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Learning-augmented Online Minimization of Age of
Information and Transmission Costs

Zhongdong Liu, Keyuan Zhang, Bin Li, Yin Sun, Y. Thomas Hou, and Bo Ji

Abstract—We consider a discrete-time system where a
resource-constrained source (e.g., a small sensor) transmits its
time-sensitive data to a destination over a time-varying wireless
channel. Each transmission incurs a fixed transmission cost
(e.g., energy cost), and no transmission results in a staleness
cost represented by the Age-of-Information. The source must
balance the tradeoff between transmission and staleness costs. To
address this challenge, we develop a robust online algorithm to
minimize the sum of transmission and staleness costs, ensuring
a worst-case performance guarantee. While online algorithms
are robust, they are usually overly conservative and may have a
poor average performance in typical scenarios. In contrast, by
leveraging historical data and prediction models, machine learn-
ing (ML) algorithms perform well in average cases. However,
they typically lack worst-case performance guarantees. To achieve
the best of both worlds, we design a learning-augmented online
algorithm that exhibits two desired properties: (i) consistency:
closely approximating the optimal offline algorithm when the ML
prediction is accurate and trusted; (ii) robustness: ensuring worst-
case performance guarantee even ML predictions are inaccurate.
Finally, we perform extensive simulations to show that our
online algorithm performs well empirically and that our learning-
augmented algorithm achieves both consistency and robustness.

Index Terms—Age-of-Information, transmission cost, online
algorithm, learning-augmented algorithm.

I. INTRODUCTION

In recent years, we have witnessed the swift and remarkable
development of the Internet of Things (IoT), which connects
billions of entities through wireless networks [1]. These en-
tities range from small, resource-constrained sensors (e.g.,
temperature sensors and smart cameras) to powerful smart-
phones. Among various IoT applications, one most important
categories is real-time IoT application, which requires timely
information updates from the IoT sensors. For example, in
industrial automation systems [2], [3], battery-powered IoT
sensors are deployed to provide data for monitoring equipment
health and product quality. On the one hand, IoT sensors
are usually small and have limited battery capacity, and
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thus frequent transmissions drain the battery quickly; on the
other hand, occasional transmissions render the information
at the controller outdated, leading to detrimental decisions. In
addition, wireless channels can be unreliable due to potential
channel fading, interference, and the saturation of wireless
networks if the traffic load generated by numerous sensors
is high [4]. Clearly, under unreliable wireless networks, IoT
sensors must transmit strategically to balance the tradeoff be-
tween transmission cost (e.g., energy cost) and data freshness.
Other applications include smart grids, smart cities, and so on.

To this end, in the first part of this work, we study the trade-
off between transmission cost and data freshness under a time-
varying wireless channel. Specifically, we consider a discrete-
time system where a device transmits its data to an access point
over an ON/OFF wireless channel (i.e., transmissions occur
only when the channel is ON). Each transmission incurs a fixed
transmission cost, while no transmission results in a staleness
cost represented by the Age-of-Information (Aol) [5], which is
defined as the time elapsed since the generation time of the
freshest delivered packet. To minimize the sum of transmission
costs and staleness costs, we develop a robust online algorithm
that achieves a competitive ratio (CR) of 3. That is, different
from typical studies with stationary network assumptions, the
cost of our online algorithm is at most three times larger than
that of the optimal offline algorithm under the worst channel
state (see the definition of CR in Section III).

While online algorithms exhibit robustness against the
worst-case situations, they often lean towards excessive cau-
tion and may have a subpar average performance in real-world
scenarios. On the other hand, by exploiting historical data to
build prediction models, machine learning (ML) algorithms
can excel in average cases. Nonetheless, ML algorithms could
be sensitive to disparity in training and testing data due to
distribution shifts or adversarial examples, resulting in poor
performance and lacking worst-case performance guarantees.

To that end, we design a novel learning-augmented online
algorithm that takes advantage of both ML and online algo-
rithms. Specifically, our learning-augmented online algorithm
integrates ML prediction (a series of times indicating when
to transmit) into our online algorithm, achieving two desired
properties: (i) consistency: when the ML prediction is accu-
rate and trusted, our learning-augmented algorithm performs
closely to the optimal offline algorithm, and (ii) robustness:
even when the ML prediction is inaccurate, our learning-
augmented algorithm still offers a worst-case guarantee.

Our main contributions are as follows.

First, we study the tradeoff between transmission cost
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and data freshness in a time-varying wireless channel by
formulating an optimization problem to minimize the sum of
transmission and staleness costs under an ON/OFF channel.

Second, following a similar line of analysis as in [6], we
reformulate our (non-linear) optimization problem into a linear
Transmission Control Protocol (TCP) acknowledgment prob-
lem [7] and propose a primal-dual-based online algorithm that
achieves a CR of 3. While a similar primal-dual-based online
algorithm has been claimed to achieve a CR of /(e — 1) [6],
their analysis of CR relies on an (unrealistic) asymptotic
setting (see Remark 1).

Third, by incorporating ML predictions into our online algo-
rithm, we design a novel learning-augmented online optimiza-
tion algorithm that achieves both consistency and robustness.
To the best of our knowledge, this is the first study on Aol
that incorporates ML predictions into online optimization to
achieve consistency and robustness.

Finally, we perform extensive simulations using both syn-
thetic and real trace data. Our online algorithm exhibits better
performance than the theoretical analysis, and our learning-
augmented algorithm can achieve consistency and robustness.

Due to space limitations, we omit all the proofs and provide
them in our online technical report [8].

II. RELATED WORK

Since Aol was introduced in [5], it has sparked numerous
studies on this topic (see surveys in [9], [10]). Among these
Aol studies, two categories are most relevant to our work.

The first category includes studies that consider the joint
minimization of Aol and certain costs [11]-[14]. The work
of [11] studies the problem of minimizing the average cost of
sampling and transmission over an unreliable wireless channel
subject to average Aol constraints. In [13], the authors consider
a source-monitor pair with stochastic arrival of packets at the
source. The source pays a transmission cost to send the packet,
and its goal is to minimize the weighted sum of Aol and
transmission costs. Here the packet arrival process is assumed
to follow certain distributions. Although the assumptions in
these studies lead to tractable performance analysis, such
assumptions may not hold in practical scenarios.

The second category contains studies that focus on non-
stationary settings [6], [15]-[17]. For example, in [15], the
authors proposed online algorithms to minimize the Aol of
users in a cellular network under adversarial wireless channels.
In these Aol works that consider non-stationary settings, the
most relevant work to ours is [6], where the authors study
the minimization of the sum of download costs and Aol
costs under an adversarial wireless channel. A primal-dual-
based randomized online algorithm is shown to have a CR of
e/(e — 1). However, this CR is attained under an (unrealistic)
asymptotic setting (see Remark 1). Instead, we propose an
online primal-dual-based algorithm that achieves a CR of 3
in the non-asymptotic regime. While the Aol optimization
problems under non-stationary settings have been investigated,
none of them considers applying ML predictions to improve
the average performance of online algorithms.

In recent works [18]-[21], researchers attempt to take
advantage of both online algorithms and ML predictions, i.e.,
to design a learning-augmented online algorithm that achieves
consistency and robustness. In the seminal work [18], by incor-
porating ML predictions into the online Marker algorithm, the
authors can achieve consistency and robustness for a caching
problem. Following [18], a large body of research works
in this direction have emerged. The most related learning-
augmented work to ours is [20], where the authors design a
primal-dual-based learning-augmented algorithm for the TCP
acknowledgment problem. In [20], the uncertainty comes from
the packet arrival times, and the controller can make decisions
at any time. In our work, however, the uncertainty comes from
the channel states, and no data can be transmitted when the
channel is OFF. Lacking the freedom to transmit data at any
time makes their algorithm inapplicable.

III. SYSTEM MODEL AND PROBLEM FORMULATION

System Model. Consider a status-updating system where a
resource-limited device sends time-sensitive data to an access
point (AP) through an unreliable wireless channel. The system
operates in discrete time slots, denoted by ¢t = 1,2,...,T,
where T is finite and is allowed to be arbitrarily large. We
use s(t) € {0,1} to denote the channel state at time ¢, where
s(t) = 1 means the channel is ON, allowing the device to
access the AP; while s(¢t) = 0 means the channel is OFF,
preventing access to the AP. The sequence of channel states
over the time horizon is represented by s = {s(1),...,s(T)}.

At the start of each slot, the device probes to know the
current channel state and decides whether to transmit its
freshest data to the AP. The transmission decision at slot ¢
is denoted by d(t) € {0,1}, where d(¢t) = 1 if the device
decides to transmit (i.e., generates a new update and transmits
it to the AP), and d(¢) = 0 if not. A scheduling algorithm 7 is
denoted by m = {d”(t)}le, where d™(¢) is the transmission
decisions made t%y algorithm 7 at time ¢. For simplicity, we
use 7 = {d(t)},_, throughout the paper. When the device
decides to transmit and the channel is ON, it incurs a fixed
transmission cost of ¢ > 1, and the data on the AP will be
successfully updated at the end of slot ¢; otherwise, the data on
the AP gets staler.! To quantify the freshness of data on the AP
side, we utilize a metric called Age-of-Information (Aol) [5],
which measures the time elapsed since the freshest received
update was generated. We use a(t) to denote the Aol at time
t, which evolves as

0,
alt) = { a(t— 1)+ 1,

where the Aol drops to 0 if the device transmits at ON slots;
otherwise, it increases by 1.2 Assuming a(0) = 0. To reflect
the penalty when the AP does not get an update at time ¢, we
introduce a staleness cost equivalent to the Aol at that time.

if s(t) - d(t) = 1;
otherwise,

)

11f the transmission cost ¢ is no larger than 1, which is less than the staleness
cost (at least 1), then the optimal policy is to transmit at every ON slot.

2Some studies let the Aol drop to 1, wherein our analysis still holds. We
let the Aol drop to O to make the discussion concise.
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Problem Formulation. The total cost of an algorithm 7 is

Cls,m) 23 (c-d(t) +a(t)),

1

2

t=

where the first item ¢ - d(t) is the transmission cost at time
t, and the second item a(t) is the staleness cost at time ¢.
In this paper, we focus on the class of online scheduling
algorithms, under which the information available at time ¢
for making decisions includes the transmission cost c, the
transmission history {d(7)}._,, and the channel state pattern
{s(7)}L_,, while the time horizon T and the future channel
state {s(7)}2_,,, is unknown. Conversely, an offline schedul-
ing algorithm has the information about the connectivity
pattern s (and the time horizon T') beforehand.

Our goal is to develop an online algorithm 7 that minimizes
the total cost given a channel state pattern s:

T
min c-d(t) +a(t 3a
D (e d() +alt) o)
s.t. d(t) € {0,1} for t =1,2,...,T; (3b)
a(t) evolves as Eq. (1) for t =1,2,...,7.  (3¢c)

In Problem (3), the only decision variables are the transmission
decisions {d(t)}]_;, and the objective function is a non-
linear function of {d(t)}Z_, due to the dependence of a(t)
on d(t) (see detailed discussion in our technical report [8]).
This non-linearity poses a challenge to its efficient solutions.
In Section IV-A, following a similar line of analysis as
in [6], we reformulate Problem (3) to an equivalent TCP
acknowledgment (ACK) problem, which is linear and can be
solved efficiently (e.g., via the primal-dual approach [22]).

To measure the performance of an online algorithm, we use
the metric competitive ratio (CR) [22], which is defined as the
worst-case ratio of the cost under the online algorithm to the
cost of the optimal offline algorithm. Formally, we say that an
online algorithm 7 is [S-competitive if there exists a constant
£ > 1 such that for any channel state pattern s,

C(s,m) < B-OPT(s), 4

where OPT(s) is the cost of the optimal offline algorithm
for the given channel state s. We desire to develop an online
algorithm with a CR close to 1, which implies that our online
algorithm performs closely to the optimal offline algorithm.

IV. ROBUST ONLINE ALGORITHM

In this section, we first reformulate our Aol Problem (3)
to an equivalent linear TCP ACK problem. Then, this TCP
ACK problem is further relaxed to a linear primal-dual-
based program. Finally, a 3-competitive online algorithm is
developed to solve the linear primal-dual-based program.

A. Problem Reformulation

In [6], the authors study the same non-linear Problem (3)
and reformulate it to an equivalent linear problem. Following a
similar line of analysis as in [6], we reformulate the non-linear
Problem (3) to an equivalent linear TCP ACK Problem (5)

as follows. Consider a TCP ACK problem, where the source
reliably generates and delivers one packet to the destination
in each slot t = 1,2,...,T. Those delivered packets need to
be acknowledged (for simplicity, we use “acked” instead of
“acknowledged” throughout the paper) that they are received
by the destination, which requires the destination to send ACK
packets (for brevity, we call it ACK) back to the source. We
use d(t) € {0,1} to denote the ACK decision made by the
destination at slot ¢. Let z;(t) € {0,1} represent whether
packet ¢ (i.e., the packet sent at slot ¢) has been acked by
slot ¢ (i < t), where z;(t) = 1 if packet ¢ is not acked by
slot ¢ and z;(t) = 0 otherwise. Once packet i is acked at slot
t, then it is acked forever after slot ¢, i.e., z;(7) = 0 for all
1 <t and all 7 > t. The feedback channel is unreliable and
its channel state in slot ¢ is modeled by an ON/OFF binary
variable s(t) € {0,1}. Weuse s = {s(1),...,s(T)} to denote
the entire feedback channel states. The destination can access
the feedback channel state s(¢) at the start of each slot . When
the feedback channel is ON and the destination decides to send
an ACK, all previous packets are acked, i.e., the number of
unacked packets becomes 0; otherwise, the number of unacked
packets increases by 1. We can see that the dynamic of the
number of unacked packets is the same as the Aol dynamic.

We assume that there is a holding cost at each slot, which
is the number of unacked packets in that slot. In addition, we
also assume that each ACK has an ACK cost of c. The goal
of the TCP ACK problem is to develop an online scheduling
algorithm 7 = {d(t)}z;l that minimizes the total cost given
a feedback channel state pattern s:

T t
min c-d(t) + zi(t (5a)
i, > ( 0+ X >>
t
st zi(t)+> s(r)d(r) > 1
fort <tandt=1,2,...,T; (5b)

d(t),z;(t) € {0,1} fori <tand t =1,2,...,T, (5¢)

where the first item c,d(t) in Eq. (Sa) is the ACK cost at slot
t, the second item ), , 2;(t) in Eq. (5a) is the holding cost

at slot £. Constraint (5b) states that for packet ¢ at slot ¢, either
this packet is not acked (i.e., z;(¢) = 1) or an ACK was made
since its arrival (i.e., s(7)d(7) = 1 for some i < 7 < t). While
Problem (5) is an integer linear problem, we demonstrate its
equivalence to Problem (3) in the following.

Lemma 1. Problem (5) is equivalent to Problem (3).

Proof sketch. We can show that: (i) any feasible solution
to Problem (3) can be converted to a feasible solution to
Problem (5), and the total costs of these two solutions are
the same; (ii) any feasible solution to Problem (5) can be
converted to a feasible solution to Problem (3), and the total
cost of the converted solution to Problem (3) is no greater than
the total cost of the solution to Problem (5). This implies that
any optimal solution to Problem (3) is also an optimal solution
to Problem (5), and vice versa. Therefore, these two problems
are equivalent [23, Sec. 4.1.3].
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To obtain a linear program of the integer Problem (5), we
relax the integer requirement to real numbers:

T t
min c-d(t) + z;i(t (6a)
d(t),zi(t) Z ( ( ) 2:21 ( )>
st ozi(t) + Z )>1
forzgtandt—LQ,...,T; (6b)
d(t),zi(t) >0fori<tand t =1,2,...,T, (6¢c)

which is referred to as the primal problem. The corresponding
dual problem of Problem (6) is as follows:

>

M“

max yi(t (7a)
vl TS
t T
st s> Y wi(r)<cfort=1,2,....T; (Tb)
=1 7=t
yi(t) €[0,1) fori <tandt=1,2,...,7, (7c)

which has a dual variables y;(t) for packet ¢ and time t > 1.

B. Primal-dual Online Algorithm Description and Analysis

To solve the primal-dual Problems (6) and (7), we develop
the Primal-dual-based Online Algorithm (PDOA) and present
it in Algorithm 1. The input is the channel state pattern s
(revealed in an online manner), and the outputs are the primal
variables d(t) and z;(t), and the dual variable y;(¢). Two
auxiliary variables L and M are also introduced: L denotes
the time when the latest ACK was made, and M denotes the
ACK marker (PDOA should make an ACK when M > 1).

PDOA is a threshold-based algorithm. Assuming that the
latest ACK was made at slot L, when the accumulated holding
costs since slot L + 1 is no smaller than the ACK cost ¢ (i.e.,
M > 1), PDOA will make an ACK at the next ON slot L.
Here, we call the interval [L + 1, L] an ACK interval. Note
that PDOA updates the primal variables and dual variables
only for the packets that are not acked in the current ACK
interval [L 4 1, L']. More specifically, consider packet 4 that
has not been acked by the current slot ¢ € [L + 1,L']: (i)
for the primal variable z;(t), if the threshold is not achieved
(M < 1) or the channel is OFF at slot ¢, PDOA will update
z;(t) to be 1 (in Line 4 or Line 15, respectively) since packet i
is not acked by slot ¢; (ii) for the dual variable y; (t), if packet
1 is not the last packet in the current ACK interval, PDOA will
update y;(t) to be 1 to maximize the dual objective function;
otherwise, PDOA will update y;(t) to ¢ — ¢ M to ensure that
when the threshold is achieved (M > 1), the sum of all the
dual variables in the current ACK interval is exactly c.

In addition, at the end of slot ¢ (i.e., Lines 19-27), if the
channel is ON at slot ¢, PDOA will skip slot ¢ and go to slot
t+ 1. Otherwise, assuming that the most recent ON slot is slot
tt (¢t € [L, 1)), then the channels are OFF during [tT+1,¢]. To
maximize the dual objective function, PDOA updates the dual
variables of packet ¢’ +1 to packet ¢ to be 1 since the channels
are OFF during [t! + 1,#] and the updating of their dual

Algorithm 1: Primal-dual-based Online Algorithm
(PDOA)
Input : ¢, s (revealed in an online manner)
Output: d(t), z;(t), yi(t)
Init.: d(t), z;(¢),y:(¢), L, M < 0 for all ¢ and ¢
1 fort=1to T do

/* Iterate all the packets arriving
since the latest ACK time L. */
2 fori=L+1tot do
3 if M <1 then /* Not ready to ACK x/
4 zi(t) + 1,
5 M+ M+1/c
6 yi(t) < min{l,c—c- M};
7 end
8 if M > 1 then /* Ready to ACK =*/
9 if s(t) =1 then /* ON channel =/
10 d(t) + 1;
11 M «+ 0;
12 L+t
13 break and go to the next slot (i.e., t + 1);
14 else /+ OFF channel x/
15 | zi(t) « 1
16 end
17 end
18 end
/* At the end of slot t, update dual
variable y;(t) with s(i) =0 as: */
19 for : =t decrease to L +1 do
20 if s(i) = 0 then
21 if y;(t) = 0 then
2 | wi(t) < 1
23 end
24 else
25 ‘ break and go to the next slot;
26 end
27 end
28 end

variables does not violate constraint (7b) (see an illustration in
Fig. 1(b)). Note that there may be some OFF channels before
slot ¢T, but PDOA does not update their dual variables to avoid
the violation of constraint (7b). For example, assuming that
slot ' (' < tT) is an OFF channel and we let yu () = 1.
Letting y(t) = 1 has no effect on the constraint (7b) at
slot ' since we always have s(t )El ST () =0,
but doing this does 1mpact the constraint (7b) at slot ¢! (i.e.,

increasing s(t") Zl 1 Z _4+ ¥i(T) by 1 because y, (t) is a
part of s(tT)Zi:1 S iwi(r) as # <t and ¢ < 1),
possibly making constraint (7b) at slot ¢! violated.

Theorem 1. PDOA is 3-competitive.

Proof sketch. We first show that given any channel state
s, PDOA produces a feasible solution to primal Problem (6)
and dual Problem (7). Then, we show that in any k-th ACK
interval, the ratio between the primal objective value and the
dual objective value (denoted by P(k) and D(k), respectively)
is at most 3, i.e., P(k)/D(k) < 3. This implies that the ratio
between the total primal objective value (denoted by P) and
the total dual objective value (denoted by D) is also at most 3,
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£ z;(t) yi(®)
Lie+17] i1
1 1
111 111
1111 (1)1
11111 1]1]0/|0
11|11 ]1 111(1]|1]|0
11111111 1(1)1|1(|1]0
tk+1-> 1111|1111 t tk+1-> 1111 |1|1]0 t
T ——— ¥ T 7
te+1 OFF  tg41 t+1 OFF  tg41

(a) Primal variables z;(t) updates. (b) Dual variables y; (t) updates.

Fig. 1. The updates of primal variables z; (¢) and dual variables y; (¢) in the k-
th ACK interval [t;,+1, t1], where channels are OFF during [t;,+5, t+7].
The x-axis represents time and the y-axis represents the packet id. Two ACKs
are made at the ON slot ¢ and the ON slot ¢z 1, where the ACK cost
¢ = 18. The primal variables z;(¢) and dual variables y; (¢) are updated from
slot ¢, 41 to slot ¢541; and in slot ¢, packets are updated from packet ¢; + 1
to packet ¢. The red bold italic 1 denotes when the ACK marker equals or is
larger than 1. In Fig. 1(a), the grey areas denote the updates due to Line 15;
In Fig. 1(b), the grey areas denote the updates due to Lines 19-27.

i.e., P/D < 3. By the weak duality, PDOA is 3-competitive.

Remark 1. In [6], the authors also propose a primal-dual-
based online algorithm and show that their algorithm achieves
a CR of e/(e — 1). However, this CR is achieved only in an
(unrealistic) asymptotic setting (i.e., when the transmission
cost ¢ goes to infinity but the time horizon T is finite).
Specifically, in their algorithm, to maximize the dual objective
function, at the end of the last slot T, they update certain
dual variables y;(t) that arrived at the OFF slot to be 1. In
their analysis (the proof of their Theorem 7), they show that
because of those dual variables updates at the end of slot T,
the primal objective value satisfies P < (1+1/((1 + 1/¢)l) —
1)) - D+ (T(T + 1)/2) - (D/c). When ¢ goes to infinity,
their CR becomes P/D < e/(e — 1) as (T(T + 1)/2)/c
goes to 0 since T' is finite. However, the optimization problem
becomes trivial in this setting since an optimal algorithm is
simply not to transmit at all given that the transmission cost
c can significantly exceed the total staleness cost (at most
(T(T + 1)/2)). Furthermore, when c is finite, their CR is a
quadratic function of the time horizon T, which can be very
large when T is large. Instead, our analysis holds for any
T and c. In our algorithm, rather than updating these dual
variables y;(t) at the end of slot T, we directly update them
only in the current ACK interval (i.e., Lines 19-27), ensuring
that the dual constraint (7b) is satisfied and the dual objective
function is as large as possible. This enables us to focus on
the analysis of P(k)/D(k) in the current ACK interval and
show that P(k)/D(k) < 3 for any k-th ACK interval, which
implies that PDOA is 3-competitive.

V. LEARNING-AUGMENTED ONLINE ALGORITHM

Online algorithms are known for their robustness against
worst-case scenarios, but they can be overly conservative and
may have a poor average performance in typical scenarios.
In contrast, ML algorithms leverage historical data to train
models that excel in average cases. However, they typically
lack worst-case performance guarantees when facing distribu-
tion shifts or outliers. To attain the best of both worlds, we

design a learning-augmented online algorithm that achieves
both consistency and robustness.

A. Machine Learning Predictions

We consider the case where an ML algorithm provides a
prediction P £ {py,pa,...,p,} that represents the times to
transmit an ACK for the destination (i.e., the prediction P
makes a total of n ACKs and sends the i-th ACK at slot p;).
The prediction P is unaware of the channel state pattern s and
can be provided either in full in the beginning (i.e., ¢ = 0) or
be provided one-by-one in each slot. Furthermore, when the
prediction P decides to send an ACK at an OFF slot, we will
simply ignore the decision for this particular slot.

Provided with the prediction P, we specify a trust parameter
A € (0, 1] to reflect our confidence in the prediction: a smaller
A means higher confidence. The learning-augmented online
algorithm takes a prediction P, a trust parameter A, and a
channel state pattern s (revealed in an online manner) as
inputs, and outputs a solution with a cost of C(s,P,\). A
learning-augmented algorithm is said S(\)-robust (B(A) > 1)
and y(\)-consistent (y(A) > 1) if its cost satisfies

C(s,P,A) <min{B(\) - OPT(s),y(\) - C(s,P)}, (8)

where OPT'(s) and C(s,P) is the cost of the optimal offline
algorithm and the cost of purely following the prediction P
under the channel state pattern s, respectively.

We aim to design a learning-augmented online algorithm
for primal Problem (6) that exhibits two desired proper-
ties (i) consistency: when the ML prediction P is accurate
(C(s,P) = OPT(s)) and we trust it, our learning-augmented
online algorithm should perform closely to the optimal offline
algorithm (i.e., y(A) — 1 as A\ — 0); and (ii) robustness:
even if the ML prediction P is inaccurate, our learning-
augmented online algorithm still retains a worst-case guarantee
(i.e., C(s,P,A\) < B(N) - OPT(s) for any prediction P).

B. Learning-augmented Online Algorithm Description

We present our Learning-augmented Primal-dual-based On-
line Algorithm (LAPDOA) in Algorithm 2. LAPDOA behaves
similarly to PDOA, but the updates of primal variables and
dual variables incorporate the ML prediction P.

In LAPDOA, two additional auxiliary variables M’ and 3/
are used to denote the increment of the ACK marker M and
the increment of the dual variables y;(¢) in each iteration of
update, respectively. Assuming that the current time is ¢, let
a(t) denote the next time when the prediction P sends an ACK
(.e., a(t) £ min{p; : p; >t} and a(t) = oo if t > p,,). For
the updates of primal and dual variables of an unacked packet
1 at slot ¢, based on the relationship between the current time ¢
and «(7) (which is also the time when the prediction P makes
an ACK for packet ¢ because packet ¢ arrives at slot ¢), we
classify them into three types:

o Big updates: those updates make M’ + 1/A¢, y' + 1,

and z;(t) « 1. The big updates are made when LAPDOA
is behind the ACK scheduled by the prediction P (i.e.,
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Algorithm 2: Learning-augmented Primal-dual-based
Online Algorithm (LAPDOA)

Input
Output: d(t), z;(t), yi(t)
Init.: d(t), z;(¢),yi(t), L, M « 0 for all ¢ and ¢

: ¢, P, A, s (revealed in an online manner)

1 fort=1to T do

/+ Iterate all the packets arriving
since the most recent ACK time L. */
2 fori=L+1tot do
3 if M <1 then /* Not ready to ACK =/
4 if t > «(i) then
/* Big update: prediction
already acked packet i */
5 M+ 1/xc, y' + 1;
6 else
/+ Small update: prediction
did not ack packet i yet */
7 M N,y + X
8 end
9 zi(t) + 1,
10 M+~ M+ M';
1 yi(t) < ¥
12 end
13 if M > 1 then /* Ready to ACK x/
14 if s(t) =1 then /* ON channel »*/
15 d(t) «+ 1;
16 M + 0;
17 L+t
18 break and go to the next slot (i.e., t + 1);
19 else /* OFF channel */
20 if z;(t) # 1 then
/* Zero update %/
21 zi(t) + 1,
22 end
23 end
24 end
25 end
/+ At the end of slot t, update dual
variable y;(t) with s(i) =0 as: */
26 for i =t decrease to L + 1 do
27 if s(i) = 0 then
28 if y;(t) = 0 then
29 | wi(t) « 1
30 end
31 else
32 ‘ break and go to the next slot;
33 end
34 end
35 end
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t > «(i)), and it tries to catch up the prediction P by
making a big increase in the ACK marker.

Small updates: those updates make M’ < \/e, ' + A,
and z;(t) < 1. The small updates are made when LAP-
DOA is ahead of the ACK scheduled by the prediction
P (.e., t < a(i)), and LAPDOA tries to slow down its
ACK rate by making a small increase in the ACK marker.
Zero updates: those updates make M’ < 0, i’ < 0, and
z;(t) < 1. The zero updates are made when LAPDOA
is supposed to ACK at some slot ¢’ but finds that slot ¢’
is OFF, and it has to delay its ACK to the next ON slot

and pay the holding cost (i.e., z;(t) = 1) along the way.

C. Learning-augmented Online Algorithm Analysis

In this subsection, we focus on the consistency and ro-
bustness analysis of LAPDOA with A € (0, 1]. The special
cases of LAPDOA with A = 0 and A\ = 1 correspond to
the cases that LAPDOA follows the prediction P purely and
PDOA, respectively. It is noteworthy that by choosing different
values of A\, LAPDOA exhibits a crucial trade-off between
consistency and robustness.

Theorem 2. For any channel state pattern s, any prediction
P, any parameter \ € (0, 1], and any ACK cost ¢, LAPDOA
outputs an almost feasible solution (within a factor of ¢/(c+
1)) with a cost of: when A € (0,1/c],

C(s,P,\) <min{(3/A) - ((¢c+1)/¢c) - OPT(s),
(14+X)Cu(s,P)+ Ca(s,P)}, )

and when A € (1/¢,1],

C(s, P, A) <min{(3/A) - ((c+1)/c)- OPT(s),
(A +2)Cu(s,P)+ (1/A+2)-[Ac] - Ca(s,P)/c}, (10)

where Cz(s,P) and Cg (s, P) denote the total ACK costs and
total holding costs of prediction P under s, respectively.

Next, we show that LAPDOA has the robustness guarantee
in Lemma 2 and the consistency guarantee in Lemma 3.
Combining Lemmas 2 and 3, we can conclude Theorem 2.

Lemma 2. (Robustness) For any ON/OFF input instance s,
any prediction P, any parameter A € (0,1], and any ACK
cost ¢, LAPDOA outputs a solution which has a cost of

C(s, P, A) < (3/A) - ((c+1)/c)OPT(s). (11)

Proof sketch. We first show that LAPDOA produces a
feasible primal solution and an almost feasible dual solution
(with a factor of ¢/(c+ 1)). Then, we show that in any k-th
ACK interval, LAPDOA achieves P(k)/D(k) < 3/A. This
implies that LAPDOA also achieves P/D < 3/\ on the
entire instance. Finally, by scaling down all dual variables
y;(t) generated by LAPDOA by a factor of ¢/(c + 1), we
obtain a feasible dual solution with a dual objective value
of (¢/(c+1)) - D. By the weak duality, we have P/OPT <

P/((¢/(c+1))-D) = (P/D)-((c+1)/c) < (3/A)-((c+1)/c).
Lemma 3. (Consistency) For any channel state pattern s, any

prediction P, any parameter \ € (0,1], and any ACK cost c,
LAPDOA outputs a solution with a cost of: when X € (0,1/¢],

C(s,P,\) < (1+N)Cx(s,P)+ Cyuls,P), (12)
and when X € (1/c,1],
C(s, P, ) <
A+2)Cu(s,P)+ (1/A+2)-[Ac] - Ca(s,P)/c, (13)

where C4(s, P) and Cy (s, P) denote the total ACK cost and
total holding cost of prediction P under s, respectively.
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Fig. 2. Performance comparison of online algorithms under different datasets.

Proof sketch. In general, LAPDOA generates three types
of updates: big updates, small updates, and zero updates. Our
idea is to bound the total cost of each type of update by the
cost of the algorithm that purely follows the prediction. In
the case of A € (0,1/c|, we show that the total number of
big updates is C (s, P)/c, and each big update increases the
primal objective value by c, so the total cost of big updates in
LAPDOA is C4(s, P). In addition, the total number of small
updates and zero updates can be shown to be bounded by
Cp (s, P), and each small update or zero update incurs a cost
at most 1+ ), thus the total cost of small and zero updates in
LAPDOA is at most (1 + A\)Cg(s,P). In summary, the total
cost of LAPDOA in the case of A € (0,1/c] is bounded by
(1+X)Cx(s,P)+((c+1)/c)Ca(s,P). A similar bound can
be also obtained for the case of A € (1/¢,1].

Remark 2. When we trust the ML prediction (i.e., A — 0) and
the ML prediction is accurate at the same time (C(s, P) =
OPT(s)), our learning-augmented algorithm also performs
nearly to the optimal offline algorithm, achieving consistency.

Remark 3. With any A € (0,1], the CR of LAPDOA is at
most (3/\) - ((¢ + 1)/c), regardless of the prediction quality.
This indicates that our learning-augmented algorithm has the
worst-case performance guarantees, achieving robustness.

VI. NUMERICAL RESULTS

In this section, we perform simulations using both syn-
thetic data and real trace data to show that our online algo-
rithm PDOA outperforms the State-of-the-Art online algorithm
and that our learning-augmented online algorithm LAPDOA
achieves consistency and robustness.

A. Online Algorithm

In Fig. 2, we compare PDOA with the State-of-the-Art
online algorithm proposed in [6] (which is referred to as
“PD” in Fig. 2). Two datasets are considered: (i) The synthetic
dataset in Fig. 2(a). We adopt the same settings as in [6], where
the channel state is a Bernoulli process with varying channel
ON probability and the transmission cost ¢ = 15; (ii) The
real trace dataset [24] in Fig. 2(b). This dataset contains the
channel measurement (i.e., reference signal received quality
(RSRQ)) for commercial mmWave 5G services in downtown

Transmission cost

Pattern sequence percentage

(b) Real trace dataset

Fig. 3. Performance comparison of learning-augmented algo-
rithms under different trust parameters using synthetic dataset.

Minneapolis. Researchers conducted walking tests in a 1300m
loop area using an Android smartphone with a 5G monitoring
tool to collect RSRQ data. We set a threshold (-13dB) to
determine if the channel is ON or OFF based on whether
RSRQ surpasses it or not. Here we vary the transmission cost
from 10 to 100. In both datasets, the performance metrics are
the empirical CR and the average cost ratio (i.e., the worst cost
ratio and the average cost ratio under the online algorithm and
the optimal offline algorithm over multiple simulation runs).

Fig. 2 illustrates that our online algorithm PDOA consis-
tently outperforms the State-of-the-Art online algorithm PD in
both datasets, i.e., PDOA achieves a lower empirical CR and
a lower average cost ratio compared to PD. In addition, the
empirical CR of PDOA outperforms the theoretical analysis
(with a CR of 3), validating our theoretical results.

B. Learning-augmented Online Algorithm

In this subsection, we study the performance of LAPDOA
under different prediction qualities using synthetic datasets.
We first explain how to generate ML predictions based on the
training dataset. Then, we shift the distribution of the testing
dataset to deviate from the training dataset and showcase the
performance of LAPDOA on the testing datasets.

In Fig. 2(a), PDOA demonstrates strong performance under
the Bernoulli process. However, a specific training dataset
reveals its suboptimal performance. In this training dataset,
the transmission cost ¢ = 16, and the channel state sequence
is constituted by an independently repeating pattern [ X x OFF,
Y xON], where X ~ B(13,0.9) and Y ~ B(6,0.9) (B(n,p)
represents the binomial distribution with parameters n and
p). Under this pattern, in most cases, PDOA only makes one
transmission at the first ON slot of these Y ON slots (i.e., after
a long consecutive X OFF slots, the ACK marker M will be
larger than 1, and PDOA will transmit at the first ON slot.
However, after this transmission, during the short remaining
(Y —1) ON slots, the ACK marker M is unable to be increased
to 1). This results in a high Aol increase for these next X OFF
slots. For the optimal offline algorithm, to have a lower Aol
increase during OFF slots, it transmits at both the first and the
last ON slot among those Y ON slots. To generate a sequence
of channel states of the required length, we repeat the pattern
enough times independently and concatenate them together.
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Recall that LAPDOA incorporates an ML prediction P that
provides the transmission decision at each slot. To generate
such an ML prediction P, we train an Long Short-term
Memory (LSTM) network, which has three LSTM layers (each
layer has 20 hidden states) followed by one fully connected
layer. The input of our LSTM network is the current channel
state, and the output is the transmission probability at that
slot. For training, we manually create 300 sequences, each
with a length of 100 slots consisting of repeating patterns in-
troduced earlier (we call these constructed sequences “pattern
sequences”). Optimal offline transmission decisions for the
training datasets are obtained through dynamic programming.
We use the mean squared error between the LSTM network
output and the optimal offline algorithm output as the loss
function and employ the Adam optimizer to train the weights.
In the end, to convert the output of our LSTM network (i.e.,
transmission probability) to the real transmission decisions, a
threshold (e.g., 0.5) is set, and transmission occurs when the
output of the LSTM network exceeds the threshold.

In Fig. 3, we illustrate LAPDOA’s performance under
varying prediction qualities, influenced by a distribution shift
between the training and testing datasets. The training dataset
only contains the sequences that are fully composed of the
pattern (i.e., the percentage of the pattern sequences is 100%).
However, in the testing dataset, we reduce the percentage of
the pattern sequence by replacing some pattern sequences with
a Bernoulli process sequence of a length of 100 with an ON
probability of 0.32 (close to the pattern ON probability). While
the training dataset and the testing dataset share the same
channel ON probability, they exhibit variations in distribution.
The magnitude of this shift amplifies as the percentage of the
pattern sequence decreases. As we can observe in Fig. 3, when
the distribution shift is small (100% or 90% pattern sequence
percentage), our trained ML algorithm (“Pure_ML” in the
figure) outperforms PDOA. Learning-augmented algorithms
trusting the prediction (A € {0.1,0.3}) closely match the
ML algorithm’s performance. Conversely, with a substantial
distribution shift (0 or 10% pattern sequence percentage),
the ML algorithm performs poorly while PDOA performs
well. In this case, learning-augmented algorithms not trusting
the prediction (A € {0.7,0.9}) closely resemble PDOA.
Furthermore, with different values of A, LAPDOA provides
different tradeoff curves for consistency and robustness.

VII. CONCLUSION

In this paper, we studied the minimization of data freshness
and transmission costs under a time-varying wireless channel.
After reformulating our original problem to a TCP ACK prob-
lem, we developed a 3-competitive primal-dual-based online
algorithm. Realizing the pros and cons of online algorithms
and ML algorithms, we designed a learning-augmented on-
line algorithm that takes advantage of both approaches and
achieves consistency and robustness. Finally, simulation results
validate the superiority of our online algorithm and highlight
the consistency and robustness achieved by our learning-
augmented algorithm. For future work, one interesting direc-

tion would be to consider how to adaptively select the trust
parameter A to achieve the best performance.
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