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Abstract—We consider a discrete-time system where a
resource-constrained source (e.g., a small sensor) transmits its
time-sensitive data to a destination over a time-varying wireless
channel. Each transmission incurs a fixed transmission cost
(e.g., energy cost), and no transmission results in a staleness
cost represented by the Age-of-Information. The source must
balance the tradeoff between transmission and staleness costs. To
address this challenge, we develop a robust online algorithm to
minimize the sum of transmission and staleness costs, ensuring
a worst-case performance guarantee. While online algorithms
are robust, they are usually overly conservative and may have a
poor average performance in typical scenarios. In contrast, by
leveraging historical data and prediction models, machine learn-
ing (ML) algorithms perform well in average cases. However,
they typically lack worst-case performance guarantees. To achieve
the best of both worlds, we design a learning-augmented online
algorithm that exhibits two desired properties: (i) consistency:
closely approximating the optimal offline algorithm when the ML
prediction is accurate and trusted; (ii) robustness: ensuring worst-
case performance guarantee even ML predictions are inaccurate.
Finally, we perform extensive simulations to show that our
online algorithm performs well empirically and that our learning-
augmented algorithm achieves both consistency and robustness.

Index Terms—Age-of-Information, transmission cost, online
algorithm, learning-augmented algorithm.

I. INTRODUCTION

In recent years, we have witnessed the swift and remarkable

development of the Internet of Things (IoT), which connects

billions of entities through wireless networks [1]. These en-

tities range from small, resource-constrained sensors (e.g.,

temperature sensors and smart cameras) to powerful smart-

phones. Among various IoT applications, one most important

categories is real-time IoT application, which requires timely

information updates from the IoT sensors. For example, in

industrial automation systems [2], [3], battery-powered IoT

sensors are deployed to provide data for monitoring equipment

health and product quality. On the one hand, IoT sensors

are usually small and have limited battery capacity, and
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thus frequent transmissions drain the battery quickly; on the

other hand, occasional transmissions render the information

at the controller outdated, leading to detrimental decisions. In

addition, wireless channels can be unreliable due to potential

channel fading, interference, and the saturation of wireless

networks if the traffic load generated by numerous sensors

is high [4]. Clearly, under unreliable wireless networks, IoT

sensors must transmit strategically to balance the tradeoff be-

tween transmission cost (e.g., energy cost) and data freshness.

Other applications include smart grids, smart cities, and so on.

To this end, in the first part of this work, we study the trade-

off between transmission cost and data freshness under a time-

varying wireless channel. Specifically, we consider a discrete-

time system where a device transmits its data to an access point

over an ON/OFF wireless channel (i.e., transmissions occur

only when the channel is ON). Each transmission incurs a fixed

transmission cost, while no transmission results in a staleness

cost represented by the Age-of-Information (AoI) [5], which is

defined as the time elapsed since the generation time of the

freshest delivered packet. To minimize the sum of transmission

costs and staleness costs, we develop a robust online algorithm

that achieves a competitive ratio (CR) of 3. That is, different

from typical studies with stationary network assumptions, the

cost of our online algorithm is at most three times larger than

that of the optimal offline algorithm under the worst channel

state (see the definition of CR in Section III).

While online algorithms exhibit robustness against the

worst-case situations, they often lean towards excessive cau-

tion and may have a subpar average performance in real-world

scenarios. On the other hand, by exploiting historical data to

build prediction models, machine learning (ML) algorithms

can excel in average cases. Nonetheless, ML algorithms could

be sensitive to disparity in training and testing data due to

distribution shifts or adversarial examples, resulting in poor

performance and lacking worst-case performance guarantees.

To that end, we design a novel learning-augmented online

algorithm that takes advantage of both ML and online algo-

rithms. Specifically, our learning-augmented online algorithm

integrates ML prediction (a series of times indicating when

to transmit) into our online algorithm, achieving two desired

properties: (i) consistency: when the ML prediction is accu-

rate and trusted, our learning-augmented algorithm performs

closely to the optimal offline algorithm, and (ii) robustness:

even when the ML prediction is inaccurate, our learning-

augmented algorithm still offers a worst-case guarantee.

Our main contributions are as follows.

First, we study the tradeoff between transmission cost
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and data freshness in a time-varying wireless channel by

formulating an optimization problem to minimize the sum of

transmission and staleness costs under an ON/OFF channel.

Second, following a similar line of analysis as in [6], we

reformulate our (non-linear) optimization problem into a linear

Transmission Control Protocol (TCP) acknowledgment prob-

lem [7] and propose a primal-dual-based online algorithm that

achieves a CR of 3. While a similar primal-dual-based online

algorithm has been claimed to achieve a CR of e/(e− 1) [6],

their analysis of CR relies on an (unrealistic) asymptotic

setting (see Remark 1).

Third, by incorporating ML predictions into our online algo-

rithm, we design a novel learning-augmented online optimiza-

tion algorithm that achieves both consistency and robustness.

To the best of our knowledge, this is the first study on AoI

that incorporates ML predictions into online optimization to

achieve consistency and robustness.

Finally, we perform extensive simulations using both syn-

thetic and real trace data. Our online algorithm exhibits better

performance than the theoretical analysis, and our learning-

augmented algorithm can achieve consistency and robustness.

Due to space limitations, we omit all the proofs and provide

them in our online technical report [8].

II. RELATED WORK

Since AoI was introduced in [5], it has sparked numerous

studies on this topic (see surveys in [9], [10]). Among these

AoI studies, two categories are most relevant to our work.

The first category includes studies that consider the joint

minimization of AoI and certain costs [11]–[14]. The work

of [11] studies the problem of minimizing the average cost of

sampling and transmission over an unreliable wireless channel

subject to average AoI constraints. In [13], the authors consider

a source-monitor pair with stochastic arrival of packets at the

source. The source pays a transmission cost to send the packet,

and its goal is to minimize the weighted sum of AoI and

transmission costs. Here the packet arrival process is assumed

to follow certain distributions. Although the assumptions in

these studies lead to tractable performance analysis, such

assumptions may not hold in practical scenarios.

The second category contains studies that focus on non-

stationary settings [6], [15]–[17]. For example, in [15], the

authors proposed online algorithms to minimize the AoI of

users in a cellular network under adversarial wireless channels.

In these AoI works that consider non-stationary settings, the

most relevant work to ours is [6], where the authors study

the minimization of the sum of download costs and AoI

costs under an adversarial wireless channel. A primal-dual-

based randomized online algorithm is shown to have a CR of

e/(e− 1). However, this CR is attained under an (unrealistic)

asymptotic setting (see Remark 1). Instead, we propose an

online primal-dual-based algorithm that achieves a CR of 3
in the non-asymptotic regime. While the AoI optimization

problems under non-stationary settings have been investigated,

none of them considers applying ML predictions to improve

the average performance of online algorithms.

In recent works [18]–[21], researchers attempt to take

advantage of both online algorithms and ML predictions, i.e.,

to design a learning-augmented online algorithm that achieves

consistency and robustness. In the seminal work [18], by incor-

porating ML predictions into the online Marker algorithm, the

authors can achieve consistency and robustness for a caching

problem. Following [18], a large body of research works

in this direction have emerged. The most related learning-

augmented work to ours is [20], where the authors design a

primal-dual-based learning-augmented algorithm for the TCP

acknowledgment problem. In [20], the uncertainty comes from

the packet arrival times, and the controller can make decisions

at any time. In our work, however, the uncertainty comes from

the channel states, and no data can be transmitted when the

channel is OFF. Lacking the freedom to transmit data at any

time makes their algorithm inapplicable.

III. SYSTEM MODEL AND PROBLEM FORMULATION

System Model. Consider a status-updating system where a

resource-limited device sends time-sensitive data to an access

point (AP) through an unreliable wireless channel. The system

operates in discrete time slots, denoted by t = 1, 2, . . . , T ,

where T is finite and is allowed to be arbitrarily large. We

use s(t) ∈ {0, 1} to denote the channel state at time t, where

s(t) = 1 means the channel is ON, allowing the device to

access the AP; while s(t) = 0 means the channel is OFF,

preventing access to the AP. The sequence of channel states

over the time horizon is represented by s = {s(1), . . . , s(T )}.
At the start of each slot, the device probes to know the

current channel state and decides whether to transmit its

freshest data to the AP. The transmission decision at slot t
is denoted by d(t) ∈ {0, 1}, where d(t) = 1 if the device

decides to transmit (i.e., generates a new update and transmits

it to the AP), and d(t) = 0 if not. A scheduling algorithm π is

denoted by π = {dπ(t)}
T

t=1, where dπ(t) is the transmission

decisions made by algorithm π at time t. For simplicity, we

use π = {d(t)}
T

t=1 throughout the paper. When the device

decides to transmit and the channel is ON, it incurs a fixed

transmission cost of c > 1, and the data on the AP will be

successfully updated at the end of slot t; otherwise, the data on

the AP gets staler.1 To quantify the freshness of data on the AP

side, we utilize a metric called Age-of-Information (AoI) [5],

which measures the time elapsed since the freshest received

update was generated. We use a(t) to denote the AoI at time

t, which evolves as

a(t) =

{

0, if s(t) · d(t) = 1;
a(t− 1) + 1, otherwise,

(1)

where the AoI drops to 0 if the device transmits at ON slots;

otherwise, it increases by 1.2 Assuming a(0) = 0. To reflect

the penalty when the AP does not get an update at time t, we

introduce a staleness cost equivalent to the AoI at that time.

1If the transmission cost c is no larger than 1, which is less than the staleness
cost (at least 1), then the optimal policy is to transmit at every ON slot.

2Some studies let the AoI drop to 1, wherein our analysis still holds. We
let the AoI drop to 0 to make the discussion concise.
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Problem Formulation. The total cost of an algorithm π is

C(s, π) ≜

T
∑

t=1

(c · d(t) + a(t)), (2)

where the first item c · d(t) is the transmission cost at time

t, and the second item a(t) is the staleness cost at time t.
In this paper, we focus on the class of online scheduling

algorithms, under which the information available at time t
for making decisions includes the transmission cost c, the

transmission history {d(τ)}tτ=1, and the channel state pattern

{s(τ)}tτ=1, while the time horizon T and the future channel

state {s(τ)}Tτ=t+1 is unknown. Conversely, an offline schedul-

ing algorithm has the information about the connectivity

pattern s (and the time horizon T ) beforehand.

Our goal is to develop an online algorithm π that minimizes

the total cost given a channel state pattern s:

min
d(t)

T
∑

t=1

(c · d(t) + a(t)) (3a)

s.t. d(t) ∈ {0, 1} for t = 1, 2, . . . , T ; (3b)

a(t) evolves as Eq. (1) for t = 1, 2, . . . , T. (3c)

In Problem (3), the only decision variables are the transmission

decisions {d(t)}Tt=1, and the objective function is a non-

linear function of {d(t)}Tt=1 due to the dependence of a(t)
on d(t) (see detailed discussion in our technical report [8]).

This non-linearity poses a challenge to its efficient solutions.

In Section IV-A, following a similar line of analysis as

in [6], we reformulate Problem (3) to an equivalent TCP

acknowledgment (ACK) problem, which is linear and can be

solved efficiently (e.g., via the primal-dual approach [22]).

To measure the performance of an online algorithm, we use

the metric competitive ratio (CR) [22], which is defined as the

worst-case ratio of the cost under the online algorithm to the

cost of the optimal offline algorithm. Formally, we say that an

online algorithm π is β-competitive if there exists a constant

β ≥ 1 such that for any channel state pattern s,

C(s, π) ≤ β ·OPT (s), (4)

where OPT (s) is the cost of the optimal offline algorithm

for the given channel state s. We desire to develop an online

algorithm with a CR close to 1, which implies that our online

algorithm performs closely to the optimal offline algorithm.

IV. ROBUST ONLINE ALGORITHM

In this section, we first reformulate our AoI Problem (3)

to an equivalent linear TCP ACK problem. Then, this TCP

ACK problem is further relaxed to a linear primal-dual-

based program. Finally, a 3-competitive online algorithm is

developed to solve the linear primal-dual-based program.

A. Problem Reformulation

In [6], the authors study the same non-linear Problem (3)

and reformulate it to an equivalent linear problem. Following a

similar line of analysis as in [6], we reformulate the non-linear

Problem (3) to an equivalent linear TCP ACK Problem (5)

as follows. Consider a TCP ACK problem, where the source

reliably generates and delivers one packet to the destination

in each slot t = 1, 2, . . . , T . Those delivered packets need to

be acknowledged (for simplicity, we use “acked” instead of

“acknowledged” throughout the paper) that they are received

by the destination, which requires the destination to send ACK

packets (for brevity, we call it ACK) back to the source. We

use d(t) ∈ {0, 1} to denote the ACK decision made by the

destination at slot t. Let zi(t) ∈ {0, 1} represent whether

packet i (i.e., the packet sent at slot i) has been acked by

slot t (i ≤ t), where zi(t) = 1 if packet i is not acked by

slot t and zi(t) = 0 otherwise. Once packet i is acked at slot

t, then it is acked forever after slot t, i.e., zi(τ) = 0 for all

i ≤ t and all τ ≥ t. The feedback channel is unreliable and

its channel state in slot t is modeled by an ON/OFF binary

variable s(t) ∈ {0, 1}. We use s = {s(1), . . . , s(T )} to denote

the entire feedback channel states. The destination can access

the feedback channel state s(t) at the start of each slot t. When

the feedback channel is ON and the destination decides to send

an ACK, all previous packets are acked, i.e., the number of

unacked packets becomes 0; otherwise, the number of unacked

packets increases by 1. We can see that the dynamic of the

number of unacked packets is the same as the AoI dynamic.

We assume that there is a holding cost at each slot, which

is the number of unacked packets in that slot. In addition, we

also assume that each ACK has an ACK cost of c. The goal

of the TCP ACK problem is to develop an online scheduling

algorithm π = {d(t)}
T

t=1 that minimizes the total cost given

a feedback channel state pattern s:

min
d(t),zi(t)

T
∑

t=1

(

c · d(t) +

t
∑

i=1

zi(t)

)

(5a)

s.t. zi(t) +
∑t

τ=i
s(τ)d(τ) ≥ 1

for i ≤ t and t = 1, 2, . . . , T ; (5b)

d(t), zi(t) ∈ {0, 1} for i ≤ t and t = 1, 2, . . . , T, (5c)

where the first item c ·d(t) in Eq. (5a) is the ACK cost at slot
t, the second item

∑t

i=1 zi(t) in Eq. (5a) is the holding cost

at slot t. Constraint (5b) states that for packet i at slot t, either

this packet is not acked (i.e., zi(t) = 1) or an ACK was made

since its arrival (i.e., s(τ)d(τ) = 1 for some i ≤ τ ≤ t). While

Problem (5) is an integer linear problem, we demonstrate its

equivalence to Problem (3) in the following.

Lemma 1. Problem (5) is equivalent to Problem (3).

Proof sketch. We can show that: (i) any feasible solution

to Problem (3) can be converted to a feasible solution to

Problem (5), and the total costs of these two solutions are

the same; (ii) any feasible solution to Problem (5) can be

converted to a feasible solution to Problem (3), and the total

cost of the converted solution to Problem (3) is no greater than

the total cost of the solution to Problem (5). This implies that

any optimal solution to Problem (3) is also an optimal solution

to Problem (5), and vice versa. Therefore, these two problems

are equivalent [23, Sec. 4.1.3].
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To obtain a linear program of the integer Problem (5), we

relax the integer requirement to real numbers:

min
d(t),zi(t)

T
∑

t=1

(

c · d(t) +
t
∑

i=1

zi(t)

)

(6a)

s.t. zi(t) +
∑t

τ=i
s(τ)d(τ) ≥ 1

for i ≤ t and t = 1, 2, . . . , T ; (6b)

d(t), zi(t) ≥ 0 for i ≤ t and t = 1, 2, . . . , T, (6c)

which is referred to as the primal problem. The corresponding

dual problem of Problem (6) is as follows:

max
yi(t)

T
∑

t=1

t
∑

i=1

yi(t) (7a)

s.t. s(t)
t
∑

i=1

T
∑

τ=t

yi(τ) ≤ c for t = 1, 2, . . . , T ; (7b)

yi(t) ∈ [0, 1] for i ≤ t and t = 1, 2, . . . , T, (7c)

which has a dual variables yi(t) for packet i and time t ≥ i.

B. Primal-dual Online Algorithm Description and Analysis

To solve the primal-dual Problems (6) and (7), we develop

the Primal-dual-based Online Algorithm (PDOA) and present

it in Algorithm 1. The input is the channel state pattern s

(revealed in an online manner), and the outputs are the primal

variables d(t) and zi(t), and the dual variable yi(t). Two

auxiliary variables L and M are also introduced: L denotes

the time when the latest ACK was made, and M denotes the

ACK marker (PDOA should make an ACK when M ≥ 1).

PDOA is a threshold-based algorithm. Assuming that the

latest ACK was made at slot L, when the accumulated holding

costs since slot L+1 is no smaller than the ACK cost c (i.e.,

M ≥ 1), PDOA will make an ACK at the next ON slot L′.

Here, we call the interval [L + 1, L′] an ACK interval. Note

that PDOA updates the primal variables and dual variables

only for the packets that are not acked in the current ACK

interval [L + 1, L′]. More specifically, consider packet i that

has not been acked by the current slot t ∈ [L + 1, L′]: (i)

for the primal variable zi(t), if the threshold is not achieved

(M < 1) or the channel is OFF at slot t, PDOA will update

zi(t) to be 1 (in Line 4 or Line 15, respectively) since packet i
is not acked by slot t; (ii) for the dual variable yi(t), if packet

i is not the last packet in the current ACK interval, PDOA will

update yi(t) to be 1 to maximize the dual objective function;

otherwise, PDOA will update yi(t) to c− c ·M to ensure that

when the threshold is achieved (M ≥ 1), the sum of all the

dual variables in the current ACK interval is exactly c.
In addition, at the end of slot t (i.e., Lines 19-27), if the

channel is ON at slot t, PDOA will skip slot t and go to slot

t+1. Otherwise, assuming that the most recent ON slot is slot

t† (t† ∈ [L, t)), then the channels are OFF during [t†+1, t]. To

maximize the dual objective function, PDOA updates the dual

variables of packet t†+1 to packet t to be 1 since the channels

are OFF during [t† + 1, t] and the updating of their dual

Algorithm 1: Primal-dual-based Online Algorithm

(PDOA)

Input : c, s (revealed in an online manner)

Output: d(t), zi(t), yi(t)
Init.: d(t), zi(t), yi(t), L,M ← 0 for all i and t

1 for t = 1 to T do
/* Iterate all the packets arriving

since the latest ACK time L. */

2 for i = L+ 1 to t do
3 if M < 1 then /* Not ready to ACK */

4 zi(t)← 1;
5 M ←M + 1/c;
6 yi(t)← min{1, c− c ·M};
7 end
8 if M ≥ 1 then /* Ready to ACK */

9 if s(t) = 1 then /* ON channel */

10 d(t)← 1;
11 M ← 0;
12 L← t;
13 break and go to the next slot (i.e., t+ 1);
14 else /* OFF channel */

15 zi(t)← 1;
16 end
17 end
18 end

/* At the end of slot t, update dual

variable yi(t) with s(i) = 0 as: */

19 for i = t decrease to L+ 1 do
20 if s(i) = 0 then
21 if yi(t) = 0 then
22 yi(t)← 1;
23 end
24 else
25 break and go to the next slot;
26 end
27 end

28 end

variables does not violate constraint (7b) (see an illustration in

Fig. 1(b)). Note that there may be some OFF channels before

slot t†, but PDOA does not update their dual variables to avoid

the violation of constraint (7b). For example, assuming that

slot t′ (t′ < t†) is an OFF channel and we let yt′(t) = 1.

Letting yt′(t) = 1 has no effect on the constraint (7b) at

slot t′ since we always have s(t′)
∑t̂

i=1

∑T

τ=t′ yi(τ) = 0,

but doing this does impact the constraint (7b) at slot t† (i.e.,

increasing s(t†)
∑t†

i=1

∑T

τ=t† yi(τ) by 1 because yt′(t) is a

part of s(t†)
∑t†

i=1

∑T

τ=t† yi(τ) as t′ < t† and t† ≤ t),
possibly making constraint (7b) at slot t† violated.

Theorem 1. PDOA is 3-competitive.

Proof sketch. We first show that given any channel state

s, PDOA produces a feasible solution to primal Problem (6)

and dual Problem (7). Then, we show that in any k-th ACK

interval, the ratio between the primal objective value and the

dual objective value (denoted by P (k) and D(k), respectively)

is at most 3, i.e., P (k)/D(k) ≤ 3. This implies that the ratio

between the total primal objective value (denoted by P ) and

the total dual objective value (denoted by D) is also at most 3,
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(b) Dual variables yi(t) updates.

Fig. 1. The updates of primal variables zi(t) and dual variables yi(t) in the k-
th ACK interval [tk+1, tk+1], where channels are OFF during [tk+5, tk+7].
The x-axis represents time and the y-axis represents the packet id. Two ACKs
are made at the ON slot tk and the ON slot tk+1, where the ACK cost
c = 18. The primal variables zi(t) and dual variables yi(t) are updated from
slot tk+1 to slot tk+1; and in slot t, packets are updated from packet tk+1
to packet t. The red bold italic 1 denotes when the ACK marker equals or is
larger than 1. In Fig. 1(a), the grey areas denote the updates due to Line 15;
In Fig. 1(b), the grey areas denote the updates due to Lines 19-27.

i.e., P/D ≤ 3. By the weak duality, PDOA is 3-competitive.

Remark 1. In [6], the authors also propose a primal-dual-

based online algorithm and show that their algorithm achieves

a CR of e/(e − 1). However, this CR is achieved only in an

(unrealistic) asymptotic setting (i.e., when the transmission

cost c goes to infinity but the time horizon T is finite).

Specifically, in their algorithm, to maximize the dual objective

function, at the end of the last slot T , they update certain

dual variables yi(t) that arrived at the OFF slot to be 1. In

their analysis (the proof of their Theorem 7), they show that

because of those dual variables updates at the end of slot T ,

the primal objective value satisfies P ≤ (1+1/((1 + 1/c)⌊c⌋−
1)) · D + (T (T + 1)/2) · (D/c). When c goes to infinity,

their CR becomes P/D ≤ e/(e − 1) as (T (T + 1)/2)/c
goes to 0 since T is finite. However, the optimization problem

becomes trivial in this setting since an optimal algorithm is

simply not to transmit at all given that the transmission cost

c can significantly exceed the total staleness cost (at most

(T (T + 1)/2)). Furthermore, when c is finite, their CR is a

quadratic function of the time horizon T , which can be very

large when T is large. Instead, our analysis holds for any

T and c. In our algorithm, rather than updating these dual

variables yi(t) at the end of slot T , we directly update them

only in the current ACK interval (i.e., Lines 19-27), ensuring

that the dual constraint (7b) is satisfied and the dual objective

function is as large as possible. This enables us to focus on

the analysis of P (k)/D(k) in the current ACK interval and

show that P (k)/D(k) ≤ 3 for any k-th ACK interval, which

implies that PDOA is 3-competitive.

V. LEARNING-AUGMENTED ONLINE ALGORITHM

Online algorithms are known for their robustness against

worst-case scenarios, but they can be overly conservative and

may have a poor average performance in typical scenarios.

In contrast, ML algorithms leverage historical data to train

models that excel in average cases. However, they typically

lack worst-case performance guarantees when facing distribu-

tion shifts or outliers. To attain the best of both worlds, we

design a learning-augmented online algorithm that achieves

both consistency and robustness.

A. Machine Learning Predictions

We consider the case where an ML algorithm provides a

prediction P ≜ {p1, p2, . . . , pn} that represents the times to

transmit an ACK for the destination (i.e., the prediction P
makes a total of n ACKs and sends the i-th ACK at slot pi).
The prediction P is unaware of the channel state pattern s and

can be provided either in full in the beginning (i.e., t = 0) or

be provided one-by-one in each slot. Furthermore, when the

prediction P decides to send an ACK at an OFF slot, we will

simply ignore the decision for this particular slot.

Provided with the prediction P , we specify a trust parameter

λ ∈ (0, 1] to reflect our confidence in the prediction: a smaller

λ means higher confidence. The learning-augmented online

algorithm takes a prediction P , a trust parameter λ, and a

channel state pattern s (revealed in an online manner) as

inputs, and outputs a solution with a cost of C(s,P, λ). A

learning-augmented algorithm is said β(λ)-robust (β(λ) ≥ 1)

and γ(λ)-consistent (γ(λ) ≥ 1) if its cost satisfies

C(s,P, λ) ≤ min{β(λ) ·OPT (s), γ(λ) · C(s,P)}, (8)

where OPT (s) and C(s,P) is the cost of the optimal offline

algorithm and the cost of purely following the prediction P
under the channel state pattern s, respectively.

We aim to design a learning-augmented online algorithm

for primal Problem (6) that exhibits two desired proper-

ties (i) consistency: when the ML prediction P is accurate

(C(s,P) ≈ OPT (s)) and we trust it, our learning-augmented

online algorithm should perform closely to the optimal offline

algorithm (i.e., γ(λ) → 1 as λ → 0); and (ii) robustness:

even if the ML prediction P is inaccurate, our learning-

augmented online algorithm still retains a worst-case guarantee

(i.e., C(s,P, λ) ≤ β(λ) ·OPT (s) for any prediction P).

B. Learning-augmented Online Algorithm Description

We present our Learning-augmented Primal-dual-based On-

line Algorithm (LAPDOA) in Algorithm 2. LAPDOA behaves

similarly to PDOA, but the updates of primal variables and

dual variables incorporate the ML prediction P .

In LAPDOA, two additional auxiliary variables M ′ and y′

are used to denote the increment of the ACK marker M and

the increment of the dual variables yi(t) in each iteration of

update, respectively. Assuming that the current time is t, let

α(t) denote the next time when the prediction P sends an ACK

(i.e., α(t) ≜ min{pi : pi ≥ t} and α(t) = ∞ if t > pn). For

the updates of primal and dual variables of an unacked packet

i at slot t, based on the relationship between the current time t
and α(i) (which is also the time when the prediction P makes

an ACK for packet i because packet i arrives at slot i), we

classify them into three types:

• Big updates: those updates make M ′ ← 1/λc, y′ ← 1,

and zi(t)← 1. The big updates are made when LAPDOA

is behind the ACK scheduled by the prediction P (i.e.,
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Algorithm 2: Learning-augmented Primal-dual-based

Online Algorithm (LAPDOA)

Input : c, P, λ, s (revealed in an online manner)

Output: d(t), zi(t), yi(t)
Init.: d(t), zi(t), yi(t), L,M ← 0 for all i and t

1 for t = 1 to T do
/* Iterate all the packets arriving

since the most recent ACK time L. */

2 for i = L+ 1 to t do
3 if M < 1 then /* Not ready to ACK */

4 if t ≥ α(i) then
/* Big update: prediction

already acked packet i */

5 M ′ ← 1/λc, y′ ← 1;
6 else

/* Small update: prediction

did not ack packet i yet */

7 M ′ ← λ/c, y′ ← λ;
8 end
9 zi(t)← 1;

10 M ←M +M ′;
11 yi(t)← y′;
12 end
13 if M ≥ 1 then /* Ready to ACK */

14 if s(t) = 1 then /* ON channel */

15 d(t)← 1;
16 M ← 0;
17 L← t;
18 break and go to the next slot (i.e., t+ 1);
19 else /* OFF channel */

20 if zi(t) ̸= 1 then
/* Zero update */

21 zi(t)← 1;
22 end
23 end
24 end
25 end

/* At the end of slot t, update dual

variable yi(t) with s(i) = 0 as: */

26 for i = t decrease to L+ 1 do
27 if s(i) = 0 then
28 if yi(t) = 0 then
29 yi(t)← 1;
30 end
31 else
32 break and go to the next slot;
33 end
34 end

35 end

t ≥ α(i)), and it tries to catch up the prediction P by

making a big increase in the ACK marker.

• Small updates: those updates make M ′ ← λ/c, y′ ← λ,

and zi(t) ← 1. The small updates are made when LAP-

DOA is ahead of the ACK scheduled by the prediction

P (i.e., t < α(i)), and LAPDOA tries to slow down its

ACK rate by making a small increase in the ACK marker.

• Zero updates: those updates make M ′ ← 0, y′ ← 0, and

zi(t) ← 1. The zero updates are made when LAPDOA

is supposed to ACK at some slot t′ but finds that slot t′

is OFF, and it has to delay its ACK to the next ON slot

and pay the holding cost (i.e., zi(t) = 1) along the way.

C. Learning-augmented Online Algorithm Analysis

In this subsection, we focus on the consistency and ro-

bustness analysis of LAPDOA with λ ∈ (0, 1]. The special

cases of LAPDOA with λ = 0 and λ = 1 correspond to

the cases that LAPDOA follows the prediction P purely and

PDOA, respectively. It is noteworthy that by choosing different

values of λ, LAPDOA exhibits a crucial trade-off between

consistency and robustness.

Theorem 2. For any channel state pattern s, any prediction

P , any parameter λ ∈ (0, 1], and any ACK cost c, LAPDOA

outputs an almost feasible solution (within a factor of c/(c+
1)) with a cost of: when λ ∈ (0, 1/c],

C(s,P, λ) ≤min{(3/λ) · ((c+ 1)/c) ·OPT (s),

(1 + λ)CH(s,P) + CA(s,P)}, (9)

and when λ ∈ (1/c, 1],

C(s,P, λ) ≤ min{(3/λ) · ((c+ 1)/c) ·OPT (s),

(λ+ 2)CH(s,P) + (1/λ+ 2) · ⌈λc⌉ · CA(s,P)/c}, (10)

where CA(s,P) and CH(s,P) denote the total ACK costs and

total holding costs of prediction P under s, respectively.

Next, we show that LAPDOA has the robustness guarantee

in Lemma 2 and the consistency guarantee in Lemma 3.

Combining Lemmas 2 and 3, we can conclude Theorem 2.

Lemma 2. (Robustness) For any ON/OFF input instance s,

any prediction P , any parameter λ ∈ (0, 1], and any ACK

cost c, LAPDOA outputs a solution which has a cost of

C(s,P, λ) ≤ (3/λ) · ((c+ 1)/c)OPT (s). (11)

Proof sketch. We first show that LAPDOA produces a

feasible primal solution and an almost feasible dual solution

(with a factor of c/(c + 1)). Then, we show that in any k-th

ACK interval, LAPDOA achieves P (k)/D(k) ≤ 3/λ. This

implies that LAPDOA also achieves P/D ≤ 3/λ on the

entire instance. Finally, by scaling down all dual variables

yi(t) generated by LAPDOA by a factor of c/(c + 1), we

obtain a feasible dual solution with a dual objective value

of (c/(c+ 1)) ·D. By the weak duality, we have P/OPT ≤
P/((c/(c+1))·D) = (P/D)·((c+1)/c) ≤ (3/λ)·((c+1)/c).

Lemma 3. (Consistency) For any channel state pattern s, any

prediction P , any parameter λ ∈ (0, 1], and any ACK cost c,
LAPDOA outputs a solution with a cost of: when λ ∈ (0, 1/c],

C(s,P, λ) ≤ (1 + λ)CH(s,P) + CA(s,P), (12)

and when λ ∈ (1/c, 1],

C(s,P, λ) ≤

(λ+ 2)CH(s,P) + (1/λ+ 2) · ⌈λc⌉ · CA(s,P)/c, (13)

where CA(s,P) and CH(s,P) denote the total ACK cost and

total holding cost of prediction P under s, respectively.
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Fig. 2. Performance comparison of online algorithms under different datasets.
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Fig. 3. Performance comparison of learning-augmented algo-
rithms under different trust parameters using synthetic dataset.

Proof sketch. In general, LAPDOA generates three types

of updates: big updates, small updates, and zero updates. Our

idea is to bound the total cost of each type of update by the

cost of the algorithm that purely follows the prediction. In

the case of λ ∈ (0, 1/c], we show that the total number of

big updates is CA(s,P)/c, and each big update increases the

primal objective value by c, so the total cost of big updates in

LAPDOA is CA(s,P). In addition, the total number of small

updates and zero updates can be shown to be bounded by

CH(s,P), and each small update or zero update incurs a cost

at most 1+λ, thus the total cost of small and zero updates in

LAPDOA is at most (1 + λ)CH(s,P). In summary, the total

cost of LAPDOA in the case of λ ∈ (0, 1/c] is bounded by

(1+λ)CH(s,P)+ ((c+1)/c)CA(s,P). A similar bound can

be also obtained for the case of λ ∈ (1/c, 1].

Remark 2. When we trust the ML prediction (i.e., λ→ 0) and

the ML prediction is accurate at the same time (C(s,P) ≈
OPT (s)), our learning-augmented algorithm also performs

nearly to the optimal offline algorithm, achieving consistency.

Remark 3. With any λ ∈ (0, 1], the CR of LAPDOA is at

most (3/λ) · ((c+ 1)/c), regardless of the prediction quality.

This indicates that our learning-augmented algorithm has the

worst-case performance guarantees, achieving robustness.

VI. NUMERICAL RESULTS

In this section, we perform simulations using both syn-

thetic data and real trace data to show that our online algo-

rithm PDOA outperforms the State-of-the-Art online algorithm

and that our learning-augmented online algorithm LAPDOA

achieves consistency and robustness.

A. Online Algorithm

In Fig. 2, we compare PDOA with the State-of-the-Art

online algorithm proposed in [6] (which is referred to as

“PD” in Fig. 2). Two datasets are considered: (i) The synthetic

dataset in Fig. 2(a). We adopt the same settings as in [6], where

the channel state is a Bernoulli process with varying channel

ON probability and the transmission cost c = 15; (ii) The

real trace dataset [24] in Fig. 2(b). This dataset contains the

channel measurement (i.e., reference signal received quality

(RSRQ)) for commercial mmWave 5G services in downtown

Minneapolis. Researchers conducted walking tests in a 1300m

loop area using an Android smartphone with a 5G monitoring

tool to collect RSRQ data. We set a threshold (-13dB) to

determine if the channel is ON or OFF based on whether

RSRQ surpasses it or not. Here we vary the transmission cost

from 10 to 100. In both datasets, the performance metrics are

the empirical CR and the average cost ratio (i.e., the worst cost

ratio and the average cost ratio under the online algorithm and

the optimal offline algorithm over multiple simulation runs).

Fig. 2 illustrates that our online algorithm PDOA consis-

tently outperforms the State-of-the-Art online algorithm PD in

both datasets, i.e., PDOA achieves a lower empirical CR and

a lower average cost ratio compared to PD. In addition, the

empirical CR of PDOA outperforms the theoretical analysis

(with a CR of 3), validating our theoretical results.

B. Learning-augmented Online Algorithm

In this subsection, we study the performance of LAPDOA

under different prediction qualities using synthetic datasets.

We first explain how to generate ML predictions based on the

training dataset. Then, we shift the distribution of the testing

dataset to deviate from the training dataset and showcase the

performance of LAPDOA on the testing datasets.

In Fig. 2(a), PDOA demonstrates strong performance under

the Bernoulli process. However, a specific training dataset

reveals its suboptimal performance. In this training dataset,

the transmission cost c = 16, and the channel state sequence

is constituted by an independently repeating pattern [X×OFF,

Y×ON], where X ∼ B(13, 0.9) and Y ∼ B(6, 0.9) (B(n, p)
represents the binomial distribution with parameters n and

p). Under this pattern, in most cases, PDOA only makes one

transmission at the first ON slot of these Y ON slots (i.e., after

a long consecutive X OFF slots, the ACK marker M will be

larger than 1, and PDOA will transmit at the first ON slot.

However, after this transmission, during the short remaining

(Y −1) ON slots, the ACK marker M is unable to be increased

to 1). This results in a high AoI increase for these next X OFF

slots. For the optimal offline algorithm, to have a lower AoI

increase during OFF slots, it transmits at both the first and the

last ON slot among those Y ON slots. To generate a sequence

of channel states of the required length, we repeat the pattern

enough times independently and concatenate them together.
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Recall that LAPDOA incorporates an ML prediction P that

provides the transmission decision at each slot. To generate

such an ML prediction P , we train an Long Short-term

Memory (LSTM) network, which has three LSTM layers (each

layer has 20 hidden states) followed by one fully connected

layer. The input of our LSTM network is the current channel

state, and the output is the transmission probability at that

slot. For training, we manually create 300 sequences, each

with a length of 100 slots consisting of repeating patterns in-

troduced earlier (we call these constructed sequences “pattern

sequences”). Optimal offline transmission decisions for the

training datasets are obtained through dynamic programming.

We use the mean squared error between the LSTM network

output and the optimal offline algorithm output as the loss

function and employ the Adam optimizer to train the weights.

In the end, to convert the output of our LSTM network (i.e.,

transmission probability) to the real transmission decisions, a

threshold (e.g., 0.5) is set, and transmission occurs when the

output of the LSTM network exceeds the threshold.

In Fig. 3, we illustrate LAPDOA’s performance under

varying prediction qualities, influenced by a distribution shift

between the training and testing datasets. The training dataset

only contains the sequences that are fully composed of the

pattern (i.e., the percentage of the pattern sequences is 100%).

However, in the testing dataset, we reduce the percentage of

the pattern sequence by replacing some pattern sequences with

a Bernoulli process sequence of a length of 100 with an ON

probability of 0.32 (close to the pattern ON probability). While

the training dataset and the testing dataset share the same

channel ON probability, they exhibit variations in distribution.

The magnitude of this shift amplifies as the percentage of the

pattern sequence decreases. As we can observe in Fig. 3, when

the distribution shift is small (100% or 90% pattern sequence

percentage), our trained ML algorithm (“Pure ML” in the

figure) outperforms PDOA. Learning-augmented algorithms

trusting the prediction (λ ∈ {0.1, 0.3}) closely match the

ML algorithm’s performance. Conversely, with a substantial

distribution shift (0 or 10% pattern sequence percentage),

the ML algorithm performs poorly while PDOA performs

well. In this case, learning-augmented algorithms not trusting

the prediction (λ ∈ {0.7, 0.9}) closely resemble PDOA.

Furthermore, with different values of λ, LAPDOA provides

different tradeoff curves for consistency and robustness.

VII. CONCLUSION

In this paper, we studied the minimization of data freshness

and transmission costs under a time-varying wireless channel.

After reformulating our original problem to a TCP ACK prob-

lem, we developed a 3-competitive primal-dual-based online

algorithm. Realizing the pros and cons of online algorithms

and ML algorithms, we designed a learning-augmented on-

line algorithm that takes advantage of both approaches and

achieves consistency and robustness. Finally, simulation results

validate the superiority of our online algorithm and highlight

the consistency and robustness achieved by our learning-

augmented algorithm. For future work, one interesting direc-

tion would be to consider how to adaptively select the trust

parameter λ to achieve the best performance.
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