐕 and the elements of 𝐃 individually (e.g., inference on 𝐮𝑖 and 𝐯𝑖). Making the
ubstitution 𝐮𝑖|𝐔−𝑖

𝑑
= 𝐍𝑢

𝑖 𝐮̃𝑖|𝐔−𝑖, the resulting full conditional distribution for 𝐮̃𝑖 is

𝑝(𝐮̃𝑖|⋅) = 𝑝(𝐙|𝐍𝑢
𝑖 𝐮̃𝑖, 𝐯𝑖, 𝑑𝑖,𝐔−𝑖,𝐃−𝑖,𝐕−𝑖, 𝜎2)𝑝(𝑑𝑖𝐮̃𝑖|𝐔−𝑖)

∝ exp
{

𝐮̃′𝑖
( 𝑑𝑖
𝜎2

𝐍𝑢 ′
𝑖 𝐄−𝑖𝐯𝑖

)

− 1
2
𝐮̃′𝑖
(

𝑑2𝑖 (𝐍
𝑢 ′
𝑖 𝜴𝑢

𝑖𝐍
𝑢
𝑖 )

−1 +
𝑑2𝑖
𝜎2

𝐈𝑛−𝑘+1
)

𝐮̃𝑖
}

I(𝐮̃𝑖 ∈ 1,𝑛−𝑘+1).

This can be recognized as the kernel for a Normal distribution where

𝑝(𝐮̃𝑖|⋅) ∼ N𝑛−𝑘+1(𝐒−1𝑢 𝐦𝑢,𝐒−1𝑢 )I(𝐮̃𝑖 ∈ 1,𝑛) (9)

𝐦𝑢 =
𝑑𝑖
𝜎2

𝐍𝑢 ′
𝑖 𝐄𝑖𝐯𝑖, 𝐒𝑢 = 𝑑2𝑖 (𝐍

𝑢 ′
𝑖 𝜴𝑢

𝑖𝐍
𝑢
𝑖 )

−1 +
𝑑2𝑖
𝜎2

𝐈𝑛−𝑘+1.

Similarly for 𝐯𝑖, the full conditional distribution is
𝑝(𝐯𝑖|⋅) ∼ N𝑚−𝑘+1(𝐒−1𝑣 𝐦𝑣,𝐒−1𝑣 )I(𝐯𝑖 ∈ 1,𝑚) (10)

𝐦𝑣 =
𝑑𝑖
𝜎2

𝐍𝑣 ′
𝑖 𝐄′

𝑖𝐮𝑖, 𝐒𝑣 = 𝑑2𝑖 (𝐍
𝑣 ′
𝑖 𝜴𝑣

𝑖𝐍
𝑣
𝑖 )

−1 +
𝑑2𝑖
𝜎2

𝐈𝑚−𝑘+1.
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hile this appears convoluted, to produce a sample of 𝐮𝑖 from its full conditional distribution, first sample 𝐮̃𝑖 from (9) and then set
𝑖 = 𝐍𝑢

𝑖 𝐮̃𝑖. The same applies for 𝐯𝑖 with (10).
As discussed in Section 2.3, one method to incorporate structure is to specify 𝜴𝑢

𝑖 = 𝜎2𝑢,𝑖𝐂𝑢(𝜽𝑢,𝑖) and 𝜴𝑣
𝑖 = 𝜎2𝑣,𝑖𝐂𝑣(𝜽𝑣,𝑖) where

𝑢(𝜽𝑢,𝑖) and 𝐂𝑣(𝜽𝑣,𝑖) are valid correlation matrices and 𝜎2𝑢,𝑖 and 𝜎2𝑣,𝑖 are nuisance parameters. For 𝜎2𝑢,𝑖 and 𝜎2𝑣,𝑖 we assign the non-
informative half-t prior on the standard deviation as proposed by Huang and Wand (2013); specifically 𝜎𝑢,𝑖 ∼ 𝐻 𝑎𝑙 𝑓 -𝑡(1, 𝐴𝑢,𝑖) and
𝜎𝑣,𝑖 ∼ 𝐻 𝑎𝑙 𝑓 -𝑡(1, 𝐴𝑣,𝑖).

Regarding the correlation matrices 𝐂𝑢(𝜽𝑢,𝑖) and 𝐂𝑣(𝜽𝑣,𝑖), as previously mentioned the hyperparameters 𝜽𝑢,𝑖 and 𝜽𝑣,𝑖 can either be
specified directly or learned within the broader hierarchical model. The latter choice would involve specifying a prior 𝑝(𝜽𝑢,𝑖,𝜽𝑣,𝑖) for
these quantities and subsequently updating them within the Markov chain Monte Carlo (MCMC) algorithm. In the case of using the
Matérn kernel to specify 𝐂𝑢(𝜽𝑢,𝑖) and 𝐂𝑣(𝜽𝑣,𝑖), recall that 𝜽𝑢,𝑖 = {𝜈𝑢,𝑖, 𝜌𝑢,𝑖} and 𝜽𝑣,𝑖 = {𝜈𝑣,𝑖, 𝜌𝑣,𝑖}, where 𝜈(⋅) describes the differentiability
of the implied stochastic process and 𝜌(⋅) describes the length-scale of the basis functions. We generally recommend setting 𝜈(⋅) = 3.5
o the basis functions are third-order continuous but not over- or under- smoothed (e.g., infinitely differentiable with 𝜈 = ∞ or non-
ifferentiable with 𝜈 = 0.5, respectively). If the length-scale parameters are not estimated within the MCMC algorithm, they could
e estimated offline via geostatistical techniques, e.g., estimating a semivariogram separately across both the rows and columns. In
he simulations presented in Section 4 and for the application in Section 5 we opt to estimate the length-scale parameters within

the MCMC algorithm.

3.1.2. Special cases
As discussed in Section 2.3, when 𝜴𝑖 ≡ 𝐈 our specified probabilistic model for SVD is equivalent to the fixed-rank SVD model

proposed by Hoff (2007). Another interesting property is the relationship to the classic algorithmic approach, C-SVD. As discussed
and shown empirically through simulation in the supplement (S.3.1), when 𝜴𝑖 = 𝐈 the mean of the full conditional distribution for
the basis functions is equivalent to the estimates obtained by C-SVD.

3.1.3. Model implementation
The SVD model (6) has several parameters that need to be specified: the number of basis functions 𝑘, the correlation matrices

𝐂𝑢(𝜽𝑢,𝑖) and 𝐂𝑣(𝜽𝑣,𝑖), and any hyperparameters associated with the correlation matrices 𝜽𝑢,𝑖 and 𝜽𝑣,𝑖 that are not estimated. While in
principle the value 𝑘 can be estimated either informally, e.g., scree plots (Cattell, 1966), or formally, e.g., cross-validation (Wold,
1978) or the variable-rank model proposed by Hoff (2007), that is not the focus of this work. Through empirical testing, we have
found that if the true 𝑘∗ is less than the specified 𝑘, then the last 𝑘− 𝑘∗ basis functions of both 𝐔 and 𝐕 will have posterior credible
ntervals that cover zero at all, or nearly all, observations implying the basis function is not significant. Conversely, if the true 𝑘∗

s greater than the specified 𝑘, there is little to no impact on the first 𝑘 basis functions (i.e., the 𝑘th basis function is not biased
o account for the lost information by not estimating the remaining 𝑘∗ − 𝑘 basis functions). In choosing 𝑘 for the proposed model,
n empirical Bayes approach could also be taken. Specifically, one could compute the C-SVD, compute the cumulative amount of
ariance explained by the basis functions, and inform the value of 𝑘 based on this ‘‘traditional’’ approach.

One major benefit of our proposed prior is now realized: the full conditional distribution of 𝐮̃𝑖 and 𝐯𝑖 is proportional to a normal
istribution. This results in a Gibbs update step for both 𝐮̃𝑖 and 𝐯𝑖 within the larger Markov chain Monte Carlo (MCMC) sampling
cheme (shown in supplement S.1), with computational benefits coming from known tricks for sampling from the normal distribution
e.g., the Cholesky decomposition). Additionally, we have the ability to specify, or learn, unique correlation matrices 𝐂𝑢(𝜽𝑢,𝑖) and
𝑣(𝜽𝑣,𝑖) for each basis function which, to the best of our knowledge, has not been previously considered.

.2. Other modeling choices

Section 3.1 proposes a general model for observed data using a low-rank approach. However, there are other model specifications
nd corresponding matrix factorizations that can be seen as special cases of the SVD model. We discuss a few of these choices.

.2.1. Principal components
As discussed in the introduction, PCA and SVD can be shown to produce an equivalent matrix factorization. To this end, we can

nalogously represent the process 𝐘 = 𝐔𝐀 where 𝐔 is an orthonormal matrix of the eigenvectors of 𝐘𝐘′, also known as the principal
omponents, 𝐀 = 𝐃𝐕′ = [𝐚1,… , 𝐚𝑘] where 𝐚𝑖 ∼ 𝑁(0, 𝜆𝑖𝐈𝑚), and 𝜦 = 𝑑 𝑖𝑎𝑔(𝜆1,… , 𝜆𝑘) are the eigenvalues of 𝐘𝐘′, also known as the
rincipal loadings. To estimate 𝐔,𝐀, and 𝜦 under this parameterization, there are two choices: (1) factor 𝐄−𝑖 = 𝐙−𝐔−𝑖𝐀−𝑖 in (8) and

we assign the prior 𝜆𝑖𝐮̃𝑖|𝐔𝑖 ∼ SPN𝑛−𝑘+1(𝜴𝑢
𝑖 ), or (2) estimate the parameters from the SVD model and compute 𝐀 as the posterior

product of 𝐃 and 𝐕′. For choice (1), only the columns of 𝐔 are dependent where the elements of 𝐀 are independent, resulting in only
the principal components having dependence. If choice (2) is taken, then the columns of 𝐔 and rows 𝐀 can be modeled dependently,
where 𝐀 is dependent through the specification of 𝐕. For PCA parameterization, we advocate for choice (2) as there is more control
over the model than choice (1).

3.2.2. Including covariates
The general model (4) allows for more complex model structure, such as including covariates. Traditionally, data are centered, or

de-trended, prior to computing the SVD/PCA decomposition. However, within (4) a mean term can be accommodated by modeling
6 
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Fig. 2. Box plots of the ratio of the RMSE for the variable model divided by the grouped model for 𝐔 (left) and 𝐕 (right) stratified by SNR (sub-panel) and
basis function (color) with a horizontal line at 1. For each box, the lower and upper hinge are the 25th and 75th percentiles, respectively, the line within the
box is the median, and the lower and upper whiskers are 2.5 and 97.5 percentiles. Note, we have limited the 𝑦-axis to ease visual comparison between panels
nd only the first panel, with a SNR = 0.1, has values outside of the range. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

𝐌. We first consider a linear model for 𝐌, vec(𝐌) = 𝐗𝜷, where 𝐗 ∈ R𝑛𝑚×𝑝 is a matrix of observed covariates and 𝜷 ∈ R𝑝 is a vector
of unknown parameters. To estimate 𝐔,𝐃,𝐕 under this parameterization, 𝐄−𝑖 = 𝐙− [𝐗𝜷] −𝐔−𝑖𝐃−𝑖𝐕′

−𝑖 in (8), where [𝐗𝜷] denotes the
reconstructed matrix of size 𝑛 × 𝑚. To estimate 𝜷, we vectorize the model to get vec(𝐙) ∼ 𝑀 𝑉 𝑁𝑛𝑚(𝐗𝜷 + vec(𝐔𝐃𝐕′), 𝐈𝑚 ⊗𝜮), assign
the diffuse normal prior 𝜷 ∼ 𝑀 𝑉 𝑁𝑝(𝟎, 𝜎2𝛽 𝐈𝑝), with 𝜎2𝛽 large, and get a standard normal–normal conjugate update for 𝜷.

This idea can be extended to a nonlinear function, say vec(𝐌) = 𝑓 (𝐗, 𝜷), where 𝑓 () is a nonlinear function. For example,
generalized additive models (Hastie and Tibshirani, 2017) or differential equations (Berliner, 1996; Wikle, 2003) could be used
to model the nonlinear function. However, care will likely need to be taken for the nonlinear case such that the nonlinear function
is not too flexible, thereby conflicting with the random effect (e.g., see 4.4).

4. Synthetic data examples

We conduct three simulation studies to illustrate various aspects of the prior. The first simulation provides justification for basis
function-specific structure as opposed to a shared structure for all the basis functions. The second illustrates how measurement error
and model rank impact basis function recovery. The last simulation investigates the ability to recover covariates when there may
be confounding between the fixed and random effects.

4.1. Data generation

For all simulations, the target ‘‘true’’ basis functions 𝐔 and 𝐕 are simulated according to the generating mechanism described
in Section 2.1 (e.g., to produce the orthonormal matrix in (1)) with 𝜴𝑢

𝑖 = 𝐂𝑢(𝜽𝑢,𝑖) and 𝜴𝑣
𝑖 = 𝐂𝑣(𝜽𝑣,𝑖) where the elements of 𝐂𝑢(𝜽𝑢,𝑖)

and 𝐂𝑣(𝜽𝑣,𝑖) are defined by the Matérn correlation function with 𝜽𝑢,𝑖 = (𝜈𝑢,𝑖, 𝜌𝑢,𝑖) and 𝜽𝑣,𝑖 = (𝜈𝑣,𝑖, 𝜌𝑣,𝑖). Data is simulated according to
𝑍(𝑥, 𝑡) ∼ 𝑁(𝑀(𝑥, 𝑡) + 𝑌 (𝑥, 𝑡), 𝜎2) with 𝑥 = 𝑥1,… , 𝑥𝑛 equally spaced in  = [−5, 5], 𝑡 = 𝑡1,… , 𝑡𝑚 equally spaced in  = [0, 10], 𝑛 = 100,
𝑚 = 100, and 𝑌 (𝑥, 𝑡) being the (𝑥, 𝑡) element of the matrix 𝐘 = 𝐔𝐃𝐕′. The specification of 𝐌 = [𝑀(𝑥, 𝑡)](𝑥,𝑡)∈× is described in
each of the following subsections. The value of 𝜎2 is chosen to match a target signal-to-noise ratio (SNR): let 𝜼 be a random 𝑛 × 𝑚
matrix of iid standard normal random variables, then, 𝜎 =

√

𝑣𝑎𝑟(𝐌+𝐘)
SNR∗𝑣𝑎𝑟(𝜼) . Ultimately, the simulated data is 𝐙 = 𝐌 + 𝐘 + 𝜎𝜼 (see the

supplement Figure S.5) with 𝑣𝑎𝑟(𝐌 + 𝐘)∕𝑣𝑎𝑟(𝐙 −𝐌 − 𝐘) = SNR.

4.2. Synthetic example #1: basis function-specific length scales

The first simulation study assesses how our model recovers the underlying basis functions when the true basis functions have
iffering length-scales. We compare our ‘‘variable model’’, in which we allow each basis function to have unique structure that is
stimated from the data, to a ‘‘grouped model’’, in which all basis functions have a shared structure that is also estimated from the
ata. A distinguishing feature of our methodology is that we can model basis function-specific structure, in comparison to other
ecent work (Pourzanjani et al., 2021; Jauch et al., 2021) wherein all basis functions have the same length-scales. Both models are
escribed in Section 3.1: in the variable model, 𝜌⋅,𝑖 and 𝜌⋅,𝑗 need not be equal, while in the grouped model, we impose the restriction
hat 𝜌⋅,𝑖 = 𝜌⋅,𝑗 , for 𝑖, 𝑗 = 1,… , 𝑘. The grouped model is a special case of the variable model, illustrating the enhanced flexibility of
ur methodology relative to existing approaches.

To explore the effect of basis function-specific structure, we generate data where the length-scale for each basis function
aries from larger to smaller in an exponentially decreasing trend similar to what is shown in Fig. 1. To determine the effect
f measurement error in conjunction with varying basis function length-scale, we generate data sets with 𝜎2 chosen such that
NR = [10, 5, 2, 1, 0.5, 0.1]. For this simulation study, we do not consider the effect of 𝐌, and all data is simulated with 𝐌 ≡ 0. For
ll data generation, we specify the true number of basis functions 𝑘 = 4 with covariance parameters 𝜈(⋅),𝑖 = 3.5 for 𝑖 = 1,… , 𝑘 and

𝝆(⋅) = (3.5, 1, 0.5, 0.25) for both 𝐔 and 𝐕, and diagonal matrix 𝐃 = diag(40, 30, 20, 10). For each SNR, we obtain 10 000 posterior
samples of the model parameters and discard the first 5000 as burn-in for both the variable and grouped model. The process is
repeated 100 times for each SNR to help understand the variability in the results.
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For each simulation and model, we calculate the element-wise average root mean squared error (RMSE) of the posterior mean
or each basis function in 𝐔 and 𝐕 compared to their corresponding true value. To compare the RMSE estimates of the variable to

grouped model, Fig. 2 shows the ratio of the RMSE estimate for the variable model over the group model for 𝐔 (left) and 𝐕 (right)
stratified by the SNR (sub-panels) and by the basis function (color) along with a horizontal reference line at one.

RMSE ratios less than one favor the variable model. From the figure, we see basis functions 2 and 3 for both 𝐔 and 𝐕 have
ratios closest to 1 for all values of SNR. In contrast, basis functions 1 and 4 for both 𝐔 and 𝐕 have ratios that are systematically
less than 1 for all values of SNR except 0.1. The reason the variable model has improved RMSE performance for 1 and 4 is because
the estimate for 𝜌 for the grouped model is pulled toward the average length-scale value, which is close to the true length scale for
basis functions 2 and 3. This bias results in the grouped model over-fitting basis function 1 (since the pooled estimate of the length
scale is less than the true length scale) and under-fitting basis function 4 (since the pooled estimate of the length scale is larger than
the true length scale); see estimates in Figure S.3 for a visual example of the over- and under-fitting.

In summary, our first synthetic example verifies that when the data have differing structures in the underlying basis functions,
failing to account for those different structures results in systematically larger errors in the basis function estimates. The true
structures can only be appropriately captured when the underlying statistical model directly accounts for basis function-specific
structure.

4.3. Synthetic example #2: model rank

We now conduct a simulation study to illustrate the impact of SNR and model rank 𝑘 on basis function recovery. To determine
the effect of measurement error, we again generate data sets with 𝜎2 chosen such that SNR = [10, 5, 2, 1, 0.5, 0.1]. As with the previous
simulation study, all data is simulated with 𝐌 ≡ 0. For all data generation, we set the true number of basis functions 𝑘∗ = 5 with
covariance parameters (𝜈(⋅),𝑖, 𝜌(⋅),𝑖) = (3.5, 3) for both 𝐔 and 𝐕 and for all 𝑖 = 1,… , 𝑘∗, and diagonal matrix 𝐃 = diag(40, 30, 20, 10, 5).
One realization of the simulated data with SNR = 1 and the 𝐔 and 𝐕 basis functions are shown in Figure S.4 in the supplement.

As discussed in Section 3.1.3, using this model only requires specification of 𝑘, the number of basis functions used in 𝐔 and
𝐕, and kernels for 𝐂𝑢(𝜽) and 𝐂𝑣(𝜽). To investigate how possible mis-specification of the number of basis functions impacts model
recovery, we estimate the model with 𝑘 = [3, 4, 5, 6, 7] for each level of SNR. Additionally, we specify a Matérn kernel with smoothness
parameter 𝜌 = 3 for the correlation structure for all basis functions. For each SNR and 𝑘 combination, we obtain 10000 posterior
samples of the model parameters, discarding the first 5000 as burn-in. We repeat this process 100 times.

For each posterior simulation, we calculate the 95% coverage rate (CR) and RMSE for 𝐔, 𝐕, and the ‘‘true’’ surface 𝐘 = 𝐔𝐃𝐕′.
If the true 𝑘∗ is greater than the specified 𝑘, the empirical CR and RMSE are computed only for the first 𝑘 basis functions and then
averaged over the 𝑘 estimates (e.g., we do not consider the last 𝑘∗ − 𝑘 basis functions when computing CR and RMSE). If the true
𝑘∗ is less than the specified 𝑘, the empirical CR and RMSE for the ‘‘extra’’ 𝑘 − 𝑘∗ basis functions are compared to the zero line and
the reported CR and RMSE values are obtained by averaging over the 𝑘 estimates. Additionally, for each simulation we computed
the C-SVD using the base linear algebra library, LinearAlgebra.jl, in Julia (Bezanson et al., 2017) and computed the RMSE of the
calculated 𝐔,𝐕, and reconstructed surface 𝐘 assuming the same truncation value 𝑘. The coverage rates and the RMSE are shown in
Fig. 3. The results of one simulation are shown in Fig. 4 based on the data shown in Figure S.4 in the supplement.

From Fig. 3(a), we see our median coverage rate for the 𝐔 (middle row) and 𝐕 (bottom row) basis functions (blue line) is near
the nominal level (horizontal black line) and the 95% Monte Carlo uncertainty bounds (MCUB) for the coverage rate (blue shaded
region) covers the nominal level for all SNR levels and regardless of the specification of 𝑘. This implies that posterior uncertainties
are well calibrated and robust to mis-specifications of the number of estimated basis functions, regardless of the magnitude of the
noise. For the recovered data (top row), we see the 95% MCUB cover the nominal level for all SNR levels with 𝑘 greater than 5.
However, for 𝑘 less than 5, achieving the nominal coverage depends on SNR: in low signal cases (e.g., SNR = 0.1), the uncertainties
are well calibrated, while posterior uncertainties are too small (i.e., coverage of the truth is much less than the nominal level)
when the signal is stronger (SNR > 0.5). This counterintuitive result is due to the impact of unaccounted signal for higher-order
basis functions (𝑖 = 4 and/or 𝑖 = 5) on the signal: for large SNR, individual basis functions both (a) contribute more to the overall
uncertainty in the data and also (b) have narrower posterior distributions, such that ignoring one or more true basis functions causes
the model to underestimate data uncertainties (e.g., see Fig. 4). Conversely, for smaller SNR, there is more uncertainty in each basis
function estimate and the impact of higher-order basis functions on the estimated surface is reduced, to the extent that the model
can recover the nominal coverage of the data.

For the RMSE, shown in Fig. 3(b), the most notable result is that the median RMSE for our approach (blue line) is systematically
lower than the corresponding RMSE from the algorithmic C-SVD approach for both data (top row) and basis functions (middle and
bottom rows), across SNR levels and specification of 𝑘. In other words, estimates of the basis functions in both 𝐔 and 𝐕 and the
recovered data have systematically lower errors than what one can obtain from the algorithmic approach. Regarding RMSE for
estimates of the recovered surface, the median error (blue line) decreases as a function of SNR, as expected, and interestingly the
data RMSE is relatively insensitive to specification of 𝑘. For the 𝐔 and 𝐕 basis functions (middle and bottom rows, respectively, of
Fig. 3), we see that trajectories of RMSE estimates for our proposed approach and the C-SVD mirror each other, with our estimates
being systematically, but not significantly, lower. However, across SNR levels, the RMSE actually increases as one moves from 𝑘 = 3
to 𝑘 = 7 (even though the true 𝑘∗ = 5). For SNR equal to 5 and 10, we see a dramatic spike in the RMSE estimate and uncertainty
for the 𝐔 and 𝐕 basis functions for 𝑘 = 6 and 7. This is because we are comparing against the zero line for these cases: while
the uncertainty bounds for these basis function covers the zero line (as seen in the coverage results in Fig. 3a.), there is a lot of

variability in these estimates (with relatively lower uncertainty due to larger signal), leading to inflated RMSE values.
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Fig. 3. Validation results from the synthetic data example, showing coverage rate (top) and root mean square error (bottom). In each panel, the solid blue line
is the median Monte Carlo coverage rate and shaded regions are the 95% Monte Carlo uncertainty bounds for the coverage rate over synthetic replicates. Results
are shown for varying levels of SNR and values of 𝑘 for the recovered surface 𝐘 (top), 𝐔 basis functions (middle), and 𝐕 basis functions (bottom). The SNR
values range from 0.1 (left) to 10 (right). The black vertical line indicates the true value 𝑘∗ = 5 and the horizontal black line for (a) is at 95% (the nominal
overage rate). In panel (b), the black point and error bars show the median and 95% bootstrapped confidence interval for the RMSE using the algorithmic
-SVD method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In conclusion, this synthetic data example shows the proposed method has well calibrated uncertainty and significantly reduces
the impact of measurement noise on the basis function estimates. However, there is a significant trade-off in choosing 𝑘 to be too
mall or large based on the magnitude of the SNR. Based on our simulation, there will be significant bias in the recovered surface
ut not in the estimated basis functions if 𝑘 is too small and the SNR is low. Additionally, there will not be significant bias in the
ecovered surface or in the estimated basis functions if either 𝑘 is too small and the SNR is large or 𝑘 is too large. The only trade-off
or 𝑘 too large is inflated RMSE’s for the extraneous basis functions, which could lead to underestimated RMSE’s in the recovered
urface. Therefore, we suggest erring on the side of choosing 𝑘 to be too large.

4.4. Synthetic example #3: covariates

To illustrate how covariates impact the estimation of the basis functions, we now include the fixed effect 𝐌 when simulating
ata and specify the SNR to be 2. We consider three different cases of the model for 𝐌: (M1) independent fixed and random effects,
9 
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Fig. 4. Posterior mean (blue line), 95% credible intervals (shaded blue region), truth (black line), and C-SVD estimate (red line) for the 𝐔 and 𝐕 basis functions
from a random simulation. The data associated with this random simulation is shown in Figure S.4. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

Table 1
Posterior mean (top row), lower 95% credible interval (middle row), and upper 95% credible interval (bottom row) for the
regression coefficients of models M1–M3 (top-bottom).
Model 𝛽1 𝛽2 𝛽3 𝛽4

True −2 0.6 1.2 −0.9

Mean −2.032 0.632 1.204 −0.873
M1 Lower CI −2.082 0.583 1.156 −0.921

Upper CI −1.983 0.680 1.252 −0.824

Mean −1.995 0.636 1.071 −0.875
M2 Lower CI −2.036 0.531 1.014 −0.913

Upper CI −1.943 0.747 1.118 −0.807

Mean −2.005 0.601 1.194 −0.908
M3 Lower CI −2.016 0.589 1.179 −0.938

Upper CI −1.994 0.614 1.209 −0.882

(M2) strongly confounded spatial and temporal fixed and random effects, and (M3) weakly confounded spatial and temporal fixed
and random effects. For all three models, we specify vec(𝐌) = 𝐗𝜷 where 𝜷 = (𝛽1,… , 𝛽4) = (−2, 0.6, 1.2,−0.9) and 𝐗 is a nm by 4
matrix. For each model, the covariates are generated as:

M1 - Each element of 𝐗 is i.i.d. 𝑁(0, 0.22).
M2 - Let 𝐱̃1,𝑠, 𝐱̃2,𝑠 ∼ 𝑁𝑛(𝟎,𝜮𝑠), 𝐱̃𝑡 ∼ 𝑁𝑚(𝟎,𝜮𝑡), and 𝐱𝑠𝑡 ∼ N𝑛𝑚(𝟎,𝜮𝑠𝑡) where 𝜮𝑠,𝜮𝑡, and 𝜮𝑠𝑡 are correlation matrices specified using

the Matérn kernel with smoothness parameter 𝜈 = 3.5 and length-scale parameter 𝜌 = 3, 3 and 1, respectively, which is equal
to the length-scale of the spatial and temporal random effect, respectively. Then, 𝐗 = [𝐱1,𝑠, 𝐱2,𝑠, 𝐱𝑡, 𝐱𝑠𝑡] is a nm×4 matrix where
𝐱1,𝑠 = 𝐈𝑚 ⊗ 𝐱̃1,𝑠, 𝐱2,𝑠 = 𝐈𝑚 ⊗ 𝐱̃2,𝑠, and 𝐱𝑡 = 𝐱̃𝑡 ⊗ 𝐈𝑛.

M3 - The covariate matrix is created in the same manner as in M2 except the length-scale of 𝜮𝑠,𝜮𝑡, and 𝜮𝑠𝑡 are 𝜌 = 0.3, 0.3 and
1, respectively.

For each covariate specification M1–M3, we implement our methodology with 𝑘 = 5, a Matérn kernel with smoothness parameter
𝜈 = 3 for the correlation structure for all basis functions, and a diffuse normal prior, N(0, 102), on each element of 𝜷. We obtain 10000
osterior samples of the model parameters, discarding the first 5000 as burn-in. Posterior summaries of the regression coefficients
re shown for each model in Table 1. From the table, we see only 𝛽3 from M2 has a credible interval that does not cover the true
alue, indicating the model is able to reasonably recover the fixed effects under all three scenarios. To determine the model’s ability
o correctly recover the random effect, we computed the point-wise 95% posterior coverage rate for the random effect 𝐘 = 𝐔𝐃𝐕′ for
ach M1, M2, and M3, which are 0.965, 0.276, and 0.984, respectively. Therefore, when the fixed and random effect are independent
r they have different spatial and temporal frequencies (weakly confounded), the model is able to correctly identify both model

components. When the fixed and random effects have similar, or in this example equal, spatial and temporal frequencies, the model
s unable to properly capture the random effect but can still capture the fixed effect.

Based on previous work by Paciorek (2010) discussing the issue of scale with spatial mixed-effects models, our results are
ot surprising. Specifically, if the fixed and random effects operate on different scales (either spatially or temporally), Paciorek
2010) rigorously argues the fixed and random effects are identifiable. If they operate on similar (or equivalent) scales, they are
ot identifiable. If interpretation of the random effect is not important, the random effect can restricted to be orthogonal to the
ixed effect, thereby making the random effect identifiable on the space orthogonal to the fixed effect (Reich et al., 2006; Hodges
nd Reich, 2010; Hanks et al., 2015). However, there has been debate as to the validity of modeling the random effect on the
10 
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estricted space (Zimmerman and Ver Hoef, 2022). Because this is not the main goal of the paper, for now we simply recommend
being cognizant of these issues.

5. Surface air temperature

As discussed in the introduction, empirical orthogonal functions, or EOFs, are commonly used in climate sciences to summarize
modes of variability in atmospheric systems. Typically, external factors that could be driving the system are referred to as climate
forcings and modeled as fixed effects, while ‘‘unforced’’ year-to-year variability is modeled as a spatial, temporal, or spatio-temporal
random effect and referred to as internal variability. Importantly, when EOF analysis is applied to climate data where the long term
trends have been removed, this can be considered a method for characterizing the internal variability of the system. Particularly
for extreme temperature events, EOFs are an important tool for understanding how internal variability combines with long-term
trends to produce short-term events that have a large impact on human systems (Grotjahn et al., 2016). Historically, estimates of
he internal variability are derived from ensembles of climate models and rarely computed from observational data products. Here,

we explore our ability to estimate the internal variability of monthly maximum two-meter air temperature in the Pacific Northwest,
where it is important to account for spatial and temporal structures in the extreme measurements (again see, e.g., Grotjahn et al.,
2016). Such estimates are important for understanding the statistics of monthly maximum temperatures in this region, particularly
in light of the recent devastating heatwave that impacted this region in the summer of 2021 (Bercos-Hickey et al., 2022).

We use gridded monthly maximum two-meter air temperature data (tXx) by extracting the largest daily maximum two-meter
air temperature each month from the ERA5 reanalysis dataset (Hersbach et al., 2020) at 0.25◦ horizontal resolution from January
1979 to December 2021. The data are centered by subtracting off the global mean. We focus on the subset of data from 44◦–53◦N
and 116◦–128◦W, for a total of 1813 spatial locations across 516 time points. While it is possible to include relevant covariates for
this analysis (e.g., greenhouse gas emissions, the El Niño/Southern Oscillation, urbanization, and drought conditions) using a model
for 𝐌 (e.g. Section 3.2.2), this would have resulted in a substantial number of parameters to estimate and is not the main focus of
his work. Therefore, we opt instead to focus on the model for the random effect and simply centered the data a priori to parameter

estimation.
As discussed in the introduction, Fig. 1 shows empirical evidence that the basis functions resulting from a SVD of tXx may have

different structure. We proceed with this assumption. Therefore, we parameterize the covariance matrix for the prior of the spatial
asis functions using the Matérn kernel with smoothness 𝜈 = 3.5 and the covariance matrix for the prior of the temporal basis
unctions using the Gaussian kernel. The length-scale parameters for each column of both the spatial and temporal basis functions
re estimated along with other model parameters. We specify 𝑘 = 10 based on the first 10 basis functions explaining approximately
9% of the variance as determined from the C-SVD decomposition. We obtain 10000 samples from the posterior, discarding the first
000 as burn-in, where convergence is assessed graphically with no issues detected.

Posterior summaries of three spatial basis functions (2, 5, and 7), three temporal basis functions (2, 5, and 7), and all length-scale
stimates are shown in Fig. 5(A), (B), and (C), respectively. We highlight basis function 2 because it has little to no significant
ifference between C-SVD estimate, and 5 and 7 because they contain many spatial and temporal locations with significant
ifferences. Panel (a) depicts summaries of three spatial basis functions 𝐮2 (top), 𝐮5 (middle), and 𝐮7 (bottom), where the left
olumn are the estimates from C-SVD, the middle column are the posterior means from our proposed model, and the right column
re the posterior difference between the posterior mean and the algorithmic estimate where locations whose 95% credible interval
oes not cover zero are denoted with an ‘x’. Panel (b) contain estimates of three temporal basis functions 𝐮2 (top), 𝐮5 (middle),
nd 𝐮7 (bottom), where the black line is the C-SVD estimates, blue line is the posterior mean from our proposed model, and blue
haded region are the 95% CIs where a vertical line denotes the 95% CI does not cover the C-SVD estimate. The last panel, (c), are
osterior mean estimates of the length-scale parameter (dot) and 95% credible intervals (error bars) of the correlation kernel for
ach spatial (left) and temporal (right) basis functions, where blue estimates correspond to the selected basis functions for panels
a) and (b). Posterior summaries of all 10 spatial and temporal basis functions are included in the supplement.

Comparing the spatial plots of the posterior mean to the deterministic counterpart (Fig. 5A), the posterior estimates are much
moother spatially and for the fifth and seventh basis functions, the estimates are significantly different over much of the spatial
egion. The estimates, both deterministic and probabilistic alike, have an interpretation that makes sense physically. The second
asis function (top row) has a clear land-sea contrast and distinguishes between the plains (purple) and mountains (green). The
ifth basis function captures the influence of the low-lying coastal region and foothills of Canadian Rockies (purple) in contrast to
he wet/dry regimes in Canada and Oregon/Washington (green). The seventh combines multiple physical features and aligns well
ith geographical features such as topography and appears to capture steep gradient contrasts.

Regarding the temporal estimates (Fig. 5B), the second basis function (top) does not have any time points with significantly
ifferent estimates than the C-SVD counterpart. However, both the fifth (middle) and seventh (bottom) do have significant differences
denoted with the vertical lines), and we see the posterior means produce smoother estimates than the C-SVD counterparts.

Additionally, the basis functions all have different posterior mean length-scale estimates. For the spatial basis functions, 𝐮6,𝐮7,
nd 𝐮10 have significantly smaller values than the other six, as determined by the range of the 95% CI (Fig. 5C, left), and for the
emporal, the first three have significantly larger values than the other seven, as determined by the range of the 95% CI (Fig. 5C,
ight). This shows we are able to capture the spatial and temporal relationship within each basis function and that the spatial and
emporal relationship is different across basis functions.

Importantly for climate science, we are able to provide estimates of the internal variability of a system from observational data,

n this example monthly maximum two-meter air temperature of daily maxima, by reconstructing the internal variability using

11 
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Fig. 5. (a) Estimated spatial basis functions 𝐮2 (top), 𝐮5 (middle), and 𝐮7 (bottom). The left column are the estimates from C-SVD, the middle column are the
osterior means, and the right column are the posterior difference between the posterior mean and the algorithmic estimate where locations whose 95% credible

interval does not cover zero are denoted with an ‘x’. (b) Estimated temporal basis functions 𝐯2 (top), 𝐯5 (middle), and 𝐯7 (bottom). For each panel, the black
line are the estimates from C-SVD, blue line are the posterior means, and blue shaded region are the 95% CIs where a vertical line denotes the 95% CI does not
over the C-SVD estimate. (c) Posterior mean estimate of the length-scale parameter (dot) and 95% credible intervals (error bars) of the correlation matrix for
ach spatial (left) and temporal (right) basis functions. Estimates in blue correspond to the selected basis functions for panels (a) and (b). (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

osterior estimates of our structured basis functions. The estimates account for measurement uncertainty, spatial and temporal
ependence, and have quantifiable uncertainty. These estimates can then be used to account for the internal variability of a system
nd help isolate the extent to which external factors are driving changes to the system. Additionally, producing ensembles of weather
ariables like extreme temperature using climate models can be computationally intensive. However, we can now sample directly

from the posterior distribution of the internal variability of extreme monthly temperatures, accounting for the spatial structures
innate to the underlying data. These posterior samples are analogous to ensembles of the climate system and computationally much
cheaper to compute than ensembles of climate model runs.

6. Discussion

We proposed a novel prior distribution for structured orthonormal matrices that is an extension of Hoff (2007), where the
individual basis functions can be modeled dependently. The prior is based on the projected normal distribution which we augment
with a latent length parameter. When our prior is combined with a normal data model, the resulting full conditional distributions
for the basis functions are conjugate, resulting in analytically straightforward MCMC sampling. We describe how the prior can be
used to conduct posterior inference on a general class of probabilistic SVD models and how to extend the proposed model to various
other applications. We discussed various mathematical properties of our probabilistic SVD model (supplement S.3) and illustrated
its capability through multiple simulation studies. The model is then used to draw inference on the internal variability of extreme
two-meter air temperature, allowing us to quantify space–time structures in a complex climate process.

The synthetic data examples and application presented in Sections 4 and 5, respectively, all highlight the model’s efficacy on
gridded, i.e., uniformly spaced, data. However, the model is equally well suited for non-uniformly spaced data so long as the spacing
is consistent within space and within time. If the data are not spaced consistently within space and within time, this would constitute
a missing data problem, which we plan to explore in future work. In addition, our model assumes normally distributed errors. This
assumption can be relaxed by, for example, assuming a hierarchical structure and modeling the mixed-effects as a latent process.

Another area for possible extension could explore the concept of regularized basis functions through the posterior mode of the
basis functions. Similar to the Bayesian Lasso (Park and Casella, 2008) or Bayesian Group Lasso spatial data (Hefley et al., 2017),
an 𝓁1 penalty could be imposed by representing a Laplace distribution as a scale mixture of normal distributions. The addition of
 penalty term, especially a penalty that forces values to zero, could produce sparse dependently structured basis functions whose
mportance within the spatial context is explored by Wang and Huang (2017). In addition, future work could be directed at metrics
uantifying the impact smoothing and/or sparsity have on the interpretable physical structure of the basis functions.

The choice of the number of basis functions, 𝑘, is the only major subjective choice in our proposed probabilistic SVD model. While
e show the mis-specification of 𝑘 does not have a negative impact when erring on the side of 𝑘 being too large, a more flexible
odel estimating 𝑘 is attractive. To estimate 𝑘, Hoff (2007) proposed a variable-rank model utilizing the so-called spike-and-slab

ariable selection prior (Mitchell and Beauchamp, 1988). However, because of the difference in our prior compared to the prior
roposed by Hoff (2007), incorporating the spike-and-slab prior into our proposed model would require extra theoretical work.
ork focused on estimating the rank 𝑘 with our framework would produce a very flexible approach for modeling spatio-temporal

andom effects.
12 
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Finally, our proposed prior does have the disadvantage of relying on a column-wise sampling strategy. Specifically, within each
CMC iteration, there is a required (𝑛3) cost of computing the orthonormal basis for the null-space 𝐍𝑢

𝑖 and 𝐍𝑣
𝑖 (see the supplement

or more discussion). The additional flexibility our approach offers comes at the cost of the computational gains from the methods
y Pourzanjani et al. (2021) and Jauch et al. (2021), which propose solutions to this column-wise strategy. While this (𝑛3) cost
annot be avoided, future work could explore the use of computational Bayesian methods such as scalable MCMC techniques and
ariational inference on other aspects of the methodology.
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ppendix A

.1. Proofs of propositions

We now prove the propositions describing the properties of the orthogonal matrix constructed in Section 2.1.

emma 1. The generating random variables 𝐳𝑗 and 𝜴𝑗 are exchangeable.

roof. The generating random variables 𝐳𝑖 are exchangeable because they all independent and have the same marginal distribution.
pecifically, because 𝜴1,… ,𝜴𝑘 ∼ 𝜋𝛺 all have the same distribution, if we marginalize 𝐳𝑗 , we get 𝑝(𝐳𝑗 ) = ∫𝛺 𝑝(𝐳𝑗 |𝜴𝑗 )𝑝(𝜴𝑗 )𝑑𝜴 is the
ame for all 𝑗 = 1,… , 𝑘. □

emma 2. For any permutation 𝜋 of the columns of the 𝑛 × 𝑘 matrix 𝐗, denoted 𝐗𝜋 , the matrix 𝐏𝜋 ≡ 𝐈 − 𝐗𝜋 (𝐗′
𝜋𝐗𝜋 )−1𝐗′

𝜋 is the unique
rojection onto the orthogonal complement of column space of 𝐗. That is, 𝐏𝜋 = 𝐏.

roof. Since 𝐗 and 𝐗𝜋 share the same column space, the result is immediate by the projection theorem. □

Proposition 1. The columns of 𝐖 = 𝐗(𝐗′𝐗)−1∕2 are exchangeable. That is, for any permutation 𝜋 of the set {1,… , 𝑘}, 𝑝([𝐰1,… ,𝐰𝑘])
𝑑
=

𝑝([𝐰𝜋(1),… ,𝐰𝜋(𝑘)]).
13 
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roof. We first show the columns of the matrix 𝐗 are exchangeable. That is, for any permutation 𝜋 of the set {1,… , 𝑘},
([𝐱1,… , 𝐱𝑘])

𝑑
= 𝑝([𝐱𝜋(1),… , 𝐱𝜋(𝑘)]). Then, we use the exchangeability of 𝐗 to show exchangeability of 𝐖.

Define 𝐗𝜋𝑗 = [𝐱𝜋(1),… , 𝐱𝜋(𝑗)] and 𝐏𝜋(𝑗) = 𝐈−𝐗𝜋𝑗 (𝐗
′
𝜋𝑗
𝐗𝜋𝑗 )

−1𝐗′
𝜋𝑗

= 𝐏𝑗 . To show exchangeability, we show the characteristic function
of 𝐗 is equivalent to the characteristic function of 𝐗𝜋𝑗 . For a 𝑛 × 𝑘 random matrix 𝐗, the characteristic function is defined as
𝜑(𝐗) = 𝐸[exp{𝑖tr(𝐓′𝐗)}] = 𝐸[exp{𝑖

∑𝑘
𝓁=1 𝐭

′
𝓁𝐱𝓁}], where 𝐓 = [𝐭1,… , 𝐭𝑘] is a 𝑛 × 𝑘 matrix, 𝑖 is the imaginary unit, and tr(⋅) is the trace

operator. We show the proposition using proof by induction:

1. For 𝑘 = 1, we have 𝐗𝜋1 = 𝐱𝜋(1) = 𝐏0𝐳𝜋(1)
𝑑
= 𝐏0𝐳1 = 𝐱1 = 𝐗1, where 𝐳𝜋(1)

𝑑
= 𝐳1 by Lemma 1. Therefore, 𝐗1

𝑑
= 𝐗𝜋1 .

2. Assume for 𝑘 = 𝑗, 𝐗𝑗
𝑑
= 𝐗𝜋𝑗 .

3. By the characteristic function of 𝐗𝜋𝑗+1 ,

𝜑(𝐗𝜋𝑗+1 ) = 𝐸

[

exp

{

𝑖
𝑗+1
∑

𝓁=1
𝐭′𝓁𝐱𝜋(𝓁)

}]

= 𝐸

[

exp

{

𝑖
𝑗
∑

𝓁=1
𝐭′𝓁𝐱𝜋(𝓁)

}

exp
{

𝑖𝐭′𝑗+1𝐱𝜋(𝑗+1)
}

]

= 𝐸

[

exp

{

𝑖
𝑗
∑

𝓁=1
𝐭′𝓁𝐱𝜋(𝓁)

}

𝐸[exp
{

𝑖𝐭′𝑗+1𝐱𝜋(𝑗+1)
}

|𝐗𝜋𝑗 ,𝜴𝜋(𝑗+1)]

]

(it er at ive expect at ion)

= 𝐸

[

exp

{

𝑖
𝑗
∑

𝓁=1
𝐭′𝓁𝐱𝜋(𝓁)

}

𝐸[exp
{

𝑖𝐭′𝑗+1𝐏𝜋(𝑗)𝐳𝜋(𝑗+1)
}

|𝐗𝜋𝑗 ,𝜴𝜋(𝑗+1)]

]

= 𝐸

[

exp

{

𝑖
𝑗
∑

𝓁=1
𝐭′𝓁𝐱𝜋(𝓁)

}

exp
{

𝐭′𝑗+1𝐏𝜋(𝑗)𝜴𝜋(𝑗+1)𝐏′
𝜋(𝑗)𝐭𝑗+1

}

]

.

The induction hypothesis implies {𝐗𝑗 ,𝐏𝑗}
𝑑
= {𝐗𝜋𝑗 ,𝐏𝜋(𝑗)}. Also, 𝜴𝜋(𝑗+1) is independent of 𝐗𝑗 and 𝐏𝑗 . Therefore, {𝐗𝑗 ,𝐏𝑗 ,𝜴𝑗+1}

𝑑
=

{𝐗𝜋𝑗 ,𝐏𝜋(𝑗),𝜴𝜋(𝑗+1)} because 𝐗𝜋𝑗 ⇒ 𝐗𝑗 by induction hypothesis, 𝐏𝜋(𝑗) ≡ 𝐏𝑗 by Lemma 2, and 𝜴𝜋(𝑗+1) ⇒ 𝜴𝑗+1 because it is
independent of 𝐗𝑗 and 𝐏𝑗 and it is exchangeable. Thus,

𝜑(𝐗𝜋𝑗+1 ) = 𝐸

[

exp

{

𝑖
𝑗
∑

𝓁=1
𝐭′𝓁𝐱𝓁

}

exp
{

𝐭′𝑗+1𝐏𝑗𝜴𝑗+1𝐏′
𝑗 𝐭𝑗+1

}

]

= 𝜑(𝐗𝑗+1),

and 𝐗𝑗+1
𝑑
= 𝐗𝜋𝑗+1 .

The exchangeability of 𝐖 follows from the exchangeability of 𝐗. Specifically, because the diagonal matrix 𝐑 ≡ (𝐗′𝐗)−1∕2 =
diag[(𝐱′1𝐱1)

−1∕2,… , (𝐱′𝑘𝐱𝑘)
−1∕2] ≡ diag[𝑟1,… , 𝑟𝑘] where the elements 𝑟1,… , 𝑟𝑘 are the norm of the random vectors 𝐱1,… , 𝐱𝑘,

respectively, is simply a rescaling of the columns of 𝐗, and the permutation of the scaling is preserved, 𝐖𝜋
𝑑
= 𝐖. □

Proposition 2. 𝐰𝑖|𝐖𝑖−1
𝑑
= 𝐍𝑖−1𝐰̃𝑖|𝐖𝑖−1 where the columns of the 𝑛× (𝑛− 𝑖+ 1) matrix 𝐍𝑖−1 form an orthonormal basis for the null space

of 𝐖𝑖−1 and 𝐰̃𝑖, the projected weight function, satisfies 𝐰̃𝑖|𝐖𝑖−1 ∼ 𝑃 𝑁𝑛−𝑖+1(𝟎,𝐍′
𝑖−1𝜴𝑖𝐍𝑖−1).

roof. The following argument is similar to Hoff (2007), except now we account for dependence structure and the resulting
istribution is different. By construction, 𝐰𝑖 = 𝐏𝑖−1𝐳𝑖∕(𝐳′𝑖𝐏

′
𝑖−1𝐏𝑖−1𝐳𝑖)1∕2 where 𝐏𝑖−1 has 𝑛 − 𝑖 + 1 eigenvalues equal to 1 and the

est being 0. Let the eigenvalue decomposition be 𝐏𝑖−1 = 𝐍𝑖−1𝐍′
𝑖−1 where 𝐍𝑖−1 is an 𝑛 × (𝑛 − 𝑖 + 1) matrix whose columns span the

null space of 𝐖𝑖. Making the substitution 𝐏𝑖−1 = 𝐍𝑖−1𝐍′
𝑖−1,

𝐰𝑖 =
𝐏𝑖−1𝐳𝑖

(𝐳′𝑖𝐏
′
𝑖−1𝐏𝑖−1𝐳𝑖)1∕2

=
𝐍𝑖−1𝐍′

𝑖−1𝐳𝑖
(𝐳′𝑖𝐍

′
𝑖−1𝐍𝑖−1𝐍𝑖−1𝐍′

𝑖−1𝐳𝑖)
1∕2

= 𝐍𝑖−1
𝐍′
𝑖−1𝐳𝑖

(𝐳′𝑖𝐍𝑖−1𝐍′
𝑖−1𝐳𝑖)

1∕2
.

Note that 𝐏𝑖−1 = 𝐈 − 𝐖𝑖−1𝐖′
𝑖−1, so 𝐰𝑖|𝐖𝑖−1

𝑑
= 𝐍𝑖−1

𝐍′
𝑖−1𝐳𝑖

(𝐳′𝑖𝐍𝑖−1𝐍′
𝑖−1𝐳𝑖)

1∕2 . Because 𝐳𝑖 ∼ 𝑁𝑛(𝟎,𝜴𝑖), we have 𝐍′
𝑖−1𝐳𝑖|𝐖𝑖−1 ∼ 𝑁𝑛(𝟎,𝐍′

𝑖−1𝜴𝑖𝐍𝑖−1)

and
𝐍′
𝑖−1𝐳𝑖

(𝐳′𝑖𝐍𝑖−1𝐍′
𝑖−1𝐳𝑖)

1∕2 ≡ 𝐰̃𝑖|𝐖𝑖−1 ∼ 𝑃 𝑁(𝟎,𝐍′
𝑖−1𝜴𝑖𝐍𝑖−1). □

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.spasta.2024.100866.
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ata availability

All code is written in Julia (Bezanson et al., 2017) and is available publicly on GitHub at https://github.com/jsnowynorth/
BayesianSVD.jl. Additionally, the Bayesian SVD model has been developed into a Julia package BayesianSVD.jl, which can also be
downloaded from GitHub at https://github.com/jsnowynorth/BayesianSVD.jl for easy use. All data are publicly available at the
Copernicus Climate Data Store https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview.

All synthetic data examples and the surface air temperature example were performed using super computing resources due to
the sheer volume of simulations, although any individual simulation could be conducted on a personal laptop computer. The super
computer consists of 3072 CPU nodes where each CPU has two AMD EPYC 7763 CPUs for a total of 64 cores and 512 GB of RAM.
Our resource usage varied between 100 CPU nodes running in parallel for the synthetic data examples and 1 CPU node for the
surface air temperature.
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