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ABSTRACT 

The vacuum-assisted resin infusion mold (VARIM) process 
is widely used in wind blade manufacturing for its cost-
effectiveness and reliability. However, the current method faces 
challenges such as long curing times and defects due to 
nonuniform heating across the blade structure. To address this, 
a multi-zone heated bed setup tailored to blade thickness has 
been considered. However, determining an optimal temperature 
for each zone poses a computational challenge, which can be 
tackled with a novel machine-learning approach. Using a digital 
twin based on a high-fidelity multiphysics solver, a time-
distributed LSTM model was trained to understand complex 
resin curing dynamics. This eliminates the need for costly lab 
experiments, as the model learns heating patterns and curing 
behavior efficiently. Once trained, the ML model acts as a digital 
twin by predicting the degree of cure for a given temperature 
setpoint with 96.73% accuracy. This model, when used as a 
surrogate for a Nelder-mead optimization workflow, improves 
the curing time by roughly 12.5% and presents a more uniform 
curing rate throughout the part. 

Keywords: Composite manufacturing, Machine learning 
(ML), Physics-informed surrogate model, long short-term 
memory (LSTM) 

1. INTRODUCTION

Vacuum Assisted Resin Infusion Mold (VARIM) process is
widely used for wind turbine blades manufacturing. In this 
process, the composite layups are placed on a heating table as the 
resin flows in and cures due to the heat from the table. Presently, 

the heating table has a single temperature setpoint that is set to 
the whole table and by extension, to the whole composite. The 
wind turbine blade is a complex composite containing parts of 
varying thickness and structural composition. This implies that 
the blade components heat and cure at uneven rates when heated 
at a fixed temperature. The curing differential can potentially 
lead to mechanical defects such as distortion, delamination, etc. 
Extensive results have been reported on the effect of thermal 
boundary conditions on the material properties of the resulting 
composite. Factors such as mold temperature [1], thermal 
stresses during curing, and chemical shrinkage [2], thermal 
oxidation [3], the difference in thermal expansion between fiber 
and resin [4] affects the material properties of the final product.  

To address these challenges, it has been proposed that the 
heating devices be divided into separate zones and assigned 
individual set points based on the thickness and structural 
composition of the sandwich structure. However, determining 
the precise temperature of each zone requires numerous time-
consuming experimental trials. High-fidelity simulations have 
proven themselves as a promising approach for predicting curing 
degrees [5,6] like practical experiments. Yet, the need to iterate 
through multiple permutations of temperature zone temperatures 
poses a practical limitation. 

In recent years, Machine Learning (ML) models, 
particularly Long-Short Term Memory (LSTM) models, have 
garnered attention for their ability to capture complex underlying 
principles across various domains such as machine health [7], 
virus mobility and infection prediction [8], brain tumor [9], 
deformations in composites during curing [10], and proposed as 
digital twins [11,12], for smart manufacturing [13], active 
manufacturing control for composites [14], temperature, residual 
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stress, and distortion modeling for composites [15]. LSTM ML 
stands for Long-Short Term Memory Machine Learning models, 
which is a special class of machine learning model that 
specializes in understanding time-series data. Compared to 
standard ML models, LSTM models store the underlying 
differences between individual elements of a time series data and 
hence it can understand the changes in temperature and curing of 
the resin as it evolves. 

 
Building on these developments, this study proposes 

leveraging LSTM-based ML models as surrogate models to 
optimize temperature setpoints in wind turbine blade 
manufacturing. Using the quick predicting capability of ML 
while understanding the complex curing parameters, aiming to 
enhance efficiency, reduce costs, and improve the overall quality 
of wind turbine blades. This paper explores the feasibility and 
potential benefits of integrating LSTM-based ML models into 
the manufacturing process, paving the way for smarter and more 
efficient production practices in composite manufacturing 
processes. 
 
2. METHODS 

 
To address the challenges of experimentation and the 

computational cost of high-fidelity solvers, a Machine Learning 
model is used as a surrogate for the evaluation of the curing 
degree during the VARIM process. The dataset for the ML 
model was generated in a multiphysics solver called PAM-RTM. 
PAM Composites is a commercially available solver that can 
simulate the composite manufacturing process using Finite 
Element Modelling to create an approximate solution. The solver 
uses Darcy’s equation for resin flow, the autocatalytic model for 
the kinetic curing, and thermal properties to model the heat flow. 
The modeled equations are popularly considered in the literature 
to be a reliable approximation of the experimental setup. The use 
of Finite element techniques creates an approximate solution to 
the problem statement and as the mesh is refined, the accuracy 
improves. However, computational models consider the general 
assumptions of continuum mechanics such as material 
homogeneity, isotropic material, absence of defects, etc.  The 
following problem statement was considered: 

 

 
FIGURE 1: PROBLEM STATEMENT FOR DATASET 

GENERATION. 
 
The team has access to a lab-scale composite manufacturing 

setup used to fabricate glass fiber sandwich composites which is 
used for understanding and characterizing the process 
parameters. The composite layup considered consists of 3 plies 
(~2mm) of glass fiber reinforced composites infused with 

Airstone 760E Epoxy Resin sandwiching a 0.5-inch H60 foam 
core. The foam core is given a tapered section in the center hence 
creating three distinct zones for multizone heating. The model is 
acted upon by a temperature boundary condition on the bottom 
surface that is in direct contact with the heating bed along with a 
convection boundary condition on all the top surfaces exposed 
to air. A convection coefficient of 25 W/m2-K while the 
temperature setpoint of the heating bed is varied parametrically. 

 
The experimental procedure usually involves the use of 

vacuum bags, peel plies, and flow media to ensure a uniform 
flow of resin as well as a clean removal of the sample from the 
heating bed. These parts are, however, in the order of 0.1-0.2 mm 
thickness and hence do not produce a significant effect in the 
thermal conduction or curing of the sample. Hence, the effects 
of the vacuum bag and peel plies are ignored for the sake of 
simplicity. The temperature value on the bottom surface is 
parameterized and permutations of temperature values range 
from 60oC to 80oC. The values were chosen since these are the 
common range for lab-scale composite experiments and are the 
effective range of the setup to which the team has access. The 
convection reference temperature is set to 25oC as the ambient 
temperature and a coefficient of 15 W/m-K. The resin is modeled 
as an autocatalytic kinetic-cure model and the thermal 
characteristics were acquired using a Light Flash Apparatus 
(LFA) 467 HyperFlash. The Light Flash Apparatus uses a laser 
to heat a given specimen and analyzes the heat in the specimen 
to calibrate the thermal properties of the material such as thermal 
conductivity, emissivity, specific heat, etc. 

 
To swiftly generate curing curves in response to given 

temperature profiles, a digital twin employing an LSTM-NN 
architecture was created. A summary of the model’s architecture 
is shown in Figure 2. 

 

 
FIGURE 2: LSTM-BASED ML MODEL ARCHITECTURE. 

 
The model was trained for ~6,000 epochs with ‘Reduce LR 

On Plateau’ and ‘Early Stopping’ as callbacks. Once trained, the 
model shows a mean average error of 3.26% and a maximum 
error of 16.6%. An example of the ML model predictions 
compared to the Multiphysics solver is shown below. 
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FIGURE 3: EXAMPLE PREDICTIONS OF THE ML 
MODEL VS MULTIPHYSICS SIMULATIONS. 

 
To evaluate the appropriate temperature setpoint for each 

zone, it is intended to minimize the curing rate difference 
between the zones as well as the overall curing time. Hence, an 
optimization algorithm is required. Generally, efficient 
optimization algorithms require the computation of the gradients 
of the objective function. The curing phenomenon is, however, a 
complex phenomenon that requires a multiphysics solver, and 
the implementation of a machine learning model turns the 
objective function into a black box function. Therefore, a 
derivative-free method called the Nelder-Mead algorithm is used 
which uses the concept of simplex to approximate the local 
optimum of a problem for non-linear optimization problems 
heuristically. 

 
An objective function that quantifies the combined effects 

of curing rate difference and curing time is defined. This function 
serves as the metric for evaluating the performance of different 
temperature configurations. Initially, temperature setpoints for 
each zone (A, B, and C) were randomly assigned within feasible 
ranges. The objective function is evaluated using the LTSM-
based surrogate model. The algorithm iteratively adjusts the 
temperature setpoints based on the objective function 
evaluations. At each iteration, the algorithm updates the 
temperature configurations to minimize the objective function.  

 

 
FIGURE 4: OVERVIEW OF THE WORKFLOW. 

 
By utilizing this workflow, the model can efficiently explore 

the temperature space, identify optimal temperature 
configurations, and achieve the desired balance between curing 
rate uniformity and time efficiency. 

 
 
3. RESULTS AND DISCUSSION 

 
The workflow presented iterates till the curing time is 

minimal and the difference between the curing rates from zones 
1,2, and 3 are as similar to each other as possible. The results of 
the optimization were 70.35oC, 69.61oC, and 63.36oC for the 
three respective zones. When these values were provided as 
inputs into the multiphysics solver, the curing rates were 
evaluated and plotted as shown in Figure 5 along with the 
predictions by the ML model for the same value. Figure 6 shows 
the curing rates of the three zones together. 
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FIGURE 5: PREDICTED CURING RATES PLOTTED 
TOGETHER TO SHOW THE CURING CURVES OF THE THREE 
ZONES AT 60o C EACH (ABOVE) AND AT THE OPTIMIZED 
VALUES OF 70.35oC, 69.61oC, and 63.36oC (BELOW) AND THE 
CURING TIME IMPROVING.  
 

The results show good agreement of the ML model 
compared to the multiphysics solver and the curing rates of the 
three zones overlap greatly at all time instances proving that the 
curing rates over the part are uniform. 

 

4. CONCLUSION 
 

This study validates the effectiveness of LSTM-based 
models in understanding the intricate time series dynamics of 
resin curing. It also demonstrates the feasibility of employing 
ML models as surrogate models within optimization algorithms. 
Specifically, the model's success in optimizing curing cycle 
times for composites with varying thicknesses, such as wind 
turbine blades was shown. While the study is a proof of concept 
for a lab-scale sample, the algorithm can also scale up to large 
wind turbine blades. Machine learning models, once trained, can 
make predictions instantaneously. Using the ML model as a 
digital twin enables this method because multi-physics 
simulations’ computational time and permutations of 
temperature setpoints increase drastically. Hence, the ML based 
optimization algorithm is scalable and reproducible.  

 
These findings signify a significant step forward in 

enhancing efficiency and performance in composite 
manufacturing processes. 
 
ACKNOWLEDGEMENTS 
 

This paper is based upon work partially supported by the 
National Science Foundation under Grant Numbers 1362033 and 
1916776 (I/UCRC for Wind Energy, Science, Technology, and 

Research) and from the members of WindSTAR I/UCRC. Any 
opinions, findings, conclusions or recommendations expressed 
in this material are those of the authors and do not necessarily 
reflect the views of the National Science Foundation. The partial 
support of UTD Wind is gratefully acknowledged. 

 
This study is also based upon work supported by the U.S. 

Department of Energy, Office of Energy Efficiency and 
Renewable Energy (EERE) under the Advanced Materials and 
Manufacturing Technologies Office (AMMTO) Award Number 
DEEE0011016.. H. Lu also thanks the Louis A. Beecherl, Jr. 
Chair for additional support. We thank Dr Shuang Cui and Dr. 
Lyu Zhou for assisting us with thermal modeling and their 
assistance in helping us understand the thermal characteristics of 
the process.  

 
 

REFERENCES 
 

[1] Kedari, V. R., Farah, B. I., and Hsiao, K.-T., 2011, “Effects 
of Vacuum Pressure, Inlet Pressure, and Mold Temperature 
on the Void Content, Volume Fraction of Polyester/e-Glass 
Fiber Composites Manufactured with VARTM Process,” J. 
Compos. Mater., 45(26), pp. 2727–2742. 

[2] Wisnom, M. R., Gigliotti, M., Ersoy, N., Campbell, M., and 
Potter, K. D., 2006, “Mechanisms Generating Residual 
Stresses and Distortion during Manufacture of Polymer–
Matrix Composite Structures,” Compos. Part Appl. Sci. 
Manuf., 37(4), pp. 522–529. 

[3] Upadhyaya, P., Roy, S., Haque, M. H., and Lu, H., 2013, “A 
Novel Numerical–Experimental Approach for Predicting 
Delamination in High Temperature Polymer Matrix 
Composites,” Compos. Struct., 104, pp. 118–124. 

[4] Fu, Y., and Yao, X., 2022, “A Review on Manufacturing 
Defects and Their Detection of Fiber Reinforced Resin 
Matrix Composites,” Compos. Part C Open Access, 8, p. 
100276. 

[5] Shojaei, A., Ghaffarian, S. R., and Karimian, S. M. H., 2003, 
“Modeling and Simulation Approaches in the Resin 
Transfer Molding Process: A Review,” Polym. Compos., 
24(4), pp. 525–544. 

[6] Ma, L., Athreya, S. R., Mehta, R., Barpanda, D., and Shafi, 
A., 2017, “Numerical Modeling and Experimental 
Validation of Nonisothermal Resin Infusion and Cure 
Processes in Large Composites,” J. Reinf. Plast. Compos., 
36(10), pp. 780–794. 

[7] Qiao, H., Wang, T., Wang, P., Qiao, S., and Zhang, L., 2018, 
“A Time-Distributed Spatiotemporal Feature Learning 
Method for Machine Health Monitoring with Multi-Sensor 
Time Series,” Sensors, 18(9), p. 2932. 

[8] Muñoz-Organero, M., 2022, “Space-Distributed Traffic-
Enhanced LSTM-Based Machine Learning Model for 
COVID-19 Incidence Forecasting,” Comput. Intell. 
Neurosci., 2022, pp. 1–12. 

[9] Montaha, S., Azam, S., Rafid, A. K. M. R. H., Hasan, Md. 
Z., Karim, A., and Islam, A., 2022, “TimeDistributed-CNN-

4 Copyright © 2024 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/IM

EC
E/proceedings-pdf/IM

EC
E2024/88605/V002T03A093/7426605/v002t03a093-im

ece2024-146131.pdf by U
niversity O

f Texas At D
allas user on 08 January 2026



 

LSTM: A Hybrid Approach Combining CNN and LSTM to 
Classify Brain Tumor on 3D MRI Scans Performing 
Ablation Study,” IEEE Access, 10, pp. 60039–60059. 

[10] Feng, Y., Han, Z., Liu, M., Zheng, W., Liang, B., Xiong, Y., 
and Zhang, W., 2024, “Rapid Prediction for Deflection 
History of CFRP Beams during Curing Using LSTM 
Network and Its Application to Stacking Sequence 
Optimization with Genetic Algorithm,” Compos. Part Appl. 
Sci. Manuf., 182, p. 108195. 

[11] Zhang, R., Liu, Y., Zheng, T., Eddin, S., Nolet, S., Liang, Y.-
L., Rezazadeh, S., Wilson, J., Lu, H., and Qian, D., 2024, 
“A Fast Spatio-Temporal Temperature Predictor for Vacuum 
Assisted Resin Infusion Molding Process Based on Deep 
Machine Learning Modeling,” J. Intell. Manuf., 35(4), pp. 
1737–1764. 

[12] Tao, F., Qi, Q., Liu, A., and Kusiak, A., 2018, “Data-Driven 
Smart Manufacturing,” J. Manuf. Syst., 48, pp. 157–169. 

[13] Kusiak, A., 2018, “Smart Manufacturing,” Int. J. Prod. Res., 
56(1–2), pp. 508–517. 

[14] Humfeld, K. D., Gu, D., Butler, G. A., Nelson, K., and 
Zobeiry, N., 2021, “A Machine Learning Framework for 
Real-Time Inverse Modeling and Multi-Objective Process 
Optimization of Composites for Active Manufacturing 
Control,” Compos. Part B Eng., 223, p. 109150. 

[15] Xu, Y., Zhao, Z., Shrestha, K., Seneviratne, W., Liyanage, 
S., Palliyaguru, U., Karuppiah, A., Lua, J., Phan, N., and 
Yan, J., 2024, “A Coupled Data-Physics Computational 
Framework for Temperature, Residual Stress, and 
Distortion Modeling in Autoclave Process of Composite 
Materials,” Compos. Part Appl. Sci. Manuf., 183, p. 
108218. 
 

 

5 Copyright © 2024 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/IM

EC
E/proceedings-pdf/IM

EC
E2024/88605/V002T03A093/7426605/v002t03a093-im

ece2024-146131.pdf by U
niversity O

f Texas At D
allas user on 08 January 2026




