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ABSTRACT

The vacuum-assisted resin infusion mold (VARIM) process
is widely used in wind blade manufacturing for its cost-
effectiveness and reliability. However, the current method faces
challenges such as long curing times and defects due to
nonuniform heating across the blade structure. To address this,
a multi-zone heated bed setup tailored to blade thickness has
been considered. However, determining an optimal temperature
for each zone poses a computational challenge, which can be
tackled with a novel machine-learning approach. Using a digital
twin based on a high-fidelity multiphysics solver, a time-
distributed LSTM model was trained to understand complex
resin curing dynamics. This eliminates the need for costly lab
experiments, as the model learns heating patterns and curing
behavior efficiently. Once trained, the ML model acts as a digital
twin by predicting the degree of cure for a given temperature
setpoint with 96.73% accuracy. This model, when used as a
surrogate for a Nelder-mead optimization workflow, improves
the curing time by roughly 12.5% and presents a more uniform
curing rate throughout the part.

Keywords: Composite manufacturing, Machine learning
(ML), Physics-informed surrogate model, long short-term
memory (LSTM)

1. INTRODUCTION

Vacuum Assisted Resin Infusion Mold (VARIM) process is
widely used for wind turbine blades manufacturing. In this
process, the composite layups are placed on a heating table as the
resin flows in and cures due to the heat from the table. Presently,
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the heating table has a single temperature setpoint that is set to
the whole table and by extension, to the whole composite. The
wind turbine blade is a complex composite containing parts of
varying thickness and structural composition. This implies that
the blade components heat and cure at uneven rates when heated
at a fixed temperature. The curing differential can potentially
lead to mechanical defects such as distortion, delamination, etc.
Extensive results have been reported on the effect of thermal
boundary conditions on the material properties of the resulting
composite. Factors such as mold temperature [1], thermal
stresses during curing, and chemical shrinkage [2], thermal
oxidation [3], the difference in thermal expansion between fiber
and resin [4] affects the material properties of the final product.

To address these challenges, it has been proposed that the
heating devices be divided into separate zones and assigned
individual set points based on the thickness and structural
composition of the sandwich structure. However, determining
the precise temperature of each zone requires numerous time-
consuming experimental trials. High-fidelity simulations have
proven themselves as a promising approach for predicting curing
degrees [5,6] like practical experiments. Yet, the need to iterate
through multiple permutations of temperature zone temperatures
poses a practical limitation.

In recent years, Machine Learning (ML) models,
particularly Long-Short Term Memory (LSTM) models, have
garnered attention for their ability to capture complex underlying
principles across various domains such as machine health [7],
virus mobility and infection prediction [8], brain tumor [9],
deformations in composites during curing [10], and proposed as
digital twins [11,12], for smart manufacturing [13], active
manufacturing control for composites [ 14], temperature, residual
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stress, and distortion modeling for composites [15]. LSTM ML
stands for Long-Short Term Memory Machine Learning models,
which is a special class of machine learning model that
specializes in understanding time-series data. Compared to
standard ML models, LSTM models store the underlying
differences between individual elements of a time series data and
hence it can understand the changes in temperature and curing of
the resin as it evolves.

Building on these developments, this study proposes
leveraging LSTM-based ML models as surrogate models to
optimize temperature setpoints in wind turbine blade
manufacturing. Using the quick predicting capability of ML
while understanding the complex curing parameters, aiming to
enhance efficiency, reduce costs, and improve the overall quality
of wind turbine blades. This paper explores the feasibility and
potential benefits of integrating LSTM-based ML models into
the manufacturing process, paving the way for smarter and more
efficient production practices in composite manufacturing
processes.

2. METHODS

To address the challenges of experimentation and the
computational cost of high-fidelity solvers, a Machine Learning
model is used as a surrogate for the evaluation of the curing
degree during the VARIM process. The dataset for the ML
model was generated in a multiphysics solver called PAM-RTM.
PAM Composites is a commercially available solver that can
simulate the composite manufacturing process using Finite
Element Modelling to create an approximate solution. The solver
uses Darcy’s equation for resin flow, the autocatalytic model for
the kinetic curing, and thermal properties to model the heat flow.
The modeled equations are popularly considered in the literature
to be a reliable approximation of the experimental setup. The use
of Finite element techniques creates an approximate solution to
the problem statement and as the mesh is refined, the accuracy
improves. However, computational models consider the general
assumptions of continuum mechanics such as material
homogeneity, isotropic material, absence of defects, etc. The
following problem statement was considered:
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FIGURE 1: PROBLEM STATEMENT FOR DATASET
GENERATION.
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The team has access to a lab-scale composite manufacturing
setup used to fabricate glass fiber sandwich composites which is
used for understanding and characterizing the process
parameters. The composite layup considered consists of 3 plies
(~2mm) of glass fiber reinforced composites infused with

Temperature conducted

Airstone 760E Epoxy Resin sandwiching a 0.5-inch H60 foam
core. The foam core is given a tapered section in the center hence
creating three distinct zones for multizone heating. The model is
acted upon by a temperature boundary condition on the bottom
surface that is in direct contact with the heating bed along with a
convection boundary condition on all the top surfaces exposed
to air. A convection coefficient of 25 W/m2-K while the
temperature setpoint of the heating bed is varied parametrically.

The experimental procedure usually involves the use of
vacuum bags, peel plies, and flow media to ensure a uniform
flow of resin as well as a clean removal of the sample from the
heating bed. These parts are, however, in the order of 0.1-0.2 mm
thickness and hence do not produce a significant effect in the
thermal conduction or curing of the sample. Hence, the effects
of the vacuum bag and peel plies are ignored for the sake of
simplicity. The temperature value on the bottom surface is
parameterized and permutations of temperature values range
from 60°C to 80°C. The values were chosen since these are the
common range for lab-scale composite experiments and are the
effective range of the setup to which the team has access. The
convection reference temperature is set to 25°C as the ambient
temperature and a coefficient of 15 W/m-K. The resin is modeled
as an autocatalytic kinetic-cure model and the thermal
characteristics were acquired using a Light Flash Apparatus
(LFA) 467 HyperFlash. The Light Flash Apparatus uses a laser
to heat a given specimen and analyzes the heat in the specimen
to calibrate the thermal properties of the material such as thermal
conductivity, emissivity, specific heat, etc.

To swiftly generate curing curves in response to given
temperature profiles, a digital twin employing an LSTM-NN
architecture was created. A summary of the model’s architecture
is shown in Figure 2.
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FIGURE 2: LSTM-BASED ML MODEL ARCHITECTURE.

The model was trained for ~6,000 epochs with ‘Reduce LR
On Plateau’ and ‘Early Stopping’ as callbacks. Once trained, the
model shows a mean average error of 3.26% and a maximum
error of 16.6%. An example of the ML model predictions
compared to the Multiphysics solver is shown below.
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FIGURE 3: EXAMPLE PREDICTIONS OF THE ML
MODEL VS MULTIPHYSICS SIMULATIONS.

To evaluate the appropriate temperature setpoint for each
zone, it is intended to minimize the curing rate difference
between the zones as well as the overall curing time. Hence, an
optimization algorithm is required. Generally, -efficient
optimization algorithms require the computation of the gradients
of the objective function. The curing phenomenon is, however, a
complex phenomenon that requires a multiphysics solver, and
the implementation of a machine learning model turns the
objective function into a black box function. Therefore, a
derivative-free method called the Nelder-Mead algorithm is used
which uses the concept of simplex to approximate the local
optimum of a problem for non-linear optimization problems
heuristically.

An objective function that quantifies the combined effects
of curing rate difference and curing time is defined. This function
serves as the metric for evaluating the performance of different
temperature configurations. Initially, temperature setpoints for
each zone (A, B, and C) were randomly assigned within feasible
ranges. The objective function is evaluated using the LTSM-
based surrogate model. The algorithm iteratively adjusts the
temperature setpoints based on the objective function
evaluations. At each iteration, the algorithm updates the
temperature configurations to minimize the objective function.
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FIGURE 4: OVERVIEW OF THE WORKFLOW.

By utilizing this workflow, the model can efficiently explore
the temperature space, identify optimal temperature
configurations, and achieve the desired balance between curing
rate uniformity and time efficiency.

3. RESULTS AND DISCUSSION

The workflow presented iterates till the curing time is
minimal and the difference between the curing rates from zones
1,2, and 3 are as similar to each other as possible. The results of
the optimization were 70.35°C, 69.61°C, and 63.36°C for the
three respective zones. When these values were provided as
inputs into the multiphysics solver, the curing rates were
evaluated and plotted as shown in Figure 5 along with the
predictions by the ML model for the same value. Figure 6 shows
the curing rates of the three zones together.
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FIGURE 5: PREDICTED CURING RATES PLOTTED

TOGETHER TO SHOW THE CURING CURVES OF THE THREE
ZONES AT 60° C EACH (ABOVE) AND AT THE OPTIMIZED
VALUES OF 70.35°C, 69.61°C, and 63.36°C (BELOW) AND THE
CURING TIME IMPROVING.

The results show good agreement of the ML model
compared to the multiphysics solver and the curing rates of the
three zones overlap greatly at all time instances proving that the
curing rates over the part are uniform.

4. CONCLUSION

This study validates the effectiveness of LSTM-based
models in understanding the intricate time series dynamics of
resin curing. It also demonstrates the feasibility of employing
ML models as surrogate models within optimization algorithms.
Specifically, the model's success in optimizing curing cycle
times for composites with varying thicknesses, such as wind
turbine blades was shown. While the study is a proof of concept
for a lab-scale sample, the algorithm can also scale up to large
wind turbine blades. Machine learning models, once trained, can
make predictions instantaneously. Using the ML model as a
digital twin enables this method because multi-physics
simulations’ computational time and permutations of
temperature setpoints increase drastically. Hence, the ML based
optimization algorithm is scalable and reproducible.

These findings signify a significant step forward in
enhancing efficiency and performance in composite
manufacturing processes.
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