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Abstract

Feature alignment methods are used in many scientific disciplines for data pooling, anno-
tation, and comparison. As an instance of a permutation learning problem, feature alignment
presents significant statistical and computational challenges. In this work, we propose the co-
variance alignment model to study and compare various alignment methods and establish a
minimax lower bound for covariance alignment that has a non-standard dimension scaling be-
cause of the presence of a nuisance parameter. This lower bound is in fact minimax optimal
and is achieved by a natural quasi MLE. However, this estimator involves a search over all
permutations which is computationally infeasible even when the problem has moderate size.
To overcome this limitation, we show that the celebrated Gromov—Wasserstein algorithm from
optimal transport which is more amenable to fast implementation even on large-scale problems
is also minimax optimal. These results give the first statistical justification for the deployment
of the Gromov—Wasserstein algorithm in practice.
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1 Introduction

Modern research is marked by an unprecedented access to vast computational, data collection, and
storage resources. Standing in for hand-crafted and expensive statistical experiments, a deluge of
data is available at a scale on which even straightforward statistical techniques have the potential
to yield remarkably nontrivial insights. This paradigm shift has transformed countless domains
in science, engineering, and management science, to name a few, and also brought a new set of
challenges including the integration, or alignment, of several datasets collected from different sources.
This work proposes a statistical framework to study the fundamental limits associated with this
phenomenon and establishes the optimality of state-of-the-art alignment methods based on optimal
transport.



Motivated by applications to biostatistics, we formulate the feature alignment problem as follows.
Consider two datasets that consist of m and n observations respectively. Each dataset can be
represented as a features-by-observations matrix:

_Xm::[XL.”,x;Je;Rmma Y”::bﬁ,.wyz]eﬁyxﬁ (1)

The goal of feature alignment is to find a one-to-one mapping (permutation) = : S — [d] from a
subset S C [d] of features in X™ to a subset 7(S) C [d] of features in Y.

This setup arises for example in untargeted metabolomics, proteomics, and lipidomics studies
which record the concentrations of d compounds (metabolites, proteins, and lipids) across a col-
lection of n patients to find biomarker compounds that are associated with the health status of a
patient. The term “untargeted” refers to the fact that each of the d features corresponds to the
concentration level of an unnamed extracted compound measured across all patients in the study.
Matching features (compounds) between two such studies is a necessary step for transferring anno-
tated labels between studies, comparing studies to discover shared compounds, and merging multiple
studies to increase their sample size and ultimately increase the statistical power of downstream
inference tasks.

To investigate this question, we propose and analyze a novel statistical model where the obser-
vations are centered Gaussian vectors in the idealized case where there exists a matching of all d
features (S = [d]). More specifically, let 3 = 0 be an unknown covariance matrix and let 7* be an
unknown permutation of [d]. We assume that

itd

X1, X WN(0,8) and Yi,...,Y, Y N(0,57)

where (EW*)@ j = Ygx(i),n () and the two samples are assumed to be independent. It is not hard to

see that in this context the sample covariance matrices Sx = X™(X™)T /m and Sy = Y (Y™’ /n
associated to each of the two samples are sufficient statistics for 7* and the problem boils down to
aligning these covariance matrices. We call this problem covariance alignment.

Treating the covariance matrix Y as a nuisance parameter and 7* as the parameter of interest,
one may write a profile log-likelihood for m—see (7)—which can be further simplified into a quasi
log-likelihood that is quadratic in m—see (8). Our first estimator is obtained by maximizing this
quasi log-likelihood and is thus called the quasi mazimum likelihood estimator (QMLE in short):

TAMLE _ argmin(Pﬂi)_{lPﬁT, iy>, (2)
TESY

where S; denotes the set of all permutations and P; is the permutation matrix associated to w. One
contribution of the paper is that the QMLE is optimal in a minimax sense. Unfortunately, the sta-
tistical optimality of the QMLE is contrasted by its associated computational burden. Indeed, the
QMLE is a quadratic assignment problem that requires optimization over the set Sy of d! permuta-
tions, which is not practically feasible, even for moderate values of d. To overcome this situation, we
borrow from computational optimal transport [PC*17] and propose a Gromov—Wasserstein (GW)
estimator which optimizes a similar objective over the Birkhoff polytope BP(d) defined in (11) as
the convex hull of the set of permutation matrices:

POV = argmax(PEx P, Sy). (3)
PEBP(d)

We show in Section 2 that PCW = P-ew is in fact a permutation matrix corresponding to a permu-
tation 7V so that this relaxation is tight. Despite the structural similarity between the objective



functions in the previous two displays, we note in Section 2 that the same relaxation for the QMLE
is not tight; in other words, the solution to

argmin (Pi)_{1 P’ Sy,
PEBP(d)

is not achieved at a permutation in general, but rather in the interior of the Birkhoff polytope.
While this observation does not preclude the existence of good rounding schemes, we do not pursue
this route. Instead, we show that the GW estimator is also minimax optimal.

In light of its advantageous computational properties, this work provides theoretical support in
favor of the Gromov—Wasserstein matcher recently proposed in a metabolomic study [BSKR'23].

Remark 1. While the Birkhoff polytope is tractable in the sense that it is conver and described
by O(n?) inequalities, we still have to resort to a heuristic to solve (3) because the objective is
nonconvez. In fact, it is a convexr maximization problem and a classical maximum principle indicates
that the solution is achieved at a vertex of the Birkhoff polytope, namely a permutation. Despite
this lack of converzity, the objective function is smooth and lends itself to the gradient-based heuristic
in [SPKS16] and is successfully deployed in a companion applied work [BSKR™'23].

1.1 Main results

We first recall the covariance alignment model. Let ¥ > 0 be an unknown covariance matrix and
let 7* be an unknown permutation of [d]. Assume that we observe

iid
X1y, X

(0,%) and Yi,...,Y, 2 AN(0,5™)
where (E”*)m = X (i),n+(j) and the two samples are assumed to be independent.

Our goal is to estimate the permutation 7*. While 3 is a nuisance parameter, it does play an
important role in our ability to identify 7*. For example, if ¥ is the identity or has two identical
columns, then 7* is not identifiable. From this simple observation, it is clear that the performance
of any estimator will be greatly influenced by the structure of 3. Rather than imposing structural
conditions on X, we propose to evaluate our estimation using a Y-dependent (pseudo-)distance,
following an approach similar to the one employed in [FMR19] for statistical seriation. More specif-
ically, for any two permutations 7, 7’ € Sy, define

dsy(m,7) = |27 = =7 ||p.

It follows readily from the triangle inequality that dy is a pseudo-distance for any > > 0. It is less
sensitive to errors that consist in permuting two rows/columns that are close in Euclidean norm.
More discussions on the loss function can be found in Section 5.1.

Our main result is the following characterization of the optimal sample complexity for estimating
the permutation 7 under the Frobenius loss.

Theorem 1. For [|X[|,, < 1 and ¢ € (0,1), both the QMLE 7QMLE (2) and the GW estimator
7V (3) achieve E|XT — || < € as long as

d3logd
TR

1
dlog d and mn>C

min{m,n} > C = g

Here C > 0 is a numerical constant independent of (d,€). Up to multiplicative constants, the above
conditions on the sample complexity are not improvable in general.



The results on the minimax rate of convergence, as well as the high probability upper bounds
on the Frobenius loss, are deferred to Theorems 2-4. Some remarks of Theorem 1 are in order:

(i) min{m,n} = Q((dlogd)/e?) ensures that based solely on X™ or Y, there is an estimator 7 with
E||S™ — =™ ||p < € when ¥ is known. In other words, this is the sample complexity of permutation
estimation with a known covariance.

(i) mn = Q((d*logd)/e*) accounts for the effect of an unknown covariance ¥, and interpolates
between two extreme scenarios. First, if m = Q(d?/e?) and n = Q((dlogd)/e?), one may estimate
>} within Frobenius loss € solely based on X™, and then estimate 7* based on Y™ as if ¥ were
known—see (i) above. A more illuminating scenario arises if m = n. In that case, the above con-
dition reduces to m = n = Q(y/d3logd/<?). This peculiar sample complexity is in sharp contrast
with the ©(d?/e?) sample size required to estimate the covariance matrix ¥ within accuracy e;
in other words, the nuisance is allowed to be estimated at a slower rate without hurting the esti-

mation of target parameters. This phenomenon is reminiscent of high-dimensional semiparametric
statistics [CCDT17].

(iii) [|%]|,, < 1 ensures that the hard problem instance appears in the high-dimensional scenario.
If it is replaced by the Frobenius norm, the hard instance will become low-dimensional and we no
longer enjoy the poly(d) reduction in the sample complexity compared with covariance estimation.
This issue could be further mitigated by considering a rescaled Frobenius loss; we discuss the details
in Section 5.1.

1.2 Related work

The estimation of permutations has become a preponderant challenge in various problems. It
brings singular challenges, both from a statistical and computational perspective. In the rest of this
section, we review some work in this growing area and comment on its connection with our setup
and contributions.

Dataset alignment and biological applications Dataset alignment is a primitive problem

in statistics and machine learning, used broadly in computer vision for matching local descrip-
tors in images [Low04, BTVG06, SPKS16], machine translation for converting words between lan-
guages [AGCJ18, AMJ18, AMJJ19, GJB19|, and biostatistics for matching untargeted compounds,
transferring labels, and merging unlabeled datasets [LHM13, HKB"21, CPKL"22, BSKR"23]. The
alignment problem is to find a correspondence between two d-dimensional datasets X = [X1,..., X,,] €
R&>™ Y™ = [Yy,...,Y,] € R¥X" cither by matching their features (rows), matching their observa-
tions (columns), or both.

There are several biological applications where the features (rows) of X™, Y™ are unordered or
misaligned, and hence need to be matched. These applications include untargeted metabolomics,
proteomics, and lipidomics experiments where unnamed features (compounds such as metabolites,
proteins, and lipids) are collected and their concentrations are measured in a set of patients (ob-
servations). Untargeted studies are common practice in biology as they can be simpler to perform
than targeted studies with labeled features and can discover new biomarker compounds that en-
able drug discovery and tracking of disease progression [PML™16, Wis19,L.SV"21]|. Recent works in
metabolomics and proteomics have explored the applications of matching algorithms through com-
binatorial search, nearest neighbor methods, and optimal transport to solve the untargeted feature
alignment problem [LHM13, HKB*21, CPKL 22 BSKR*23].



Feature alignment and linear assignment In many machine learning applications, data fea-
tures have a predefined ordering and the aim is to match the observations in X" and Y". Examples
include matching a set of patches in two images or word embeddings from two different languages.
A classical approach is to form a similarity matrix 4;; = a(X;,Y;) and maximize the objective

max Z Z Am(i) (4)

i=1 j=1

known as the (linear) assignment problem. This combinatorial optimization problem (4) can be
solved exactly in polynomial time using linear programming and the Hungarian algorithm [Mun57],
or through optimal transport by lifting the matchings to the space of probabilistic couplings [PC*17]
where the Sinkhorn algorithm has allowed researchers to to process this problem in near-linear
time [Cutl3, AWRI7]. A statistical model for the assignment problem was proposed in [CDI6,
GMD22| where it is assumed that X" and Y™ share a subset of observations corrupted with additive
noise. When X™ and Y™ are the set of vertices in a bipartite random graph, the sharp statistical
properties of (4) have been established in [DWXY23| for a planted matching problem.

Graph matching and quadratic assignment Another fundamental instantiation of dataset
alignment is through graph matching, which is closest to our covariance alignment model. Based on
X™ and Y™, form two similarity matrices A, B € R%*? over the features, treat them as weighted
undirected graphs, and aim to find a permutation m € Sy such that A™ =~ B. This is usually done
by solving the following combinatorial optimization problem

d d

max ; ; Ar(iym(i) Bigo (5)
This is an example of the quadratic assignment problem (QAP) [KB57], “one of the most difficult
problems in the NP-hard class” [LAABNT07|. This tantalizing difficulty has driven researchers to
explore specific instantiations of QAP that are potentially easier to solve. Perhaps the most famous
one is graph isomorphism which is strongly believed to not be NP-complete. Another route to solve
this problem in polynomial time is to consider random instances of QAP. Most noticeably, a recent
line of research culminating with [MWXY23, MRT23| has investigated the alignment of correlated
Erdés-Rényi random graphs from both the statistical and computational perspective.

Although the QAP in (5) has appeared in the graph matching literature [HM23, WXS22]|, our
covariance alignment model differs from the above graph matching papers in two aspects. First,
under our Gaussian covariance model, the matrices ¥ x and Xy being aligned are Wishart random
graphs, departing from the traditional Erdoés-Rényi, Wigner, or random geometric graphs. Second,
and more important, all above works assume a known distribution of the random matrices (A, B).
In contrast, our covariance alignment model treats the true covariance ¥ as an additional nuisance
parameter, and we need to estimate the marginal distributions of 5 x and f]y. To the best of our
knowledge, the statistical problem of estimating 7 in this setting has not been explored.

Gromov—Wasserstein distance The Gromov-Hausdorff distance [GKPS99| from metric geom-
etry gives us yet another perspective on the quadratic assignment objective (5). Consider two
finite metric spaces given by their d x d pairwise distance metrics, A and B respectively. The
Gromov-Hausdorff distance between these two metric spaces can be defined as

do(A, B) i= min max |Ai; = Briye(y)| -



Using an idea from optimal transport, Mémoli [Mém11]| proposed the Gromov—Wasserstein distance
using a double! relaxation:

d d
diw(A, B) := Pé%iPn(d) Z Z Z ZPiijl(Bz’k —Ap)?.

Note that the above optimization problem is equivalent to

max (PAP', B). (6)
PeBP(d)

The above formulation (6) is equivalent to the quadratic assignment (5) for PSD A, B > 0 and has
received significant attention from the optimization community with various algorithms ranging from
Frank-Wolfe [FPPA14, FCGT21] to alternating linear programs [Mém11] and alternating Sinkhorn
updates with entropic regularization [SPKS16,SVP21|. Some progress has been made in studying the
convergence of GW optimization |[LTK 22, LTK 23] and exact recovery of matchings for Bernoulli
graphs [LFFT15]. In parallel, the statistical community has also studied the statistical properties
of the Gromov—-Wasserstein distance; see [ZGMS22| and references therein. The setup of this line
of work is quite different from the one pursued in this paper: it consists in assuming that d points
used to form the distance matrices A and B are sampled i.i.d. from two metric measure spaces A
and B respectively, and the goal is to study the convergence of dgn(A, B) to dgu(A, B) as d — cc.

The precise objective (6) studied here has been applied to match feature covariance between
untargeted metabolomic datasets in [BSKR 23|, while its statistical properties are underexplored.
Our work presents the first statistical rates of estimation for GW in learning the matching between
two datasets by aligning their covariance matrices.

Additional literature on permutation estimation Finally, we remark that our work falls in
the broader line of work associated to permutation estimation. While more directly related to the
graph matching problem mentioned above, our technical derivations present similarities with other
statistical problems parameterized by a permutation. These include statistical seriation [FMR19],
regression with shuffled data [PWC17|, isotonic regression [PS22|, and noisy sorting [MWR18], to
name a few.

1.3 Notation

We use the following notations throughout the paper.

Scalars, vectors and matrices For d € N, let 1; denote the d-length vector of all ones. For
n €N, let [n] = {1,---,n}. Let S, be the set of all permutations over [n]. For 7w € S,, and A € R"*™,
let A™ be the n x n matrix with (A™);; = Ar()«(j)- Occasionally we also write A™ in equivalent
matrix forms as A™ = P, AP/, where P, is the permutation matrix associated with 7, formally
defined as (Py);; = 1(n(i) = j). For matrices A and B of the same size, let (4, B) = Tr(AB")
be their matrix inner product. For a matrix A, let ||Al|p = \/(A, A) be its Frobenius norm, and
| Allop = maxy|,=1 [[Av[|2 be its operator norm. Finally for two real numbers a and b, we use the
shorthand notation a A b := min(a,b), a Vb = max(a,b).

!The sup norm is relaxed to the squared Euclidean norm and the set of permutations is relaxed to the Birkhoff
polytope.



Information-theoretic quantities For probability measures P and () over the same probability
space, let Dkr,(P||Q) = [ dPlog(dP/dQ) and x*(P||Q) = [(dP)?/dQ — 1 be the Kullback-Leibler
(KL) divergence and x? divergence between P and @Q, respectively. For a random vector (X,Y, Z) ~
Pxyz, let I(X;Y | Z) = Ep,[DxL(Pxy|z||Px|z ® Py|z)] be the conditional mutual information
between X and Y given Z.

Asymptotics For non-negative sequences {a,} and {b,}, we write a,, = O(b,) whenever there
exists a numerical constant C' < oo such that a, < Cb,, for all n. Similarly, we write a, = Q(b,) if
b, = O(ay), and a,, = O(by,) or a, < by, if both a,, = O(b,) and b, = O(ay,).

2 Covariance alignment estimators

In this section we investigate the statistical performance of two estimators: the quasi maximum
likelihood estimator (QMLE) and the Gromov—Wasserstein (GW) estimator. In Section 2.1, we
introduce both the QMLE and the GW estimator. In Section 2.2, we establish the minimax rate-
optimality of both estimators. Despite a similar statistical performance, Section 2.3 discusses the
computational benefits of the GW estimator over the QMLE, supported by numerical experiments.

2.1 Estimators

We introduce the QMLE and the GW estimator separately.

2.1.1 Quasi Maximum Likelihood Estimator

The log-likelihood in the covariance alignment model is given, up to an additive constant, by

n

P.1Y;) 'SP 1Y),

1 m
{(m, %) = logdet(X71) — g X'x-
m+n P 1

which is concave in X1 and maximized at

m 5 n

S =
m-+n X m—+n

leading to the (profile) log-likelihood

m = 1
0() = sup (m, %) = —1 dt( Sy >)—1. 7
() s= sup (. %) = — log det (- Ey) (7
Due to the nonlinearity of the log det function, properties of the maximum likelihood estimator ob-
tained by maximizing (7) are difficult to establish. Instead, consider a quasi-log-likelihood obtained
as follows. Note that for that = ~ 7*, we have

m =~ n ~ ~

5 ) 2 S
m-+n X+m+n( Y) X

A first-order Taylor expansion of A — logdet(A) around ) x, yields
log det(A) ~ <f])_(1, A-—Syx) = (f])_(l, A) + const.

Hence N~ R )
(=% (Ey)™ ) + const.




Maximizing this approximation is equivalent to maximizing the quasi log-likelihood ¢ defined by

() = (Sy, (5%) 7). (8)
Consequently, our final quasi MLE 7MLE i5 given by
FOMLE — argmin RIME(7) .= (Sy, (£%) 7). (9)
TESY

This quasi MLE can also be viewed as a two-step estimator where we first estimate the covariance
as Y. &~ Yy and then plug it into the log-likelihood for .

2.1.2 Gromov—Wasserstein Estimator

The GW estimator aims to solve the quadratic assignment problem (5) in random graph matching,
with similarity matrices A, B given by the sample covariance matrices X x, Yy. Formally, the GW
estimator 76V is given by

~ ~ ~ ~ 2
7OW — argmax (X%, Yy ) = argmin RSLVYL(W) = HE} - ZYH . (10)
7€Sy neSy F

The name GW comes from the mathematical theory of optimal transport which lifts the problem of

permutation estimation to probabilistic couplings. Specifically, the GW optimization is performed
as

PW = argmax(PSy P, Sy),
PEBP(d)

where the maximization is over the Birkhoff polytope given by
BP(d) = {P € R Pl; =P 14 =14}. (11)

Since this is a convex cost in P, the maximizer PSW is one of the vertices of the Birkhoff polytope
which are exactly the set of permutation matrices Sy. Therefore, the relaxation to the Birkhoff
polytope is tight, while allowing for a broad diversity of continuous optimization algorithms unlike

the combinatorial optimization in (10).

Unlike the GW estimator, the objective for the quasi MLE defined over the set of permutations
cannot in general be relaxed to the space of coupling matrices. In fact, even for the limiting case
Yx = Xy = X with m,n = oo, von Neumann’s trace inequality gives

in(x, (M)~ > d.
félsff (X)) >

However, for the choice P = 11,41] € BP(d) of the coupling matrix, it holds that

vty 1,31

Py1pT v
< ) d d

which could be smaller than d for many covariance matrices ¥ (e.g. when ¥ = diag(1,1/2,---,1/2)).
This means that the minimizing coupling matrix may lie in the interior of the Birkhoff polytope.



2.2 Minimax optimality

Here we state the main results showing the minimax optimality of the quasi MLE and GW estima-
tors.

Theorem 2 (Upper bound for QMLE). Fiz § € (0,1). Assume that
mAn > co(dlogd+log(1/8)) and mn > cod(dlogd+ log(1/6))(d + log(1/9))

for a'large enough numerical constant co > 0. Then for every (n*, X) with |||, < 1, with probability
at least 1 — ¢ it holds that

~QMLE

HEW - ZW*

2 _ dlogd + log(1/3) N \/d(dlogd—i—log(l/d))(d—i—log(l/d))‘

F™ mAnN mn

Theorem 3 (Upper bound for GW). Fiz 6 € (0,1), and assume that
m An > dlogd+log(1/9).

Then for every (7*,X) with [|X]|,, <1, with probability at least 1 — & it holds that

2 _ dlogd +log(1/4) N \/d(dlogd +log(1/6))(d + log(1/5))

~Y
mn

HE%GW . Eﬂ_*
F mAnN

Integrating the tails over § € (0,1) we readily obtain the sample complexity upper bounds in
Section 1. Note that Theorem 2 holds under an additional condition on the product mn which
does not appear in Theorem 3; we believe this extra condition to be superfluous. It comes from
a technicality in our analysis that would be overcome using a concentration result for linear func-
tionals of inverse-Wishart random matrices. In absence of such a result, we perform a local Taylor
approximation instead. On the other hand, this condition remains necessary for either bound to be
meaningful so we do not pursue this question here.

The following minimax lower bound shows that the rates of convergence in Theorem 2 and 3
are tight.

Theorem 4 (Minimax lower bound). Given observations X™ ~ N'(0,£)®™ and Y™ ~ N(0, 7 )®",
the following minimaz lower bound holds: if m An > logd and mV n > d, there exists an absolute
constant ¢y > 0 independent of (m,n,d) such that

2 (dlogd /d3logd>
> Co + .
F mAmn mn
We note that the conditions mVn > d and m An > logd in Theorem 4 are not entirely superfluous:

they ensure that the minimax lower bound is no larger than ©(d), as | =™ — X7 ||2 = O(d) trivially
holds for every 7.

. ~ *
inf sup Ex HE” -7
T o sz, <1

2.3 Numerical experiments

Although the GW estimator and the QMLE are both minimax optimal, the GW estimator presents
significant computational advantages over the QMLE. The objective of the QMLE (9) is a general
quadratic assignment problem over the set of permutation matrices, and it is NP-hard to find a
constant approximation for QAPs in general [SG76]. In contrast, although the GW estimator (10)
is also NP-hard, the lifting to probabilistic couplings offers more computational flexibility in the

10
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Figure 1: Covariance alignment for structured Robinson covariance matrices ¥ € R?*? with i =
(1+i—j|)~7 and decaying off-diagonals for dimension d = 50. Here we compare the Sinkhorn GW
estimator to a classical Fiedler vector spectral estimator. Across all sample sizes n we find that
GW outperforms the spectral estimator and almost perfectly reconstructs the structured covariance
matrix at n = 1, 000.
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development of numerical heuristics as gradient information can now be used and potentially leads
to better convergence results empirically. This approach has been successfully leveraged in a variety
of contexts [SPKS16,PCT17]. As discussed above, the combinatorial optimization (9) for the QMLE
cannot be lifted to probabilistic couplings, for (9) is a minimization of convex functions and gives
a non-permutation after the lifting. In the experiments below, we optimize the GW objective (10)
over the space of couplings by adding a small entropic penalty (with penalty parameter e > 0) to
the cost and using Sinkhorn projections [SPKS16,PCT17, FCG'21]. At convergence, we round the
final coupling to the closest permutation matrix by solving a linear assignment problem; we call it
the Sinkhorn GW estimator. We also optimize both GW and QMLE objectives directly over the set
of permutation matrices using the commercial LocalSolver optimizer, a state-of-the-art local search
mixed-integer program solver [BEGN10)].

We begin with a structured covariance alignment problem where ¥ € R4 with d = 50 is a
Robinson matrix with decaying off-diagonals ¥;; = (14 i —j|)~7 for v = 0.1. In the experiment we
set m = n, and compare two estimators of 7*: one is the Sinkhorn GW estimator with e = 5 x 1074,
and the other is a classical spectral estimator [ABH98] which estimates the permutation 7 by
sorting the entries of the Fiedler vector (the eigenvector for the smallest nonzero eigenvalue) of the
unnormalized Laplacian matrix L = diag(fly 14)— Sy. We note that the second estimator crucially
relies on the Robinson structure of 3 where the Fiedler vector is monotone. Figure 1 displays
the visualizations for & X, Ey, and the permuted covariances for both estimators under two sample
sizes n € {500,1000}, and shows that the GW estimator achieves a smaller Frobenius loss than
the Fiedler vector estimator. In particular, it is strikingly visible that when n = 1,000, the GW
estimator almost perfectly recovers the structured covariance X.

We proceed with random covariance matrices ¥, and compare the Sinkhorn GW estimator with
the QMLE and GW estimators computed via LocalSolver. We generate random Wishart distributed
covariances ¥ ~ W;(Iy,d) with d € [10,103], choose various sample sizes m = n € [10,10°%], and
set € = 1/d? for the Sinkhorn GW estimator. Figure 2 displays the heatmaps of the mean squared
Frobenius losses (averaged over 1,000 experiments for Sinkhorn GW and 100 experiments for the
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Figure 2: Comparison of Sinkhorn GW, LocalSolver GW, and LocalSolver QMLE for covariance
alignment with random Wishart distributed covariances ¥ ~ W;(I4,d). Here we vary the sample
size m = n € [10,105], and the dimension d € [10,103] of the covariance matrix. Three heatmaps
show the mean squared Frobenius norm of these algorithms as a function of (d,n) averaged over
1,000 experiments for Sinkhorn GW and 100 experiments for the more time-consuming LocalSolver
estimators. We observe that the LocalSolver combinatorial search often achieves exact recovery for
small values of d, while only the Sinkhorn GW algorithm scales to high dimensions and attains the
minimax optimal scaling n = é(d3/ 2) for sufficiently large n.

more time-consuming LocalSolver estimators) achieved by all estimators for each (n,d) pair. We
observe that for small values of d, the combinatorial search performed by LocalSolver can often
achieve exact recovery (dark purple color) and result in smaller losses than the Sinkhorn GW
estimator. However, starting from moderate values of d (say d = 100), the LocalSolver combinatorial
search fails and outputs random results even for very large n. In contrast, the Sinkhorn GW
estimator still achieves vanishing Frobenius losses for large problems with d = 1,000, with a running
time on the order of several seconds. We also find that for sufficiently large n, the minimax optimal
scaling n = ©(d®?) (indicated by the black dashed line in Figure 2) holds for the Sinkhorn GW
estimator.

The above experimental results show that the Sinkhorn GW estimator is competitive for covari-
ance alignment both statistically and computationally. However, we do not have a formal proof that
the Sinkhorn GW estimator achieves the minimax rate in Theorems 2-4. We leave the statistical
properties of the Sinkhorn GW estimator, or more generally the construction of a polynomial-time
minimax optimal estimator, as outstanding open problems.

3 Proof of upper bounds

In this section we establish the upper bounds for both the QMLE and GW estimators in Theorem
2 and Theorem 3, respectively. Our high-level idea is to establish a high-probability lower bound of
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Ry n(T) — Ry (%) for both the QMLE and GW estimators: with probability exceeding 1 — 4,

y

holds for some properly chosen p(-). Since Ry, n(7T) — Ry n(7*) < 0 by definition of 7, solving the
above inequality will give the target upper bound of HE’T -

B (%) = Bnn(77) 2 p ([ 27 = 57

-
3.1 Upper bound of the QMLE

We first establish the upper bound for the QMLE and prove Theorem 2. In Section 3.1.1, we define
several good events which happen simultaneously with probability at least 1 — §. In Section 3.1.2,
we condition on these events and derive a deterministic lower bound of RTQR%LE(%\QMLE) - R%%LE(W*).
In Section 3.1.3, we prove a useful trace-Frobenius inequality which relates the above lower bound
to the final Frobenius norm.

3.1.1 Good events

Without loss of generality, throughout our proof we assume that 7* = Id; by swapping the roles of
X™ and Y™ we also assume that m > n. Denote 7MLE by 7 for notational simplicity. The good
event G that we will condition on afterwards is defined to be the intersection of events G = £1NENE3,
where

S-1\7 _ -1

£ = {@y, SR - S50 > (2. (S5 - 55

oy DB LoB/0) apa (say7 — Syme| f "

&y 1= {<2—1 D YRR YIS YRt SN IS0 Yt I St YLD YU 3)

_c\/dlogd+log(1/6) “2*1/22%_12*1/2 _ IdH }7 (13)
F

) Opgmin{q/aH_ling(l/é),;}}. (14)

Here ¢ > 0 is a numerical constant chosen in the following lemma.

&y = { HE*WEXE*W T

Lemma 1. There exist absolute constants c¢,co > 0 independent of (n,m,d,d) such that, if m >
n > co(dlogd +log(1/4)), it holds that P(G) > 1 — .

Proof. We show that P(&;) > 1 — /3 for all i = 1,2,3. For &, first consider the scenario where 7
is replaced by any fixed m € Sg; we denote the resulting event by &£ (7). After conditioning on X™,
the Hanson—Wright inequality in Lemma 11 tells that P(&1(m)) > 1 —§/(3 - d!) for any fixed =, for
a large numerical constant ¢ > 0. Since Nreg,E1(m) C &1, the union bound yields P(&) > 1 —46/3.
The analysis of & follows from a similar application of the Hanson—Wright inequality to ) X-
Finally, the lower bound of P(&3) follows from the concentration of the sample covariance matrix,
cf. [RH15, Theorem 5.7]. The upper bound 1/2 could be ensured by m > ¢o(dlogd+log(1/6)) and
a sufficiently large constant cg. O

The specific form of the good event G is motivated by the calculation of R%%LE(%) - R%%LE(Id)
in the following section.
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3.1.2 Lower bound of the loss difference

Throughout this section we condition on the good event G defined in (12)-(14) and prove a deter-
ministic lower bound of RQMLE( ) — RQMLE(Id) Specifically,

RQMLE( ) RQMLE(Id)
@ & S-1F_e-
= Sy, (Ex)T - 2%

(b) SR dlogd + log(1/4) 7 oo
> (2, (S5) —2X1>—\/ 0D |1z (siy7 - S5

n

=R

Here (a) follows from the definition of the empirical loss in (9), and (b) is due to the event &; in
(12). Deferring the analysis of the remainder term R; for a moment, we continue to lower bound
the main term as

(=, EXT -5 = &7 -5
SO SR J10 Vh I IR0 SRS b Yau¥ 0 SRS S5V Yt SNENG SORRED )15 St SRt B 3 T O 3 N Do)
=:Ro

@
> (0 —nn) - \/dlogdﬂog = HE V2T e gy 4 R
m

Here (c) is motivated by the approximation f])_(l ~ Y4 e T - Sx)0 L if Sy & % this step
linearizes the dependence on X x. As a result, (d) makes use of the event & in (13).
The remainder terms R; and Ry are bounded in the following lemma.

Lemma 2. Under the event & in (14), it holds that

Ry < |[2V2(2 )2 - g+ aevd d +log(1/8)
m
Vd(d +1og(1/4))

’RQ’ S 202 .
m

HE 1/22# —1/2 . Id”
F
Plugging Lemma 2 into the previous lower bound yields

RQMLE(%) o R%"VTLLE(ICI)

S St _C\/d(dlogd—i—log(%cjj)(d—l—log(l/é))

B C\/dlogd +nlog(1/5) “21/2(2—1)%21/2 N Ide (15)

L (\/dlogd+log(1/5) . \/&(d+1og(1/5))> "2,1/22%,12,1/2 - IdHF’

m m

for some absolute constant C' > 0 independent of (n, m,d).

3.1.3 A trace-Frobenius inequality

Based on (15), the remaining question is to relate the Frobenius norms in (15) to the inner product
<E”71 — %, %71, Roughly speaking, for the matrix A = yo12yiTin-12 14, the Frobenius norm
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|Al|p corresponds to the Ly norm of its eigenvalues, and the inner product (T o nh = Tr(A)
corresponds to the sum of its eigenvalues. Although ||Al|p < Tr(A) holds for PSD matrices A > 0,
this inequality may break down if some eigenvalues of A are negative.

To this end, we present a useful technical inequality in the following lemma.

Lemma 3. Let x1,--- ,xq4 > 0 with H;i:l x; = 1. Then
d d d 2
-1 <4 (wi—1)+ (Z(xi - 1))
i=1 i=1 i=1
The usefulness of Lemma 3 lies in the following application: let x1,--- , x4 be all eigenvalues of

2_1/22%712_1/2, then z1,--- ,z4 > 0, and Hglzl T; = det(Z%fl) det(X71) = 1. Therefore, we arrive
at the following corollary, which we term as a trace-Frobenius inequality.

Corollary 1. For positive definite 33, the following inequalities hold:

~ 2 ~ ~
HE—1/2E7F 12—1/2 - IdHF < 4(<E7T 1 o Z,E_1> + <Z7T 1 o 272—1>2)’

~ 2 ~ ~_
"21/2(2*1)7(21/2 _ IdHF < A((X7 o 27271> + (27 o 27271>2)'
By (15) and Corollary 1, we conclude that
ROMLE(R) — RAMLE(1) > (1 —w)(ZF -, 271) - u\/m*l —u, 21—y (16)

where

n m m

w— 90 (\/dlogd+log(1/6) N \/dlogd+log(1/5) N ﬂ(d+log(1/5))> |

v_C\/d(dlogd+log(1/6))(d+log(l/é))

mn

By our assumption m > n > cy(dlogd + log(1/9)) and mn > copd(dlogd + log(1/6))(d + log(1/4)),
choosing a large enough numerical constant ¢y > 0 ensures that u,v < 1/2. Moreover, by definition
of 7 = #MLE we have RS,M‘E(%) - R%%LE(Id) < 0. Hence, by (16) and Lemma 13, we conclude

that
2
(=7 -z, < (ﬂu i \/Z) < 4wt Vo)? <80 +0). a7)

From (17) we are ready to prove Theorem 2: conditioned on G,

~ 2 1 2 (a)
|=* - = == - =], <
F F

(b) 71 -1 71 —1,\2
<AETT -5, 2TH+(ET —x,57h?)

‘2—1/22%712—1/2 o IdH2
F

(é) 288(u? + v)
@, (dlogd +log(1/d) \/d(dlogd +1log(1/6))(d + log(l/é))) |

n mn

where (a) is due to the assumption [|X|,, <1, (b) uses Corollary 1, (c) follows from (17) and that
u?+v < 1, and (d) plugs in the definition of (u,v) and uses m > /mn > v/cod(d +log(1/6)). Since
P(G) > 1 — § by Lemma 1, this proves the upper bound of Theorem 2.
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3.2 Upper bound of the GW estimator

Now we establish the upper bound for the GW estimator and prove Theorem 3 using similar
arguments as in our proof for the QMLE. Again, in Section 3.2.1 we define the good events, and
in Section 3.2.2 we condition on the good events and derive a deterministic lower bound of the loss
difference RS@Y\T/L(%GW) - R%‘%(ﬂ'*).

3.2.1 Good events

GW

As before, without loss of generality we assume that 7* = Id and refer to 72" as 7 for notational

convenience. We condition on a good event G = & N & N &3 defined as the following intersection:
£ = {@y, Sx - (Ex)) > (8. 5x - Ex)F)

B C\/dlogd—l— log(1/9) Hzl/z@X B @X)%)El/zHF }’ (18)

n

Eo = {@, Sy - (Ex)T) > (8,5 - ¥7)

B \/dlogd+log1/6 HEl/QZ o7 21/2”} (19)
gy o= { B - @, <[5 57 + oy AT B, 20

Here ¢ > 0 is a numerical constant chosen in the following lemma.

Lemma 4. Let m An > dlogd + log(1/d). There exists absolute constant ¢ > 0 independent of
(n,m,d,d) such that P(G) > 1 —9.

Proof. The high probabilities of events &1, & follows from similar applications of the Hanson-Wright
inequality as in the proof of Lemma 1. For &3, applying the triangle inequality twice yields

[ = @7~ -

<o - <253,
F F F
where in the last step we have used the permutation invariance of the Frobenius norm. Since

)

Sx-3| <z
|Ex -2, < 1=l N

—1/2§ 5172 _IdHF < @‘)2—1/22)(2—1/2 s

the rest of the proof follows from (14) and Lemma 1. O
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3.2.2 Lower bound of the loss difference

Again, we condition on the good event G defined in (18)-(20) and prove a deterministic lower bound
of R%VYz(%) - R%Yyl(ld). We begin by writing

RSW (#) — R (1d) @ 2(y, S — (Sx)7)

®_ s s s dlog d + log(1/6 S,
R e e i

=Ry

© _ N
> 2<E,E o Z7r> . 20\/dlogd+nlog(1/5) Ry + HZl/Q(Z _ 7 1)21/2HF

=:Ro

- 2
(&) ’ $F EHF B 26\/dlogd—i—log(l/5) (Ri + Ry).

n

Here (a) follows from the definition of the empirical loss in (10), (b) is due to the event & in (18),
(c) is due to the event & in (19) and m > n, and (d) uses the identity
25,5 - 5F) = |3IE + =

~ ~ 2
— (%, TF) = ‘ SF EHF

2
F

Next we upper bound the remainder terms.

e The remainder term R;: by the event & in (20) and [|X]|,, < 1, it directly follows that

op —

d(d + 1og(1/9))
ey

m

Ry < [[%]l,p

S S

e The remainder term Rp: by the permutation invariance of the Frobenius norm, and by [|X]|,, <
1 again, we have

Ry < ||Z],, ‘E—E%‘IH < HE_E?‘I - Hz—zﬁ .
F F F
A combination of the above displays tells that
- 2 ~
RSW (7) — RSW (1d) > ’E”—ZHF—UHZW—ZHF—U, (21)

where

u:C\/dlogd—i-log(l/&)’ U:C\/d(dlogd+10g(1/5))(d+10g(1/5)))

n mn

)

and C > 0 is an absolute constant independent of (n, m,d).
Finally, by definition of # = 7V we have an\’\,’z(%) - an\%(ld) < 0. Hence, by (21) and Lemma
13 we conclude that when conditioned on G,

~ 2
Hz” - zHF < (u+ Vo) < 2(u2 + )

0 (dlogd +log(1/) | \/d(dlogd +1og(1/8))(d + 1og(1/5))) |

n mn

The above inequality together with P(G) > 1 — ¢ in Lemma 4 completes the proof of Theorem 3.
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4 Proof of lower bounds

In this section we prove the minimax lower bound in Theorem 4, and by symmetry we assume that
m > n. We use an information-theoretic argument: after specifying the prior distribution on (3, 7*)
in Section 4.1, we invoke Fano’s inequality and upper bound the mutual information I(7*; X, Y™)
in Section 4.2. The proof of the mutual information upper bound consists of three steps:

1. By the variational representation of the mutual information, we first reduce the weak recovery
of 7 to the detection of ¥. This step is similar to [HM23, WXS22];

2. By the superadditivity of the KL divergence between a stationary process and an iid process,
we reduce the mutual information to the case with an equal sample size, where we also have
m observations from Y

3. By passing to the x2-divergence, we carry out the second moment computation of the likelihood
ratio and derive the final upper bound of I(7*; X™,Y™).

4.1 Construction of the prior

To prove a Bayes risk lower bound, we impose the following prior distribution on (X, 7*). The choice
of the prior on 7* is natural: we simply take 7* ~ Unif(S;) to be a uniformly random permutation.
As for the prior distribution over ¥, we set

1

with some parameter

VRS (O, 2611\/;) (22)

to be chosen later (here ¢; > 0 is an absolute constant appearing in Lemma 5), and a random matrix
S ~ Unif(Sp). The set of matrices Sy is constructed so that the following three properties hold:

1. It is a subset of symmetric Rademacher matrices, i.e. Sg CS 2 {S € {£1}%*¢. 8 =8T};
2. Every matrix in Sp has a small operator norm: |[S||,, < c1Vd for all S € Sy;

3. Different permutations to a matrix in Sy give different matrices: for all S € Sy and w1, w0 € Sy
with % 1(m1 (i) # m2(i)) > d/10, it holds that [|S™ — S™||Z > cod?.

Note that the choice of i in (22) and the second property of Sp ensure that [|X||,, <1 almost surely.
The next lemma shows that Sp can be constructed as a sufficiently large subset of S.

Lemma 5. There exist absolute constants ci,ca,dy > 0 such that the following holds: if d > dy,
there exists some Sg C S such that all the above properties hold, and
[Sol 1

S| =2
We proceed to lower bound the Bayes risk under the above prior, and to this end we introduce the
(generalized) Fano’s inequality. Consider a general scenario where 6 € O is an unknown parameter,
the learner observes X ~ Py, and L : © x A — R, is a non-negative loss function with a generic
action space A. The following lemma presents a general lower bound of the Bayes risk.
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Lemma 6. Let w be any probability distribution over ©. For any A > 0, define

pa =supm{f € ©: L(f,a) < A}.
Then for 8 ~ m, the following Bayes risk lower bound holds:

. 1(6; X) + log 2
inf E.Eg[L(0. 7(X))] > A (1 _ )

log(1/pa)

Lemma 6 was essentially proved in [DW13,CGZ16], and for completeness we include the proof
of the above form in Appendix C.2. To apply this lemma, we will choose 8 = 7*, so that Py« is the
mixture distribution Ex[A(0,X)®™ @ A (0, ™ )®"]. The loss function L(7*,7) is defined as

*

ILMI 3

. 12
ST — 87| .
F

2 2
:n—min

L(m*,7) = min v 1 in

 2=(I4415)/2:5€80

(23)

The next lemma provides an upper bound on the quantity pa used in Lemma 6.

Lemma 7. Let the loss L be given in (23), and pa be defined in Lemma 6. Then for A = can?d? /4,
it holds that pa < d=%, where c3 > 0 is an absolute numerical constant.

By Lemma 6 and Lemma 7, as well as the definition of L in (23), we have

E [Hzﬂ* _¥F (24)

con?d? {— I(m*; X™ Y™) + log 2
c3dlogd '

2
F] > E[L(r*,7)] >
It remains to upper bound the mutual information I(7*; X™,Y™), which is deferred to Section 4.2.

4.2 Upper bounding the mutual information

In this section we aim to prove the following upper bound of mutual information:
I(m*; X™, Y™) < egmin {nd*n?, mnd*n* + 1}, (25)

where ¢4 > 0 is an absolute constant independent of (n,m,d,n). We first show that (25) implies
the desired minimax lower bound in Theorem 4. To see it, we choose

o ma logd (logd 1/4
= X
=6 nd * \'mnd

with a small absolute constant ¢ > 0, then Theorem 4 is a direct consequence of (24). Also note
that since m > d and n > logd, our choice of 7 satisfies the constraint in (22).

In the rest of this section we prove (25). The O(nd?n?) upper bound essentially corresponds to
the known covariance case where m = oo, and is easily established in the following lemma.

Lemma 8. Regardless of the value of m, it always holds that

Tld27]2
5

I(r* X™Y"™) <

In the sequel we establish the O(mnd?n* + 1) upper bound.
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4.2.1 Reduction to the case m =n

We first prove an upper bound of I(7*; X™,Y™) which no longer involves 7*; the high-level idea is
to relate the recovery of 7* (under the loss L(7*,7)) to a detection problem of telling if X™ Y™ are
i.id. drawn from N (0, I;/2). To this end, we write

I(7 X™Y™) =1(n5 X™) + I(75 Y™ | X™)

@ sy xm)

® Exm q+ [DKL(Pynjmr, xm [|N(0,13/2)%™)] — Exm [Dgr(Pynxm||N (0, 13/2)%™)]

S Exmm—* [DKL(PY”‘ﬂ'*,Xm HN(O, Id/2)®n>]

(c) i i n

@
= Exm[DKL(Pznxm[IN(0,13/2)%™)].
Here (a) is due to the independence between 7* and X™, (b) follows from simple algebra (this

step is also known as the variational representation of the mutual information). In (c), we define a
bijection ™ : R — R? with

O™ (Y1, Ya) = W10 > Yrn)-1(d))-

This definition is also extended in the natural way to (R%)" as ®™ (Y1, --- ,Yy) = (®™ Yy, -+, &7 Yy,).
Clearly ®™ is a bijection, so (c) holds. As for (d), we introduce an auxiliary sequence of random
vectors Z1, Za, - - -, which conditioned on ¥ are i.i.d. drawn from N (0,X). Since 7* is independent of
X™, it is clear that (P;ZZPYanm = Pzn|xm. In addition, @;*N(O,Id/2)®” = N(0,1;/2)®" trivially
holds, so we arrive at (d). Note that the final expression no longer depends on 7*.

In the second step, we note that Pyn|yxm = Ex)xm[Pznx] is a mixture of product distributions
and therefore exchangeable. Meanwhile, the second argument A(0,1;/2)®™ in the KL divergence
is a product distribution. This structure enables us to prove the following lemma and reduce two
parameters (m,n) to a single parameter m.

Lemma 9. Let (Z1,Z3,---) be a stationary process and Q be an arbitrary distribution. Then the
sequence a, = Dk (Pzn||Q%") satisfies that {an+1 — an} is non-decreasing, i.e.

ap <az—ay <az—az < -
In particular, if m > n, then ay/m > ap/n.
Consequently, we proceed the upper bound as

I(7* X™, V") < Exm[DkrL(Pgn xm [N (0, I4/2)%™)]

(e) n

< —Exon [Dkr(Pzm xm [N (0, 13/2)%™)]

2 L (D (P zm N (0, 1/2)7C™) — Dy, (Pxn N0, 14/2)°™) )

n
< EDKL(PMZmHN(o,Id/2)®<2m>),

where (e) follows from Lemma 9 and m > n, and (f) is the chain rule of KL divergence. In summary,
we have shown that

I(7 X™,Y™) < — Dyp, (Ex[N(0, £)2C™]||N(0, 1;/2)23™). (26)

3=
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Note that in (26) we essentially reduce to the case with equal sample sizes. Without this reduction
we would only have I(7*; X™ Y™) < Dk, (Ex[N(0,X)2F™]|N(0, I;/2)®™+™) which could be
shown to be loose compared with the target upper bound in (25).

4.2.2 Second moment method

Based on (26) we further have

1 XY € g1 2 (ES (0, 2PN (0, 14/2)2))

which follows from Dy, (P||Q) < log(1+ x?(P||Q)). Now to bound the x2-divergence we derive the
following lemma based on the standard second moment computation (cf. [FRW15, Appendix Al)

which we prove for completeness in Appendix C.6.
Lemma 10. Let g be a symmetric matriz in R indexed by a random variable S ~ . Further

assume that 0 < Xg < 214 almost surely. Then for p € N, we have the identity

D
2

(Es[N(0,2)%P] N (0, I)%P) + 1 = Es.z [det (I (s D)(Sr — I))

where S, T ~ p are independent.

Using Lemma 10 we can write

log(1 + 2(Ex[V (0, £)C™] A (0, 1,/2)2™)) L log g rldet(Iy — n>ST) ™),

with 7" being an independent copy of S. Here (b) applies Lemma 10 to ¥g = I;+nS, where we have
also used the invariance of the y2-divergence with respect to bijections. The condition of Lemma
10 is fulfilled thanks to 7 < 1/(2¢;Vv/d) from (22) and 1Slop < c1v/d from the second property of
So-

To proceed, let Aq,- -, Ay be the (positive real) eigenvalues of ST, and we write

d
Esr[det(Iy — n*ST)™™] = Eg 1 [exp (—mz log(1 — n2)\i)>]
i=1

d
exp (—m Z(—n%\i — 774/\12)>]

=Egr {exp <mn2<5, T)+ m774 HSTH%H

(d)
< exp(c%md3n4) -Egr [exp (m?72<5’, T))]

(c)
< Esr

where in (c) we have used that

1 \? 1
Sllop 1T]lop < ~
) I8l Il < 5

n? Al < <
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from (22) and the second property for Sy, as well as log(1+x) > z — 22 for all |x| < 1/4; (d) follows
from [|ST|p < [[Sllop IT]lF < c1d3/? almost surely. For the remaining quantity, we have

181

2
. 2
|SO|> IlE’S,TwUnlf(S) [exp (mﬁ <Sa T>)}

Esir [exp (mn*(S,7))] < <

(e) d
< 4Eg 7 unit(s) |exp | mn® Z SiiTii + 2 Z Sii T
=1 1<i<j<d

() 1
< 4exp <2m2n4d + 2m2n? <C2i>> < 4exp(m?ntd?).

Here (e) follows from Lemma 5, and (f) makes use of the independence and 1-subGaussianity of the
Rademacher random variables. Piecing everything together gives that

I(x*; X™,Y") = O (mnd®n* + nd®np* + 1) = O(mnd®n* + 1),

where the last step is due to our assumption m > d. This proves the second upper bound in (25).

5 Discussions

5.1 Other notions of minimax risk

. : ~ _
Instead of using the squared Frobenius norm HZ” -7 HF over the parameter set {X = 0: [|X|[,, <
1}, one may also consider a normalized Frobenius norm

dNF,Z(W*7 %) — H(Eﬂ-*)fl/Z(E%\ - Eﬂ'*)(zﬂ'*)fl/2HF , (27)
as well as another parameter set based on the trace:
YR):={2>0:Tr(X) <R}, R>0. (28)

Note that dypx in (27) is closely related to the total variation distance TV (A (0,%7), N'(0,%™"))
for density estimation (cf. [DMR18, Theorem 1.1]), and (28) uses an ¢; ball (instead of /) of the
spectrum of the covariance ¥ to promote sparsity. The following theorem summarizes two different
minimax risks over X(R).

Theorem 5. Let R > 0, d > 2, and m > n be fized sample sizes. Then

2 R2
= — (29)

inf sup E(re ) HZ% -y =

® rreSyTeS(R)

and the GW estimator achieves this upper bound. If in addition n > codlogd and mn > coy/d3 log d
for a sufficiently large numerical constant co > 0, it holds that

N dlogd d3logd
iI}f sup E(”*ﬂ) [dNF,E(ﬂ-*v 7T)2] = o8 + o8 ) (30)
T rreS.,5eX(R) n mn

and the QMLE achieves this upper bound.
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Lemma 5 shows that if we have the constraint on the trace instead of the operator norm, the
minimax Frobenius risk in (29) coincides with the minimax Frobenius risk infg supsy, Hi — Y| of
estimating the covariance matrix ¥ using n observations. In other words, under the trace constraint,
the minimax optimal estimator essentially needs to estimate the nuisance parameter . This is
because the hard instance of ¥ under the trace constraint has a very sparse spectrum: only O(1)
eigenvalues of 3 are non-zero. This essentially reduces the dimension of the problem to d = O(1),
and therefore saving a poly(d) factor in the minimax risk becomes vacuous. We also note that the
GW estimator remains minimax rate-optimal in this scenario.

We could circumvent the above problem by considering a different loss. By using the normalized
Frobenius norm dnp y, in (27), the minimax rate in (30) of Theorem 5 coincides with the minimax
rate in Theorem 2 — 4 again, even if X has a sparse spectrum. Therefore, our main result in this
paper is not an artifact of considering a special family of covariance matrices.

5.2 Comparison with orthogonal statistical learning

One particular feature of covariance alignment is that the dimension (< d?) of the nuisance param-
eter X is much larger than the counterpart (< d) of the target parameter 7*, and the minimax rate
takes a semiparametric form that interpolates between the rates for covariance estimation and per-
mutation estimation with known covariance. This feature shares some similarities with the classical
semiparametric statistics [BKB™ 93| or more recently orthogonal statistical learning |[CCD T 17,FS23],
where a typical result is that the parametric rate can be achieved for the target parameter even if
the nuisance is estimated with a slower rate. The semiparametric analysis typically relies on the
Neyman orthogonality condition [Ney59| or its higher-order counterparts [MSZ18|. Specifically, let
r7 be an achievable rate of convergence for estimating the target if the nuisance were known, and
rn be an achievable rate of convergence for estimating the nuisance. Then under the Neyman or-
thogonality condition, the rate of convergence for estimating the target under an unknown nuisance
is shown [FS23] to be O(rr +1%), or even O(r + 7y if a certain strong convexity condition is met.

We illustrate our main distinction from the above line of research. First, the Neyman orthogo-
nality condition does not hold in our problem. For example, the GW estimator uses the loss function
{(y; P,$) = —y T PXPTy in the sense that PSW = argminpepp(q) LS (Y5 P Sx), while

E[VpVsl(Y; Pre,X)] = E[Vp(~P yy ' P)|p—p ] = ~Vp(P' P=SP.LP)|p—p_. #0.

Second, instead of using a Taylor expansion to decouple the target estimation and nuisance esti-
mation, we crucially make use of the specific form of the nuisance estimator when used for target
estimation. This point can be rigorously established by comparing with the following oracle model.

Under an oracle model, we still observe the sample Y™; however, instead of observing the other
sample X™, now we have access to an oracle which outputs a covariance estimate im. The only
property we know about 3, is that ||, — Yllop < v/d/m almost surely. This would essentially be
the case if f)m were the empirical covariance computed from X" in the original observation model,
while under the oracle model it is unknown if 3, is unbiased and Jor Wishart distributed. We note
that the statistical guarantees of orthogonal statistical learning [FS23] only rely on such a weaker
oracle model for the nuisance estimation.

In covariance alignment, however, we prove the following theorem stating that the minimax rate
of convergence for estimating n* is strictly larger under the above oracle model.

Theorem 6. For m > n > dlogd, under the oracle model it holds that

~ <12 dlogd d?
inf sup Esx; HE” -r o8 + —.
T oar g, <1 F n m

~
—~
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In addition, the GW estimator (with f]X replaced by ﬁm) achieves this upper bound.

By a simple AM-GM inequality, the above rate is no smaller than the minimax rate in Theorems
2-4 under the original observation model. In particular, if m = n, the sample complexity for
consistent estimation increases from n = ©(y/d?logd) to n = ©(d?) in the oracle model. Theorem
6 shows that, the nuisance estimation error ©(d2/m) for ||Zy, — 3||% is an unavoidable price to pay
in the oracle model. Therefore, one cannot hope to fit the covariance alignment model using only
the orthogonal statistical learning framework; instead, our proof in Section 3 relies on the Wishart
distribution of & x to prove a high-probability curvature property of the empirical loss. We note
that both the oracle model and our finding in Theorem 6 are similar to in spirit to [BKW23] for
several nonparametric functional estimation problems.
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statistics at MIT IDSS. Philippe Rigollet is supported by NSF grants I1S-1838071, DMS-2022448,
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A Auxiliary lemmas

The following lemma follows from the well-known Hanson—Wright inequality [HW71, Wri73].

Lemma 11. Let X1,--- , X,, € R% be i.i.d. random vectors, with independent zero-mean 1-subGaussian
coordinates. Then there exists an absolute constant C' > 0 independent of (n,d) such that, for every
symmetric matriz A € R and § € (0,1),

1~ 7 T log(1/4) log(1/5)
P(n;XZ AXzZE[X AX]—C( T“A"F+T“A“Op 21_5

In particular, whenever n > log(1/9), it holds that
1< log(1/6)
P{—) X AX; >E[XTAX] - 20\ =2 Az | > 1-4.
B E

Proof. For the first statement, let X (™ € R™@ be a long vector via the concatenation of X1, - -, Xn,
and A € R"*nd he the matrix with n repeated appearances of A /m in the diagonal. We have

1 3O X AX; = (X)T A0 x (),
mn

=1

and HA(”) HF = ||Allp /7, || AT Hop = ||Al|op /- Now the first statement follows from the standard
Hanson-Wright inequality (cf. [RV13, Theorem 1.1]). Since [|A[,, < [|Al|f and log(1/d)/n < 1, the
second statement directly follows. O

The following inequality appears in [DMR18, Page 4|, which was stated without proof. For
completeness we include a proof here.

Lemma 12. If ¥ € R¥*? s q positive definite matriz then

min(1, |[X~! - IHF)
min(1, [[X = I|g)

IN

1
— <2 1
; < ()
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Proof. We only prove the upper bound, as the lower bound is entirely symmetric. Also note that the
upper bound holds trivially when ||¥ — Iz > 1/2, so in the sequel we assume that ||¥ — Iy < 1/2.
Let A1,---, Aq > 0 be the eigenvalues of ¥ (with multiplicities). Since ||¥ — Iy > max;e(q [Ai — 1],

we have A\; > 1/2 for all ¢ € [d]. Therefore,

d 2 d 9
. — _ 2 1 ()\Z — 1)
min(1, |2 1_ [HF)2 < HZ 1_ IHF — E ()\Z — 1) = E v

i=1

d
<4y (N —1)* = 4|~ I||f = 4min(1, | £ - 1||p)?,
1=1

which is the claimed upper bound.
The following lemma is a simple quadratic inequality which will be useful in the proof.
Lemma 13. If x € R, satisfies ax? < bx + ¢ for a,b,c > 0. Then x < g + \/g

Proof. 1f ax > b+ \/ac, then

a,xQ—b:):—C—(ax—b)x—c>\/%-\/E—C—O,

a contradiction.

B Deferred proofs in Section 3

B.1 Proof of Lemma 2

We first deal with the term R;. By triangle inequality,
R < Hzl/Z(i;(l)ﬁzl/? _ IdHF v HZl/Qi;(lzl/Q _ IdHF.
Under &3, the second term could be easily upper bounded by

“21/223(121/2 - IdHF < \/&HEI/QEI;(}EI/Q s

op
HE—1/2§XE—1/2 s

(a)
< Vd

. op
1 Hzflﬂixzfl/? yy

op
(b)
2 oevd. d + log(1/9)

m

(33)

Here (a) follows from [|A~! — IHOP <|[A-1Il,,/(T=|lA—1I],,) as long as |A — I||,, < 1; the last
condition is fulfilled by the event &3 in (14). Step (b) directly follows from the event & in (14).
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The upper bound of the first term is slightly more involved. By triangle inequality,
“21/2(2}1)%21/2 _ IdHF _ H(21/2]3%2—1/2)(21/22)}121/2)(2—1/2]37;21/2) - IdHF
< H(El/QP/ﬁZ_l/Q)(2_1/2P3T:|—21/2) o IdHF

I H(21/2]3%271/2)(21/22)}121/2 - Id)(zfl/QP%TEUz)HF

(2 ‘21/2(271)%21/2_161” +H21/2P%271/2 2
F o

‘21/25\3)—(121/2 _ IdHF
@ “21/2(2—1)%21/2 7IdHF i “21/225(121/2 _ IdHF' (34)

Here (c) uses [[ABC|[p < [|Allop, [IBCllp < [[Allop 1 Bllg [Cllops
$1/2P-%71/2 and P: to conclude that HZl/QPﬁE_l/QHop =1
A combination of (32), (33), and (34) gives that

and (d) uses the similarity between

7 d+log(1/6
e o 7 R d+log(1/9)
F m
which is the first statement of the lemma.

As for Ry, we begin with an upper bound on the operator norm of
S2EH -2 — (B S HEY 2 = A7 A - 21,

where A 1= $-1/25n-1/2, By the definition of & in (14), all eigenvalues of A lie in the interval
[1—mn,14n|, with

d+log(1/6) 1
n—min{c 2+ ogll/o) og(1/ ),}
m 2
It is clear that all eigenvalues of A~! + A — 21, take the form A\™! +\ —2, with )\ being an eigenvalue
of A. For A € [1 —n,1+ |, we have
_1)2 2
1 (A=1) < N <202.d+log(1/6)'

—+A-2=
)\+ A ~1—-n" m

Therefore, we have established that

2 d+1log(1/8)

HEl/z _n-1 271(2 _ iX)Efl)Elﬂ < 9 (35)
op m
Consequently,
|Ro| = |(2 _1/2( Fomyn 2 n2E - nl - nl(n - SR sl
HE 12(5, w512 H21/2 oyl oy iy iX)E_l)El/ZHF
HE 1/2 27" )E 1/2 v . f"21/2 E;{l o 271 o 271(2 o iX)Efl)El/Q
op
(35) d +log(1/6 .
< 2 2 f( + Og( / )) E_l/zzw 12_1/2_IdH
m
This completes the proof of the upper bound on |Ra|. 0
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B.2 Proof of Lemma 3

Let S £ Z?Zl(xi —1). By AM-GM inequality we have S > 0.
We first prove an upper bound on max; x; in terms of S. For each i € [d], it holds that

1
d—1

d—1
Std=wi+y zp>e+@d=1)|[[e] =2+ g5
ji j#i i

As (1/2;)V/d=1) = g~ loa(@:)/(d=1) > 1 _Jog(x;)/(d — 1), the above inequality gives
S+1>ax; —logu,.

As the function x + h(z) £ x — logz is increasing on [1,00), and h(2S + 2) = 25 + 2 — log(2) —
log(S+1)>25+2—-1—5 =541, we conclude that z; < 2(S + 1). This inequality holds for all
i € [d], so max; z; < 2(S +1).

Next we introduce the following lemma, the proof of which is deferred to the end of this section.

Lemma 14. For z € (—1,r] we have that

.2172

log(1 <pr— —.
og(l+z) <=z 2 1)

Applying Lemma 14 with » = 25 4+ 1 gives

d d (i — 1)2 1 d
= ) log(z;) < i—) - e | =S - i—1)%
0 Z; og(@i) < Z; <(x ) 4(s+1)> M TIPS
which implies that
d

D (@i —1)? <45(S + 1),
=1

as claimed. m

Proof of Lemma 1. Define

flz)=x— ﬁ —log(1 + x).

We have

oz 1 z(r—ux)
r+1 2+1 (z4+1D(r+1)

fla) =1

which satisfies f'(z) > 0 for x € [0,7] and f/(z) <0 for € (—1,0]. Hence, f(x) > f(0) =0 for all
x € (—1,r], as claimed. O]
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C Deferred proofs in Section 4

C.1 Proof of Lemma 5

By the probabilistic argument, it suffices to show that by drawing a random matrix S ~ Unif(S),
the probability that S satisfies all three properties is at least 1/2. The first property holds trivially.
For the second property, it was shown in [Ver18, Corollary 4.4.8| that

P(||Slop > c1Vd) < 4exp(—cid)

holds for some absolute constant ¢; > 0 independent of d. By choosing dy > 0 large enough we may
ensure that P(|[S],, > c1Vd) < 1/4 for all d > dj.
For the last property, note that for fixed 71,72 € Sy, we have

|S™ — — PSP

2
spT - SH ,
F

7'1'1071'2 T10Ty

_HP P SPLPL SH ‘

where we have used that P-' = P_1 and Py, Py, = Pryor,- Let 7 =71 0 7T2_1 € S4. Note that

d
IS™ = SIF = > (Se(yn(i) — Sig)? =t X TAX,

ij=1

where X is the (d;rl)-dimensional column vector (S; j)1<i<j<d, and the matrix A is given as follows:
fori < jand k </,
2-1(i=k)—1(n(i) =k) — L(m(k) =1), fi=jk=24
0, ifi =73,k #Y,
Ay ke = § 41 = 17 (i), 7(j)) = (i,4) or (4,4)], it i # 4, (k) = (i, );
—2[1((7(2), 7(5)) = (K, £) or (£, K))

+1((w(k), 7(0)) = (i,4) or (3, 0)], it i 7 j, (k) # (i, 5)-

Clearly A is symmetric, and

By > agpmo
T 1<k<t<d
< max Z 4-1({k, 0} = {i, 5}, {x (@), 7(§)} or {w71(), 7 *(j)})

1<i<j<d
1<k<t<d

<12

As a result, we have

||A||0p > 1<m<ax ~4 Z ‘A(i,j),(k,é)‘ <12, (36)
=" 1<k<e<d

lAlF<4 > > |

1<i<j<d 1<k<t<d

<48 (d ; 1) — 24d(d +1). (37)
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In addition, whenever X% | 1(w(i) # i) = %, 1(m1(4) # m2(i)) > d/10, it holds that
d

= Y Awian =2 U@, () # (4,5), (5,1)
1<i<5<d 1,7=1
d
Z (w(i) # §)
d d2
=2(d-1)> 1U(r(i) #1) > o (38)
=1

With the help of (36)-(38), we are ready to prove a high-probability lower bound of ||S™ — S™2 H% =
XTAX. Applying the Hanson-Wright inequality (cf. Lemma 11) with n = 1 to X " AX, with prob-
ability exceeding 1 — 1/[4(d!)?] it holds that

IS™ — S™2|2 = X TAX > E[XTAX (\/dlog 1Al + (dlogd) || Al )
= Tr(4) - C (Vdlogd || Allp + (d1og d) 1A, )
> E —0 (\/dlog d+ dlogd) > cod?
as long as d > dy for a sufficiently large dg and a sufficiently small co > 0. Now applying the union
bound over at most (d!)? choices of (71, 72), we conclude that S satisfies the third property with
probability at least 3/4.

Finally, by a union bound again, with probability at least 1/2, the random matrix S satisfies all
three properties. This completes the proof of the lemma. O

C.2 Proof of Lemma 6

Fix any estimator 7". Let P be the joint distribution of (6, X') ~ m(0)FPy(x) under the Bayes setup,
and Q be another joint distribution of (6, X) ~ 7(0)Q(x), where 6 and X are independent. Here
@ is an arbitrary probability distribution over X'. Consider a map ® : © x X — {0, 1} defined as
®(0,2) = 1(L(A, T(X)) < A), the data-processing inequality gives that

Dk (P|Q) =2 Dxr(®4P||24Q)

= P(L(0, T(X)) < A)log

P(L(0,T(X)) < A)
Q(L(6, T(X)) < A)

—log 2,

1
Q(L(#, T(X)) < A)
where the last step is due to zlogx + (1 — ) log(l — x) > —log 2 for all z € [0, 1]. Since

Q(L(6, T(X)) <A) <supm{f € O:L(0,a) < A} = pa,

P(L(O,T(X)) < A)log

the above inequality rearranges to
Ep[L(0,T(X)] > A-P(L(O, T(X)) > A)

~ Dk (P|Q) +1og2
> (1- 2 T )
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Finally, since the above inequality holds for all @), using the variational representation of the mutual
information I(0; X) = ming Dy, (7(0)Py(z)||7(6)Q(x)) completes the proof. O

C.3 Proof of Lemma 7

By the third property of Sy, we have the inclusion

{W* L L(7*,7) < Cznjdz} - {W* : i < ch2} c {W* : Zd: 1(m* (i) # 7(i)) < ﬁ)}

i=1
As 7 ~ Unif(Sy), for any fixed 7, the final probability is at most

AL l4/10) p ,
i =15 — < _
d' Z ( ) kZ:O (d—k)! (10 H) oayio7 = xP(-esdlogd)

for some absolute constant c3 > 0. This shows that pa < d=¢, O

W*_S%

C.4 Proof of Lemma 8
The following upper bound holds for I(7*; X™ Y™):

I(7 X™Y™) =175 X™) + I(75Y" | X™)

/-\
v

2 (Y™ X™)

(b)
< EXm,ﬂ'* [DKL(PY"|7r*,Xm ||N(Oa Id/2)®n)]

(c)
< B e [DRL(Pyn e 5N (0, 13/2)%™)]

d

© LEs[Tr(S) — log det(ly + 1S)).
Here (a) is due to the independence between 7* and X, (b) follows from the variational repre-
sentation of the mutual information, (c) follows from the convexity of the KL divergence and that
Pynjgr xm = Exxm[Pyn|zx 5], (d) is the KL divergence between two Gaussians as well as the simple

facts Tr(S) = Tr(S™), det(Ig + nS) = det(Iy+nS™ ). To proceed, let Ay, --- , Ag be the eigenvalues
of S, so that

d
nTr(S) —logdet(Iy +nS) = Z nAi —log(1 +nX\;))
© _d
SZ 2AF =17 |SIF = n’d®.

Here (e) follows from z — log(1 4+ ) < 2% whenever |z| < 1/2, and we recall that n < 1/(2¢1v/d)
from (22), and that |\;| < ¢;v/d almost surely from the second property of Sg. A combination of
the above inequalities gives that I(7*; X™,Y™) < nn?d?/2, as desired. O
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C.5 Proof of Lemma 9

For the first statement, note that

nt1 — an = D1, (Pgns1 || QP™T) — Dy, (P70 ]|Q%™)

(a)
= Epyu[DrL(Pz, 127 11Q)]

(b)
> EPzg [DKL(EPZﬂZS (Pz,1112711Q)]

= EPZ;L [DKL(PZn+1|Z§ HQ)]

(c)
= Ep,,_,[Dx1(Pz, 21 [|Q)]

= Qnp — Gn-1,
where (a) is crucially thanks to the product structure on @ and could be verified by simple algebra,

(b) follows from the convexity of the KL divergence, and (c) is due to the stationarity of (Z1, Za, - - - ).
The first statement is therefore proved. The second statement directly follows from

am _ > ke (@ — ak—1) > ko1l —ak—1) _ On
m m - n n’

C.6 Proof of Lemma 10
As a shorthand we denote the centered Gaussian distribution N'(0,Xg) by Pg, and N (0, I;) by Q.

The standard second moment computation gives

dEs[Pg"]\2
i) |

dPEP dIP?p}]

(ESIN (0, S)EP]||NV (0, 1) %) + 1 = Egen [(

dQ®r dQ®p

-t (e[ P

=Egr [E@@p [

By Cauchy-Schwarz,

o[ g < <E@[(%)QD; <E@[(%)Q]>é — (C@sIQ) + DY ErIQ) + 112,

and

 det(285" — 1)

2

holds as long as g > 0 and 2251 — Ig > 0. This is ensured by our assumption 0 < X g < 214, so
the above expression is finite. Now note that

Eq [C;% i%ﬂ = \/det(ZSl) oty Ex~q [exp ( — %XT (Zgl + E;l — 2]d>X>]
1
= Jdet(ss) det(g) 0 e (2747)]
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where A (= I; — (Egl + E;l)/2. Let Ay,---, Aq be the eigenvalues of A. Since 0 < Xg, Xp < 21y,

we have A\, < 1/2 for all k € [d]. Therefore, by diagonalization,

d d
Ezg [exp (ZTAZ)} = H Ez,~n0,1) [exp <)\ng>} H (1= 2)\k 1/2
k=1 k=1
Hence, we can write

. [dIP)g d,IP’T} Cdet(I;—24)"2 det(Sgt+ %5t~ Ip) 72
“ldQ dQ) T Jdet(Ds)det(Dr) | 1/det(Ds) det(Tr)

~1/2
_ (det(ZS) det(S5" + 25! — I) det(ET)>

= det(Xg + Bp — LgXp) /2
= det(I; — (S5 — Ig)(Sp — 1))~V
Finally, this proves that

_p
2

EsIN(0, 56) N (0, 10)7) +1 = Esr | det (1a — (s = 1)(Sr — 1))

]

which is the desired result.

D Deferred proofs in Section 5

D.1 Proof of Theorem 5
We establish (29) and (30) separately.

D.1.1 Proof of (29)

For the upper bound, we first note that
~ 2 d ~
B |[Ex - 5] = 3 BlE0n - 507
1.1=

E[(X1,: X1, — )]

S

<
I
—_

[
'S\H &
.M&

(EIX?,XT;] - %2))

-

<
Il
—

= =
S\H _S\H
.M& .M&

(E[X2JE[X?,] + 2E[X;,: X1 4)* — £3))

-

&
Il
—_

I
3
.M&

(5%, + E?J)

i,7=1
© 2 &
< m Z 24,255
2,7=1
_2Tr(%)? _ 2R?
o om T om
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Here (a) is due to the unbiasedness E[X; ;X1 ;] = X; ;, (b) follows from Isserlis’ theorem [Iss18], and
(c) uses Z%J < %3, for any PSD matrix ¥. Similarly, we have

2] 2R?
< —.
F

T n

E {Hiy _

For the estimator 7, we simply choose 7 = 7" to be the GW estimator defined in (10). Then

(d) =~ == Nk = = *
< |7 - S&|, + 8% S|, + B - =7,
<|s7 57 ST _ e 2H§ _
- X F+ X F+ Y F

9

=2|Sx-z| +2|Sy -2
F F

where (d) follows from the defining property of the GW estimator in (10). Combining the above
displays shows the upper bound
2 R?
|=o(%)
F n

For the lower bound in (29), by restricting the support of ¥ within its upper left 2 x 2 corner,
it is clear that the minimax risk is no smaller than its counterpart with d = 2. In the sequel we
assume that d = 2 and lower bound the minimax risk as

E {Hz% _ e

R 2 ~ N
inf sup Ers 5 HE” -7 > inf sup Ers x) HE” -7
T mr€Sq,NEN(R) Foom @ 2):2),,<R/2 F
(e) R? 2

= —inf sup Er+ 5 HE% —x
47 (@22t

0q (1
n?

where (e) follows from simple scaling, and (f) is the standard §2(1/n) parametric rate (alternatively,
this also follows from the 2(dlogd/n) lower bound established in Section 4 applied to d = 2). This
completes the proof of (29).

F

D.1.2 Proof of (30)

For the upper bound, note that the analysis of 7 = 7QMLE in Section 3.1 holds for any ¥ > 0 until
(17). Assuming 7* = Id, integrating the tail over § € (0,1) in (17) gives that

A_ dlogd d3log d
E[(SF — 5,51 :O< LY )
n mn

By the second inequality in Corollary 1, we have

(39)

~ 2 3
“21/2(2—1)7r21/2 _IdH <C (dlogd n d logd) ’
F n mn
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with C' > 0 being an absolute constant independent of (n,m,d). Since n > codlogd and mn >

cod®log d, for a large enough numerical constant co > 0 depending only on C, the RHS of (39) will
be smaller than 1/2. By Lemma 12,

~ 2 ~ 2
min {1, HE*WZTFE*/? - IdHF} < 2min {1, (’21/2(2*1)“21/2 - IdHF}

1 31
§20<dogd+ d ogd)’
n mn

where the final quantity is smaller than 1. This gives

_ 2 ] 5]
Hz—l/Z(Ew_E)Z—l/QH :O (d Ogd+ d Ogd) ’
F n mn

which is the desired upper bound.
The minimax lower bound is an easy consequence of Theorem 4:

igf sup E(ﬂ-*72) [dNF,E(ﬂ'*; %\)2] > igf sup E(TF*Z) [dNF,E(ﬂ'*, 5‘('\)2]
T 1*eSy,LeX(R) T (7 2)1B], <R/d
@ inf sup E(w*,Z) [dNF7g(W*, %)2]

T (1% )| <1

op—
(;) inf su E [HZ? "
= 1 p (m*,X)

T (2|2 <1

3
© g (dlogd L[ logd> |

1

n mn

where (a) is the scale-invariance of the loss dnp y, i.e. dnpx(7*,7) = dnpax (7%, 7) for every A > 0;

(b) uses that HZ% - Z”*HF < dneas (7%, 7) if [|2]],, < 1; and () follows from Theorem 4. The
proof is complete.

D.2 Proof of Theorem 6
D.2.1 Proof of upper bound

Similar to the proof of the GW upper bound, we begin with the definitions of several good events.
Let G = & N &y N E3 be the good event, where

£ e {@Y,im _Sy s (3 S, S

_c\/dlogd+log(1/5) H21/2(§m_§%)21/2H } (40)
n m F)’

&= {@jm—iﬁm) > <2,2—2?>—\/‘%H2—ﬁ1 F} (41)

eo={ [Bn- 52, <=~ =7, + 2= . (12)
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with a large enough numerical constant ¢ > 0. We show that P(G) > 1 — § under the oracle model.
Using Hanson—Wright and triangle inequalities, the statements for £ and &3 follow from the same
arguments in Lemma 4 for their counterparts in (18) and (20). As for &, we have

(5,8, =Sy = (-7 " S)
(a) ~-1 7-1 P~
> (2273 = =2 8- 2]

d -
> (xoxt iy - L ‘2—2”
Jm

F

)

7 d 71
= (%2 -27) - oo (2—2 )

where (a) is the triangle inequality (A, B) < ||Al||r||B||r, and (b) follows from the oracle property
of &,,. This shows that & holds almost surely.

Now using exactly the same arguments in Section 3.2.2, with (40)—(42) in place of (18)—(20),
for the GW estimator ™ we have

N 2 N
02 57— —u 5T -x]
F F
under G, where

1 2
. 26\/(1 og d + log(1/6) L e 26\/d (dlog d + log(1/6))
n vm mn

By Lemma 13, this implies

HE%_EHEZO(ZF_H)):O(dlogaH—log(l/(S) +cl2+\/dZ(dlochlog(l/é))>

n m mn

holds with probability at least 1 —J. Integrating the tail over § € (0, 1) gives the expectation upper
bound

~ 2 2 3 2
EHEﬁ_EH _O<dlogd+d+ d logd) _O(dlongrd)’
F n m

mn n m

where the last inequality is due to AM-GM. This proves the claimed upper bound in Theorem 6.

D.2.2 Proof of lower bound

We use the same lower bound program in Section 4, with an additional specification for the oracle
Ym. Recall that Section 4 shows the minimax lower bound
2
> dlogd
F™ n

. = *
inf sup Es; HZ” -7
T o ), <1

even if m = oo (i.e. known covariance ¥), the same lower bound also holds under the oracle setting
by taking >, = X. Therefore, it remains to prove that if m > d under the oracle setting, we have

~ 112 d?
inf  sup EEHE“—E“ >
F m

T o 52, <1
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We choose the followmg joint distribution of (7*,X): set 7* ~ Unif(S;), and conditioned on 7*,
set © = (I;+ nS™) ") /2 for S ~ Unif(Sy), where the set of matrices Sy is constructed in Lemma
5. We choose (recall that m > d)

1 1
= < ,
7 2civm T 2e1V/d

and note that the loss function in (23) becomes

(43)

" 112
L(x*,7) = min oy
S=(Ig4+nS) 1Y /2:8€8, F
2 2
= in ||g — g7 teR P min s _ g7t ? :
4 SeS F 4 SesS, .

As T 1 (6) # 73 (1) = B Lma o w7 (6) # §) = Yy 1(ma(j) # m()) for every my,m €

S, the same argument in Lemma 7 gives pa < d~¢ for the quantity pa in Lemma 6. Therefore,

2} > con*d? (1 (7, Y") 4 log 2) . (44)
F

E [HEW* 7

4 csdlogd

Next we specify the choice of f]m and upper bound the mutual information. The choice of the
oracle is simple: we take 3, = I;/2. Note that

_ 43) [d
Hzm_zH fusuop _g avd < 4=,
op m

where (c) follows from the second property of Sp. This shows that the oracle property is satisfied.

Finally we show that I(7*; S, Y™) =0, therefore the lower bound of Theorem 6 follows from
(43) and (44). To sce it, note that 3, is deterministic, and ™ = (I + 1S5)/2 with S ~ Unif(Sp),
for any realization of 7*. Since Y™ ~ N/(0, b3 )®™_ this shows that Y™ and 7* are independent. It
is consequently clear that I(7*; %, Y™) = 0.
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