
An Extended Investigation of Large Language
Models Employing the Socratic Method

1st Westin Musser
Department of Computer Science

Colorado State University
Fort Collins, CO, USA

ORCID 0009-0000-6467-4547

2nd Sudipto Ghosh*
Department of Computer Science

Colorado State University
Fort Collins, CO, USA

ORCID 0000-0001-6000-9646
*Corresponding author

Abstract—Employing the Socratic method of teaching can
be time consuming and cognitively demanding. We seek to
understand how capable a number of popular large language
models (LLMs) are as Socratic tutors in helping novice program-
mers with debugging their solutions to uncomplicated computing
problems. This research is an extension of prior work that
both contributes a dataset of multi-turn Socratic advice and
benchmarks LLMs in their Socratic debugging capabilities. Our
objectives are twofold; expand this dataset and evaluate an
additional LLM with the same intrinsic metrics, and employ
a reward model to gain further insight. We created a Java
counterpart to the original Python-only dataset and assigned
scores to the LLM generations with a reward model trained on
good and bad Socratic utterances. The results from the extended
evaluation with the NLP metrics adopted from the prior work
are consistent with their findings. The scores given by our reward
model agree with human preference.

Index Terms—Large Language Models, Socratic questioning,
reward models, debugging, benchmark

I. INTRODUCTION

Teaching introductory computer science presents unique
challenges. Students, especially first year undergraduates, tak-
ing their first steps into programming may not have the critical
thinking skills necessary to succeed without additional support.
Well suited for tackling this problem is the Socratic method
of teaching, defined as a shared dialogue wherein the teacher
formulates and asks probing questions meant to elicit certain
thought processes in the student. By probing the student’s
understanding of their work and the task itself, the Socratic
method promotes critical thinking. Providing such individual-
ized help necessitates hiring many teaching assistants, whose
availability through office hours is not a given, especially in
large classes. Students seeking help and feedback may be
unable to attend scheduled office hours. Therein lies an issue
that large language models (LLMs) have the potential to solve.

The LLMs in education remains under a microscope. Indi-
vidualized AI tutors have been shown to help students learn
spoken languages [1]. Institutions have furthermore sought to
simulate the one-to-one tutoring experience, using generative
AI (Gen-AI) to achieve timely feedback at scale [2]. Certainly,
there is much potential for personalized and collaborative
learning offered by AI [3].

In a study motivated by the difficulty of meeting the demand
for teaching assistants who are effective in providing tailored
assistance, Al-Hossami et al. [4] contribute a dataset of multi-
turn Socratic advice intended to aid a novice programmer
in resolving bugs in their solutions to uncomplicated prob-
lems. This dataset consists of problem descriptions common
to introductory computer science courses, test cases, buggy
implementations in Python, and dialogue between the first year
undergraduate student and a teaching assistant. In the dialogue,
the teaching assistant employs the Socratic method to guide
the student to understand their mistake. Using this method
with Gen-AI, the student interacts with an LLM that generates
the probing questions after considering the conversation so
far. The authors then use this to benchmark how well GPT-
3.5 and GPT-4 can provide Socratic debugging help. The
prompt used to do so includes partial dialogue and the full
problem and buggy code for context. Each LLM generates
candidate Socratic utterances (questions designed to shift focus
in a certain direction and provoke critical thinking) befitting
the conversation so far, and they are scored using common
Natural Language Processing (NLP) metrics. We find that
one limitation of their paper is exclusively evaluating Python.
While Python is the most commonly taught language in
introductory courses, it is closely followed by or tied with Java
[5]. Another limitation is that generated Socratic utterances are
only evaluated on how close they are to good human utterances
and not how they contrast with bad ones. We distinguish
between the two types of utterances in Section III.

This paper is an extension of the research done by Al-
Hossami et al. [4]. We involve another LLM not in the GPT
family (Llama) in the experiments and introduce a reward
model for new insight. While these LLMs’ capabilities as
Socratic tutors are evaluated using the same metrics as Al-
Hossami et al. [4], we recognize that such metrics do not
address the negative case. Bad Socratic utterances are well
defined by the previous authors, but none are used in any
empirical contrasting to the generated utterances. Therefore,
we create a reward model that is trained with both good and
bad Socratic utterances toward assigning scores which are
less intrinsic than those of the NLP metrics. To support these
extensions, we expand Al-Hossami et al.’s [4] dataset to also



include Socratic dialogues around Java bugs.1

This research aims to understand the efficacy that can be
achieved by LLMs when acting as Socratic tutors. To this
end, the following research questions are studied:

• RQ1: Do the LLMs perform better or worse when bench-
marked using Java bugs compared to Python bugs?

• RQ2: How does Llama’s ability to generate high-quality
Socratic utterances compare to those in the GPT family
when evaluated using the same metrics?

• RQ3: What insights are gained by scoring with a reward
model in the evaluation of LLMs as Socratic tutors?

Understanding RQ1 informs how comparatively beneficial
LLM tutors may be in courses taught in Java or Python.
Answering RQ2 is important because Llama is an open-source
LLM that can save on subscription costs. The significance
of answering RQ3 comes from the reward model’s ability
to indicate that some LLM-generated Socratic utterances are
closely aligned to bad examples, rather than only knowing how
close or far they are from good ones.

Section III provides context for some of the machine
learning topics referenced in this paper. Section IV describes
the methods used to carry out the study. The data gathered is
used to answer our RQs in Section V. We review related work
in Section II, and offer closing thoughts and opportunities for
future work in Section VI.

II. LITERATURE REVIEW

In this section, we discuss existing work that reinforces
our inclusion of Llama in the evaluation, complements our
research with findings on LLM use in computer science
education, and achieves similar results.

Motivation for Evaluating Llama. In a literature review,
Raihan et al. [6] find that most works employed ChatGPT, in
part due to its popularity among students and the comparative
cost of using GPT-4. Their finding bolsters our added evalu-
ation of Llama, which can be hosted locally for completely
free use. Koutcheme et al. [7] evaluate the efficiency of open-
source LLMs in providing high-quality feedback for program-
ming assignments. They find that Llama-3.1-70B performs
better than or on par with GPT-3.5-turbo and competitively
with GPT-4o-mini and GPT-4o in explaining feedback and
creating perfect fixes. Such results support our motivation for
including Llama.

LLMs for Fundamental Understandings. To understand
how different guidance impacts interactions between learners
and LLMs, Kumar et al. [8] work with 500 students, im-
plementing four pedagogically-informed guidance strategies.
They found the solve then refine strategy, where students
attempt problems before using LLMs to refine their answers,
reduced likelihood of students immediately using AI to gener-
ate their assignments. This complements our research, which
assumes that a student has written a solution to a programming
problem before seeking help. Yeh et al. [9] research the impact

1The dataset is available at https://github.com/wstnmssr/
extended-socratic-debugging-benchmark.

of an interactive LLM used for code generation by novice
programmers and report the need for special care when the
primary learning goal is fundamental understanding. Our work
in this paper is underpinned by this conclusion because we
evaluate LLMs in their ability to improve understanding.

Similar Results. Hassan et al. [10] interview undergrad-
uates who solved ten Explain in Plain English problems and
five Python-code-writing questions using a chat bot, built
on GPT-4o. Students appreciated that the chat bot stepped
through tasks and made them think computationally. Among
their conclusions is that the chat bot was effective in breaking
down programs and guiding students to think critically. Our
paper reports similar results, that multiple LLMs are capable
of breaking down programs to the benefit of students.

III. BACKGROUND

Bad Socratic Utterances. Al-Hossami et al. [4] cate-
gorize bad Socratic utterances into four groups. Irrelevant
utterances shift focus from the actual bug and may cause
confusion. Repeated utterances have previously been asked
and answered. Overly direct utterances reduce learning oppor-
tunities by disclosing the bug too early. Lastly, utterances may
be premature and guide students to change their code before
the issue is identified. Good utterances properly direct student
attention, do not repeat previous ones, progressively disclose
information about the bug at a rate commensurate with the
student’s comprehension of relevant paradigms, and exhibit
patience by waiting until the student identifies the issue.

NLP metrics. Evaluation of the LLMs in this paper and
the prior research is conducted using the following common
natural language processing metrics. BLEU (Bilingual Eval-
uation Understudy) [11] compares generated translations to
reference texts towards calculating n-gram precision, which
may be modified depending on differences in length. It
claims a high correlation with human judgments of quality.
A score close to 1 indicates much correspondence between
the LLM-generated text and that of a human. ROUGE-L
(Recall-Oriented Understudy for Gisting Evaluation - Longest
common subsequence) [12] informs on the semantic similarity
of texts by calculating the recall, precision, and F1 scores
using the length of the longest common subsequences between
reference and generated texts. This metric is included to cap-
ture structural similarity. BERTScore (Bidirectional Encoder
Representations from Transformers) [13] matches words in
reference and generated sentences using cosine similarity. It
can handle paraphrases better than the other metrics. Higher
scores in this metric indicate closer semantic similarities.

Reward models. A core component of reinforcement
learning with human feedback, reward models are language
models trained to align with human preferences [14]. Com-
monly, this is achieved with dyadic data consisting of chosen
examples and their rejected counterparts.

LLM characteristics. The LLMs we evaluate differ in
some important facets. Llama, a smaller model than those
in the GPT family, is more efficient and accessible per its
non-commercial license. GPT models, while very powerful,



may be difficult to use for developers and researchers because
they are large and resource intensive. Furthermore, all GPT
models are closed-source while Llama is open-source. This
enables leveraging Llama as a foundation for specialized
tasks. Critical to either model’s capabilities is training data,
and the GPT models’ training data is unknown to anyone
outside of OpenAI. Meanwhile, Llama’s training data, albeit
undocumented, is available to view and even modify.

Chain of Thought. To help LLMs reason with more
accuracy, the prompting technique Chain of Thought (CoT)
instructs models to decompose problems and solve each small
step before giving an answer [15]. Al-Hossami et al. [4] use
it to split utterance generation into two steps: reasoning about
why the student wrote the buggy code and what stops them
fixing it, and using the dialogue so far with the results from
the first step to generate a list of Socratic utterances.

IV. APPROACH

Socratic 
Dialogue 
Datasets

Python

Prompt for Good 
UtterancesJava

GPT-3.5

Llama3.1-70b

Training 
Data

OPT-1.3b

Reward 
modelBenchmarking Scripts

NLP Metrics

GPT-4

Prompt for Bad 
Utterances

Human-Choice 
Scores

Socratic U
tterances

Fig. 1. Approach Overview

Figure 1 shows our overall approach for the full study, in
which the datasets are used to construct prompts for good
and bad Socratic utterances. The bad utterances are generated
solely by GPT-4 to ensure consistency and quality that may
be lost by using multiple models. They are paired with the
original dataset to train a fork of OPT-1.3b, the result being
our reward model. The good utterances, generated by all three
models, are evaluated using both the NLP metrics and the
reward model.

Llama. We add Llama3.1-70b, a member of the family of
models by Meta [16], to the list of LLMs used in the previous
study (GPT-3.5, GPT-4). We adopted the same approach as the
previous authors to handle the subtle differences in interacting
with different LLM API. We wrap the LLM API using a
class, which is instantiated using the name of the LLM. To
alleviate difficulties with using a cloud-based instance, we
hosted Llama3.1-70b on our own high-performance cluster.

Java Dataset. We observed that the existing dataset of
multi-turn Socratic advice for Python code has conversations
using Python terms. We duplicated the dataset and translated
this clone to Java. This approach allows us to limit our scope
and focus on extending the evaluations. However, there are
some paradigms and bugs that cannot be replicated in Java,
or require much effort. Creating entire new Socratic dialogues
because of large differences in languages is beyond the scope
of this work. Thus, some items were omitted from the dataset.
The following lists the differences between Python and Java

that we found would necessitate creating completely new
dialogues.

• Absence of a return statement in non-void methods.
This can cause a compile-time error in Java, preventing
the programmer from running test cases entirely.

• Division using one or two backslashes. While such a
difference in Python yields a different numerical value,
two backslashes denote a comment in Java.

• Capitalization of boolean values. For boolean values,
Python uses True and False while Java uses true
and false. Mistaking the capitalization in Java would
again result in a compile-time error and prevent test cases
from being run.

Differences in results using the Java and Python datasets
may arise from the ways they can linguistically contrast.
Detailed guidance can vary for bugs arising from misconcep-
tions, unfamiliarity, or simple syntax errors in either language
because of how they contrast structurally and syntactically.

An example scenario involves the task of writing code that
returns the product of two numbers and solutions in Java and
Python have the same bug: a missing return keyword. Tables I
and II shows conversations for Python and Java respectively:

TABLE I
CONVERSATION FOR DEBUGGING IN PYTHON

Student Hello, I’m having trouble with ’product()’. I’m failing even
the first assertion and I can’t figure out why.

Teacher Okay, can you explain your ’product()’ method in detail?
Student I take in two inputs, which I have named ’a’ and ’b’, and

then I multiply the two numbers together.
Teacher
(GOOD)

Okay, can you modify your code such that on line 3, you
execute the line ’print(Product(1,2))’?

Teacher
(BAD)

Have you considered what happens when you multiply ’a’
and ’b’ but don’t use the ’return’ keyword?

In Table I, the teacher’s first response is a good example
because it allows the teacher to spot any gaps in the student’s
explanation. Their good second response gives the student a
small hint toward understanding what the bug is, while the
bad second response reveals the bug too early, at the cost of
the student’s learning.

TABLE II
CONVERSATION FOR DEBUGGING IN JAVA

Student Hello, I’m having trouble with ’product()’. I can’t run the
first assertion and I can’t figure out why.

Teacher Okay, do you see any errors when you try to run the
assertions?

Student Yes, it says ”Syntax error on token ’*’, InvalidAssignment-
Operator”.

Teacher
(GOOD)

Okay, can you explain your ’product()’ method and why it
should run?

Teacher
(BAD)

Why do you think the multiplication operator is producing
that error?

Since the same bug must be fixed differently in each
language, the focus is immediately different. The conversation
in Python would involve determining why the function returns
’None’, while in Java it is a matter of proper syntax. In



Table II, the teacher’s good second response stays focused
on probing the student for their understanding while the bad
second response diverts attention to the misleading error,
which will likely confuse the student further.

Because of this, there may also be different trends in
results for CoT. For example, there could a bug in a student’s
Python code that requires the teacher to direct attention toward
proper indentation. In Java, where whitespace does not affect
correctness, a similar bug may require the teacher to direct
attention to where the student closed a scope with braces and
whether or not a specific line was included in said scope.
Because CoT decomposes problems into intermediate steps,
which are likely to vary between these two languages, the
results from evaluation are unlikely to match.

NLP Metrics. For consistency with Al-Hossami et al. [4],
we use the same metrics BLEU4, BERTScore, and ROUGE-
L for evaluation with the Java-enriched dataset. We append to
the existing results for Python the scores earned by Llama.

Reward Model. To gain a more wholistic view of how
well the models in consideration can employ the Socratic
method, we fine-tune an existing pre-trained model (OPT-1.3b)
to use as a reward model [17]. This model assigns scores to the
generated Socratic utterances that can indicate how well they
reflect human preference, thereby distinguishing itself from the
NLP metrics. This approach has been shown to yield better
evaluative performance and address issues around flexibility
and understandability [18] [19]. We create a fork of OPT-1.3b
[20] and configure it to properly tokenize the elements of the
implicit prompt preference dataset used to train it.

The training data consists of over 21,000 pairs of chosen
and rejected samples. Each sample has a prompt, which is
described in [4], and its completion, a Socratic utterance
befitting the conversation so far in the prompt. We use the
human-generated utterances from the previous authors as the
chosen half, regarding them as the gold standard. For the
rejected half of the dataset, we direct GPT-4 to generate bad
Socratic utterances by altering the steering prompt that tells
LLMs to respond as a Socratic tutor by requesting bad Socratic
utterances as defined by the previous authors.

V. EXPERIMENTAL RESULTS

In this section we present our experimental results, answer
our RQs, discuss our findings, and identify threats to validity.

a) RQ1: LLM performance in Java and Python: In
Tables III and IV, we display the results of evaluating all
three LLMs with the Python and Java datasets, respectively.
All scores are in percentages. The +CoT row contains scores
achieved using the Chain of Thought (CoT) prompting tech-
nique. The models earn higher scores nearly comprehensively
when evaluated with the Java dataset. Yet, these increases are
by a small margin; F1 scores increase by an average of 6.6%
with an even smaller increase of 1.3% for CoT.

While GPT-3.5 sees the largest increase, 18.9%, in average
F1 scores when going from Python to Java, with CoT it is
the only model to perform worse on average, doing so by
−19.7%. GPT-4 sees the lowest increase overall with increases

of 2.7% and 10.5% with CoT. Achieving the highest increase
when evaluated with Java over Python and using Cot, Llama’s
average F1 scores without CoT increase by 4.7% and by
14.4% with it.

TABLE III
EVALUATION OF LLMS ON THE BENCHMARK DATASET IN PYTHON.

BLEU-4 BERTScore F1 ROUGE-L
Language
Model P R F1 P R F1 P R F1

GPT-3.5 2.9 1.2 1.5 61.7 36.0 41.6 20.7 10.4 12.6
+CoT 2.3 0.8 1.1 62.2 35.6 41.9 20.5 10.1 12.5

GPT-4 1.5 5.8 2.2 14.6 65.6 22.3 6.4 27.5 9.7
+CoT 0.9 4.5 1.4 13.4 64.6 20.5 5.5 26.1 8.4
Llama 2.4 3.8 1.9 32.3 51.0 27.3 11.9 19.4 9.9
+CoT 1.8 3.6 1.7 29.2 53.9 27.5 10.6 20.2 10.1

TABLE IV
EVALUATION OF LLMS ON BENCHMARK DATASET IN JAVA.

BLEU-4 BERTScore F1 ROUGE-L
Language
Model P R F1 P R F1 P R F1

GPT-3.5 3.8 2.0 2.3 61.5 36.5 41.6 22.3 11.2 13.2
+CoT 1.6 0.5 0.7 63.3 30.0 37.3 20.0 8.5 11.0

GPT-4 1.6 6.6 2.4 14.5 66.0 22.1 6.4 28.1 9.7
+CoT 0.9 4.2 1.5 16.1 65.5 23.8 6.5 26.5 9.6
Llama 2.8 4.7 2.1 34.7 49.6 27.8 12.7 19.5 10.1
+CoT 2.6 4.5 2.2 31.0 53.9 28.1 12.1 22.5 11.3

Tables V and VI display the descriptive statistics of scores
earned by each LLM using the Python and Java datasets,
respectively. Mean scores increase by just 2.1% from Python
to Java. This percent change does not consider Llama+CoT
because this score sees the only decrease, −11.8%, and it
is influential enough on the average percent change to make
it negative, despite the trend of growth in the other models.
Standard deviation increases for GPT-3.5 by 17.6% and 24.5%
with CoT. The other models see improved consistency with
changes in standard deviation of −7.8% and −7.7% with CoT
for GPT-4 and −3.8% and −6.9% for Llama.

We find that the LLMs in question do not perform much
better or worse when benchmarked using Java bugs. They
subtly increase in ability to act as Socratic tutors in debugging
tasks that deviate across multiple programming languages.

TABLE V
EVALUATION OF LLMS BY REWARD MODEL IN PYTHON.

Language
Model mean std min 25% 50% 75% max

GPT-3.5 5.72 0.68 3.55 5.35 5.73 6.21 7.57
+CoT 4.53 0.61 2.41 4.17 4.63 4.95 6.33

GPT-4 4.56 1.14 -6.15 4.07 4.69 5.22 7.84
+CoT 3.34 0.90 -2.36 2.82 3.37 3.85 6.80
Llama 4.86 1.06 -2.69 4.33 4.96 5.54 7.49
+CoT 4.37 1.01 -3.14 3.89 4.42 4.98 7.61

b) RQ2: Llama’s Ability To Generate Utterances:
Throughout our results in Tables III and IV, Llama appears
to perform similarly to GPT-4, surpassing it in some scores,
namely Bleu-4 precision, BERTScore precision and F1, and
Rouge-L precision and F1. In all of these cases, both models



TABLE VI
EVALUATION OF LLMS BY REWARD MODEL IN JAVA.

Language
Model mean std min 25% 50% 75% max

GPT-3.5 5.73 0.80 2.01 5.18 5.83 6.33 7.77
+CoT 4.62 0.76 2.07 4.01 4.85 5.19 6.21

GPT-4 4.70 1.05 -3.81 4.17 4.81 5.36 7.59
+CoT 3.43 0.83 0.16 2.94 3.40 3.90 6.32
Llama 4.98 1.02 -2.90 4.45 5.04 5.62 7.54
+CoT 3.85 0.94 0.50 3.30 3.83 4.40 6.38

are outdone by GPT-3.5 and this pattern is regardless of the
programming language or use of CoT.

Indeed, this trend also exists in the reward model data
of Tables V and VI. Going beyond mean scores, Llama
sees minimums and standard deviations situated between the
other models. However, there are some disruptions to this
observation. When using either dataset, Llama achieves the
lowest maximum score without CoT and the highest with it.

Llama finds itself in the middle ground. The NLP metrics
never indicate it to be a superlative, and while our reward
model tells us that Llama may be able to outperform by using
CoT in the best case scenario, it is outdone on average.

c) RQ3: Insights Gained After Using a Reward Model:
Figure 2 visualizes our reward model scores. We are able
to glean that the use of CoT with Java reliably results in
positive scores, with a greater spread with Python. Llama
and GPT-4 maintain similarly-sized inter-quartile ranges with
many outliers while GPT-3.5’s scores are much more closely
situated. This difference in spread illustrates GPT3.5’s greater
consistency with achieving high human preference. GPT-4
without CoT appears to earn the widest range of values. Its
outliers go far into the negative, indicating that the model
generated utterances that closely resembled bad examples
more so than the other models.

We gather from Table V and Figure 2 that GPT-3.5 performs
the most consistently with the highest mean scores and lowest
standard deviations. It is the only model with all positive
minimums. This suggests that the worst Socratic utterances
generated by GPT-3.5 still aligns well with human preference.
Informed by Table VI, we find that GPT-3.5 scores consistently
higher, and posts the highest maximum. With a higher mean
and lower standard deviation, Llama produces more favorable
results than GPT-4 by thin margins.

Although the use of CoT does not yield higher reward
model scores, standard deviation does decrease for each of
the LLMs. These scores nearly suggest a trade-off between
alignment to human preference and consistency. However,
GPT-4 and Llama see their minimum scores turn positive, a
vast improvement. With Java, these two models are signified
to produce Socratic utterances that much better agree with
human choice when CoT is employed.

A. Discussion

The scores earned by the GPT models vary from those
reported in Al-Hossami et al. [4], offering new insights that
potentially reflect changes made to the GPT models since

the previous paper’s data collection. Because details of these
models such as training data and number of parameters are not
available, it is difficult to attribute these variations in results
to any particular change(s) made to them. Llama being open-
source enables easier analysis if scores change much in any
later iterations of this work.

Al-Hossami et al. [4] reported GPT-4 sacrificing precision
for gains in recall when using CoT. We observe a new
trend wherein the use of CoT somewhat reliably lowers all
scores. The exceptions to this are Llama’s BERTScore and
Rouge-L results, where the open-source model saw improved
performance. As this expresses a divergence from the human-
generated utterances rather than greater similarity, we hypothe-
size that the additional detail and depth of explanation yielded
by CoT prompting can cause the LLM-generated Socratic
utterances to poorly cater to a student’s level of understanding.
We leave this for future investigation.

Moreover, GPT-4 still achieves the highest maximum score
when considering the Python dataset. Simultaneously, GPT-
4 consistently scores the lowest minimums. Al-Hossami et
al. [4] remark on GPT-4 generating more Socratic utterances
“focused on addressing various possible reasons or misconcep-
tions typically while generating utterances that have already
been asked or answered, or too early where the student is
not yet aware of the issue.” Highlighted by this result is the
usefulness of the approach taken by the previous authors, and
us, of prompting the LLMs for multiple candidate Socratic
utterances and choosing the best among them. As such, we
submit that further investigation is needed to ensure the LLM
upon which a proposed Socratic debugging tutor is based
always yields the best utterance in a robust manner.

Apropos Tables V and VI, save for Llama with CoT, the
models consistently earn slightly higher mean scores when
evaluated using the Java dataset. Although this is likely influ-
enced by training data and model architecture, we conjecture
that debugging in Java is perhaps more direct and succinct
than in Python because of its strongly, statically typed nature
and explicit syntax. Novices starting with Python may struggle
with its dynamic types and whitespace-reliant syntax.

B. Threats to Validity
Internal Validity. The Java dataset is a translation of the
Python version. If it were produced manually and by a team
of expert teachers using genuine student code, it may differ and
result in different evaluations. We mitigate this by excluding
bugs and dialogues that do not translate well or at all.
External Validity. Our results are specific to the LLMs eval-
uated in this paper and cannot necessarily be used to generalize
about other models. To understand how well emerging models
such as Anthropic’s Claude or DeepSeek-R1 would perform as
Socratic tutors, analysis like ours is necessary. Similarly, our
findings cannot inform LLM performance when benchmarked
with a dataset of any other programming language.

VI. CONCLUSIONS AND FUTURE WORK

This paper extends previous work that introduces a dataset
of expertly curated Socratic dialogues where teachers assist



Fig. 2. Reward model scores distinguished by model, use of chain of thought, and programming language of dataset.

students in debugging programs and uses it in evaluating
popular LLMs. We grow the original dataset of Python bugs
translating the code to Java and revising the dialogues. Ad-
ditionally, we build upon the previous authors’ benchmarking
of GPT-3.5 and 4 by considering Llama and using a reward
model to provide insight.

Across the different evaluation methods that this paper re-
ports on, we see that the LLMs considered perform somewhat
better when benchmarked using the Java dataset over the
Python dataset. Though this finding is promising, important
future work entails the same benchmarking with less popular
yet still commonly used programming languages.

We find that our data mostly agrees with that of the previous
paper, and we glean that Llama holds much potential as a
Socratic debugging tutor. Without any fine-tuning, we observe
it out-performing GPT-3.5. Specialization of Llama for this
task through efforts such as manipulation of training data and
fine tuning are left as future work. Also left for future work
is statistical significance testing on our findings.

ACKNOWLEDGMENT

This project was supported in part by the US National
Science Foundation under award number OAC 1931363.

REFERENCES

[1] W.-H. Kim and J.-H. Kim, “Individualized AI tutor based on devel-
opmental learning networks,” IEEE Access, vol. 8, pp. 27927–27937,
2020.

[2] R. Liu, C. Zenke, C. Liu, A. Holmes, P. Thornton, and D. J. Malan,
“Teaching cs50 with AI: Leveraging generative artificial intelligence in
computer science education,” in Proc. of 55th ACM SIGCSE TS V. 1,
(New York, NY, USA), p. 750–756, ACM, 2024.

[3] O. Joseph and C. Nwankwo, “Integrating AI and machine learning in
stem education: Challenges and opportunities,” Computer Science and
IT Research Journal, vol. 5, pp. 1732–1750, 08 2024.

[4] E. Al-Hossami, R. Bunescu, J. Smith, and R. Teehan, “Can language
models employ the socratic method? experiments with code debugging,”
in Proc. 55th ACM SIGCSE TS, V. 1, (New York, NY, USA), p. 53–59,
ACM, 2024.

[5] R. Mason, Simon, B. A. Becker, T. Crick, and J. H. Davenport, “A
global survey of introductory programming courses,” in Proceedings of
the 55th ACM Technical Symposium on Computer Science Education V.
1, (New York, NY, USA), p. 799–805, ACM, 2024.

[6] N. Raihan, M. L. Siddiq, J. C. Santos, and M. Zampieri, “Large language
models in computer science education: A systematic literature review,” in
Proc. of 56th ACM SIGCSE TS V. 1, (New York, NY, USA), p. 938–944,
ACM, 2025.

[7] C. Koutcheme, N. Dainese, S. Sarsa, A. Hellas, J. Leinonen, S. Ashraf,
and P. Denny, “Evaluating language models for generating and judging
programming feedback,” in Proc. of ACM SIGCSE TS V. 1, (New York,
NY, USA), p. 624–630, ACM, 2025.

[8] H. Kumar, I. Musabirov, M. Reza, J. Shi, X. Wang, and J. J. e. a.
Williams, “Guiding students in using llms in supported learning environ-
ments: Effects on interaction dynamics, learner performance, confidence,
and trust,” Proc. ACM Hum.-Comput. Interact., vol. 8, Nov. 2024.

[9] T. Y. Yeh, K. Tran, G. Gao, T. Yu, W. O. Fong, and T.-Y. Chen, “Bridging
novice programmers and llms with interactivity,” in Proc. of 56th ACM
SIGCSE TS V. 1, (New York, NY, USA), p. 1295–1301, ACM, 2025.

[10] M. Hassan, Y. Chen, P. Denny, and C. Zilles, “On teaching novices
computational thinking by utilizing large language models within as-
sessments,” in Pro. of 56th ACM SIGCSE TS V. 1, (New York, NY,
USA), p. 471–477, ACM, 2025.

[11] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics, (USA),
p. 311–318, ACL, 2002.

[12] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,”
in Text Summarization Branches Out, (Barcelona, Spain), pp. 74–81,
ACL, July 2004.

[13] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore:
Evaluating text generation with bert,” in Proc. of ICLR, 2020.

[14] R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and
C. Finn, “Direct preference optimization: Your language model is
secretly a reward model,” in Advances in Neural Information Processing
Systems, vol. 36, pp. 53728–53741, Curran Associates, Inc., 2023.

[15] J. Wei, X. Wang, D. Schuurmans, M. Bosma, b. ichter, and F. e. a.
Xia, “Chain-of-thought prompting elicits reasoning in large language
models,” in Advances in Neural Information Processing Systems, vol. 35,
pp. 24824–24837, Curran Associates, Inc., 2022.

[16] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, and A. A.-D.
et al., “The llama 3 herd of models,” 2024.

[17] D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, and D. A.
et al., “Fine-tuning language models from human preferences,” CoRR,
vol. abs/1909.08593, 2019.

[18] M. Cao, A. Lam, H. Duan, H. Liu, S. Zhang, and K. Chen,
“Compassjudger-1: All-in-one judge model helps model evaluation and
evolution,” 2024.

[19] J. Li, S. Sun, W. Yuan, R.-Z. Fan, H. Zhao, and P. Liu, “Generative
judge for evaluating alignment,” 2023.

[20] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, and S. C. et al.,
“Opt: Open pre-trained transformer language models,” 2022.


