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Abstract—Autonomous vehicle navigation and healthcare di-
agnostics are among the many fields where the reliability and
security of machine learning models for image data are critical.
We conduct a comprehensive investigation into the susceptibility
of Convolutional Neural Networks (CNNs), which are widely used
for image data, to white-box adversarial attacks. We investigate
the effects of various sophisticated attacks—Fast Gradient Sign
Method, Basic Iterative Method, Jacobian-based Saliency Map
Attack, Carlini & Wagner, Projected Gradient Descent, and
DeepFool—on CNN performance metrics, (e.g., loss, accuracy),
the differential efficacy of adversarial techniques in increasing
error rates, the relationship between perceived image quality
metrics (e.g., ERGAS, PSNR, SSIM, and SAM) and classification
performance, and the comparative effectiveness of iterative versus
single-step attacks. Using the MNIST, CIFAR-10, CIFAR-100,
and Fashion_MNIST datasets, we explore the effect of different
attacks on the CNNs performance metrics by varying the
hyperparameters of CNNs. Our study provides insights into
the robustness of CNNs against adversarial threats, pinpoints
vulnerabilities, and underscores the urgent need for developing
robust defense mechanisms to protect CNNs and ensuring their
trustworthy deployment in real-world scenarios.

Index Terms—convolutional neural networks, image quality
metrics, performance metrics, test input generation, white-box
adversarial attacks.

I. INTRODUCTION

In the landscape of escalating cyber warfare, adversarial
attacks on machine learning (ML) models have emerged as a
sophisticated vector for undermining Al-driven systems. The
inherent susceptibility of ML algorithms to specially crafted
inputs that can lead to incorrect outputs, known as adversarial
examples, has introduced a pressing challenge to the field of
cybersecurity. The use of ML models in critical applications,
such as autonomous vehicles [1], healthcare diagnostics [2],
surveillance [3], and XR [4], has become prevalent. The trust
placed by end-users in various industry domains, healthcare,
and governments on the reliability and security of Al-driven
systems is fundamental to their widespread adoption.

Adversarial attacks have rapidly evolved from theoretical
considerations to practical threats. These attacks leverage
knowledge of the ML model’s structure and data processing to
introduce subtle perturbations, often imperceptible to humans
but catastrophic for the model’s decision-making accuracy.
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The consequences of successful adversarial attacks can range
from trivial misclassifications to life-threatening situations [5].
Therefore, understanding and mitigating these attacks are not
just academic exercises; they are urgent requirements for the
safe deployment of ML in real-world scenarios.

The goal of this paper is to conduct a systematic evaluation
of various white-box adversarial attacks [6], where the attacker
has complete visibility into the model’s architecture, parame-
ters, and training data, on generic neural network models for
images. We use a curated set of images such as the MNIST [7],
CIFAR-10, CIFAR-100 [8], and Fashion_MNIST [9] datasets
processed by a Convolutional Neural Network (CNN). The
datasets take into account the variety and complexity required
to challenge the CNNs under test. We identify the intrinsic
vulnerabilities of CNNs when exposed to white-box attacks
such as Fast Gradient Sign Method (FGSM) [10], Basic Iter-
ative Method (BIM) [11], [12], Jacobian-based Saliency Map
Attack (JSMA) [13], Carlini & Wagner (C&W) [14], Projected
Gradient Descent (PGD) [15] [16], and DeepFool [17].

Through a range of test scenarios that simulate attacks using
the Adversarial Robustness Toolbox (ART) library [18], we
discern how different performance metrics are affected, specif-
ically focusing on the accuracy and loss incurred by the model
under adversarial conditions. We quantify the degradation of
performance in CNNs and investigate the robustness of these
networks against such exploits. We also evaluate the impact
on the image quality and integrity, with a specific focus on the
assessment of widely recognized image analysis metrics such
as ERGAS [19], PSNR [20], SSIM [21], and SAM [22].

The rest of the paper is organized as follows. Section II
provides a brief background on the attacks used in this paper.
Section III outlines the evaluation goals, research questions,
and metrics. Section IV describes the study design and exper-
imental environment. The results are presented in Section V
and discussed in Section VI. Section VII summarizes related
work. Section VIII summarizes our conclusions and outlines
directions for future work.

II. BACKGROUND

Our study selected the following sophisticated white-box
adversarial attacks based on their relevance to CNN models
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and image data, prevalence in the current research literature,
and real-world applicability [6], [23], [24].

« Fast Gradient Sign Method (FGSM): New images that
are classified incorrectly are created by leveraging the
gradients of the loss with respect to the input image [10].
Even though the method is straightforward, it is powerful
in demonstrating the vulnerability of neural networks to
slight, often imperceptible, changes in the input data.

o Basic Iterative Method (BIM): BIM [11], [12] is an
extension of FGSM. It iteratively applies the gradient sign
attack with small steps, allowing for finer control over the
perturbation process and often results in more effective
adversarial examples.

« Jacobian-based Saliency Map Attack (JSMA):
JSMA [13] uses the model’s Jacobian matrix to determine
which pixels in the input image to alter to change the
classification outcome. The method is more refined than
FGSM and BIM, and attempts to change the least number
of pixels, thus making the alterations less detectable.

e Carlini & Wagner (C&W): The C&W attack [14] is
an effective method that formulates adversarial example
creation as an optimization problem. It aims to find the
smallest perturbation that can mislead the CNN model,
ensuring that the adversarial examples remain as close as
possible to the original images.

Projected Gradient Descent (PGD): PGD is a well-

known variation of the BIM, distinguished by its initial-

ization with uniform random noise [15]. Similarly, the

Iterative Least-likely Class Method (ILLC) [11] bears

a resemblance to BIM, with a key difference being its

targeting of the least likely class to maximize the cross-

entropy loss making it more effective than FGSM, JSMA

and C&W [25].

o DeepFool: This algorithm iteratively perturbs the input
image in a way that is intended to cross the decision
boundary of the classifier [17]. It aims to be as efficient
as possible, resulting in minimal perturbation [15].

III. EVALUATION GOALS, QUESTIONS, AND METRICS

The main objective of this evaluation is to measure and
understand the impact of white-box adversarial attacks on the
performance and reliability of CNNs in the context of image
processing. We aim to establish a rigorous testing method
for detecting vulnerabilities within CNNs and to quantify
the effectiveness of adversarial attacks in degrading model
performance. The following goals guide our evaluation:

Goals:

1) Assess the impact of adversarial attacks on the accuracy
and integrity of the image classification process.

2) Identify the attack methodologies that result in the most
significant degradation of performance metrics.

3) Provide insights into the development of more robust
CNN architectures and training processes.

Questions:

1) How do various white-box adversarial attacks affect the
classification accuracy of CNNs?

2) Which adversarial attack is most effective in inducing the
highest error rates?

3) What is the relationship between perceived image quality
and classification performance of CNNs under attack?

4) How does the iterative nature of certain attacks (e.g.,
BIM, PGD) compare to single-step attacks (e.g., FGSM)
in terms of effectiveness?

Metrics:

We use a combination of traditional CNN performance
metrics and specialized image quality assessments:

e Loss: This is a measure of how well the model
performs from an error perspective. Specifically, it
represents the cost incurred for inaccurate predic-
tions. In the code, the loss is calculated using
sparse_categorical_crossentropy, whichis a
common loss function for classification tasks. It com-
pares the predicted probability distribution (output of
the softmax function in the last layer) with the true
distribution, where the true distribution is the label of
the class that the input image belongs to. A lower loss
indicates better performance of the model, as it means
the model’s predictions are closer to the true labels.

o Accuracy: This is a measure of the proportion of cor-
rectly predicted instances out of all predictions made.
In a classification task like MNIST (which involves
classifying images of handwritten digits into 10 classes,
from O to 9), the accuracy is calculated by the number of
images correctly classified divided by the total number of
images classified. Higher accuracy means that the model
has better predictive performance.

« Relative Dimensionless Global Error in Synthesis
(ERGAS): This is a global measure of image fidelity,
with lower values indicating better synthesis quality [19].

N 2
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— d is the scale factor between the spatial resolutions of

the original and the processed image (often set to 1 for

images of the same resolution).

N is the number of bands.

RMSE; is the Root Mean Square Error of the ith band.
— p; is the mean of the ¢th band of the original image.

« Peak Signal-to-Noise Ratio (PSNR): This is a measure
of peak error, with higher values indicating smaller dif-
ferences between original and perturbed images. PSNR
is calculated using the maximum pixel value (L) and the
Mean Squared Error (M S E) between the original (I) and
corrupted (K) images. M and N are the number of rows
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and columns respectively in the images [20].

PSNR = 20 - log; (L) — 10 - log,,(MSE)

M N
1 . .82
MSE = MN 22:1 (I(i,5) — K(i,7))
1=1 j=
o Structural Similarity Index (SSIM): This is a
perception-based model that considers changes in texture,
contrast, and luminance [21].
(2/’[%“7/ + cl)(zawy + 62)
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SSIM(z,y) =

- z,y are the windowed images being compared.

— 4z, [y are the averages of = and y.

- 02, 05 are the variances of = and y.

— 0y 18 the covariance of x and y.

— c1,cy are variables to stabilize division with a weak
denominator.

o Spectral Angle Mapper (SAM): It is a measure of the
spectral similarity between two images, with lower values
indicating higher similarity [22]. It measures the angle
between the spectral vectors a and b.

SAM:COS_l( a-b )
[alllb]l

The above metrics are calculated before and after the
application of each adversarial attack.

« Pre-attack Performance: We establish the baseline val-
ues of loss, accuracy, ERGAS, PSNR, SSIM, and SAM.

o Post-attack Performance: The same metrics are re-
assessed post-adversarial attack to evaluate the impact.

o Adversarial Success Rate: We record the rate at which
adversarial inputs successfully deceive the CNN.

« Robustness Threshold: We identify the minimal pertur-
bation magnitude necessary to compromise the model.

IV. STUDY DESIGN

Our study incorporated the following steps, which we
illustrate using the FGSM attack for lack of space. We devel-
oped a python script using the TensorFlow and Adversarial
Robustness Toolbox (ART) libraries to (1) create & train
a neural network on the MINST [7], CIFAR-10, CIFAR-
100 [8], & Fashion_MNIST [9] datasets, (2) generate adver-
sarial examples, and (3) evaluate the models’ performance
on the adversarial examples. We loaded and preprocessed
(normalized) the image datasets such as MNIST, CIFAR-10,
CIFAR-100, and Fashion_MNIST.

For model selection and preparation, we used the Ten-
sorFlow API to create custom CNN models with different
hyperparameter values (e.g., number of neurons, dropout rate,
number of classes, and optimizers). For example, for the
FGSM attack, we created a simple neural network model using
TensorFlow’s Keras API. The model consists of a Flatten layer
that converts each 28x28 MNIST type images into a 784

element vector, followed by a Dense layer with 128 nodes,
a Dropout layer that randomly sets 20% of the input units
to O during training, and a final Dense layer with 10 nodes
corresponding to the 10 possible digits (0-9). For CIFAR-10
& CIFAR-100, the TensorFlow model is a CNN for 32x32
pixel RGB images, featuring three convolutional layers with
ReLU activations for feature extraction—first with 32 filters,
followed by two layers with 64 filters each, interspersed
with 2x2 max pooling for dimensionality reduction. After the
convolutional layers, it employs a flattening step, a dense layer
of 64 units (ReLU activation), and concludes with a 10-unit
softmax output layer for classifying into 10 categories.

We compiled the model using the adam optimizer and
the sparse_categorical_crossentropy loss function, and then
trained on the training images and labels for 5 epochs. We
evaluated the trained model on the test images and labels to
get the baseline loss and accuracy. Training for 5 epochs is
sufficient to achieve a reasonable balance between training
time and performance, allowing the model to learn effectively
without overfitting. Additionally, running the model for more
epochs could lead to only marginal improvements in perfor-
mance metrics, as the model typically converges within the
first few epochs.

After defining and training the model, we wrapped it within
an ART classifier, such as TensorFlowV2Classifier for Ten-
sorFlow models, specifying necessary hyperparameters like
the number of classes, input shape, and loss object. For each
attack type, we created an instance of the corresponding ART
attack class, configuring it with relevant parameters (e.g., eps
for FGSM, max_iter for PGD). For example, for the input to
the FGSM attack, we created ART’s TensorFlowV2Classifier
using the trained model. ART’s FastGradientMethod attack is
created using the classifier and an epsilon value of 0.1.

We performed adversarial example generation by lever-
aging state-of-the-art techniques to mislead the CNNs while
preserving image quality. We implemented a generate method
that takes the attack instances and passes the original inputs.
This process, although slightly varied in parameters and attack
initialization, follows the same basic steps across different
adversarial techniques, enabling the evaluation of model ro-
bustness under various types of adversarial conditions.

The evaluation method calculated the loss and accuracy
on both the original and adversarial examples through the
model’s evaluate method. This method computes the loss and
accuracy metrics by comparing the model’s predictions on the
input images against the true labels. This process involves
feeding the perturbed images into the model and calculating
the metrics to assess how well the model performs on these
adversarial inputs. A large decrease in accuracy or an increase
in loss indicates that the adversarial attack was successful in
degrading the model’s performance.

Statistical analysis of the adversarial attack’s impact was
performed by comparing various metrics between the original
and adversarial images. Using the sewar [26] library, metrics
such as ERGAS, PSNR, SSIM, and SAM were computed.
The analysis was encapsulated in a DataFrame, providing a
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structured view of the impact across different metrics, thereby
facilitating an understanding of the adversarial attack’s effec-
tiveness in degrading image quality and model performance.

loss FGSM
accuracy JSMA MNIST
| ERGAS C&W CIFAR-10
EF="1""psNr PGD CIFAR-100
SSIM DeepFool Fashion_ MNIST
SAM BIM

The evaluation framework (EF) enables a comprehensive
analysis by evaluating how each attack affects model per-
formance across different types of data, quantified through
metrics for aspects such as accuracy, error, and image quality.

We used Input Space Partitioning (ISP) and Base Choice
Coverage (BCC) [27] in our test method to systematically
explore the model’s vulnerability across various configurations
and adversarial scenarios. ISP facilitates a detailed exami-
nation of the model’s input space, partitioning it down into
multiple blocks for a nuanced analysis of vulnerability using
various characteristics. Partitioning allows us to uncover a
wider range of weaknesses by examining how different types
of inputs can influence the model. BCC extends this analysis
by first identifying the base choice for each characteristic that
was used to partition the domain of an input variable, and then
creating combinations of the input partitions, starting with all
the base choices and then by varying one choice at a time.

V. RESULTS

We ran our evaluation on a 3.1 GHz Dual-Core Intel Core
i5 processor, with 8 GB 2133 MHz, and LPDDR3 memory.

A. Performance and Image Quality Metrics

For the FGSM attack described in Section IV, the script
trains a simple neural network on the various datasets, gen-
erates adversarial examples using the FGSM attack, evaluates
the model’s performance on the adversarial examples as shown
in Table I, and uses matplotlib to display an original and
adversarial image side-by-side as shown in Figure 1.

TABLE I: Metrics From FGSM Adversarial Attacks on
MNIST, CIFAR-10, CIFAR-100, & Fashion_ MNIST

Metric MNIST CIFAR-10 CIFAR-100 Fashion
_MNIST
Accuracy 0.10 0.12 0.04 0.19
loss 3.08 6.35 6.96 6.48
ERGAS  27.08 88.32 52.68 14.94
PSNR 22.27 18.60 8.99 4.28
SSIM (0.882, 0.71 0.38 (0.123,
0.945) 0.114)
SAM 0.28 0.25 0.49 1.08

Table II details the outcomes of applying several adversarial
techniques on the CNN metrics. Figure 2 illustrates the practi-
cal effects of adversarial manipulations by presenting side-by-
side comparisons of original and compromised images using
the DeepFool, PGD, JSMA, and BIM attacks.

B. Input Space Partitioning and Base Choice Coverage
The input variables analyzed using ISP are:

o Number of Neurons: Numeric value.
o Dropout Rate: Numeric percentage.
¢ NB_Classes: Numeric value.

o Optimizer: Alphanumeric value.

« Dataset Type: Image type data.

Table III displays the results of ISP analysis in terms of
the variables, the characteristics chosen to partition the input
domains, the blocks in each partition, and representative
values. For each input variable, the base choice is the block
numbered 1 (e.g., al, bl, cl, d1, and el) as shown in Table IV.
BCC leverages these partitions to construct test cases, each
designed to probe different combinations of input conditions.
These parameters are crucial in a CNN because they di-
rectly influence the model’s capacity to learn, generalize, and
maintain robustness against adversarial attacks by affecting
network complexity, regularization, classification capability,
and optimization efficiency.

C. Testing

Tables V to VIII present the results of evaluating the
resilience of Convolutional Neural Networks (CNNs) to the
FGSM attack under various conditions. Each table represents
a distinct experiment focusing on altering one specific model
parameter—number of neurons, dropout rate, number of classes,
and optimizer—while keeping the others constant to observe its
impact on the model’s loss and accuracy.

Table V varies the number of neurons, indicating how an
increase in the model complexity impacts its vulnerability
to adversarial examples, with a trend suggesting that more
neurons slightly improve the resistance to FGSM attacks, as
shown by decreased loss and increased accuracy.

Table VI explores different dropout rates, a technique for
preventing overfitting. The results demonstrate that both very
low and very high dropout rates make the model more suscep-
tible to FGSM, with an optimal range providing better defense.

Table VII adjusts the number of classes, testing the model’s
ability to handle FGSM attacks with varying degrees of clas-
sification complexity. However, the impact on model perfor-
mance does not linearly correlate with the number of classes.

Table VIII examines the effect of different optimizers on
model robustness against FGSM attacks. The choice of opti-
mizer significantly affects the model’s defense capability, with
some optimizers leading to higher susceptibility.

The emphasis on loss and accuracy metrics in our evaluation
framework is pivotal for gauging the effectiveness of adversar-
ial attacks on CNN. These metrics reflect the impact of attacks
on model performance, offering a clear picture of how well the
network withstands manipulation. As we enhance the model’s
accuracy through various adjustments, such as optimizing
the number of neurons or tweaking the dropout rate, we
concurrently observe a improvement in image quality metrics
like ERGAS or PSNR. For instance, in Table V, increasing
the number of neurons leads to a slight improvement in model
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TABLE II: Metric Evaluation Table for all Adversarial Attacks

Metric FGSM DF C&W PGD JSMA BIM
Accuracy 0.10 0.00977 0.977 0.0135 0.075 0.02

loss 3.08 2782.88 0.074 80.89 0.975 16.5

ERGAS 27.08 3254.48 78.336 79.73 29.72 26.56

PSNR 22.5 2.617 13.407 13.52 23.56 22.55

SSIM (0.89, 0.94) (-0.13, -0.24) (0.632, 0.71) (0.62, 0.71) (0.93, 0.934) (0.896, 0.95)
SAM 0.28 1.365663 0.748 0.749 0.236 0.27
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Fig. 1: Original and Compromised Images Generated from FGSM Attacks
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Fig. 2: Original MNIST and Compromised Images Generated Using DeepFool, PGD, JSMA, and BIM.
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TABLE III: Input Space Partitioning on the Hyperparameters

Variables Characteristics Partitions Values
Number of Neurons (N) | Numeric: 0 < N < finitevalue | al: true N =128
a2: false N = NULL
Dropout rate (R) Numeric: 0 < R <=1 bl: true R=02
b2: false R=-03
NB_classes (nb) Numeric: 0 < N < finitevalue | cl: true nb > 2
c2: false nb < 2
Optimizer (O) Alphanumeric dl: true O = “Adadelta
d2: false O = NULL (None)
Dataset type (val) Image el: nonEmpty | val = “MNIST”
e2: Empty val = NULL/Non-Image type
s 2n Accuracy TABLE IV: Base Choice Coverage Table
gos Test Block 1 Block 2 Block 3 Block 4 Block 5
< o —— 001 001 o 02 T, (base) al bl cl d1 el
& ¢ & & & & Ty a2 bl cl dl el
2782.83 Loss T3 al b2 cl dl el
g7 Ty al bl c2 d1 el
B woz 308 007 80.89 097 16.50 T5 al bl cl d2 el
‘(@6“‘ & & & o~ & TG al bl cl d1 e2
3254.48 ERGAS T7 a2 b2 cl dl el
@, Ty a2 bl c2 dl e2
% 27.08 78,34 79.73 2072 2656 T9 al b2 cl d2 e2
e P & e & Tho al b2 2 a2 el
22,50 PSNR 23.56 22,55
%0 - = — example, models with higher dropout rates or those employing
° . T " s - . certain optimizers like RMSProp or Adam tended to exhibit
€ © ¢ £ ° more significant performance degradation, as highlighted in
052 I o7 02 052 Tables VI and VIII. This degradation manifested not only in
7°° - - - - increased loss and decreased accuracy but also in deteriorated
° . o;* . R . R image quality metrics, reinforcing the intertwined relationship
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Fig. 3: Effects of Adversarial Attacks on CNN

accuracy, which correlates with enhancements in image quality
metrics, indicating a more robust model against FGSM attacks.
This relationship suggests that strategies improving accuracy
against adversarial examples also contributes to preserving
the integrity of image quality post-attack. Statistical evalua-
tion, using a paired t-test, reveals that the improvements in
Accuracy, Loss, ERGAS, PSNR, and SSIM are statistically
significant (p < 0.05), while the improvement in SAM shows
promising trends but did not reach statistical significance
(p > 0.05).

Beyond FGSM, we extended our testing to include other
adversarial attack types, DeepFool, PGD, C&W, and BIM.
We observed consistent patterns across these attacks. For

between model accuracy and image fidelity in the context
of adversarial resilience. The consistent observation of these
patterns across different types of attacks validates our approach
of using FGSM as a representative example in our evaluation.
It demonstrates that the insights gained from FGSM tests offer
a reliable indication of how CNN might respond to a broader
spectrum of adversarial strategies.

VI. DISCUSSION

Based on the empirical evaluation data, we observe that
different adversarial attacks on CNNs demonstrate different
impacts when applied to the MNIST or other image type
(CIFAR-10, CIFAR-100, and Fashion_MNIST) datasets. After
testing with new hyper-parameter settings such as optimizer =
Adadelta, N = 1000, R = 0.2 and nb = 200, we improved
the accuracy from Table I's 0.10 to 0.377, and loss from 3.08
to 1.56 for MNIST. By performing the FGSM attack on a
CNN trained on CIFAR-10, CIFAR-100 & Fashion_MNIST
data sets, we found:

o For CIFAR-10, using optimizer Adadelta, esp = 0.01,

and nb = 500, improved the accuracy from 0.12 to 0.187,
and loss from 6.35 to 2.24.
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TABLE V: Testing the ISP on FGSM varying Number of Neurons (N).

Test Case N R nb o val loss  accuracy
TC, al =128 bl =02 ¢2=10 dI = Adadelta el = MNIST | 3.08 0.105
TCy al =100 bl =02 ¢c2=10 dI = Adadelta el = MNIST | 3.10 0.09
TCs al=150 bl =02 ¢c2=10 dI = Adadelta el = MNIST | 3.04 0.108
TCy al =500 bl =02 ¢c2=10 dI = Adadelta el = MNIST | 29 0.12
TCs al=1000 bl =02 ¢c2=10 dI = Adadelta el = MNIST | 2.5 0.13

TABLE VI: Testing the ISP on FGSM varying Dropout Rate (R).

Test Case N R nb O val loss  accuracy
TC, al =128 bl =0.2 c2=10 dlI = Adadelta el = MNIST | 3.08 0.105
TC al =128 bl =002 «c2=10 dl = Adadelta el = MNIST | 3.19 0.099
TCs al =128 bl =0.001 ¢2=10 dl = Adadelta el = MNIST | 3.8  0.06
TC, al =128 bl =05 c2 =10 dl = Adadelta el = MNIST | 2.88 0.11
TCs al =128 bl =0.2 c2 =10 dl = Adadelta el = MNIST | 2.75 1.24

TABLE VII: Testing the ISP on FGSM varying Number of Classes (nb).

Test Case N R nb o val loss  accuracy
TC, al =128 bl =02 ¢2=10 dl = Adadelta el = MNIST | 3.08 0.105
TCy al =128 bl =02 c2=2 dl = Adadelta el = MNIST | 3.10 0.09
TCs al =128 bl =02 ¢c2=50 dl = Adadelta el = MNIST | 3.04 0.108
TC, al =128 bl =02 ¢2=100 dl = Adadelta el = MNIST | 29  0.12
TCs al =128 bl =02 ¢2=200 dl = Adadelta el =MNIST | 2.5 0.13

TABLE VIII: Testing the ISP on FGSM varying Optimizer (O).

Test Case N R nb o val loss  accuracy
TC, al =128 bl =02 ¢2=10 dI = Adadelta el = MNIST | 3.08 0.105
TCy al =128 bl =02 ¢c2=10 dI =adam el = MNIST | 8.6  0.074
TCs al =128 bl =02 ¢c2=10 dlI =sgd el = MNIST | 3.85 0.104
TC, al =128 bl =02 ¢2=10 dl = Adagrad el = MNIST | 3.29 0.092
TCs al =128 bl =02 ¢2=10 dl =RMSProp el =MNIST | 848 0.073

o For CIFAR-100, using optimizer sgd, esp = 0.01, and
nb = 200, improved the accuracy from 0.04 to 0.214,
and loss from 6.96 to 3.13.

« For Fashion_MNIST, using optimizer Adadelta, esp =
0.01, and nb = 500, improved the accuracy from 0.19 to
0.597, and loss from 6.48 to 1.49.

This variety in impact is shown by significant fluctuations in
key performance indicators and image quality metrics. These
findings underscore the susceptibility of CNNs to sophisticated
adversarial methods. It is evident that the development of more
robust defense mechanisms is crucial to ensure the reliability
and security of CNN applications across different domains.

Table II shows that the DeepFool attack results in the lowest
accuracy among all the attacks, indicating a substantial amount
of data loss. In contrast, the FGSM attack shows a compara-
tively better synthesis quality as it records the lowest ERGAS
value among the tested attacks. The JSMA attack stands out
with the highest peak error. However, it is interesting to note
that in terms of SSIM values, which reflect changes in texture,
contrast, and luminance, the impacts are quite similar across
all attacks on the MNIST dataset. A particularly noteworthy

observation is that despite JSMA’s high peak-to-peak error, it
has the lowest SAM value, suggesting that it maintains higher
similarities between the attacked image and the original image.
This characteristic of JSMA could be critical for understanding
and countering adversarial attacks on CNN models.

The evaluation extends to different test cases for the FGSM
attack as detailed in Tables V through VIII, which illustrate
how the accuracy and loss metrics of a CNN are influenced
by varying factors such as the number of neurons, the dropout
rate, the choice of optimizer, and the number of classes.

A. Answers to Research Questions

The answers to our research questions are as follows.

Q1: The analysis revealed a variable impact of different ad-
versarial attacks on the classification accuracy of CNNs.
Specifically, the DeepFool attack was identified as signif-
icantly reducing accuracy due to its effective exploitation
of substantial data modifications.

The DeepFool attack stood out as the most effective
in inducing the highest error rates, demonstrated by its

Q2:
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notably low accuracy scores, highlighting its proficiency

in degrading performance metrics.
Q3: There was a discernible relationship between image qual-
ity metrics and the classification performance of CNNs
under attack. For instance, attacks like FGSM, which
exhibited lower ERGAS values, suggest a higher qual-
ity of image synthesis despite adversarial modifications,
indicating an inverse relationship between image quality
metrics and classification vulnerability.
Iterative attacks such as BIM and PGD proved more
effective than single-step attacks like FGSM. This effec-
tiveness is attributed to the iterative approach’s ability to
apply perturbations in a refined manner, enhancing the
attack’s potency.

Q4:

B. Threats to validity

External Validity: The generalizability of the results is
a concern. The study effectively demonstrates the impact
of adversarial attacks on CNNs using the MNIST dataset.
Moreover, the same results hold forthe datasets like CIFAR-10,
CIFAR-100 and Fashion-MNIST. The study provides valuable
insights into the vulnerabilities of CNNs, which can inform
further research in more varied contexts.

Internal Validity: The causal relationship between the
treatment (adversarial attacks) and the observed -effects
(changes in performance metrics) needs careful examination.
Other factors, such as the specific architecture of the CNN or
the nature of the dataset, might also influence the outcomes.
Ensuring that the observed effects are solely due to the
adversarial attacks is crucial for accurate conclusions.

Construct Validity: Construct validity is essential in en-
suring that the chosen performance metrics, such as accuracy,
loss, ERGAS, PSNR, SSIM, and SAM, accurately depict
the impact of adversarial attacks on CNNs. The main chal-
lenge lies in whether these metrics comprehensively represent
the nuanced effects of such attacks, raising concerns about
potential misinterpretations that could skew perceptions of
CNN vulnerability and resilience. Adopting domain-specific
metrics tailored to evaluate adversarial robustness, combined
with a multi-dimensional analysis approach that encompasses
a broader range of performance indicators, is considered the
best option to mitigate these issues. This would offer a
more holistic view of a model’s behavior under adversarial
conditions. Moreover, benchmarking the CNN’s performance
against baseline models under a variety of attack scenarios,
coupled with the use of standardized adversarial robustness
testing frameworks, can provide deeper insights into the
network’s strengths and weaknesses. Ensuring construct va-
lidity, therefore, involves a continuous process of validating
and updating the assessment methods to align with evolving
adversarial techniques, thereby maintaining the accuracy and
relevance of conclusions drawn about CNN robustness.

VII. RELATED WORK

Past research in the field of adversarial machine learning has
made significant strides. Carlini et al. [28] provide a linearity-

based theory for adversarial examples, proposes fast adversar-
ial training, and refutes some alternative hypotheses. The view
of adversarial examples as a fundamental property of linear
models in high dimensions sparked significant subsequent
research into understanding and improving model robustness.
Xue et al. [29] provides a comprehensive analysis of con-
temporary threats to machine learning systems and defenses
across the system lifecycle. It highlights open challenges like
physical attacks and efficient privacy preservation. The review
of evaluations and future directions makes this a wide-ranging
resource for security in machine learning.

Xu et al. [30] provide a comprehensive review of adversarial
attacks and defenses across multiple modalities including
images, graphs, and text. The analysis of various attacks and
security testing methods provides a foundation for choosing
CNN hyperparameters that enhance resilience to adversarial
attacks in image processing. Goodfellow et al. [10] outline
a set of principles for evaluating the robustness of machine
learning defenses against adversarial examples, emphasizing
the importance of a well-defined threat model and skepticism
towards one’s own results. It advocates for rigorous testing
using adaptive attacks, caution against security through ob-
scurity, and the necessity of public code and model release
for reproducibility. Additionally, they provide a checklist to
avoid common pitfalls in such evaluations, encouraging com-
prehensive testing and comparison with existing work.

Wu and Zhu [31] provide useful insights into factors in-
fluencing adversarial transferability and proposes a simple
but effective smoothed gradient attack to enhance it. The
attack has implications on evaluating model robustness. Re-
cent advancements, such as a cluster-based approach with a
dynamic reputation system for Flying Ad hoc Networks [32]
and a weighted, spider monkey-based optimization method
for Vehicular Ad hoc Networks [33], have shown significant
improvements in performance metrics, security, and reliability
for CNN.

Our work aims to expand upon these foundations by specif-
ically focusing on the impact of white-box adversarial attacks
on CNN performance metrics. Unlike previous studies that
broadly addressed adversarial threats in machine learning,
our research delves into the detailed analysis of how these
attacks affect CNNs, providing a more focused understanding
of their vulnerabilities and potential defenses. This specificity
in studying the direct effects of attacks on CNNs sets our work
apart and underscores its importance in the broader context of
machine learning security.

VIII. CONCLUSIONS AND FUTURE WORK

We showed that Convolutional Neural Networks exhibit
significant vulnerability to a range of adversarial attacks,
which lead to notable degradation in performance metrics like
accuracy, loss, and image quality. The research underscores
the importance of developing more resilient CNN architectures
and defense mechanisms to counteract these vulnerabilities,
particularly in critical applications where CNN reliability is
paramount. The findings provide valuable insights for future
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research aimed at enhancing the security and robustness of
CNNss against sophisticated adversarial threats.

These test scenarios plays a crucial role in the development
and refinement of defense mechanisms for Convolutional Neu-
ral Networks (CNNs). By subjecting models to a wide range
of attack scenarios, we can observe the specific ways in which
adversarial inputs manipulate model behavior. This insight is
invaluable for devising defense strategies that directly coun-
teract the observed vulnerabilities. For instance, testing can
reveal if a model is particularly sensitive to slight perturbations
in certain input features, leading to the development of input
preprocessing or feature squeezing techniques as counter-
measures. Similarly, the effectiveness of adversarial training
can be assessed and optimized through iterative testing, by
incorporating a diverse set of adversarial examples generated
from the latest attack methods. Moreover, testing helps in
evaluating the practicality of defense mechanisms under real-
world conditions, ensuring that they do not unduly compro-
mise model accuracy or performance. Through this iterative
process of attack simulation, vulnerability assessment, and
defense implementation, testing fosters a deeper understanding
of adversarial threats and guides the creation of more robust
and resilient systems.
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