
Selfish Mining Under General Stochastic Rewards

Maryam Bahrani #

Ritual, Vancouver, BC, Canada

Michael Neuder #

Ethereum Foundation, New York, NY, USA

S. Matthew Weinberg1
#

Princeton University, NJ, USA

Abstract

Selfish miners selectively withhold blocks to earn disproportionately high revenue. The vast majority
of the selfish mining literature focuses exclusively on block rewards. [7] is a notable exception,
observing that similar strategic behavior is profitable in a zero-block-reward regime (the endgame
for Bitcoin’s quadrennial halving schedule) if miners are compensated with transaction fees alone.
Neither model fully captures miner incentives today. The block reward remains 3.125 BTC, yet
some blocks yield significantly higher revenue. For example, congestion during the launch of the
Babylon protocol in August 2024 caused transaction fees to spike from 0.14 BTC to 9.52 BTC, a
68× increase in fees within two blocks.

Our results are both practical and theoretical. Of practical interest, we study selfish mining
profitability under a combined reward function that more accurately models miner incentives. This
analysis enables us to make quantitative claims about protocol risk (e.g., the mining power at which
a selfish strategy becomes profitable is reduced by 22% when optimizing over the combined reward
function versus block rewards alone) and qualitative observations (e.g., a miner considering both block
rewards and transaction fees will mine more or less aggressively respectively than if they cared about
either alone). These practical results follow from our novel model and methodology, which constitute
our theoretical contributions. We model general, time-accruing stochastic rewards in the Nakamoto
Consensus Game, which requires explicit treatment of difficult adjustment and randomness; we
characterize reward function structure through a set of properties (e.g., that rewards accrue only as
a function of time since the parent block). We present a new methodology to analytically calculate
expected selfish miner rewards under a broad class of stochastic reward functions and validate our
method numerically by comparing it with the existing literature and simulating the combined reward
sources directly.

2012 ACM Subject Classification Applied computing → Electronic commerce; Security and privacy
→ Distributed systems security

Keywords and phrases Proof-of-Work, Selfish Mining, MEV

Digital Object Identifier 10.4230/LIPIcs.AFT.2025.20

Related Version Full Version: https://arxiv.org/abs/2502.20360 [3]

Funding S. Matthew Weinberg: Supported by NSF CAREER Award CCF-1942497.

1 Introduction

Blockchain consensus mechanisms rely on incentives to coordinate behavior. To remain safe

and live, crypto-economic systems require a majority (as in Proof-of-Work) or a super-majority

(as in Proof-of-Stake) of participants to adopt the protocol-specified (sometimes referred

to as “honest”) actions. Selfish mining [10] first demonstrated that this honest behavior

1 During Professor Weinberg’s development of this paper, he participated as an expert witness on behalf
of the State of Texas in ongoing litigation against Google (the “Google Litigation”).

© Maryam Bahrani, Michael Neuder, and S. Matthew Weinberg;
licensed under Creative Commons License CC-BY 4.0

7th Conference on Advances in Financial Technologies (AFT 2025).
Editors: Zeta Avarikioti and Nicolas Christin; Article No. 20; pp. 20:1–20:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:maryam.bahrani.14@gmail.com
https://orcid.org/0009-0005-6040-7755
mailto:michael.neuder@ethereum.org
https://orcid.org/0000-0001-8813-6524
mailto:smweinberg@princeton.edu
https://orcid.org/0000-0001-7744-795X
https://doi.org/10.4230/LIPIcs.AFT.2025.20
https://arxiv.org/abs/2502.20360
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

20:2 Selfish Mining Under General Stochastic Rewards

might not be incentive compatible for the rational miner who could earn a disproportionately

large fraction of block rewards by selectively delaying the publication of their blocks. In the

ensuing decade, a rich literature around strategic behavior in consensus protocols developed

(e.g., in Ethereum Proof-of-Stake [27, 31, 24]). The vast majority of this literature focuses

on strategies that optimize for the portion of the protocol-assigned rewards earned by the

agent. These rewards, sometimes referred to as “protocol issuance” or “consensus rewards,”

have historically accounted for nearly all of the value in consensus participation; this is no

longer true.

As modern blockchains gain usage and facilitate more significant economic activity, their

decentralized applications generate revenue. Consensus participants can collect some of this

revenue through the block producer’s ability to arbitrarily re-order, insert, and delete transac-

tions when they are elected leader; [8] introduces this concept as Miner/Maximal Extractable

Value (abbr. MEV). MEV has been studied theoretically and measured empirically, leading

to significant changes in blockchain design. Ethereum best exemplifies this, as over 90%

of its blocks are built using a public, open-outcry block-building auction. The motivation

for this auction is grounded in the notion of “fairness” of validator rewards. By creating a

transparent market for buying and selling transaction orderings, each consensus participant

should earn about the same amount of MEV – a principle originally encoded into consensus

rewards, which are proportional to investment (measured in either work or stake).

A separate line of literature studies strategic behavior in decentralized finance (abbr.

DeFi), which represents another source of rewards generated at the application layer. For

example, loss-versus-rebalancing [21] (abbr. LVR) measures the amount of loss incurred

by liquidity providers in decentralized exchanges as arbitrageurs balance the price of the

decentralized exchange against an infinitely deep centralized exchange. These losses are

precisely the profit available to those performing the arbitrage. This model completely

abstracts the block creation and consensus processes, only considering the profits available

to traders. In reality, the block producer has the final say over the transactions in their

block, resulting in a large portion of this value flowing back to the consensus participants

themselves.

The perspectives of the selfish mining, MEV, and DeFi literatures are incomplete in

isolation. The co-mingling of revenue across the consensus and application layers necessitates

a more precise model of rewards and their impact on strategic behavior, as demonstrated in

the following real-world examples.

▶ Example 1 (The launch of Bablyon). On August 22, 2024, the Babylon [33] protocol

launched on Bitcoin. The launch allowed BTC tokens to be “locked” through a transaction

processed on the chain. With a cap of 1000 BTC, demand for transaction inclusion spiked

as people rushed to be among the first to lock their tokens. This congestion led to a 68×

increase in transaction fee revenue from 0.138 to 9.515 BTC between parent and child blocks

857909, 857910; over the four block range of 857908 to 857911, the fee revenue increased by

500× from 0.031 to 15.551 BTC [19]. This immense growth in transaction fees persisted for

only seven blocks, with an average per-block fee revenue of 9.64 BTC, after which the protocol

reached its cap and fees returned to baseline levels. For those seven blocks, the block reward

of 3.125 BTC, which normally represents nearly the entire source of miner revenue, was only

25% of the rewards claimed. Despite the limited scope of Bitcoin applications, Babylon

exemplifies how non-protocol-specified rewards can dramatically distort miner incentives.

▶ Example 2 (The “Low-Carb Crusader”). Proof-of-Stake differs from Proof-of-Work in

that it requires stakers to explicitly lock up capital to participate in the system. While

Proof-of-Work is limited only to incentivizing miners with positive rewards, Proof-of-Stake

M. Bahrani, M. Neuder, and S. M. Weinberg 20:3

enforces a subset of the protocol rules through the credible threat of destroying the capital

owned by a misbehaving staker. Historically, this stick has served as an effective deterrent,

but on April 2, 2023, an attacker referred to as the “Low-Carb Crusader” exploited a piece

of infrastructure in the Ethereum protocol motivated by application layer-generated rewards.

By tricking a server facilitating the block building auction referenced above, the attacker

accessed private transaction data, which they exploited to 20 million USD of MEV [9]. In the

Ethereum specification, this behavior violated the rules and thus was subject to a slashing

penalty of 1 ETH (2600 USD at current prices) levied against the attacker’s stake. Clearly,

the consensus reward and penalty mechanism could not account for this magnitude of profit

arising from the application layer. This example demonstrates the risk facing consensus

mechanisms, where non-honest behaviors are incentivized with multi-million dollar exogenous

rewards originating from the application layer.

These examples shows how the economic value generated in the application layer bleeds

into the consensus layer rewards; see Appendix A.1 in the extended version of the paper

[3] for a discussion on “timing games,” which is another source of revenue for consensus

participants (particularly in Proof-of-Stake).2 To fully understand consensus incentives, a

more general model for rewards is needed. In particular, a more accurate view of rewards

would capture the aggregate incentives for following a specific strategy under many distinct

revenue streams. The present work was motivated by that reality and takes the first step

toward modeling general stochastic rewards in longest-chain protocols.

1.1 Related work

Combining the proportion of block rewards and the linear-in-time transaction fee models

of [10] and [7] was the initial motivation for this work. We build upon their Markov Chains

to analyze expected attacker rewards and study the β-cutoff strategies for selfish mining.

As previously noted, neither work captures the state of the world in 2025; the fundamental

question of “how vulnerable is Bitcoin to Selfish Mining now?” remains unanswered and

of interest to the research community; this work seeks to address this gap in the literature.

[37] demonstrates how large “whale transaction” fees in conjunction with the standard block

rewards may result in attacker profitability at lower hashrates. They use reinforcement

learning to approximate the optimal policy and profit for attackers. We also model these

rewards as granting bonus value to blocks depending on the outcome of a Bernoulli trial.

Our framework (Section 4) accommodates much more general rewards, and our instantiation

(Section 5) includes a third source – linear-in-time transaction fees. Further, we analytically

solve for the profitability of strategies rather than approximating them.

The selfish mining literature has grown extensively in the past dozen years; see [13] for a

recent survey. [23, 30, 18] generalized the basic selfish mining strategy to broader strategy

spaces. [34] studied the effect of the relative sizes of block rewards and transaction fees and

the impact on miners’ decisions on when to mine; [14] extended that analysis and show that

if all miners are rationale, the equilibrium hash rates will be far below the maximal capacity.

[5] demonstrated that longest chain Proof-of-Stake protocols would also be vulnerable to

selfish mining – a result instantiated through numerous selfish strategies in various staking

protocols: [27, 31, 24] in Ethereum, [12, 11] in Algorand’s cryptographic self-selection, [25, 26]

in Tezos. We extend our model of the Nakamoto Consensus Game from [4], which studies

the detectability of selfish mining in Proof-of-Work.

2 The appendix is excluded from the proceedings version of this paper due to the page limit – see the
extended version [3] for the full appendices. Hereafter, we simply refer to the appendices directly without
referencing the full version to reduce redundancy.

AFT 2025

20:4 Selfish Mining Under General Stochastic Rewards

MEV is one of the most relevant topics existing blockchains are reckoning with; we focus

how MEV impacts consensus mechanisms. [8] coined the term and introduced many of

the key properties of MEV in permissionless systems. [36] systematized MEV strategies

and proposed mitigations. [2, 6, 16] focused on the centralizing nature of MEV and how

Ethereum’s block building market is implemented through “Proposer-Builder Separation.”

[28, 32] studied timing games and their impact on consensus. [35, 29] empirically analyzed

Ethereum block builders and how the market structure has evolved. We also draw on the

DeFi literature when considering application-generated revenue for consensus participants.

We focus on arbitrage profits as captured in LVR [21]. [20] extends the original model to

capture trading fees.

1.2 Summary of results

We partition our results into two sets: practical and theoretical.

Despite the analysis of selfish mining under block rewards and transaction fees alone

being several years old ([10, 7]), there remains a glaring hole in the literature to study selfish

behavior under the combined rewards. Quoting from [13], a recent selfish mining SoK, “we

find that only 3 works include transaction fees in their modeling; 2 consider both block

rewards and transaction fees.” As described in Section 1.1, [37] model transaction fees as

“whale transactions” instead of linear-in-time; [15] approximate transaction fees using the

average amount of time in each block; thus, they simply increase the size of the fixed block

rewards. Our first contribution is an analysis of selfish mining under the combined

model of block and transaction fee rewards; this practical contribution helps

paint a more accurate picture of the selfish mining in Bitcoin under a realistic

aggregate reward function.

Section 5.3 contains numerical results and discussion (see Figure 2) for the basic com-

bination of fees and block rewards, along with other aggregate reward functions. Critically,

as demonstrated in Figure 3, the protocol risk depends greatly on the reward model. For

example, we show that the threshold at which an attack becomes profitable decreases by

22% when considering the two rewards together instead of only block rewards. Additionally,

our plots allow us to make qualitative observations about miner behavior under different

reward schemes. For example, a miner considering both block rewards and transaction fees

will mine more or less aggressively, respectively, than if they cared about either alone. We

confirm these analytical results through simulations (Figure 7 in the full version [3]) and by

directly comparing them to existing literature (Appendices G and H in [3]).

To derive the aforementioned practical results, we develop a set of theoretical results

that may be of independent interest. We present (i) a model of the Nakamoto

Consensus Game with general stochastic reward sources, (ii) a novel methodology

to analytically solve for a selfish miner’s rewards, and (iii) a natural set of reward

function properties. Section 2 describes the new structure we impose on the NCG and

how general, time-accruing reward sources interact with difficulty adjustment, which we

must explicitly account for. Further, unlike previous work,3 our reward functions can be

stochastic. Namely, we study a much more general class of static rewards (Definition 6),

which we define as functions that accrue randomly and independently only as a function of

time since the parent block. Calculating attacker profits under these general reward sources

3 With the sole exception of [37], which studies a narrow set of random rewards – see Section 1.1 for
discussion

M. Bahrani, M. Neuder, and S. M. Weinberg 20:5

requires the novel, path-counting technique presented in Section 4. The practical results

(Section 5) described in the previous paragraph follow as a corollary since the combination

of block and transaction fee rewards is static.

Lastly, we characterize a natural set of reward function properties motivated by existing

blockchains (Section 3 and Appendix B in the full version [3]). We illustrate these properties

through two extensive case studies. Section 3.1 examines transaction fees and describes

how different assumptions about block size, transaction patience, and arrival rate manifest

in very different reward functions captured by our properties. Appendix B.2 in the full

version [3] focuses on arbitrager profits under various assumptions about price trajectories

and leader-election mechanisms.

2 Preliminaries and model

We start by defining a stylized model of Proof-of-Work mining with general stochastic

rewards. This necessitates some crucial differences between our model and previous selfish

mining literature. For example, general rewards can be sensitive to specific inter-block times,

requiring explicit modeling of difficulty adjustment. Section 2.2 discusses these differences in

detail.

2.1 Nakamoto Consensus Game with general rewards

Let M denote the set of n miners, where miner m ∈ M has hashrate αm.

Views

At any time t, there is a public view Vt, consisting of the “state” of the blockchain known to

all miners at time t. This view includes all blocks that have already been broadcast, their

creation times, and the identity4 of their creators in M . It also includes the content of each

block, which contains enough information to compute the values of all variables and account

balances in every block across forks. For each block B in a view, we have Timestamp(B),

the time5 that the block was produced.

At any time t, there is also a private view V m
t for each miner m that includes Vt and

potentially some additional blocks m knows about that are unknown to all other miners

(e.g., a private fork). We assume that miners don’t selectively exclude a subset of miners

when they broadcast, and all broadcasting happens instantaneously (e.g., no eclipse attacks

[17]). As a result, V m
t will only include Vt and any blocks mined by m that have not yet

been broadcast (along with their contents).

General Rewards

Miners are rewarded for creating blocks on the eventual longest chain in the form of block

rewards (a fixed value issued once per block), fees from included transactions, and potentially

additional revenue stemming from their monopolistic control over the content of the block

(MEV). The size of this reward can be different across blocks and might be stochastic. We

abstractly model these rewards as a function R.

4 Real-world blockchains are often pseudonymous, and the “identities” of miners refer to their public keys.
5 Timestamp here refers to the actual creation time of the block, rather than a reported time stated by

the miner.

AFT 2025

20:6 Selfish Mining Under General Stochastic Rewards

Fix a time t, a view V , a block B in V , and a miner m. We use r to capture any exogenous

randomness that could impact the value of blocks that a miner creates (e.g., the launch of a

protocol that could create large amounts of congestion and resultingly higher transaction

fees as in Example 1). We denote by Bm(t, V, B, r) the set of valid blocks that m can create.

Because not all views are achievable under a specific realization of the randomness r, when

we invoke a view V together with r, we implicitly restrict r such that V is realizable.

▶ Definition 3 (Reward Function). A reward function Rm for miner m takes as input a

time t, a view V , a block B in V , randomness r, as well as a block B′ ∈ Bm(t, V, B, r), and

outputs a real number,

Rm(t, V, B, r, B′) → R.

The output of Rm can be interpreted as the amount of reward collected by m for creating

a block B′ that extends B in V at time t given randomness r, assuming B′ ends up on the

eventual longest chain.

We allow different miners to have different reward functions to keep the model general.

This per-miner reward can capture miner heterogeneity (e.g., from private order flow or better

trading strategies). For the properties we define in Section 3 and the selfish mining analysis

in Sections 4 and 5, however, we restrict our study to miner-independent (see Definition 4

below) reward functions.

Miner Strategies

Each miner m has a strategy that takes as input a time t, a view V m
t , and the reward

Rm(t, V m
t , B, r, B′) for extending each block B ∈ V m

t by a valid block B′ ∈ Bm(t, V m
t , B, r),

and outputs

a block B ∈ V m
t to mine on,

contents of the next block B′ ∈ Bm(t, V m
t , B, r), and

a (potentially empty) subset of blocks in V m
t \ Vt to broadcast.

For each miner m, we denote by Next(m, t, V m
t , r) the first time after (or equal to) t that m

broadcasts a block assuming their private view remains V m
t , and by

Next_Broadcaster(t, r) := arg min
m∈M

{Next(m, t, V m
t , r)},

the identity of the next miner to broadcast after (or at t), breaking ties arbitrarily. We use

these functions to determine the ordering of broadcasters as the game progresses (see details

in [3], Appendix – Algorithm 1).

Note that miner strategies cannot directly observe the randomness r but might indirectly

depend on it through the realizations of Rm and Bm(t, V m
t , B, r), all of which take as input

the same randomness r. While we focus on deterministic miner strategies in this paper, our

model can easily be extended to account for randomized behavior.

Nakamoto Consensus Game (NCG)

The Nakamoto Consensus Game describes how views evolve given a fixed set of miner

strategies. We model the game after difficulty has already been adjusted according to these

strategies, resulting in a stable orphan rate λ,6 and we normalize time so that the average

block time is 1. We let time 0 refer to a point after which the difficulty of mining puzzles

remains constant. We further assume that miners only extend blocks created after time 0.

6 See Section 2.2 for extended discussion and [22] for a more comprehensive overview of difficulty
adjustment is used in the Bitcoin protocol.

M. Bahrani, M. Neuder, and S. M. Weinberg 20:7

Prior to the game, we draw the following random variables independently:7

Miner selection – A sequence of miners
á

m ∈ MN, where mi is the creator of the ith block.

For each i, mi is selected independently such that it equals m ∈ M with probability

αm/
∑n

j=1
αj .

Block times – A sequence of block creation times
á

t ∈ R
N, where t0 := 0, and the duration

tj − tj−1 for j ≥ 1 is drawn i.i.d. from an exponential distribution with rate 1/(1 − λ).

Remaining randomness – The randomness r.

Initially, there is some public view V0 but no hidden blocks, so V m
0

= V0 for all m ∈ M , where

V0 := {B0} is the view containing a single genesis block B0 such that Timestamp(B0) = 0.

Starting with j = 1 (the variable used to index the miners
á

m and block times
á

t) and t = 0,

we check if there are new blocks to broadcast before updating the block that each miner is

building on based on the contents of the pre-determined strategy. See Appendix C.1 in [3]

for the procedure to carry out the NCG and for a note on ensuring uniqueness of the longest

chain.

2.2 Notes on model

We briefly summarize how we model difficulty adjustment below. See Appendix C.2 in [3]

for an extended comparison of our model to previous work and the role of independence in

the randomness of rewards.

Difficulty adjustment

In practice, mining involves solving computational puzzles with adjustable difficulty. Since

miners can enter (or exit) permissionlessly, the total hashrate of all miners can vary over

time, resulting in varying block production rates. The protocol varies the difficulty of these

puzzles based on timestamps of recent blocks, targeting a fixed average inter-block time. In

Bitcoin, the difficulty updates once every difficulty epoch (2016 blocks/roughly every two

weeks assuming ten-minute block times) by the difficulty adjustment algorithm (DAA). The

difficulty of extending any blocks is the same within an epoch, except for forks across the

epoch boundary. Note also that forks are rarely longer than a few blocks, so this represents

an insignificant fraction of the blocks in an epoch.

Fixing a set of miner strategies, one can compute the expected fraction of blocks per

epoch that do not end up on the longest chain. We assume the difficulty adjusts based on

this expected value (rather than directly modeling per-epoch updates described above) and

calculate the profitability of various strategies under this new difficulty. Specifically, we

calculate the expected orphan rate λ (Lemma 16), which implies the difficulty-adjusted rate

of block production is 1/(1 − λ). This corresponds to blocks on the longest chain growing at

an average rate of 1.

3 Reward functions: properties and examples

Recall that miner strategies take as input the amount of reward available for extending

each existing block at time t, as specified by the reward function R, and make decisions

about where to mine, what to include, and what to broadcast accordingly. This section

defines a set of natural properties that reward functions might have. In Section 3.1, we

7 See Appendix C.2 in [3] for a discussion of why we can assume independence.

AFT 2025

20:8 Selfish Mining Under General Stochastic Rewards

motivate these properties with an extensive case study on transaction fees, one of the primary

revenue sources observed empirically to date. See Appendices A.2, B, B.1, and B.2 in [3] for

additional properties and a second case study on LVR, a prominent source of revenue on

chains with significant DEX volume.

While we define these properties in the context of the NCG in this paper, we believe

their applicability extends far beyond Proof-of-Work and selfish mining. Our framework

can be used to characterize rewards and their implications for the incentives of consensus

participants across blockchain protocols.

Recall that in the NCG, given a set of miner strategies, three independent random

variables
á

t ,
á

m, r are drawn and used to compute a set of views V m
t for all miners m and all

times t. Let Vm
t be the support V m

t , meaning the set of views achievable at time t for some

realization of
á

t ,
á

m, r. Initially, Vm
0

= {V0} for all m, where V0 := {B0} is the view containing

a single genesis block B0 such that Timestamp(B0) = 0. Miner strategies in the NCG take

the realization of a reward function as input. That is, at time t, miner m sees the reward

Rm(t, V m
t , B, r, B′) for extending each block B ∈ V m

t by a valid block B′ ∈ Bm(t, V m
t , B, r).

A miner-independent reward function yields the same value for the block regardless of

who created it. This corresponds to a setting where all miners have access to the same set of

rewards (e.g., the common value setting), and thus, we drop the superscript m. In practice,

some reward sources may be heterogeneous between block producers (e.g., from private order

flow or from differing abilities to extract MEV [1]). All reward functions considered in this

paper will be miner-independent, but the properties can be readily generalized by tracking

the subset of miners with access to each reward source. See Section 6 for a discussion of

extending this work.

▶ Definition 4 (Miner-Independent Rewards). A reward function R is miner-independent

if for all times t, all miners have the same set of valid views, the same set of valid blocks

extending each block in those views, and equal rewards from any such valid block.8 Formally,

R is miner-independent if for all t, and all m, m′ ∈ M ,

Vm
t = Vm′

t ,

for all V ∈ Vm
t , all blocks B in V , and all r, we have Bm(t, V, B, r) = Bm′

(t, V, B, r),

for all V ∈ Vm
t , all r, all parent blocks B in V , and all valid blocks B′ ∈ Bm(t, V, B, r),

we have Rm(t, V, B, r, B′) = Rm′

(t, V, B, r, B′).

We can also characterize reward functions that grow according to the same distribution

without depending on the chain’s history. The following property limits the dependence of R

on the view. Intuitively, it says that the only relevant information in the view that affects

the amount of reward in a block is the timestamp of its parent.

▶ Definition 5 (View-Independent Rewards). A reward function R is view-independent if for

all times t′ < t, any two views V1, V2 ∈ Vt′ such that Timestamp(B1) = Timestamp(B2) = t′

for some blocks B1 ∈ V1, B2 ∈ V2, we have:

for all r, the set of valid blocks extending B1 at t in V1 is the same as the set of valid

blocks extending B2 at t in V2, B(t, V1, B1, r) = B(t, V2, B2, r),9 and

8 Technically, since blocks include information about their creator, it would be more accurate to say
that there is a bijection between the set of valid views/blocks for any pair of miners. We overlook this
formality to simplify notation.

9 Recall that when we invoke a view and randomness together as inputs to a function, we implicitly
assume that the randomness could give rise to the view.

M. Bahrani, M. Neuder, and S. M. Weinberg 20:9

for every valid block B′ ∈ B(t, V1, B1, r), we have

Pr
r,

á

t ,
á

m|V1

[R(t, V1, B1, r, B′) = x] = Pr
r,

á

t ,
á

m|V2

[R(t, V2, B2, r, B′) = x]

for all x.

Note that fixing a view V1 (resp. V2) can update the distribution of the r,
á

t ,
á

m. We use the

subscript r,
á

t ,
á

m|Vi to refer to the posterior distribution of these random variables conditioned

on V1, V2. For example, block rewards are view-independent (within the same four year

halving window) because each block earns the same fixed reward from the protocol. Example 7

below is a non-example that demonstrates how transaction fees that are not fully claimed by

a parent block (e.g., arising from finite block sizes) are not view-independent because the

reward of the resulting child block depends on the amount of unclaimed transaction fees.

View-independence already limits the dependence of R on the view to the timestamp of

the parent block. We next define a subset of view-independent rewards where the dependence

on view is limited to the length of elapsed time since the parent block (and is the same

regardless of the exact parent block timestamp).

▶ Definition 6 (Static Rewards). A reward function R is static if for all ∆ > 0, all

times t1, t2 and views V1 ∈ Vt1
and V2 ∈ Vt2

such that Timestamp(B1) = t1 − ∆ and

Timestamp(B2) = t2 − ∆, we have:

for all r, the set of valid blocks extending B1 at t1 in V1 is the same as the set of valid

blocks extending B2 at t2 in V2, B(t1, V1, B1, r) = B(t2, V2, B2, r), and

for all valid blocks B′ ∈ B(t1, V1, B1, r), we have

Pr
r,

á

t ,
á

m|V1

[R(t1, V1, B1, r, B′) = x] = Pr
r,

á

t ,
á

m|V2

[R(t2, V2, B2, r, B′) = x]

for all x.

Example 9 below highlights that transaction fees are static using the [7] model with

constant arrival rate and infinite block sizes. See appendix Examples 37 and 38 in [3], which

demonstrate the conditions under which LVR is or is not static.

3.1 Properties of transaction fees

To illustrate the value of the aforementioned properties of reward functions, we perform an

extensive case study on transaction fees (see Appendix B.2 in [3] for a similar study but

on LVR). We consider the relevant properties that arise from different assumptions about

block sizes, user patience levels, and accrual rate of transactions. These examples aim to

justify the properties we focus on in Section 3 and motivate Sections 4 and 5, which measure

attacker revenue under multiple static reward sources.

Transaction fees

Users pay transaction fees to interact with blockchains. A mempool collects transactions

as they arrive, and its state at all times is captured in our model through the realization

of the randomness r. Consider transactions as infinitely divisible,10 belonging to the same

10 We could instead consider transactions as heterogeneous in size (e.g., as in Ethereum where transactions
consume different amounts of gas) or exclusive to miners (e.g., from private order flow), but the
additional complexity doesn’t add anything to the qualitative observations and is thus elided.

AFT 2025

20:10 Selfish Mining Under General Stochastic Rewards

mempool,10 and specifying a fee. A valid block B′ mined at time t and extending a parent

block B can include any transactions in the mempool at t that are not already included in

Chain(B). The corresponding reward function for a valid candidate block is the sum of the

fees paid by the transactions it includes.

We call users patient if their transactions remain valid until they are eventually included

in a later block. We shorthand transactions originating from patient users as patient

transactions.

As demonstrated in the following example, we cannot claim any further structure on the

patient-user transaction fee reward function without restricting the set of valid blocks.

▶ Example 7 (Patient transaction fees may be view-dependent). Consider two blocks B1, B2

with the same timestamp t′ and with the same parent mined at t. B1 claims all transaction

fees arriving in [t, t′], while B2 claims none. The rewards of maximizing candidate blocks

B′
1
, B′

2
built on B1, B2 respectively, are different, as B′

2
can claim more transaction fees than

B′
1
.

The key observation is that miners may not claim the complete set of available transactions,

thus impacting the claimable rewards of descendant blocks in that view (for more formalism,

see Lemma 30 in the appendix of [3]). Alternatively, consider the case where each block can

include all transactions (e.g., infinite block size as in [7]). If we additionally restrict the set

of views for each miner Vm
t′ , we can make the following stronger claim.

▶ Example 8 (Patient transaction fees are view-independent if blocks are infinite capacity and

fully-claiming). Assume blocks have infinite capacity and restrict views to only include blocks

that contain all available transaction fees at the time of mining. Then, the distribution of

rewards for B′ built at time t on parent block B1 or B2, which have the same timestamp

t′, is the same. Namely, the reward is the sum of patient transaction fees arriving in the

interval [t′, t].

Here, view-independence arises from the mempool fully emptying after each block is

created. Thus, the reward function only depends on newly arriving transaction fees after

the parent block is mined. Importantly, this reward function may not be static (which is a

stronger condition than view independence) because the transaction fee arrival rate may

not be homogeneous over time. For example, some hours of the day (such as trading hours

in Asia time zones) might result in higher transaction fee arrivals. Assuming a constant

transaction arrival rate, we can further establish staticness.

▶ Example 9 ([7]’s model of transaction fees is static). Assume 1 unit of patient transaction

fees arrive per unit of time, blocks have infinite capacity, and all blocks in the view claim all

available transaction fees (as in [7]). A block B′ extending B at time Timestamp(B) + ∆

can claim any reward in [0, ∆]. Therefore, this reward function is static.

While the previous example considers deterministic transaction fee arrivals (1 unit of

fees per unit of time), the same claim holds if the arrival rate is a random function of r

(but still identically distributed over time). Constant accrual, in addition to the mempool

clearing, results in the reward function being independent of the timestamp of the parent

block, making it static.

Until now, we have only considered patient users. In contrast, consider impatient users,

who submit transactions that are only valid for the next block produced (e.g., by checking

the height of the block they are included in before executing). We similarly shorthand these

as impatient transactions.

M. Bahrani, M. Neuder, and S. M. Weinberg 20:11

▶ Example 10 (Identically distributed, impatient transaction fees are static). Assuming the

impatient transactions arrive according to a fixed distribution over time since the parent

block, this reward function is static because the mempool clears after each block.

Note that the mempool clearing after each block was necessary for both Examples 9

and 10 to be static. However, the clearing came about differently – infinite block sizes in the

former and impatient users in the latter. The mempool clearing is a sufficient condition for

staticness if the distribution of rewards doesn’t depend on global clock time.

Varying the assumptions on block size and user patience allows us to describe reward

functions under differing models of congestion; we now consider transaction fees that are high

regardless of the block size. This contentious transaction model is motivated by the launch

of Babylon (Example 1). Transaction fees may spike because there is immense demand not

just for inclusion in a block but also for a specific ordering (e.g., needing to be one of the

first 100 transactions of a particular type).

▶ Example 11 (Bernoulli rewards are static). Consider contentious transaction fees modeled

as independent Bernoulli trials that occur once per block height, resulting in a constant

random reward of size E with probability p. This is a static reward function.

In Section 5, we study a variant of selfish mining under a combined reward function

that includes Bernoulli rewards, linear-in-time transaction fees as in Example 9, and block

rewards. This combined reward function is static, which is crucial to the tractability of that

analysis. See Section 1.1 for a discussion on the similarities between our model of Bernoulli

rewards and that of [37]. See Appendix B.1in [3] for examples pertaining to the properties

defined in Appendix B and Appendix B.2 for an extended case study on LVR.

These examples showcase the properties we ascribe to general reward functions in Section 3.

While these case studies allow us to demonstrate View-Independence (Definition 5) and

Staticness (Definition 6) in familiar settings, they do not cover all MEV types. As mentioned

in Section 6, we see characterizing the complete set of properties and applying them to

other forms of MEV (e.g., sandwiches and liquidations) as a key direction for future work.

With these properties in place, we now focus on calculating expected attacker profits from

performing β-cutoff selfish mining strategies under general static reward functions.

4 Selfish mining with static rewards

Sections 2 and 3 presented our model of general stochastic rewards and created a structure

around these reward functions. The subsequent sections study a specific set of miner strategies

to analyze their profitability and feasibility under general static rewards (Definition 6). We

examine β−cutoff selfish mining strategies [7], in which the attacker determines whether or

not to hide their blocks based on the amount of reward realized during the mining process.

4.1 Mining strategies in the NCG

In the NCG defined in Section 2, miners make three decisions at each time t:

1. which block to extend,

2. the contents of their next mined block, and

3. which blocks to broadcast.

Based on these decisions, we define the protocol-prescribed mining as honest.

AFT 2025

20:12 Selfish Mining Under General Stochastic Rewards

▶ Definition 12 (Honest mining). The honest mining strategy is defined as,

1. mine on the longest chain,

2. claim all available rewards, and

3. publish every block immediately.

In words, the honest miners always follow the longest chain and immediately share any block

they find with the rest of the network. If the remainder of the network is honest, the rewards

that an honest miner, i, controlling αi fraction of the hash power is proportional to their

mining power.

[10] and [7] demonstrate that selfish mining is profitable for miners (even under various

tie-breaking schemes) when considering only block rewards or only transaction fees that are

linear-in-time respectively. [7] also introduced β-cutoff selfish mining strategies, in which the

attacker mines selfishly as long as the rewards they earn on their hidden block are sufficiently

small. If their rewards are larger than a threshold β, they instead broadcast immediately to

avoid losing the valuable block.

▶ Definition 13 (β-cutoff selfish mining [7]). If there is no private chain, the attacker follows

the rules:

1. mine on the public longest chain,

2. claim all available rewards, and

3. withhold any block found where the time since parent is less than β (create a private

chain).

The third step above creates the private chain for the attacker; they transition into the

following rules (same as original selfish mining):

1. mine on the private chain,

2. claim all available rewards, and

3. withhold any block found unless an honest block is found and the difference in length

between the public chain and the private chain is ≤ 1.

This strategy differs from pure selfish mining only in Step 3 under no private chain, where

the attacker decides whether or not to publish based on the rewards captured in the block.

Note that the strategies we consider claim all available rewards; miners could instead choose

to intentionally leave some rewards on the table to incentivize subsequent miners to build on

their chain (“undercutting” [7]). See Section 6 for discussion on extending our framework to

a broader class of miner strategies.

Given a static reward function, we want to determine the per-unit-time expected attacker

rewards from following the β-cutoff strategy as in Definition 13. We develop a new technique

based on a Markov Chain similar to Figure 13 in [7] and Figure 1 in [10].

▶ Definition 14 (β-cutoff Markov Chain). Consider the NCG where the 1 − α of the mining

power follows the honest strategy and α follows the β-cutoff strategy. Then define State

i for i ≥ 1 where the attacker has a hidden chain i blocks longer than the public chain.

Let State 0 denote the attacker having no hidden blocks and State 0’ denote the race

state between the honest and attacker forks each of length 1. Let State 0” denote the state

immediately after the attacker publishes their private chain.

Figure 1 depicts this Markov Chain. We now derive the transition probabilities using a

general, static reward function. When considering static reward sources, notice that R is

only a function of the time since the parent block was mined; we hereafter denote this static

reward source as R(t), where t is the time since the parent block. This simplification allows

20:14 Selfish Mining Under General Stochastic Rewards

With Equations (1) and (2), we construct the entire Markov chain in Figure 1. Note that it

differs from Figure 1 in [10] and Figure 13 in [7], only in the transition probabilities from

State 0 calculated above for general static reward sources (Equations (1) and (2)). As in

previous work, γ is the tie-breaking rate dictating the fraction of honest miners who mine

on the attacker block after it is published, and there is a race of length-1 forks (in State

1). This parameter doesn’t impact the β-cutoff itself and only affects the probability that

the attacker fork wins the tie. See [3], Appendix E.1, for the calculation of the stationary

distribution of this Markov Chain.

With the stationary distribution, we can explicitly solve for the proportion of orphan

blocks, λ ∈ [0, 1], which in turn gives us the difficulty-adjusted rate of the Poisson process

of the transitions in the Markov Chain as 1/(1 − λ). This rate is faster than the rate of

canonical blocks (normalized to 1) because the orphaning process causes a reduction in

difficulty.

▶ Lemma 16 (Calculating λ). Let λ measure the probability that a block produced in the

Markov Chain is orphaned. Then,

λ = p1(1 − α)

(

1 +
α

1 − 2α

)

.

Proof in Appendix D.1 of the full version [3]. With λ, the new block production rate

is 1/(1 − λ). This is the rate at which blocks are found by any miner (i.e., the rate of

transitioning between states in the Markov Chain; Figure 1) assuming a constant hash rate

and results in the canonical chain blocks being produced at a rate of 1.

4.2 Expected attacker rewards

The stationary distribution alone is incomplete. To determine the attacker profit for a given

cutoff strategy, we calculate their expected profit from each state and multiply those values

by the stationary distribution of the Markov Chain to determine the expected profit per unit

of time.

▶ Definition 17 (Per-state attacker rewards, fi). Let fi denote the expected reward of a

canonicalized attacker block mined in State i.

To calculate this value, we need to find the expected value of the reward function by

integrating the time distribution over the possible paths that include an attacker block

claiming rewards arriving during State i. We first enumerate all possible paths that result

in a canonical attacker block from State i; we then integrate the reward function over

each path. The following example demonstrates this technique, and we generalize it in [3],

Lemma 40.

▶ Example 18 (State 3 paths). Consider the rewards arriving after the attacker has a lead

of length three. These rewards can be canonicalized in four different ways:

1. the attacker finds the next block, extending their lead to four,

2. the honest parties find the next block, then the attacker finds the subsequent,

3. the honest parties find the next two blocks, causing the attacker to publish their hidden

chain, and then the attacker finds the first block after publishing,

4. the honest parties find the next two blocks, causing the attacker to publish their hidden

chain, and then the honest parties find the first block after that.

M. Bahrani, M. Neuder, and S. M. Weinberg 20:15

We can succinctly represent these four outcomes using the strings, A, HA, HHA, HHH, where

H & A denote honest and attacker blocks, respectively. This example prompts the definition

of attacker paths.

▶ Definition 19 (Attacker paths). Given State i for all i ≥ 2, there are i distinct paths

resulting in the attacker capturing rewards accrued in that state. The paths are enumerated

as the string (H∗)A, where H & A denote honest and attacker blocks respectively and H is

repeated 0, 1, . . . i − 1 times.

Continuing our State 3 example, we now calculate the expected reward from each

attacker path; adding these together is precisely the value of interest, f3.

▶ Example 20 (f3 continued). Consider the three attacker paths of State 3: A, HA, HHA.
These paths have lengths 1,2,3 and occur with probabilities α, (1−α)α, (1−α)2α, respectively.
Thus, we calculate the expected reward as,

f3 = α

∫
∞

0

e−t/(1−λ)

(1 − λ)
Er[R(t)] dt

︸ ︷︷ ︸

A

+ (1 − α)α

∫
∞

0

te−t/(1−λ)

(1 − λ)2
Er[R(t)] dt

︸ ︷︷ ︸

HA

+ (1 − α)2
α

∫
∞

0

t2e−t/(1−λ)

2(1 − λ)3
Er[R(t)] dt

︸ ︷︷ ︸

HHA

Each of these expressions can be viewed as the product of three independent sources of

randomness. The coefficients of the integrals are the probabilities of each path determined

by the winning miner, which depends on
á

m. The first expression in the integrand is the PDF

of the Erlang Distribution, which measures the sum of i.i.d. exponential random variables

(all with rate 1/(1 − λ)) to determine the amount of time of the path, which depends on
á

t .

The second expression in the integrand is the expected value over all remaining randomness,

r, of the reward function at time t. See Appendix E.2 in [3] for the remaining fi calculations.

Combining the stationary distribution values, pi, with the per-state expected rewards, fi, we

can calculate the full expected attacker reward.

▶ Theorem 21. The attacker’s expected reward is,

ATTACKER REWARD = f0p0 + f1p1 + α

∞∑

i=2

fipi−1.

Proof. For State 0 and State 1, we multiply the stationary distribution probability by the

expected per-state attacker reward to calculate the contribution to the full attacker reward.

For State i, i ≥ 2, we need to avoid double counting the contributions from each state

(e.g., you can transition to State 3 from either State 2 or State 4). To account for this

we only consider the probability of arriving in each state from the i − 1 state, which occurs

with probability αpi−1. Thus, for each state, we add the contribution to the total attacker

reward as αfipi−1. The resulting value tells us the expected attacker reward per unit time of

following a β-cutoff strategy under the static reward function and as a function of α, β, γ. ◀

5 Selfish mining with three reward sources

Selfish mining strategies were analyzed with just transaction fees and just block rewards in

[10, 7], respectively. With the more general notion of miner rewards as defined in Section 2,

a similarly general analysis is required to describe the profitability of selfish mining under

AFT 2025

20:16 Selfish Mining Under General Stochastic Rewards

different reward schedules. The methodology of path counting and integrating the general

reward function established in Section 4 works for any static reward functions. We now

instantiate a specific aggregate reward function, which more accurately captures complete

miner incentives as they exist in Bitcoin today. This combined reward function, which we

denote R̂, is composed of (1) a fixed block reward of size C, (2) a linear-in-time transaction

fee reward, and (3) an “extra” reward of size E awarded to a block based on the outcome of

a Bernoulli trial with probability p. Note that this new reward function considers the sum of

each of these rewards, a more representative model of how miners are rewarded in reality

rather than considering each of the rewards in isolation. For more straightforward examples

of applying the path-counting technique to single-source reward functions, see Appendix H

in [3] for only considering block rewards as in [10] and Appendix G for only considering

transaction fees as in [7].

5.1 Rewards #1 & #2: block rewards and transaction fees

Each block that a miner produces earns a “fixed block reward” of magnitude C, which is

paid directly to the miner as the first transaction in a block. We consider the block reward

fixed.11

▶ Remark 22 (Block rewards are static). Block rewards are a constant function that doesn’t

depend on t,

R(t) = C. (3)

As such, they are static because each block reward is identically distributed no matter the

timestamp of the parent block.

The miners are also paid through the contents of the block they create. In particular, the

transactions themselves specify a fee12 to be paid to the miner for including the transaction in

the block. As in [7], we start by assuming transaction fees arrive at a deterministic rate and

are fully claimable by any subsequent block. See [34] for empirical measurements justifying

the linear-in-time transaction fee rewards.

▶ Remark 23 (Deterministic transaction fees with fully claiming blocks are static). Using the [7]

definition of fixed-rate transaction fee arrival, we have

R(t) = t. (4)

This reward is static, as it is deterministic and the same for all blocks (only depending on

timestamp of the parent block).

5.2 Rewards #3: non-deterministic extra rewards

We also introduce a third type of reward to our model, motivated by the reality that some

blocks have much higher transaction fee revenue than others due to contention. [37] use

a similar model to capture high-fee-paying transactions in addition to block rewards; see

Section 1.1 for further discussion. Consider, for example, that a new type of transaction can

11 The Bitcoin block reward is cut in half every four years, which impacts the relative size of the block
reward compared to other reward sources. Our model considers the strategies available to miners within
the same block reward period.

12 In Bitcoin, the UTXO model defines a set of inputs and outputs for a transaction. Any balance that
doesn’t specify an output is claimable by the miner.

M. Bahrani, M. Neuder, and S. M. Weinberg 20:17

become available at a specific block height, and only a fixed amount of those transactions

are valid (e.g., the first 10,000 transactions that purchase a specific NFT). To get their

transaction included, participants submit bids specifying the fee they will pay to the block

producer for higher-priority inclusion (assuming transactions are ordered by fee). This

contention for block space leads to much higher revenue for the miner (who serves as the

auctioneer) because even assuming infinite block sizes, the finite nature of the transaction

type induces the competition (sometimes referred to as a “priority gas auction” [8]). We

model this reward as a fixed size “extra reward” of magnitude E available to a miner of a

block with probability p (a Bernoulli trial) and independent of time. We refer to this reward

function as “Bernoulli rewards.”

▶ Remark 24 (Bernoulli rewards are static). Bernoulli rewards are static because each block

has the same distribution of rewards according to the outcome of the trial,

R(t) =

{

E if X = 1

0 otherwise,
where X ∼ Bernoulli(p). (5)

Note that this model doesn’t allow for the “predictability” of these Bernoulli rewards.

Since miners may know a priori what block height a new set of transactions will arrive at,

miners’ strategy space would be different than the standard selfish mining strategies we

explore below. See Section 6 for more discussion.

▶ Definition 25 (Reward function instantiation, R̂). Combining the three reward sources

(Equations (3)–(5)), we have the full reward function, which we denote as R̂,

R̂(t) = C + t + E · 1[X = 1], X ∼ Bernoulli(p). (6)

Recall that the path-counting technique defined in Section 4 applies to any static reward

function. Since R̂ is the sum of three independent, static rewards sources, it is static itself,

and thus, we can analyze it. Under R̂, we seek to calculate the attacker reward (Theorem 21).

Following the structure above, we define the Markov Chain as a function of R̂, which induces

a stationary distribution pi before explicitly calculating the per-state attacker reward fi. For

the derivation of the stationary distribution, an instantiation of the general technique in

Section 4.1, and the Markov chain under this combined reward function, see [3], Appendix E.3.

For the derivation of the expected attacker rewards, an instantiation of the general technique

in Section 4.2, see Appendix E.4 in [3].

5.3 Numerical results and discussion

Linear-in-time transaction fees and block rewards

Figure 2 analyzes the simple combination of the linear-in-time transaction fee rewards and

block rewards. As expected, the attacker rewards under this combined function interpolates

between the two extremes. Selfish (in red) shows the percentage of the block rewards

collected when always hiding in State 0 (which is exactly the reward in [10] – see Appendix H

in [3] for the full derivation). β−cutoff (linear) (in blue) shows the percentage of the

linear-in-time transaction fees collected on the attacker chain when choosing β to maximize

this ratio (which is exactly the reward in [7] – see Appendix G in [3] for the full derivation).

β−cutoff (linear + block) (in tan) shows the attacker’s reward when considering both

reward sources together. One interpretation of Figure 2 examines how different reward

regimes can lead to dramatically different conclusions regarding the “risk of attack” a

AFT 2025

M. Bahrani, M. Neuder, and S. M. Weinberg 20:21

Extending our methodology. There are several natural extensions to our methods. For

example, considering the profitability of β-cutoff selfish mining under non-static reward

functions is feasible. Such reward functions depend on additional information not captured

in the states of the Markov Chain. However, suppose that the additional information is

exogenous to the chain and independent of views. In that case, it is possible to augment the

state space of the Markov Chain to include this information. Sme reward sources exhibit

“periodic” behavior; in the case of Babylon (Example 1), elevated rewards persisted for a

seven-block period. A simple modification of the Markov chain would allow the rewards to

depend on whether the system was in a “high” versus “low” regime.

Another extension is to study MDP-based optimal strategies as in [30] rather than β-cutoff

selfish mining. [37] demonstrate the impact of changing the reward function on optimal

selfish mining profits when considering the combination of block rewards and occasional

“whale” transactions, and they note that the resulting large state spaces were intractable

with traditional MDP solving tooling and required machine learning. Considering how to

more succinctly represent multi-reward state spaces or using the Deep RL approach with

more combinatorial rewards are both promising directions. While we consider strategies that

make decisions based on the realization of rewards in the current block, the broader MDP

strategy space can be future-looking; for example, an attacker may want to start creating a

hidden chain of several blocks in advance of an anticipated large reward (e.g., from an NFT

drop occurring at a specific block height).

A complete picture of consensus incentives. As demonstrated in Examples 1 and 2,

modern blockchains have faced and will continue to face distortion of consensus incentives

from the application layer handling growing amounts of economic activity. Section 3 is a first

step at modeling properties of general reward functions, but applying these properties to

MEV beyond the transaction fee (Section 3.1) and LVR (Appendix B.2 in [3]) case studies

remains open. It would be interesting to derive a set of necessary and sufficient properties

to fully taxonomize MEV. Studying heterogeneity of reward sources was out of the scope

of this work, but expanding the properties of reward functions when block producers have

highly different rewards realizations is another key future direction.

References

1 Maryam Bahrani, Pranav Garimidi, and Tim Roughgarden. Centralization in block-building
and proposer-builder separation. In International Conference on Financial Cryptography and

Data Security, pages 331–349. Springer, 2024. doi:10.1007/978-3-031-78676-1_19.

2 Maryam Bahrani, Pranav Garimidi, and Tim Roughgarden. Transaction fee mechanism design
with active block producers. In International Conference on Financial Cryptography and Data

Security, pages 85–90. Springer, 2024. doi:10.1007/978-3-031-69231-4_6.

3 Maryam Bahrani, Michael Neuder, and S Matthew Weinberg. Selfish mining under general
stochastic rewards. arXiv preprint arXiv:2502.20360, 2025. doi:10.48550/arXiv.2502.20360.

4 Maryam Bahrani and S Matthew Weinberg. Undetectable selfish mining. In Proceedings

of the 25th ACM Conference on Economics and Computation, pages 1017–1044, 2024. doi:

10.1145/3670865.3673485.

5 Jonah Brown-Cohen, Arvind Narayanan, Alexandros Psomas, and S Matthew Weinberg.
Formal barriers to longest-chain proof-of-stake protocols. In Proceedings of the 2019 ACM

Conference on Economics and Computation, pages 459–473, 2019. doi:10.1145/3328526.

3329567.

6 Agostino Capponi, Ruizhe Jia, and Sveinn Olafsson. Proposer-builder separation, payment for
order flows, and centralization in blockchain. Payment for Order Flows, and Centralization in

Blockchain (February 12, 2024), 2024.

AFT 2025

https://doi.org/10.1007/978-3-031-78676-1_19
https://doi.org/10.1007/978-3-031-69231-4_6
https://doi.org/10.48550/arXiv.2502.20360
https://doi.org/10.1145/3670865.3673485
https://doi.org/10.1145/3670865.3673485
https://doi.org/10.1145/3328526.3329567
https://doi.org/10.1145/3328526.3329567

20:22 Selfish Mining Under General Stochastic Rewards

7 Miles Carlsten, Harry Kalodner, S Matthew Weinberg, and Arvind Narayanan. On the
instability of bitcoin without the block reward. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, pages 154–167, 2016. doi:10.1145/

2976749.2978408.

8 Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz
Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In 2020 IEEE Symposium on Security and Privacy

(SP), pages 910–927, 2020. doi:10.1109/SP40000.2020.00040.

9 Francesco D’Amato and Michael Neuder. Equivocation attacks in mev-boost and epbs. https:

//ethresear.ch/t/equivocation-attacks-in-mev-boost-and-epbs/15338, 2023. Accessed:
2025-02-05.

10 Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable.
Communications of the ACM, 61(7):95–102, 2018. doi:10.1145/3212998.

11 Matheus VX Ferreira, Aadityan Ganesh, Jack Hourigan, Hannah Huh, S Matthew Weinberg,
and Catherine Yu. Computing optimal manipulations in cryptographic self-selection proof-of-
stake protocols. In Proceedings of the 25th ACM Conference on Economics and Computation,
pages 676–702, 2024.

12 Matheus VX Ferreira, Ye Lin Sally Hahn, S Matthew Weinberg, and Catherine Yu. Optimal
strategic mining against cryptographic self-selection in proof-of-stake. In Proceedings of the

23rd ACM Conference on Economics and Computation, pages 89–114, 2022.

13 Colin Finkbeiner, Mohamed E Najd, Julia Guskind, and Ghada Almashaqbeh. Sok: Time to
be selfless?! demystifying the landscape of selfish mining strategies and models. Cryptology

ePrint Archive, 2025.

14 Guy Goren and Alexander Spiegelman. Mind the mining. In Proceedings of the 2019 ACM

Conference on Economics and Computation, pages 475–487, 2019. doi:10.1145/3328526.

3329566.

15 Cyril Grunspan and Ricardo Pérez-Marco. On profitability of selfish mining. arXiv preprint

arXiv:1805.08281, 2018. arXiv:1805.08281.

16 Tivas Gupta, Mallesh M Pai, and Max Resnick. The centralizing effects of private order flow
on proposer-builder separation. arXiv preprint, 2023. arXiv:2305.19150.

17 Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse attacks on
bitcoin’s peer-to-peer network. In 24th USENIX security symposium (USENIX security

15), pages 129–144, 2015. URL: https://www.usenix.org/conference/usenixsecurity15/

technical-sessions/presentation/heilman.

18 Charlie Hou, Mingxun Zhou, Yan Ji, Phil Daian, Florian Tramer, Giulia Fanti, and Ari
Juels. Squirrl: Automating attack analysis on blockchain incentive mechanisms with deep
reinforcement learning. arXiv preprint, 2019. arXiv:1912.01798.

19 mempool.space. Bitcoin block 0000000000000000000 25c7d9798e97c8f5d8502b03f4bd6b99c365
991c5f03b, 2025. URL: https://mempool.space/block/000000000000000000025c7d9798e97

c8f5d8502b03f4bd6b99c365991c5f03b.

20 Jason Milionis, Ciamac C Moallemi, and Tim Roughgarden. Automated market making and
arbitrage profits in the presence of fees. arXiv preprint arXiv:2305.14604, 2023.

21 Jason Milionis, Ciamac C Moallemi, Tim Roughgarden, and Anthony Lee Zhang. Automated
market making and loss-versus-rebalancing. arXiv preprint arXiv:2208.06046, 2022.

22 Arvind Narayanan. Bitcoin and cryptocurrency technologies: a comprehensive introduction.
Princeton University Press, 2016.

23 Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn mining: Generalizing
selfish mining and combining with an eclipse attack. In 2016 IEEE European Symposium on

Security and Privacy (EuroS&P), pages 305–320. IEEE, 2016. doi:10.1109/EUROSP.2016.32.

24 Joachim Neu, Ertem Nusret Tas, and David Tse. Two more attacks on proof-of-stake
ghost/ethereum. In Proceedings of the 2022 ACM Workshop on Developments in Consensus,
pages 43–52, 2022. doi:10.1145/3560829.3563560.

https://doi.org/10.1145/2976749.2978408
https://doi.org/10.1145/2976749.2978408
https://doi.org/10.1109/SP40000.2020.00040
https://ethresear.ch/t/equivocation-attacks-in-mev-boost-and-epbs/15338
https://ethresear.ch/t/equivocation-attacks-in-mev-boost-and-epbs/15338
https://doi.org/10.1145/3212998
https://doi.org/10.1145/3328526.3329566
https://doi.org/10.1145/3328526.3329566
https://arxiv.org/abs/1805.08281
https://arxiv.org/abs/2305.19150
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://arxiv.org/abs/1912.01798
https://mempool.space/block/000000000000000000025c7d9798e97c8f5d8502b03f4bd6b99c365991c5f03b
https://mempool.space/block/000000000000000000025c7d9798e97c8f5d8502b03f4bd6b99c365991c5f03b
https://doi.org/10.1109/EUROSP.2016.32
https://doi.org/10.1145/3560829.3563560

M. Bahrani, M. Neuder, and S. M. Weinberg 20:23

25 Michael Neuder, Daniel J Moroz, Rithvik Rao, and David C Parkes. Selfish behavior in the
tezos proof-of-stake protocol. arXiv preprint arXiv:1912.02954, 2019. arXiv:1912.02954.

26 Michael Neuder, Daniel J Moroz, Rithvik Rao, and David C Parkes. Defending against
malicious reorgs in tezos proof-of-stake. In Proceedings of the 2nd ACM Conference on

Advances in Financial Technologies, pages 46–58, 2020. doi:10.1145/3419614.3423265.
27 Michael Neuder, Daniel J Moroz, Rithvik Rao, and David C Parkes. Low-cost attacks

on ethereum 2.0 by sub-1/3 stakeholders. arXiv preprint arXiv:2102.02247, 2021. arXiv:

2102.02247.
28 Burak Öz, Benjamin Kraner, Nicolò Vallarano, Bingle Stegmann Kruger, Florian Matthes,

and Claudio Juan Tessone. Time moves faster when there is nothing you anticipate: The role
of time in mev rewards. In Proceedings of the 2023 Workshop on Decentralized Finance and

Security, pages 1–8, 2023. doi:10.1145/3605768.3623563.
29 Burak Öz, Danning Sui, Thomas Thiery, and Florian Matthes. Who wins ethereum block

building auctions and why? arXiv preprint arXiv:2407.13931, 2024. doi:10.48550/arXiv.

2407.13931.
30 Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish mining strategies

in bitcoin. In Financial Cryptography and Data Security: 20th International Conference, FC

2016, Christ Church, Barbados, February 22–26, 2016, Revised Selected Papers 20, pages
515–532. Springer, 2017. doi:10.1007/978-3-662-54970-4_30.

31 Caspar Schwarz-Schilling, Joachim Neu, Barnabé Monnot, Aditya Asgaonkar, Ertem Nusret
Tas, and David Tse. Three attacks on proof-of-stake ethereum. In International Conference

on Financial Cryptography and Data Security, pages 560–576. Springer, 2022. doi:10.1007/

978-3-031-18283-9_28.
32 Caspar Schwarz-Schilling, Fahad Saleh, Thomas Thiery, Jennifer Pan, Nihar Shah, and Barnabé

Monnot. Time is money: Strategic timing games in proof-of-stake protocols. arXiv preprint

arXiv:2305.09032, 2023. doi:10.48550/arXiv.2305.09032.
33 Ertem Nusret Tas, David Tse, Fangyu Gai, Sreeram Kannan, Mohammad Ali Maddah-Ali,

and Fisher Yu. Bitcoin-enhanced proof-of-stake security: Possibilities and impossibilities.
In 2023 IEEE Symposium on Security and Privacy (SP), pages 126–145. IEEE, 2023. doi:

10.1109/SP46215.2023.10179426.
34 Itay Tsabary and Ittay Eyal. The gap game. In Proceedings of the 2018 ACM SIGSAC

conference on Computer and Communications Security, pages 713–728, 2018. doi:10.1145/

3243734.3243737.
35 Sen Yang, Kartik Nayak, and Fan Zhang. Decentralization of ethereum’s builder market.

arXiv preprint arXiv:2405.01329, 2024. doi:10.48550/arXiv.2405.01329.
36 Sen Yang, Fan Zhang, Ken Huang, Xi Chen, Youwei Yang, and Feng Zhu. Sok: Mev

countermeasures: Theory and practice. arXiv preprint arXiv:2212.05111, 2022. doi:10.

48550/arXiv.2212.05111.
37 Roi Bar Zur, Ameer Abu-Hanna, Ittay Eyal, and Aviv Tamar. Werlman: To tackle whale

(transactions), go deep (RL). In 44th IEEE Symposium on Security and Privacy, SP 2023,

San Francisco, CA, USA, May 21-25, 2023, pages 93–110. IEEE, 2023. doi:10.1109/SP46215.

2023.10179444.

AFT 2025

https://arxiv.org/abs/1912.02954
https://doi.org/10.1145/3419614.3423265
https://arxiv.org/abs/2102.02247
https://arxiv.org/abs/2102.02247
https://doi.org/10.1145/3605768.3623563
https://doi.org/10.48550/arXiv.2407.13931
https://doi.org/10.48550/arXiv.2407.13931
https://doi.org/10.1007/978-3-662-54970-4_30
https://doi.org/10.1007/978-3-031-18283-9_28
https://doi.org/10.1007/978-3-031-18283-9_28
https://doi.org/10.48550/arXiv.2305.09032
https://doi.org/10.1109/SP46215.2023.10179426
https://doi.org/10.1109/SP46215.2023.10179426
https://doi.org/10.1145/3243734.3243737
https://doi.org/10.1145/3243734.3243737
https://doi.org/10.48550/arXiv.2405.01329
https://doi.org/10.48550/arXiv.2212.05111
https://doi.org/10.48550/arXiv.2212.05111
https://doi.org/10.1109/SP46215.2023.10179444
https://doi.org/10.1109/SP46215.2023.10179444

	1 Introduction
	1.1 Related work
	1.2 Summary of results

	2 Preliminaries and model
	2.1 Nakamoto Consensus Game with general rewards
	2.2 Notes on model

	3 Reward functions: properties and examples
	3.1 Properties of transaction fees

	4 Selfish mining with static rewards
	4.1 Mining strategies in the NCG
	4.2 Expected attacker rewards

	5 Selfish mining with three reward sources
	5.1 Rewards #1 & #2: block rewards and transaction fees
	5.2 Rewards #3: non-deterministic extra rewards
	5.3 Numerical results and discussion

	6 Conclusion and future work

