ITUJournal

Future and evolving
technologies

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 2, June 2025

ARTICLE

Incentive mechanism design for
semi-asynchronous blockchain-based
federated edge learning

Xuanzhang Liu', Jiyao Liu’, Xinliang Wei?, Yu Wang'

' Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA, 2 Shenzhen
Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China

Corresponding author: Xuanzhang Liu, xzliu@temple.edu

Federated learning at edge systems not only mitigates privacy concerns by keeping data
localized but also leverages edge computing resources to enable real-time Al inference and
decision-making. In a blockchain-based federated learning framework over edge clouds,
edge servers as clients can contribute private data or computing resources to the overall
training or mining task for secure model aggregation. To overcome the impractical
assumption that edge servers will voluntarily join training or mining, it is crucial to design an
incentive mechanism that motivates edge servers to achieve optimal training and mining
outcomes. In this paper, we investigate the incentive mechanism design for a
semi-asynchronous blockchain-based federated edge learning system. We model the resource
pricing mechanism among edge servers and task publishers as a Stackelberg game and prove
the existence and uniqueness of a Nash equilibrium in such a game. We then propose an
iterative algorithm based on the Alternating Direction Method of Multipliers (ADMM) to
achieve the optimal strategies for each participating edge server. Finally, our simulation
results verify the convergence and efficiency of our proposed scheme.

Keywords: Blockchain, edge Al, edge computing, federated learning, incentive mechanism,
semi-asynchronous, Stackelberg game

1. INTRODUCTION

Federated Learning (FL) was first proposed by Google [1] to enhance user data privacy
by enabling decentralized training of machine learning models directly on local devices,
reducing the need to share raw data. This paradigm is particularly crucial for supporting
emerging Al applications that rely on vast amounts of sensitive and distributed data,
such as personalized healthcare, smart cities, and autonomous systems. The integration
of FL into edge computing environments, where computation is performed closer to
data sources, such as edge servers and IoT devices, offers a promising solution to further
enhance privacy, efficiency, and scalability. Unlike traditional cloud-based Al models,
FL at edge systems (i.e., federated edge learning [2, 3, 4, 5]) not only mitigates privacy
concerns by keeping data localized but also leverages edge computing resources to
enable real-time Al inference/decision-making and scalable Al-driven applications [6, 7],
such as real-time federated analytics, intelligent transportation systems, and industrial
automation.

Despite these advantages, deploying FL in edge environments presents several key
challenges [8]. Traditional FL architectures rely on a centralized parameter server (often
located in a remote cloud platform) to aggregate model updates from clients, leading to
two significant limitations: (1) high communication costs and congestion at the parameter
server, especially in large-scale FL deployments where frequent model transmissions from
clients can saturate limited and heterogeneous network resources, increasing latency and
energy consumption [9]; (2) security and transparency concerns, as model aggregation
at a centralized and potentially untrusted server creates vulnerabilities to adversarial
attacks, model poisoning, and privacy breaches. Furthermore, self-interested clients may

© International Telecommunication Union, 2025
Some rights reserved. @ @ @ ®

This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.
More information regarding the license and suggested citation, additional permissions and disclaimers is available at:

https://www.itu.int/en/journal/j-fet/Pages/default.aspx

https://creativecommons.org/licenses/by-nc-nd/3.0/igo/
https://www.itu.int/en/journal/j-fet/Pages/default.aspx

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 2, June 2025

2
Cloud: g

Task Publisher

~)
S (Train local model
N
@~
N
\

\

\
o\
)‘\‘ @ Generate block

Figure 1 - The overall architecture of blockchain-based federated edge
learning, where edge servers can collaboratively train the AI model
and mine the block for committing the aggregated model.

exhibit strategic behavior, such as free-riding or mali-
cious updates, further degrading model performance and
trustworthiness. Given these challenges, a more efficient
and robust federated learning approach tailored for edge
computing is essential to address the inherent limitations
of centralized FL, to avoid the single point of failure,
communication bottleneck, and malicious attacks.

Blockchain has been integrated into the federated edge
learning system to improve its security and transparency
[10, 11, 12] in recent years. Specifically, the usage of a
decentralized blockchain as the aggregator allows the
elimination of a central server in FL training [10]. The
local updates are recorded as transactions and appended
to the block. After the consensus process, a shared ledger
of ordered links of blocks is used to aggregate the global
model and distribute global updates to clients for direct
computation at devices. Thus, every node can easily
trace the origin where a model parameter is modified
or updated during the training process through trans-
action logs, which avoids the malfunction or malicious
behavior of clients. Blockchain not only mitigates the risk
of single-point failures but also ensures high trust and
transparency for the FL system. Fig. 1 shows a general
architecture of a blockchain-based federated edge learn-
ing [13, 14]. It generally includes a group of edge servers
(clients) in a connected blockchain network. Each edge
server can collect the training data for the training model
and also perform mining to maintain the blockchain net-
work. The model owner sits in the remote cloud and
announces/collects the global model from the blockchain
network.

Since the performance of this blockchain-based FL heavily
depends on participation from clients [15] for contribut-
ing data, training local model, and mining, incentive
mechanism design becomes critical to stimulate these
participants to provide private data or computing re-
sources for the overall FL training/mining task. In this

paper, we mainly investigate the incentive mechanism
design for a blockchain-based federated edge learning
system by motivating the task publisher and edge servers
to work together to achieve efficient training and mining
processes.

Besides, according to the aggregation protocol adopted
by blockchain-based FL systems, we can classify them
into two categories, synchronous update and asynchronous
update. For example, Wang et al. [13] use the synchronous
update, where the aggregator has to wait for receiving
updates from all clients to perform the aggregation. This
may cause the straggler issue, where the straggler’s local
update may experience long delays or fail to upload to
the aggregator. In contrast, Feng et al. [14] propose an
asynchronous FL framework under the Proof-of-Work
(PoW)-based blockchain system. However, due to fre-
quent mining work (since every local update requires
consensus by all nodes), the consensus process needs
massive peer-to-peer communications among all partici-
pating nodes which causes long latency for the overall
learning time. In this paper, we instead consider a semi-
asynchronous update protocol [16], which can balance the
learning convergence speed and the frequency of the
consensus process.

Our major contributions of this paper can be summarized
as follows.

e We model and analyze the interaction between edge
servers (clients) and a task publisher as a Stackelberg
game in a blockchain-based semi-asynchronous FL
over edge clouds. We then prove the existence and
uniqueness of Nash Equilibrium (NE) in the formu-
lated game so that no one has the motivation to change
the optimal strategies derived.

o To efficiently obtain such optimal strategies, we pro-
pose an iterative algorithm based on the Alternating
Direction Method of Multipliers (ADMM) [17] that
jointly considers the high-dimensional strategy space
and distributed manner.

e We conduct simulations to evaluate the performance of
the proposed method. Results show that our iterative
algorithm converges to the optimal solution quickly
and achieve better utilities under different scenarios
compared with several baseline methods.

The rest of this work is organized as follows. In Section 2,
we review the related research regarding blockchain-
based FL. We then present the system model of blockchain-
based FL architecture in Section 3 and the utility model
of each entity in Section 4. In Section 5, we construct
a Stackelberg game to analyze the equilibrium among
edge servers and the cloud. In Section 6, we propose an
iterative algorithm to solve the formulated game. Sim-
ulation results and performance analysis are presented
in Section 7, followed by our conclusion in Section 8. A
preliminary version of this paper appears as [18].

120 ©lnternational Telecommunication Union, 2025

Liu et al.: Incentive mechanism design for semi-asynchronous blockchain-based federated edge learning

2. RELATED WORK

In this section, we first review the existing research
on blockchain-based federated learning, followed by a
discussion of current solutions for incentive mechanism
design in blockchain-based FL systems.

2.1 Blockchain-based FL

While blockchain-based FL holds promise in enhancing
the security and transparency of FL training, it still faces
several performance challenges [8, 11, 12, 19], e.g. pro-
longed latency due to mining, challenging resource man-
agement, learning performance/efficiency trade-offs, and
security/privacy concerns from curious miners/trainers.
Therefore, recently, there have been several efforts to
design various blockchain-based FL structures to meet
different requirements.

Feng et. al [14] have suggested a Blockchain-based Fed-
erated Learning (BAFL) system to engender efficient
and secure FL. BAFL employs an asynchronous strat-
egy to hasten the convergence of the global model. The
blockchain is used to prevent single-point failures and
ensure the security of FL. The authors also utilized an
entropy-based participant evaluation, optimal control of
the block generation rate, and Pareto optimization strat-
egy to trade-off between device energy consumption and
learning delay, thus enhancing learning efficiency. In a
similar vein, Pokhrel and Choi [20] propose an enhanced
FL with a blockchain framework, facilitating efficient
communication among autonomous vehicles. The use of
blockchain mitigates centralized malfunctioning issues
and augments the intelligent vehicular network’s capa-
bility by attracting untrustworthy vehicles with a reward
mechanism to improve FL performance. By analyzing
the latency of FL training and model updating at a vehicle
with its associated miner, they design both offline and
online algorithms to enhance the overall model learning
performance. Lu et. al [21] also propose a blockchain-
based FL scheme to enhance communication security and
user privacy in digital twin edge networks. Since their
scenario is latency-sensitive, the blockchain operates on
a Delegated Proof of Stake (DPoS) consensus mechanism,
where the verifiers are selected based on their computing
contribution to the global model. A multi-agent deep
reinforcement learning algorithm is further proposed
to solve a latency optimization problem with respect to
learning accuracy conditions and bandwidth allocation
constraints.

Huang et. al [22] investigate the imbalanced data dis-
tribution and resource allocations of IoT devices under
the multilayer blockchain-enabled Hierarchical FL (HFL)
network. Through analyzing the bottleneck of model
accuracy, the authors have derived the upper bound of

model error, which can be represented by the total data
distance (composed of device association and local data
distribution). Therefore, they design a distance-aware
HFL to jointly optimize the device association and re-
source allocation to improve the model accuracy and
minimize the learning latency. Fan et. al [23] design a
hybrid blockchain-based resource trading system for FL
in edge computing. Acknowledging the high overhead in
cross-blockchain data synchronization within traditional
blockchain networks, their system enables requesters and
edges to engage with public and consortium blockchains
separately, achieving higher credibility and better system
performance. Within the consortium blockchain part,
data quality-driven reverse auctions are introduced to
facilitate automatic, autonomous, and auditable auctions
among edge nodes. The payment channel is integrated
into the public blockchain using the smart contract to en-
able credible, fast, low-cost, and high-frequency payment
transactions among requesters and edge nodes.

Besides, FL can also facilitate the blockchain. Qu et. al
[24] propose a new consensus mechanism called Proof-
of-Federated-Learning (PoFL) to reduce the amounts of
energy wasted by Proof-of-Work (PoW). To protect the
privacy of training data, a reverse game-based data trad-
ing mechanism is proposed, where a trainer maximizes
its utility only when it trains the model without any data
leakage. A privacy-preserving model verification mech-
anism, which employs homomorphic encryption and
secure two-party computation in label prediction and
comparison, respectively, is also designed to verify the
accuracy of a trained model while preserving the privacy
of the task requester’s test data, as well as avoiding the
submitted model from being plagiarized by others.

In this paper, we consider a semi-asynchronous blockchain-
based FL in a cloud-edge system, which is different from
the works above.

2.2 Incentive mechanism design

The performance of FL relies on the contributions (both
training data and computational resources) from its par-
ticipants; therefore, it is necessary to design a proper
incentive mechanism to motivate their participation [15].
This is also true for blockchain-based FL systems. With-
out sufficient incentives, clients may not be willing to
join the training or perform the mining in blockchain,
thus hurting the scalability of blockchain-based FL. On
the other hand, since blockchain provides the features of
robust and tamper-proof to FL, it has been considered as
a promising method to facilitate transparent economic
mechanism designs, so as to boost FL training.

Yuan et. al [25] propose a blockchain-based platform
called CoopEdge which addresses the incentive and trust

©lnternational Telecommunication Union, 2025 121

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 2, June 2025

issues systematically in a decentralized manner. CoopE-
dge rewards edge servers that participate in cooperative
computing with credits so that they can use the credits
to retrieve help later on. Edge servers could not only
obtain credits when they win a peer-offloaded task and
complete it on time as a task executor but also receive a
bookkeeping reward when they successfully commit a
task transaction onto the blockchain as a task recorder.
Bao et. al [26] adopt the blockchain to provide auditable
FL with trust and incentive attributes. Their FL system
will drop the incorrect computation result and punish the
generator by adopting a reward for misbehavior detector
and compensation for affected c lients. To reduce the
time cost of blockchain query, they adopt a double dual
counting bloom filter.

Wang et. al [13] also investigate the issue of incentive
mechanism design for the hierarchical FL. Considering
the resource heterogeneity of clients and edge servers
with multidimensional individual properties under in-
complete information, a game-based incentive mecha-
nism is proposed to model the interaction between clients,
edge servers, and the cloud. In addition, to address the
challenge of unreliable participants, the authors intro-
duce blockchain technology to ensure the privacy of
local updates and provide a credible and transparent
environment.

Although much work has been devoted to designing in-
centive mechanisms for blockchain-based FL, they mainly
focus on motivating FL without considering the incen-
tives for the blockchain consensus process. In addition,
none of the previous work on incentive mechanisms con-
siders their blockchain-based FL in a semi-asynchronous
manner. Instead, in this paper, we consider a price-based
incentive mechanism that motivates the edge servers
to join in both the learning process and the consensus
process under the semi-asynchronous blockchain-based
federated edge learning.

3. SYSTEM MODEL

The cloud-client architecture for our blockchain-based
federated edge learning (as shown in Fig. 1) consists of
two components: the cloud (i.e., the task publisher) and
the clients (i.e., edge servers).

Clients: There is a set of clients C = {c1, ¢y, ...,cn} In the
edge system. Each client ¢; is an individual edge server

that has computing resources and training data that can
be used for training FL tasks. Concurrently, each client
can also join in the mining game since it is responsible
for managing the blockchain system. Hereafter, we use
the terms clients and edge servers interchangeably.

122 ©lnternational Telecommunication Union, 2025

Table 1 - Description of major notations used.

Variable | Description
¢, C jth edge server, set of servers
N number of edge servers (clients)
wgt), w® ith client’s local model, global model
at time ¢
ay, 0() learning rate at ¢, staleness function
c® set of clients whose local models
were received at t
x;, X;, training data size, max training data
size at ¢;
0i, €i, qi data quality, local accuracy,
weighted model quality of client c;
n,cr data quality coefficient, crash proba-
bility
RT expected reward for one local update
T cloud training payment from cloud to all
servers
fi, di CPU frequency, number of CPU cy-
cles for training unit data at ¢;
T number of iterations during local

cm,
Ei Pl E?omm

training in each round

energy consumption for train-
ing/transferring the model at ¢;

size of model parameters
transmission power and rate of c;
unit cost of data collected by ¢;
training/mining utility of server ¢;
mining resources actually used by c;,
max mining resource at ¢;
computing power ratio and winning
probability of mining game at c;
consensus delay per transaction, pro-
cess parameter of mining a block
number of transactions in the block
fixed reward, unit reward rate for
commission reward

unit mining cost at ¢;

revenue budget of server ¢;

weight parameter to balance mining
and training utilities

unit training price paid by the cloud
training gain function of the cloud
satisfaction degree of task publisher
total utility of client ¢; and the cloud
index of inner loop, outer loop
threshold for ending ADMM
scaled dual variables

damping factor

Liu et al.: Incentive mechanism design for semi-asynchronous blockchain-based federated edge learning

Cloud: The role of the cloud is to receive training tasks
from specific task publishers and distribute these tasks to
the clients. The goal for each training task is to generate
a satisfactory model, leveraging the FL training from
selected clients. The cloud fulfills the role of providing
payment to clients as an incentive for participation in
model training. Hereafter, we use the terms cloud and
task publisher interchangeably.

We summarize all notations used in Table 1.

Now we introduce the workflow of task training and
mining of a single FL task of a global model w. Our
system has two phases: negotiation phase and execution
phase.

In the negotiation phase, the interaction between cloud
and clients is formed as a Stackelberg game to determine
the optimal policy for each participant (including de-
ciding both prices and allocated resources). Here, we
assume that all participants in the system are rational
entities, i.e., always aiming to maximize their utilities.
The key part of this phase is how to design the incentive
mechanism such that everyone can reach an equilibrium.

In the execution phase, each participant would perform
the steps shown in Fig. 1 and provide the correspond-
ing rewards or resources to train the model under the
management by blockchain according to the decision
made during the negotiation phase. The execution of FL
training is performed as follows.

(1) Initialization: In each round, the global model is
distributed to each client (Step @ in Fig. 1).

(2) Local training at clients: Upon receiving the global

model w with its timestamp from the cloud, the client
performs a local update based on its local training data

(Step Q).

(3) Mining for generating the block: Once the client fin-
ishes one local update, it writes the model to its own new
block and broadcasts the local model at the blockchain
layer (Step @). When other miners receive the local
model, they verify its accuracy and record it into their
new blocks. After a certain time period, each client runs
a consensus mechanism until it finds the desired nonce
or receives the generated block (Step @). We assume
the latest global model it received was with timestamp
t’, at the moment of ¢ it is about to aggregate a set of
local updates from a group of clients (denoted by C"),
and each local model from a client ¢; € C were with
timestamp ¢;. Then, the weighted global model at ¢ is
aggregated as:

ti
ZC,‘GC(') o (wf))
IC®]

w® —) + ay

, (1)

where [C®| is the number of received local models during

the time period, ay is the learning rate, o (wff")) is the

stale gradient computed by client ¢; [27], e.g., 0 (wl(.t")) =
W fa(t; -).

(4) Aggregation on cloud: After several rounds or a cer-

tain time period, the cloud reads the global model from
the blockchain to generate the final global model (Step ®).

4. STACKELBERG GAME

We represent the FL process as a two-stage Stackelberg
game, which includes a cloud subgame and a client sub-
game. The Stackelberg games have proven extremely
useful in sequentially analyzing interactions among ra-
tional agents [28, 29, 30].

4.1 Stage IlI: Client subgame

Each client should adapt training or mining tasks to fit
their specific budgets and capabilities. This leads to two
categories of utility models.

Training process: When clients with sufficient dataset

receive the FL task, they could choose to train the model
with a data size of x;. Besides, we define the data quality

0; = —n/ log(e;) where €; is the local accuracy of client ¢;
and 7 indicates the data quality coefficient. Let
gi= <%
" Lo 0%

represent the weighted model quality of client ¢; [31].
Owing to the possibility of some local updates not being
added to the global model in semi-asynchronous aggre-
gation, we introduce crash probability cr [16] to reflect
such likelihood that a local update is not committed into
the global model in one round. The expected reward for
one local update is calculated as:

RT = Tetoud((1 = cr) + acr(l —cr)), (2)

where 74 is the training reward provided by the task
publisher. ¢ is the stale rate due to the lagged update.

Besides, each client should incur certain expenses to
collect data and have to consume energy to reach the
predetermined accuracy [32]. Let f; and d; denote the
CPU cycle frequency and the number of CPU cycles for
training unit data of client c;, respectively. We assume the
number of iterations in each round as 7. Consequently,
the energy consumption for training can be depicted as

Efmp = Tdixiff. (3)

©lnternational Telecommunication Union, 2025 123

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 2, June 2025

Similarly, we can also define the energy consumption for
sending the model to the cloud as

Qp{

comm __
E7 = —
Vi

, 4

where Q) is the size of model, p; and v; represent the client
¢i’s transmission power and rate, respectively. Let Cf
denote the cost of unit data collected by the client. Thus,
the utility of training clients is formulated as:

uj = qiR" —E" — E" — Chx;. (5)
The first part of the equation consists of the cloud’s paid
reward, followed by computational, communication, and
data collection expenditures incurred during the training
phase.

Mining process: Given the incentive of receiving mining
rewards for successfully appending a new block, each
client might devote as much computation resource to
win the mining game. As such, the winning probability
of c; by solving the PoW problem depends on the relative
computing power m; compared to the collective comput-
ing power of all participating miners (clients), which can
be formulated as

m;

[-
ZCkEC o3

(6)

After a block is successfully mined, it will be broadcast
across the network immediately to complete the con-
sensus process. Thus, the consensus delay becomes an
influential determinant for winning the mining reward.
Based on [30, 17], we assume that the consensus delay
(including both propagation delay and verification time)
is approximately linear to the number of transactions
n; in the block, which can be expressed as x#n;. In this
context, k is the parameter determined by the network
scale, channel capacity at links, and the average verifi-
cation speed of nodes. Assuming that the block mining
duration follows the Poisson distribution, the probability
of client ¢; winning the mining game is calculated as:

W; = hie_Akni, (7)

where A is the process parameter referring to the com-
plexity of mining a block.

Once the client wins the mining competition, it will gain
the corresponding mining reward which consists of a
fixed reward RM and a commission reward yMn,-, where
yM is the unit reward rate. On the other hand, the total
cost of client ¢; is composed of using its computation
resource. Therefore, the utility of the mining process is
defined as:

uM = (RM +yMn)W; — Kim, (8)

1

where K; is the unit mining cost.

Client subgame: Hence, the objective in this stage is to

maximize the utility of each client by determining the
strategy of x; and m; simultaneously.

max U;
Xi,Mj

s.t. Cfxi + Kym; < B;. (9)
0 S Xi S Xi/
0<m <M.

Here, the utility of client c; is interpreted as:
u=b-uM+uf, (10)

where b is a weight parameter to balance the relative
impact of mining and training utilities. The budget con-
straint for each client ¢; is defined as B;. In addition, each
client has its own data size capacity X; and computing
capacity M;.

4.2 Stage I: Cloud subgame

Unlike the role of clients in our scheme, the cloud exclu-
sively publishes a single training task in each period by
providing a total corresponding reward:

Yeloud = Z‘ 0;x;P > 0. (11)
cieC

Here P denotes the unit price the cloud is willing to pay
for training data. Additionally, the task publisher must
cover the costs associated with committing transactions
to the blockchain.

The gain of the cloud is determined by the performance of
the global model (which is related to the global accuracy).
This relationship can be formulated as a concave function:
[33]

g(Z 0;x;) = 0.5 - In(1 + Z 0:x;). (12)

cieC cieC

Given these groundwork constructions, we can define
the general form of the cloud’s utility per round as:

Uy = 6g(Z 0ix;) — yMn; — Z 0,x;P. (13)
cieC cieC

Here 6 > 0 identifies the satisfaction degree parameter of
the cloud.

Cloud subgame: In this stage, it aims to solve the fol-

lowing problem to maximize the utility of the cloud
upub:

max Upyyp
P (14)
st. P>0.

124 ©lnternational Telecommunication Union, 2025

Liu et al.: Incentive mechanism design for semi-asynchronous blockchain-based federated edge learning

5. EQUILIBRIUM ANALYSIS

In this section, we prove the existence and uniqueness of
Nash Equilibrium (NE) in the formulated game so that no
one has the motivation to change the optimal strategies
derived. The formal definition of NE is as follows.

Definition 1 Let X*, M*, P* denote the optimal strategies of
each entity. The NE is the point that no one has the incentive
to deviate from the current state. We can represent such claims
as follows:

U; (X, M") > U;(X, M), (15)
upub(P*) 2 upub-(P) (16)

In the following section, we will prove the NE in each
stage of the Stackelberg game, first for Stage II (Theorem
1) and then for Stage I (Theorem 2).

Theorem 1 In Stage II, the existence and uniqueness of NE
for clients are guaranteed given the cloud’s reward strategy.

Proor. Relying on Eq. ((9)), we calculate the first-order
and second-order derivatives of utility U; regarding x;
and m; as follows:

% = b(RM + yMp;)e~ e % - K, (17)
2*U; %h;
=b RM M. —Akn,v_l, 18
T A T -
: oa:
% =RTZE w2 -, (19)
2*U; g
L=RT , 20
a6y~ Gy 20
2*U; *U;
= = 21
8ml~8x,- Bx,aml- ()
The explicit-form expressions of g—r];"i, a‘?;z;z, g—Zi, d ;(i?);
are computed as below:
% _ chec,ckici my (22)
an’li B (che() mk)2 ’
82]11' _ _2 chEC,ckici nmy (23)
d(m;)? (chec m)3
9: _ 9 Lacgiozre O (24)
Ix; (Xceeg, Okxi)?
(92171‘ _ _2612 ZCkEQi/Ck¢Ci Ok (25)

A2 (Xgeg: Orxr)?

Subsequently, we demonstrate that the Hessian matrix
given below is positive definiteness for each client:

H, = [gmm t’l;nx], (26)

[92U,- [8211,- [92U1' [
where Uﬁnm = o2 U;x = o2 Uﬁm = omox,’ and U;m =
QZU,-
ox;om; "

Considering U, < 0, while the determinant det(H,) =
ui,, U, — ui, U, >0, Hessian Matrix H; exhibits nega-
tive definite. Therefore, the utility function U; is strictly
concave within the feasible region of (x;, m;). We can
conclude that the NE is not only existent but also unique
at this stage.

Theorem 2 In Stage I, the existence and uniqueness of NE
for the cloud are guaranteed.

Proor. The proof is similar to those of Theorem 1.
The key idea is to prove that Eq. ((14)) is a concave
function, thereby establishing the presence of a unique
point within the cloud’s subgame. By calculating the
first-order derivative of the utility

d
% ==Y 0 <0, (27)
cieC

it reveals that U, is a decreasing function of P. With
an assumption that all participants exercise rationality
within this game, the utility of cloud and clients should
be non-negative. Consequently, the range of P can be
established as follows:

08(Xe.ec Oixi) — yMn;
Yoec Oixi
U 0o p (E]" + Ecomm 4 CEx;)
> >
i=0= 0= 0;x;((1 — cr) + ocr(1 — cr))’

Upp > 0= P < , (28

YeieC. (29)

Following these computations, we can obtain the max-
imum utility of the task publisher when P reaches the
minimum value through the implementation of a convex
optimization algorithm.

By combining the results from both theorems, we can
infer that the unique NE exists in the whole Stackelberg
game based on the optimal reward strategy.

6. ALGORITHM DESIGN

In our blockchain-based FL framework, the leader (the
task publisher at the cloud) first moves and the followers
(clients) then respond. Considering the efficiency and
accuracy of the desired algorithm, we design an itera-
tive algorithm based on ADMM to obtain the optimal
strategies in our game. The algorithm (Algorithm 1) con-
tains two-tier iterations. In the inner loop, based on the

©lnternational Telecommunication Union, 2025 125

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 2, June 2025

Algorithm 1 Iterative ADMM-based algorithm for the
formulated Stackelberg Game

Input: Generated initial feasible strategy (X, M, P),
threshold E, iteration g = 0.
Output: Optimal strategy (X*, M*, P*).

1: Calculate the current values of U;, set as UZ@ ;

2: repeat

3 geq+1;

4: (Inner Loop) Utility optimization for clients
through ADMM: Based on the current reward
strategy (P77!) given by cloud, client iteratively up-
date the training data X and computing resource
M according to Eq. (30) and (31);

5. (X', M) « the current outputs;

(Outer Loop) Obtain the pricing strategy P7 of task
publisher using Eq. (32);
7 until [U? ~ UV <2
pu pu
8 P« P1;
9: return (X*, M*, P).

unit price of data (P) given by the task publisher, clients
employ the Lagrange multiplier method to obtain the
optimal amount of data size X and computing resource
M that maximize their utilities. In the outer loop, the
task publisher updates its price strategy according to the
data size and computing resources from the clients.

6.1 Inner loop

In the inner loop (Line 4 in Algorithm 1), the ADMM
algorithm solves the optimal strategies of clients in the
gth outer loop, where g is the index of outer loop itera-
tions. We use Lagrange’s multipliers to find the iteration
strategy of m; and x;:

{xﬁq)(t), mgq)(t)} = arg max(ugq)) + (png(L - 1)x§q)(t)ml(.q)(t -1)

+ gncij")a —1) + K@t = 1) - By

+ (= 10X =3 = 1)) + St - <P - 11

+ @)= DM = mP = 1) + EIM = mP - DIB,
(30)

where | represents the iteration index in the inner loop, p

is a damping factor. Updating the dual variables of the
inner loop is described as follows:

P10 =9\ = 1) + p(CEx" (1) + Kim{" (1) - By),
P30 =P = 1) + p(Xi = (1), (31)

PP =3 (L= 1) + pUIMil = mP (1)),

6.2 Outer loop

After client ¢; reaches its current strategies, the task pub-
lisher updates its price P to maximize its profit by invok-
ing ADMM as

pub

ou
P& = p-1) 4 v)
+V—p (32)

The iterative steps for the task publisher continuously
adjust its pricing strategy until the following condition
holds:

(@) (4-1) =
IIUM - Upub | <E, (33)

where E is the predefined exiting threshold of ADMM.

6.3 Complexity analysis

We now provide a time complexity analysis of our algo-
rithm by proving the following theorem.

Theorem 3 The time complexity of Algorithm 1 is O(%
+N?2).

Proor. A single iteration of the ADMM algorithm ex-
hibits a complexity of O(1/Z2), where Z denotes the
predefined convergence tolerance [34]. Given the dis-
tributed nature of the system with N participating clients,
each inner loop iteration consequently requires O(N/E?)
operations to coordinate all clients” updates. In the outer
loop architecture, the task publisher computes reward
strategies for its associated clients, resulting in O(N)
operations per outer iteration.

The convergence analysis demonstrates that the ADMM
algorithm requires O(N/E) global iterations to reach
the prescribed tolerance. Consequently, the total com-
putational complexity combines these components is
calculated as follows:

2 2
o(3)x [o(N)+ om)| = 0(1;_13 + NT) (34)

= =2
= =

7. SIMULATION EVALUATION

We conduct simulations including one task publisher sit-
uated in the cloud with ten clients implemented to verify
the efficiency of our proposed scheme. We first evaluate
the convergence of the proposed ADMM method, and
then compare learning performance with several baseline
algorithms.

126 ©lnternational Telecommunication Union, 2025

Liu et al.: Incentive mechanism design for semi-asynchronous blockchain-based federated edge learning

Table 2 — Default parameter settings in simulations.

Parameters ‘ Values/Distribution
Staleness rate o 10
Quality of data 6; (0.2,0.9)
CPU cycle capacity d; U(10,20)
Device CPU frequency f; U(1,10)GHz
Client transmission rate v; U(100,200)kHz
Client transmission power p; 24dBm
Updated model size Q 2 000 bits
Mining complexity parameter A 0.1

Unit commission reward rate yM 100
Computing capacity of client m; Uu(Q,5)
Unit mining cost of server K; N(30,5)
Consensus delay effect « 0.01
Satisfaction degree 6 0.1

7.1 Simulation setting

Our federated learning framework follows the bench-
mark implementation in [16], evaluated on the CIFAR-10
digit classification dataset containing 50 000 training and
10 000 test samples. The dataset is partitioned into N
mutually exclusive subsets distributed across clients to
preserve data locality. To emulate resource heterogeneity,
clients are configured with constrained computational
capabilities, processing limited batches per second dur-
ing model training. The learning architecture employs
the Convolutional Neural Network (CNN) with two
convolutional layers followed by two fully connected
layers with ReLu as the activation function. The fed-
erated learning rate is 0.01 and the mini-batch size of
stochastic gradient descent used for optimizing is 32.
Each client conducts 7 = 20 local iterations before pa-
rameter aggregation, spanning 50 global communication
rounds. The temporal configuration fixes each round at
10-minute intervals through empirical calibration. We
also assume that client devices experience failure up-
dates with identical independent probability during each
global aggregation. Besides, we simulate the process of
generating the block as a Poisson process with the block
size limited to 2MB [30, 35]. Unless otherwise specified,
the default simulation parameters shown in Table 2 are
used.

7.2 Convergence of ADMM

First, we verify the convergence of our proposed ADMM
iterative algorithm. To better illustrate the convergence,
we set cr = 0.3, client budget B; = 2 000, and mining
reward RM = 5 000. Fig. 2 depicts the trend in the
average utilities of clients and the cloud for our iterative
algorithm under different thresholds E. We can see
that the convergence speed will be slightly faster as &
gets larger. After about 80 iterations, all plots tend to
be stable. This result further attests that our proposed

Utility of Client
8
Utility of Cloud

E) 7
Iteration q

(b) cloud

50
Iteration q

(a) clients

Figure 2 — Convergence of average utilities of (a) all clients and (b) the
cloud under different values of existing threshold E.

iterative algorithm can efficiently achieve the NE in the
Stackelberg game.

7.3 Utility performance of proposed method

We then compare the system performance of the pro-
posed iterative algorithm (labeled as ADMM in figures)
under different parameters compared with the following
baselines.

e Random strategy (Random): This strategy allows that
each client ¢; randomly selects whether to participate
in training or mining. Based on these selections, the
strategy identifies a feasible profile for participation in
either process without explicit optimization considera-
tions.

e Greedy mining strategy (Greedy_mine): In this strat-
egy, clients are ranked in descending order according
to their computing resources. The top half of the clients
are selected to perform mining at full capacity, while
the remaining clients contribute their data for training,
subject to the budget constraints imposed by the edge
server.

o Greedy training strategy (Greedy_train): In contrast
to the mining strategy, clients are sorted in descend-
ing order based on their dataset cardinality. The top
half of the clients are mandated for model training,
with the remaining clients provisioning computational
resources subject to the edge server’s budget.

Fig. 3a and Fig. 3b show the impact of different crash
probabilities on the utilities of clients and the cloud when
fixing RM = 5 000 and B; = 2 000. To better highlight the
contributions of different tasks in the utility, we compute
the average utility and use the shadow composed of slash
and star to distinguish the mining utility (append with
‘_M’inthelabel, e.g. ‘Greedy_mine_M’) and training util-
ity (append with ‘_T” in the label, e.g. ‘Greedy_mine_T"),
respectively. The results show that our proposed scheme
can always achieve higher utility compared to other base-
line schemes. As the crash probability increases, the
average utility of all participants decreases slightly. This
is because a higher crash probability discourages clients
from selecting training tasks, which in turn reduces the

©lnternational Telecommunication Union, 2025 127

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 2,

w4 Greedy_train M

s Greedy_train_T
reedy_mine M WS ADMM_M 400
reedy_mine T mmm ADMM_T

== Random Greedy _train

. Greedy_mine WEE ADMM

Utility of Client
Utility of Cloud

05
Crash Probability

(b) cloud utility vs crash prob

05
Crash Probability

(a) client utility vs crash prob

Figure 3 — Utilities of the participants ((a) clients and (b) cloud) with
different crash probabilities cr.

e Greedy_train M
s Greedy_train T

reedy_mine M EEE ADMM_M

reedy_mine T WEW ADMM_T

Utility of Edge Server

0
2000 5000 8000 2000 5000 8000
Reward Reward

(a) client utility vs reward (b) cloud utility vs reward

Figure 4 — Utilities of the participants ((a) clients and (b) cloud) with
different reward RM.

1001 mmm Random M
=== Random_T

@an Greedy_train M
=== Greedy train_ T

= Random Greedy_train
= Greedy mine mmm ADMM

B Greedy mine M EEE ADMM_M
BN Greedy mine T EEE ADMM_T

Utility of Edge Server
Utility of Cloud

2000
Average Budget of Edge Server

1000 2000
Average Budget of Edge Server

3000

(a) client utility vs budget (b) cloud utility vs budget

Figure 5 — Utilities of the participants ((a) clients and (b) cloud) with
different Budget B;.

utility of the task publisher, whose primary gains come
from training tasks. Consequently, the task publisher
lowers the rewards offered to clients, leading to a decline
in their average utility.

Fig. 4 shows the impact of different mining rewards (RM)
on participant utilities, with a fixed crash probability of
cr = 0.3 and an average edge server budget of 2 000.
Similar to the trend observed in the previous figure, our
proposed scheme consistently achieves the highest utility
across different reward levels, demonstrating its superi-
ority. By analyzing the utility components, we observe
that as RM increases, client utility rises while the task
publisher’s utility declines. This occurs because a higher
mining reward provides greater incentives for mining,
thereby reducing clients” motivation to contribute train-
ing data.

We also analyze the impact of the edge server budget on
participant utilities, as shown in Fig. 5. When the crash
probability and mining reward are fixed, increasing the

June 2025

Accuracy Curves Loss Curves

—— ADMM
Greedy_train
oey —— Greedy_mine

Accuracy

/ — ADMM

02l ! Greedy_train 02

—— Greedy_mine
Random

o 10 50 o

20 30 40 10 20 30 B
Communication rounds Communication rounds

Figure 6 — Learning performance (left: accuracy, right: loss) of different
mechanisms.

edge server’s budget clearly leads to higher utilities for
all participants. The reason inside is that a larger budget
enables the edge server to allocate more resources for
both training data and computing power. However, the
utility gain from increasing the budget from 2 000 to 3 000
is smaller than that from 1 000 to 2 000. This is due to the
fact that when client capacity is fixed and limited, simply
increasing the budget does not necessarily translate to
additional resources for mining or training tasks.

7.4 Learning performance of proposed feder-
ated edge learning method

Finally, we also evaluate the learning performance of the
proposed mechanism. As shown in Fig. 6, we compare
the learning performance of our proposed scheme with
the aforementioned baseline strategies under the same
settings in Section 7.2 in terms of the loss function and
learning accuracy. The results indicate that our scheme
achieves higher global model accuracy and relatively
faster convergence. As shown in Fig. 7, our approach
also yields the highest average model accuracy among
all compared methods with different settings, attributed
to the larger volume of training data collected. We notice
that the trend of average model accuracy aligns closely
with that of the cloud’s utility under different parameters.
This can be explained by the fact that the relationship
between the data accuracy and the amount of training
data follows a concave function [36]. Since we model
the utility of each participant per round, the average
model accuracy is computed after predefined rounds
which effectively reflects the long-term impact of the
incentive mechanism. The evaluation demonstrates that
our scheme improves average model accuracy by approx-
imately 7% compared to the random strategy and 3%
compared to the greedy strategies. These results high-
light the effectiveness of our approach in incentivizing
clients to contribute training data, ultimately enhancing
the task publisher’s model accuracy.

8. CONCLUSION

This paper presents an incentive mechanism for semi-
asynchronous blockchain-based federated edge learning.

128 ©Ilnternational Telecommunication Union, 2025

Liu et al.: Incentive mechanism design for semi-asynchronous blockchain-based federated edge learning

B Random

B Greedy_mine
Greedy_train 0.90

N ADMM

0.75

0.95
0.70
0.65 0.85

2060 3 0.80
©

©
Soss So7s
%

8050
g0

0.45

o070
0.65
0.40 0.60

0.35 0.55

0.30 0.50

0.7 2000

0.3

0.5
Crash Probability

(a) model accuracy vs crash prob

B Random

B Greedy_mine
Greedy_train 0.90

N ADMM

Reward

(b) model accuracy vs reward

B Random
B Greedy_mine

Greedy_train
N ADMM

0.95

0.85
3 0.80
o
50.75
o
K070

0.65

0.60

0.55

0.50
8000 1000

2000 3000
Average budget of Edge Server

(c) model accuracy vs budget

Figure 7 — Effects of crash probability, reward and budget on the model accuracy.

We model the interactions between the task publisher
and clients as a two-stage Stackelberg game and demon-
strate a unique Nash equilibrium within the proposed
game. Furthermore, considering the high dimension-
ality of strategy space and the distributed manner of
the system, we design an iterative algorithm based on
ADMM to obtain the optimal solution efficiently. Simu-
lation results validate its effectiveness, showing superior
performance over baseline schemes. This research aims
to advance the development of federated learning frame-
works that fully leverage edge computing infrastructure,
making it well-suited for next-generation Al applications
while ensuring robustness, scalability, and security in
decentralized environments.

In future work, we plan to consider investigating a sim-
ilar incentive mechanism of a hierarchical FL over a
cloud-edge-client architecture, where mobile clients can
participate in both learning and mining.

ACKNOWLEDGEMENT

This work is partially supported by the US National
Science Foundation under Grant No. CNS-2006604 and
CNS-2128378.

REFERENCES

[1] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
and Blaise Aguera y Arcas. “Communication-efficient learning of
deep networks from decentralized data”. In: Artificial intelligence
and statistics. PMLR. 2017, pp. 1273-1282.

[2] Xinliang Wei, Jiyao Liu, and Yu Wang. “Joint Participant Selec-
tion and Learning Scheduling for Multi-Model Federated Edge
Learning”. In: 19th IEEE International Conference on Mobile Ad-Hoc
and Smart Systems (MASS 2022). 2022.

[3] Xinliang Wei, Jiyao Liu, Xinghua Shi, and Yu Wang. “Participant
Selection for Hierarchical Federated Learning in Edge Clouds”.
In: IEEE International Conference on Networking, Architecture, and
Storage (NAS 2022). 2022.

[4] Xinliang Wei, Jiyao Liu, and Yu Wang. “Joint Participant Selection
and Learning Optimization for Federated Learning of Multiple
Models in Edge Cloud”. In: Journal of Computer Science and
Technology 38.4 (2023), pp. 754-772.

(5]

6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Xinliang Wei, Kejiang Ye, Xinghua Shi, Cheng-Zhong Xu, and
Yu Wang. “Joint Participant and Learning Topology Selection
for Federated Learning in Edge Clouds”. In: IEEE Transactions
on Parallel and Distributed Systems 35.8 (2024), pp. 1456-1468.

Xiaofei Wang, Yiwen Han, Chenyang Wang, Qiyang Zhao, Xu
Chen, and Min Chen. “In-Edge Al: Intelligentizing mobile edge
computing, caching and communication by federated learning”.
In: IEEE Network 33.5 (2019), pp. 156-165.

Yougqi Li, Shuangji Liu, Yanchen Meng, Shenyi Qi, Zhe Qu, Fan
Li, and Yu Wang. “Towards Collaborative Intelligence for Meta-
computing-driven IIoT based on Vertical Federated Learning
with Fast Convergence”. In: IEEE Internet of Things Journal (2025).

Dun Li, Dezhi Han, Tien-Hsiung Weng, Zibin Zheng, Hongzhi Li,
Han Liu, Arcangelo Castiglione, and Kuan-Ching Li. “Blockchain
for federated learning toward secure distributed machine learn-
ing systems: a systemic survey”. In: Soft Computing 26.9 (2022),
pp- 4423-4440.

Zhiyuan Wang, Hongli Xu, Jianchun Liu, Yang Xu, He Huang,
and Yangming Zhao. “Accelerating Federated Learning With
Cluster Construction and Hierarchical Aggregation”. In: IEEE
Transactions on Mobile Computing 22.7 (2023), pp. 3805-3822.

Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun
Kim. “Blockchained on-device federated learning”. In: IEEE
Communications Letters 24.6 (2019), pp. 1279-1283.

Chuan Ma, Jun Li, Long Shi, Ming Ding, Taotao Wang, Zhu Han,
and H Vincent Poor. “When federated learning meets blockchain:
A new distributed learning paradigm”. In: IEEE Computational
Intelligence Magazine 17.3 (2022), pp. 26-33.

Dinh C Nguyen, Ming Ding, Quoc-Viet Pham, Pubudu N Pathi-
rana, Long Bao Le, Aruna Seneviratne, Jun Li, Dusit Niyato, and
H Vincent Poor. “Federated learning meets blockchain in edge
computing: Opportunities and challenges”. In: IEEE Internet of
Things Journal 8.16 (2021), pp. 12806-12825.

Xiaofei Wang, Yunfeng Zhao, Chao Qiu, Zhicheng Liu, Jiang-
tian Nie, and Victor CM Leung. “InFEDge: A blockchain-based
incentive mechanism in hierarchical federated learning for end-
edge-cloud communications”. In: IEEE Journal on Selected Areas
in Communications 40.12 (2022), pp. 3325-3342.

Lei Feng, Yiqi Zhao, Shaoyong Guo, Xuesong Qiu, Wenjing Li,
and Peng Yu. “BAFL: A Blockchain-Based Asynchronous Feder-
ated Learning Framework”. In: IEEE Transactions on Computers
71.05 (2022), pp. 1092-1103.

Yougqi Li, Fan Li, Song Yang, Chuan Zhang, Liechuang Zhu, and Yu
Wang. “A Cooperative Analysis to Incentivize Communication-
Efficient Federated Learning”. In: IEEE Transactions on Mobile
Computing 23.10 (2024), pp. 10175-10190.

©Ilnternational Telecommunication Union, 2025 129

ITU Journal on Future and Evolving Technologies, Volume 6, Issue 2, June 2025

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

(24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

130

Wentai Wu, Ligang He, Weiwei Lin, Rui Mao, Carsten Maple,
and Stephen Jarvis. “SAFA: A semi-asynchronous protocol for
fast federated learning with low overhead”. In: IEEE Transactions
on Computers 70.5 (2020), pp. 655-668.

Zehui Xiong, Jiawen Kang, Dusit Niyato, Ping Wang, and H
Vincent Poor. “Cloud/edge computing service management in
blockchain networks: Multi-leader multi-follower game-based
ADMM for pricing”. In: IEEE Transactions on Services Computing
13.2 (2019), pp. 356-367.

Xuanzhang Liu, Jiyao Liu, Xinliang Wei, and Yu Wang. “Incentive
Mechanism Design in Semi-Asynchronous Blockchain-based
Federated Learning”. In: Proceedings of 2024 IEEE 100th Vehicular
Technology Conference (VTC2024-Fall). 2024.

Zhilin Wang and Qin Hu. “Blockchain-based federated learning:
A comprehensive survey”. In: arXiv preprint arXiv:2110.02182
(2021).

Shiva Raj Pokhrel and Jinho Choi. “Federated learning with
blockchain for autonomous vehicles: Analysis and design chal-
lenges”. In: IEEE Transactions on Communications 68.8 (2020),
pp- 4734-4746.

Yunlong Lu, Xiaohong Huang, Ke Zhang, Sabita Maharjan, and
Yan Zhang. “Communication-efficient federated learning and
permissioned blockchain for digital twin edge networks”. In:
IEEE Internet of Things Journal 8.4 (2020), pp. 2276-2288.

Xiaoge Huang, Yuhang Wu, Chengchao Liang, Qianbin Chen,
and Jie Zhang. “Distance-aware hierarchical federated learning in
blockchain-enabled edge computing network”. In: IEEE Internet
of Things Journal 10.21 (2023), pp. 19163-19176.

Sizheng Fan, Hongbo Zhang, Yuchen Zeng, and Wei Cai. “Hybrid
blockchain-based resource trading system for federated learning
in edge computing”. In: IEEE Internet of Things Journal 8.4 (2020),
pp- 2252-2264.

Xidi Qu, Shengling Wang, Qin Hu, and Xiuzhen Cheng. “Proof
of federated learning: A novel energy-recycling consensus algo-
rithm”. In: IEEE Transactions on Parallel and Distributed Systems
32.8 (2021), pp. 2074-2085.

Liang Yuan, Qiang He, Siyu Tan, Bo Li, Jiangshan Yu, Feifei Chen,
Hai Jin, and Yun Yang. “Coopedge: A decentralized blockchain-
based platform for cooperative edge computing”. In: Proceedings
of the Web Conference 2021. 2021, pp. 2245-2257.

Xianglin Bao, Cheng Su, Yan Xiong, Wenchao Huang, and Yifei
Hu. “FLChain: A blockchain for auditable federated learning
with trust and incentive”. In: 2019 5th International Conference on
Big Data Computing and Communications (BIGCOM). IEEE. 2019,
pp- 151-159.

Zihao Zhou, Yanan Li, Xuebin Ren, and Shusen Yang. “Towards
efficient and stable K-asynchronous federated learning with un-
bounded stale gradients on non-IID data”. In: IEEE Transactions
on Parallel and Distributed Systems 33.12 (2022), pp. 3291-3305.

Youqi Li, Fan Li, Song Yang, Pan Zhou, Liehuang Zhu, and
Yu Wang. “Three-stage Stackelberg Long-term Incentive Mech-
anism and Monetization for Mobile Crowdsensing: An Online
Learning Approach”. In: IEEE Transactions on Network Science
and Engineering (TNSE) 8.2 (2021), pp. 1385-1398.

Wenji He, Haipeng Yao, Tianle Mai, Fu Wang, and Mohsen
Guizani. “Three-Stage Stackelberg Game Enabled Clustered
Federated Learning in Heterogeneous UAV Swarms”. In: IEEE
Transactions on Vehicular Technology (2023).

Shaoyong Guo, Yao Dai, Song Guo, Xuesong Qiu, and Feng
Qi. “Blockchain meets edge computing: Stackelberg game and
double auction based task offloading for mobile blockchain”. In:
IEEE Transactions on Vehicular Technology 69.5 (2020), pp. 5549—
5561.

Yanru Zhang, Lanchao Liu, Yunan Gu, Dusit Niyato, Miao Pan,
and Zhu Han. “Offloading in software defined network at edge
with information asymmetry: A contract theoretical approach”.
In: Journal of Signal Processing Systems 83 (2016), pp. 241-253.

[32]

[33]

[34]

[35]

[36]

Nguyen H Tran, Wei Bao, Albert Zomaya, Minh NH Nguyen, and
Choong Seon Hong. “Federated learning over wireless networks:
Optimization model design and analysis”. In: IEEE INFOCOM
2019-IEEE conference on computer communications. IEEE. 2019,
pp. 1387-1395.

Jiawen Kang, Zehui Xiong, Dusit Niyato, Shengli Xie, and Jun-
shan Zhang. “Incentive mechanism for reliable federated learn-
ing: A joint optimization approach to combining reputation and
contract theory”. In: IEEE Internet of Things Journal 6.6 (2019),
pp- 10700-10714.

Yuna Jiang, Yi Zhong, and Xiaohu Ge. “IIoT data sharing based
on blockchain: A multileader multifollower Stackelberg game
approach”. In: IEEE Internet of Things Journal 9.6 (2021), pp. 4396~
4410.

Mengting Liu, F Richard Yu, Yinglei Teng, Victor CM Leung, and
Mei Song. “Distributed resource allocation in blockchain-based
video streaming systems with mobile edge computing”. In: IEEE
Transactions on Wireless Communications 18.1 (2018), pp. 695-708.

Yufeng Zhan, Peng Li, Zhihao Qu, Deze Zeng, and Song Guo.
“A learning-based incentive mechanism for federated learning”.
In: IEEE Internet of Things Journal 7.7 (2020), pp. 6360—-6368.

AUTHORS

XuaNzHANG Liv received a mas-
ter’s degree in computer science
from the University of Delaware
in 2020. He is currently pursu-
ing his PhD degree at the Depart-
ment of Computer and Informa-
tion Science, Temple University.
His research interests include
edge computing, blockchain, and

federated learning.

Jivao Livu is a Ph.D. student at
the Department of Computer and
Information Sciences at Temple
University. He received his B.E.
degree in information security
from North China University of
Technology in 2020. His research
interests include Al, security, and
edge computing.

XiNLIANG WET is an assistant pro-
fessor in Shenzhen Institute of
Advanced Technology, Chinese
Academy of Sciences. He holds a
Ph.D. in computer and informa-
tion services from Temple Univer-
sity,an M.S. and a B.E. in software
engineering from SUN Yat-sen
University, China. His research

interests include edge computing, federated learning,
reinforcement learning, and Internet of Things. He is
a recipient of CST Outstanding Research Assistant Award
(2022) and Scott Hibbs Future of Computing Award (2023)
from Temple University.

©Ilnternational Telecommunication Union, 2025

Liu et al.: Incentive mechanism design for semi-asynchronous blockchain-based federated edge learning

Yu Wang is a Professor and Chair
of the Department of Computer
and Information Sciences at Tem-
ple University. He holds a Ph.D.
from Illinois Institute of Technol-
ogy, an MEng and a BEng from
Tsinghua University, all in com-
puter science. His research inter-
est includes wireless networks,

smart sensing, and distributed computing. He is a recipi-
ent of Ralph E. Powe Junior Faculty Enhancement Awards
from Oak Ridge Associated Universities (2006), Outstand-
ing Faculty Research Award from the University of North
Carolina at Charlotte (2008), Fellow of IEEE (2018), ACM
Distinguished Member (2020), and IEEE Benjamin Franklin
Key Award (2024). He has served as an associate editor
for IEEE Transactions on Parallel and Distributed Systems,
IEEE Transactions on Cloud Computing, among others.

©Ilnternational Telecommunication Union, 2025 131

	Incentive mechanism design forsemi-asynchronous blockchain-basedfederated edge learning
	New Bookmark
	1. INTRODUCTION
	2. RELATED WORK
	2.1 Blockchain-based FL
	2.2 Incentive mechanism design

	3. SYSTEM MODEL
	4. STACKELBERG GAME
	4.1 Stage II: Client subgame
	4.2 Stage I: Cloud subgame

	5. EQUILIBRIUM ANALYSIS
	6. ALGORITHM DESIGN
	6.1 Inner loop
	6.2 Outer loop
	6.3 Complexity analysis

	7. SIMULATION EVALUATION
	7.1 Simulation setting
	7.2 Convergence of ADMM
	7.3 Utility performance of proposed method
	7.4 Learning performance of proposed federated edge learning method

	8. CONCLUSION
	ACKNOWLEDGEMENT
	REFERENCES
	AUTHORS

