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I. I N T R O D U C TI O N

N e ar-i nfr ar e d s p e ctr os c o p y ( NI R S) is a n o pti c al n o n-i n v asi v e
m et h o d f or m e as uri n g t h e o pti c al pr o p erti es of t ur bi d m e di a b y ill u-
mi n ati n g t h e m e di u m wit h a li g ht s o ur c e at o n e l o c ati o n a n d t h e n
c oll e cti n g t h e diff us e d li g ht at s o m e dist a n c e, us u all y a f e w c e n-
ti m et ers a w a y fr o m t h e ill u mi n ati o n p oi nt.1 F or tr a diti o n al si n gl e-
dist a n c e ( S D) r e fl e ct a n c e NI R S, t h e m e as ur e m e nt is r e pr es e nt ati v e of
a b a n a n a-s h a p e d r e gi o n of s e nsiti vit y t o a bs or pti o n c h a n g e b e n e at h
t h e S D s et.2, 3 T h e f urt h er t h e s o ur c e a n d d et e ct or ar e s p a c e d, t h e
d e e p er t h e li g ht p er m e at es. F or a s o ur c e – d et e ct or s e p ar ati o n of
3 0 m m i n a m e di u m wit h μ a ∼ 0. 0 1 m m − 1 a n d μ ′

s ∼ 1. 0 m m − 1 , t h e
m e a n p e n etr ati o n d e pt h is o n t h e or d er of 5 – 1 0 m m d e p e n di n g o n
t h e i nstr u m e nt a n d t h e m e di u m.4 Fr e q u e n c y- d o m ai n n e ar-i nfr ar e d
s p e ctr os c o p y ( F D- NI R S) m e as ur es t h e i nt e nsit y ( I) a n d p h as e ( ϕ )
of d et e ct e d p h ot o n d e nsit y w a v es. 5 C h a n g es i n eit h er j ust I or ϕ

m a y b e c o n v ert e d t o c h a n g es i n t h e a bs or pti o n c o ef fi ci e nt ( Δ μ a ) a n d
t h e n c h a n g es i n t h e c o n c e ntr ati o ns of h e m o gl o bi n.6 Alt er n ati v el y,
t h e s p ati al d e p e n d e n c e of b ot h I a n d ϕ m a y b e c o n v ert e d i nt o a bs o-
l ut e o pti c al pr o p erti es, t h e a bs or pti o n c o ef fi ci e nt, a n d t h e r e d u c e d
s c att eri n g c o ef fi ci e nt (μ a a n d μ ′

s , r es p e cti v el y).7

I n bi o m e di c al a p pli c ati o ns, t h e w a v el e n gt h of t h e li g ht s o ur c e
is us u all y b et w e e n 6 5 0 a n d 9 0 0 n m si n c e t his is a n o pti c al wi n-
d o w ass o ci at e d wit h l o w w at er a bs or pti o n i n bi ol o gi c al tiss u e. 4 I n
t his w a v el e n gt h r a n g e, m a n y c hr o m o p h or es s u c h as w at er, li pi d,
m el a ni n, 8 a n d bilir u bi n i nt er a ct wit h t h e li g ht, b ut o x y h e m o gl o bi n
( H b O2 ) a n d d e o x y h e m o gl o bi n ( H b R) d o mi n at e μ a , all o wi n g r e c o v-
er y of t h eir c o n c e ntr ati o ns fr o m o pti c al m e as ur e m e nts of μ a .

9 T h e
m e as ur e m e nts w e m a d e o n h u m a n s u bj e cts w er e f o c us e d o n fi n di n g
c h a n g es i n c o n c e ntr ati o ns of d y n a mi c all y c h a n gi n g c hr o m o p h or es.
T h e o nl y c hr o m o p h or es t h at w e ar e s e nsiti v e t o i n t his w a v el e n gt h
r a n g e t h at c h a n g e d y n a mi c all y ar e H b O a n d H b R d uri n g a v e n o us
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occlusion. The non-invasive nature of NIRS, coupled with the exis-
tence of this optical window, makes NIRS a very attractive technique
for biomedical researchers. As a result, NIRS has been used in
many clinical studies focused on pediatrics,10 breast cancer,11 func-
tional brain imaging,1,5 neonatal care,12 ischemia,13 ulcers,14 and
peripheral artery disease,15 to name a few.

There are three main NIRS methods, namely continuous-
wave (CW-NIRS),16 time-domain (TD-NIRS),17 and frequency-
domain (FD-NIRS).5 The distinguishing feature of these methods
is whether/how the light source is modulated. The simplest imple-
mentation is CW-NIRS, where the light source is not modulated.
In CW-NIRS, the medium is illuminated by a light source with
constant intensity, and temporal changes in the detected inten-
sity are recorded. From these changes, one may recover absorption
changes due to tissue hemodynamics or other physiological pro-
cesses (Δμa), but absolute values for μa and μ′s must be assumed.
Contrary to CW-NIRS, the intensity of the light source is mod-
ulated in the two other methods. For TD-NIRS, this modulation
results in a very short pulse (on the order of a pico-second), whereas
for FD-NIRS the light source is modulated as a sine wave in the
radio frequencies (50–1000 MHz). This modulation makes the light
intensity a function of time; therefore, it becomes possible to com-
pute the average time it takes for the photons to travel through
the media. These additional degrees of freedom make it possible to
recover absolute values of μa and μ′s , given that the system is prop-
erly calibrated. As a result, TD-NIRS and FD-NIRS methods can
recover the absolute concentrations of HbO2 ([HbO2]) and HbR
([HbR]), whereas CW-NIRSmethods can only recover the change of
these chromophores’ concentrations over time (given assumed val-
ues of μa and μ′s). This added capability of TD-NIRS or FD-NIRS
comes with extra hardware and data analysis complexity. For TD-
NIRS, commercially available pico-second laser sources are gener-
ally quite expensive and bulky. In addition, to resolve the recovered
light, photodetectors also need to be high-speed. Hardware com-
plexity for FD-NIRS, however, is relatively relaxed. One can use
off-the-shelf laser diodes and photodetectors to build an FD-NIRS
instrument.

Even though there are many CW-NIRS solutions available on
the market, such as the ones integrated into smartwatches, cur-
rently ISS (Urbana-Champaign, USA) offers the only commercially
available frequency domain instruments.18,19 However, many aca-
demic research groups have designed frequency domain devices.
Some of these designs leverage commercial vector network analyzers
(VNAs) in order to extract the intensity and phase information,20–23

whereas some other designs use the direct sampling approach, where
analog-to-digital converters (ADCs) with high sampling rates inter-
face with the high frequency signals directly.24–27 Direct sampling is
not the only solution that has been investigated. Instead of handling
the high frequency signals directly, some other groups have utilized
the homodyne approach, where the recovered high frequency signals
are mixed with a local oscillator (LO) of the same frequency and an
I–Q demodulation scheme is used to extract the phase and inten-
sity information.28–32 Another solution a few groups have chosen
is the heterodyne approach,23,33–40 where the recovered signals are
mixed with an LO signal that is at a slightly different frequency. Het-
erodyne mixing preserves the intensity and phase shift information
while translating this information to amuch lower carrier frequency,
where sampling is easier.

Although all of these approaches have proven to be successful,
not all of them are conducive to portable and cost-effective instru-
ments. For instance, VNAs are rather expensive and bulky benchtop
equipment, and the high sampling rate ADCs that are required for
the direct sampling approach consume a lot of power by themselves.
They also usually require a Field Programmable Gate Array (FPGA)
to drive them, which makes this approach evenmore power-hungry.
On the other hand, there are also integrated attempts that showmore
promise toward wearability and portability.41–43 Therefore, in our
efforts, we chose the heterodyne approach in an integrated plat-
form. In the past, we had presented a few different iterations of
our efforts, improving integration with each iteration.44–50 Recently,
we had designed and demonstrated a dual-wavelength, heterodyne
FD-NIRS instrument.51 The instrument consisted of a three stack
printed circuit board (PCB) (12 ×11.5× 5 cm3) and featured a
custom-designed application specific integrated circuit (ASIC) in
a 130 nm IBM process52 along with a multi-distance probe. The
heterodyne output signals were sampled via a data acquisition sys-
tem (DAQ, National Instruments Corp., Austin, TX, USA). In this
work, we combine heterodyne FD-NIRS (performed by the ASIC52)
with the dual-slope approach, which is a specialized multi-distance
method. Furthermore, we improve our previous work by reduc-
ing the size to only a single PCB of 14 × 17 cm2, leaving only the
readout and analysis blocks off-board for which we use compact
commercial solutions instead of a full sized DAQ. The resulting
instrument is compact and portable due to its high level of integra-
tion compared to most of the reported works, where the solutions
include either large discrete RF components,28,31,32,35,39 instrument
mounted on racks,29,34,36–38,40 or VNA based instruments.20–23 Addi-
tionally, we remove the need for calibration by employing the
self-calibrating53/dual-slope6,54 (SC/DS) geometry. The SC/DS con-
figuration removes the need for phantom calibration, which is
performed regularly and is necessary for typical FD-NIRS systems
intending to measure absolute μa and μ′s . The particulars of SC, DS,
and FD-NIRS theory will be discussed in Sec. II. In Sec. III, we
describe the hardware development, block by block. In Sec. IV, we
present our results with phantoms and in vivo humanmeasurements
during vascular occlusion.

II. FREQUENCY-DOMAIN NEAR-INFRARED
SPECTROSCOPY THEORY
A. Measurements of absolute absorption
and reduced scattering coefficients:
The self-calibrating (SC) method

In FD-NIRS, the estimation of the absolute optical properties,
namely μa and μ′s , can be obtained by multi-distance,55 multi-
frequency measurements,23 or even single-distance and single-
frequency measurements,56 after proper calibration. Typically, these
strategies require previous calibration on a phantom with known
optical properties. At least two shortcomings of this phantom
calibration approach can be mentioned,

● onemust assume that the coupling between each optode and
the medium remains unchanged between calibration and
measurement on an unknown medium and,

● one must also assume that the laser’s output power and/or
the detector’s gain do not change between calibration and
measurement.

Rev. Sci. Instrum. 95, 114706 (2024); doi: 10.1063/5.0227363 95, 114706-2
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T h es e pr er e q uisit es ar e dif fi c ult t o s atisf y, es p e ci all y d uri n g i n
vi v o m e as ur e m e nts. A m or e r o b ust a p pr o a c h a d o pt e d i n t his w or k
is t h e S C m et h o d.5 3 T his m et h o d us es a pr o b e wit h t w o s o ur c es ( S 1

a n d S 2 ) a n d t w o d et e ct ors ( D 1 a n d D 2 ) (s e e Fi g. 1 ). S e v er al c o n fi g u-
r ati o ns of t h e o pt o d es ar e p ossi bl e, 5 7 b ut all of t h e m m ust s atisf y o n e
f u n d a m e nt al pr o p ert y: t h at t h e cl os est d et e ct or t o S1 (i. e., D1 ) is als o
t h e f art h est d et e ct or fr o m S2 , a n d vi c e v ers a: t h e f art h est d et e ct or
fr o m S1 (i. e., D2 ) is t h e cl os est d et e ct or t o S 2 .5 7 I n a d diti o n, it m ust
b e v eri fi e d t h at

S 1 D 2 − S 1 D 1 = S 2 D 1 − S 2 D 2 = Δ r , ( 1)

w h er e Δ r is t h e diff er e n c e b et w e e n l o n g a n d s h ort dist a n c es. T h e
m et h o d r eli es o n b ot h m e as ur e m e nts of ϕ ( p h as e) a n d I (i nt e nsit y)
d at a t y p es f or all t h e p ossi bl e c o m bi n ati o ns of s o ur c e – d et e ct or p airs
[i. e., f o ur si n gl e- dist a n c e ( S D) m e as ur e m e nts p er e a c h d at a t y p e]. A
si n gl e-sl o p e ( S S) m e as ur e m e nt is i d e nti fi e d b y o n e s o ur c e a n d t w o
d et e ct ors ( e. g., S 1 D 1 D 2 ), a n d it is d e fi n e d b y

S S =
Δ Y

Δ r
=

Y ( r 2 ) − Y ( r 1 )

Δ r
, ( 2)

w h er e Y is eit h er ϕ or t h e l o g arit h mi c i nt e nsit y l n [ r 2 I] ( w h er e r is
s o ur c e d et e ct or dist a n c e), a n d s o ur c e – d et e ct or dist a n c es r 1 a n d r 2

ar e d e fi n e d as

r 1 = S 1 D 1 , ( 3)

r 2 = S 1 D 2 . ( 4)

I n ot h er w or ds, o n e S S m e as ur e m e nt is d e fi n e d b y usi n g t w o
S D m e as ur e m e nts r el ati v e t o t h e s a m e s o ur c e. If I a n d ϕ d at a w er e
c ali br at e d, o n e S S m e as ur e m e nt of b ot h d at a t y p es w o ul d b e e n o u g h
t o m e as ur e t h e o pti c al pr o p erti es.7, 5 5, 5 8 T his is i m p ossi bl e wit h o ut
c ali br ati o n b e c a us e t h e o pt o d es c o u pli n g t o t h e m e di u m a n d t h e
g ai ns of t h e d et e ct ors ar e u n k n o w n. H o w e v er, w h e n b ot h S S m e a-
s ur e m e nts ar e a v er a g e d [ ( S S 1 + S S 2 ) / 2 ] , all t h e u n k n o w ns r el at e d
t o s o ur c e e missi o n, d et e ct or s e nsiti vit y, a n d pr o b e-s a m pl e c o u pli n g
c a n c el o ut, a n d t h e tr u e sl o p e ( d u e o nl y t o t h e m e di u m’s o pti c al

pr o p erti es) is o bt ai n e d. 5 3, 5 9 T h er ef or e, t h e S C m et h o d us es b ot h
S S m e as ur e m e nts o bt ai n e d wit h t h e s o ur c e – d et e ct or c o m bi n ati o ns
S 1 D 1 D 2 a n d S 2 D 2 D 1 a n d c al c ul at es t h e a v er a g e of t h e t w o S S sl o p es.
T h e r etri e v al of t h e o pti c al pr o p erti es is o bt ai n e d it er ati v el y. 7 O n c e
t h es e m et h o ds r e c o v er a bs ol ut e μ a , a bs ol ut e [ H b O2 ] a n d [ H b R] ar e
c al c ul at e d wit h B e er’s l a w a n d k n o w n e xti n cti o n c o ef fi ci e nts 6 0 of
H b O 2 a n d H b R.

B. M e a s u r e m e n t of c h a n g e s i n t h e a b s o r p ti o n
c o ef fi ci e n t: T h e d u al- sl o p e ( D S) m e t h o d

T h e a bs ol ut e o pti c al pr o p erti es m e as ur e d wit h t h e S C m et h o d
i n v ol v e I a n d ϕ d at a t y p es i n c o m bi n ati o n. T h es e t w o d at a t y p es
i n di vi d u all y h a v e diff er e nt d e pt h-s e nsiti viti es t o Δ μ a .

2 T h er ef or e, w e
w o ul d mi x i nf or m ati o n fr o m diff er e nt d e pt hs usi n g t h e S C m et h o d
t o m e as ur e t h es e c h a n g es. A str ai g htf or w ar d d e pt h-s el e cti v e m et h o d
t o m e as ur e Δ μ a r eli es o n o nl y o n e d at a t y p e ( I or ϕ ). F or S D d at a, I
will b e m ostl y s e nsiti v e t o c h a n g es o c c urri n g t hr o u g h s u p er fi ci al tis-
s u e, w hil e ϕ d at a will b e pr ef er e nti all y s e nsiti v e t o d e e p er tiss u e (i n
t h e c as e of a s e mi-i n fi nit e h o m o g e n e o us m e di u m). T h e Δ μ a ’s c a n b e
m e as ur e d wit h a si n gl e d at a t y p e a n d wit h eit h er S D or S S d at a b y
g e n er ali zi n g t h e c o n c e pt of t h e diff er e nti al p at h-l e n gt h f a ct or ( D P F)
f or S D t o t h e diff er e nti al-sl o p e f a ct or ( D S F) f or S S.6 B y a v er a gi n g
t h e c h a n g es of t w o S Ss, w e o bt ai n t h e d u al-sl o p e ( D S) m et h o d,5 4

w hi c h all o ws o n e t o g et ri d of m ost i nstr u m e nt al c o nf o u n ds wit h
t h e s a m e r e as o ni n g as t h e S C m et h o d a b o v e. H er e, w e ar e usi n g t h e
D S m et h o d t o tr a nsl at e c h a n g es of D S d at a i nt o Δ μ a ’s a c c or di n g t o
t h e f or m ul a

Δ μ a ,Y =
− [ Δ S S Y 1 + Δ S S Y 2 ]

⟨ L 2 ⟩ Y 1 − ⟨ L 1 ⟩ Y 1 + ⟨ L 2 ⟩ Y 2 − ⟨ L 1 ⟩ Y 2
, ( 5)

w h er e Δ S S Y ,i is t h e c h a n g e of sl o p e i ( w h er e i ∈ [ 1, 2 ] ) a n d ⟨ L j⟩ Yi

is t h e g e n er ali z e d p at h-l e n gt h at t h e dist a n c e j ( w h er e j ∈ [ 1, 2 ] f or
t h e s h ort a n d l o n g s o ur c e – d et e ct or s e p ar ati o n, r es p e cti v el y) of t h e
sl o p e i.6 T h e Δ μ a m a y b e r e c o v er e d wit h eit h er D S i nt e nsit y ( D S I)
or D S p h as e ( D S ϕ ) d at a; r e g ar dl ess, si mil ar t o a b o v e, Δ μ a is fi n all y
c o n v ert e d t o Δ [ H b O2 ] a n d Δ [ H b R] usi n g B e er’s l a w a n d k n o w n
e xti n cti o n c o ef fi ci e nts. 6 0

FI G. 1. Bl o c k di a gr a m of t h e i n str u m e nt
s h o wi n g all t h e m aj or b uil di n g bl o c k s.
T h e gr e e n c ol or d e n ot e s all t h e c o m p o-
n e nt s i nt e gr at e d o nt o a si n gl e P C B, t h e
or a n g e ar e t h e off- b o ar d bl o c k s, a n d t h e
bl u e bl o c k i s t h e s elf- c ali br ati n g pr o b e.
L O: L o c al o s cill at or, I F: I nt er m e di ar y Fr e-
q u e n c y, A SI C: A p pli c ati o n S p e ci fi c I nt e-
gr at e d Cir c uit, S 1, 2 : S o ur c e l o c ati o n s,
D 1, 2 : D et e ct or l o c ati o n s, I: I nt e n sit y, ϕ :
P h a s e.
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III. H A R D W A R E I M P L E M E N T A TI O N

I n t his w or k, w e pr es e nt a p ort a bl e F D- NI R S i nstr u m e nt t h at
e m pl o ys h et er o d y n e d o w n- c o n v ersi o n usi n g a si n gl e-fr e q u e n c y,
m ulti- dist a n c e t e c h ni q u e wit h ti m e- di visi o n m ulti pl e x e d li g ht
s o ur c es. T h e f ull i nstr u m e nt is s h o w n i n Fi g. 2 , c o nsisti n g o nl y of
a pri nt e d cir c uit b o ar d of 1 4 × 1 7 c m 2 , a n S T M 3 2 G 4 9 1 mi cr o c o n-
tr oll er, a n d a R as p b err y Pi 4. T his s yst e m is d esi g n e d f or a D S pr o b e
c o n fi g ur ati o n.

T h e k e y b uil di n g bl o c ks ar e s h o w n i n Fi g. 1 . F or a n F D- NI R S
i nstr u m e nt e m pl o yi n g h et er o d y n e d o w n- c o n v ersi o n, t w o r a di o fr e-
q u e n ci es ( 5 5. 0 0 1 a n d 5 5. 0 0 0 M H z i n t his c as e) t h at ar e s e p a-
r at e d b y a n i nt er m e di at e fr e q u e n c y ( I F = 1 k H z ) ar e n e e d e d. T h e
5 5. 0 0 1 M H z si g n al is us e d t o m o d ul at e t h e i nt e nsit y of t h e li g ht
s o ur c es. T h er ef or e, t h e d et e ct e d p h ot o n d e nsit y w a v e fr o m t h e
m e di u m will als o b e m o d ul at e d at t his fr e q u e n c y. Wit h t h e h et-
er o d y n e r e a d o ut s c h e m e, t h e i nf or m ati o n e n c o d e d i n t h e r e c o v er e d
si g n al will b e d o w n- c o n v ert e d t o a m u c h l o w er fr e q u e n c y (i. e., I F).
I n t his w or k, I F w as c h os e n as 1 k H z. T h e r e as o ni n g b e hi n d t his is
t h at 1 k H z is l o w e n o u g h t o b e pr o p erl y s a m pl e d b y t h e S T M 3 2 G 4 9 1,
w hil e b ei n g hi g h e n o u g h t o b e u n aff e ct e d b y l o w fr e q u e n c y n ois e
s o ur c es li k e 1/f n ois e. T his e n a bl es a m u c h l o w er s a m pli n g r at e
c o m p ar e d t o t h e dir e ct s a m pli n g of t h e 5 5. 0 0 1 M H z m o d ul at e d si g-
n al, w hi c h w o ul d b e si g ni fi c a ntl y m or e e x p e nsi v e i n t er ms of p o w er
c o ns u m pti o n, u n h el pf ul i n t er ms of p ort a bilit y a n d r e q uir e v er y
p o w erf ul d at a pr o c essi n g s ol uti o ns si n c e t h e a m o u nt of d at a p oi nts
g e n er at e d w o ul d b e dir e ctl y c orr el at e d wit h t h e s a m pli n g s p e e d.

A n A D 9 9 5 9 Dir e ct Di git al S y nt h esi z er ( D D S) is us e d f or si g-
n al g e n er ati o n. T his c o m p o n e nt w as s el e ct e d d u e t o its f o ur o ut p ut
c h a n n els t h at ar e i n di vi d u all y pr o gr a m m a bl e (i n fr e q u e n c y, a m pli-
t u d e, a n d p h as e), wit h v er y l o w p h as e n ois e (− 1 1 0 d B c/ H z at 1 k H z
offs et wit h 7 5. 1 M H z o ut p ut fr e q u e n c y) a n d v er y hi g h s p e ctr al p urit y
c h ar a ct eristi cs ( − 8 7 d B c s p uri o us fr e e d y n a mi c r a n g e at ± 1 0 k H z

FI G. 2. P h ot o of t h e i n str u m e nt. P a n el s s h o w t h e f oll o wi n g: ( a) A v al a n c h e P h ot o
Di o d e ( A P D) s u p pl y, ( b) A P D s, ( c) a n d ( d) 8 3 0 a n d 6 9 0 n m l a s er s, r e s p e cti v el y,
( e) l a s er dri v er s, (f) a p pli c ati o n s p e ci fi c i nt e gr at e d cir c uit s, ( g) dir e ct di git al
s y nt h e si z er, ( h) R a s p b err y Pi 4, a n d (i) S T M 3 2 G 4 9 1 mi cr o c o ntr oll er.

offs et wit h 7 5. 1 M H z o ut p ut fr e q u e n c y). 6 1 O n e of t h e o ut p ut c h a n-
n els m o d ul at es t h e i nt e nsit y of t h e f o ur l as er di o d es t hr o u g h t w o
l as er dri v er cir c uits, e a c h of w hi c h dri v es a p air of l as er di o d es of
t h e s a m e w a v el e n gt h, 8 3 0 n m ( H L 8 3 3 8 M G, T h orl a bs) or 6 9 0 n m
( H L 6 7 5 0 M G, T h orl a bs). A n ot h er c h a n n el is f e d i nt o t h e A SI Cs as
t h e r ef er e n c e si g n al a g ai nst w hi c h t h e p h as e s hift of t h e r e c o v er e d
si g n al is d e fi n e d. T h e l ast t w o c h a n n els ar e us e d as t h e l o c al os cil-
l at or si g n als. T h e l as er dri v er cir c uits ar e a m o di fi e d v ersi o n of t h e
w ell- k n o w n li n e ar c urr e nt r e g ul at or t o p ol o g y. 6 2 I n t his i m pl e m e nt a-
ti o n, t h e cir c uit us es t h e m o nit ori n g c urr e nt fr o m t h e l as er di o d es,
w hi c h is pr o p orti o n al t o t h e o pti c al p o w er, t o miti g at e t h e eff e cts of
a gi n g a n d t h er m al drifts.

T h e D S pr o b e c o nsists of t w o s o ur c e l o c ati o ns a n d t w o d et e ct or
l o c ati o ns, w h er e t h e d et e ct or l o c ati o ns ar e s a n d wi c h e d b et w e e n t h e
s o ur c e l o c ati o ns. I n t his c o n fi g ur ati o n, w e h a v e f o ur s o ur c e – d et e ct or
c o m bi n ati o ns f or e a c h w a v el e n gt h ( as is t y pi c al f or a D S s et). 5 7 T h e
g e o m etr y of t h e pr o b e e n a bl es us t o o v er c o m e s yst e m ati c err ors t h at
ar e m ulti pli c ati v e i n i nt e nsit y a n d a d diti v e i n p h as e 5 3, 5 9 (s e e S e c. II).
T w o bif ur c at e d o pti c al fi b ers d eli v er li g ht fr o m t w o p airs of l as er
di o d es ( e a c h p air c o m prisi n g o n e l as er at 6 9 0 n m a n d o n e at 8 3 0 n m)
t o t h e s o ur c e l o c ati o ns o n t h e pr o b e (i n di c at e d wit h S1 a n d S 2 i n
Fi g. 1 ). I n ot h er w or ds, e a c h s o ur c e l o c ati o n o n t h e D S pr o b e is
c o n n e ct e d t o o n e l as er di o d e at 6 9 0 n m a n d o n e at 8 3 0 n m.

D uri n g o p er ati o n, e a c h l as er di o d e is alt er n at el y t ur n e d o n f or
5 0 ms, s e n di n g li g ht t o t h e s o ur c e l o c ati o ns o n e at a ti m e. Aft er t h e
li g ht fr o m t h e l as er di o d es g ets att e n u at e d a n d s c att er e d i n t h e tiss u e
( m e di u m), t w o fi b ers c oll e ct t h e li g ht fr o m t h e d et e ct or l o c ati o ns
o n t h e pr o b e ( D 1 a n d D 2 i n Fi g. 1 ) a n d g ui d e t h e d et e ct e d li g ht t o
p h ot o d et e ct ors.

P h ot o d et e ct ors us e d i n t his i nstr u m e nt ar e S 9 2 5 1- 1 5 A v al a n c h e
P h ot o Di o d es ( A P Ds) fr o m H a m a m ats u. E v e n t h o u g h p h ot o m ulti-
pli er t u b es g e n er all y off er hi g h er p h ot os e nsiti vit y wit h l o w er n ois e
l e v els t h a n A P Ds, t h e y o p er at e u n d er s e v er al k V bi asi n g c o n diti o ns,
w hi c h m a k es t h e m u ns uit a bl e f or w e ar a bl e or p ort a bl e i nstr u m e nts.
T h es e A P Ds off er a hi g h e n o u g h − 3 d B b a n d wi dt h ( 3 5 0 M H z), l o w
j u n cti o n c a p a cit a n c e ( 3. 6 p F), a n d 5 0 0 0 A/ W p h ot os e nsiti vit y u n d er
o nl y a − 2 0 0 V bi asi n g c o n diti o n.

T h e l o w l e v el el e ctri c al si g n als fr o m t h e A P Ds ( at 5 5. 0 0 1 M H z)
ar e t h e n pr o c ess e d b y t h e c ust o m- d esi g n e d, l o w n ois e a n al o g fr o nt-
e n d a p pli c ati o n-s p e ci fi c i nt e gr at e d cir c uit ( A SI C), d esi g n e d i n a
1 3 0 n m I B M pr o c ess. 5 2 N ot e t h at si n c e t h er e ar e t w o A P Ds, t o pr o-
c ess t h eir o ut p uts, eit h er a s wit c h t o m ulti pl e x t w o A P Ds t o a si n gl e
A SI C is n e e d e d, or t h er e n e e ds t o b e o n e A SI C p er A P D. H o w e v er,
t h e f or m er a p pr o a c h is u ns uit a bl e si n c e t h e r e c o v er e d li g ht is o n t h e
or d er of n W t o p W ( c o nsi d eri n g a s o ur c e o n t h e or d er of m W), a n d
t h e A P D o ut p uts ar e i n t h e or d er of a f e w mi cr o- a m p er es. T h e l at-
t er a p pr o a c h is s el e ct e d si n c e t h e A SI Cs will a m plif y a n y el e ctr o ni c
n ois e c o ntri b uti o n fr o m a d diti o n al c o m p o n e nts.

E a c h A SI C i nt erf a c es wit h o n e A P D a n d a m pli fi es its o ut p ut
c urr e nt vi a a l o w n ois e tr a nsi m p e d a n c e a m pli fi er ( TI A). 5 2 T h e n,
t h e a m pli fi e d si g n al is filt er e d t o r ej e ct t h e o ut- of- b a n d n ois e a n d
fi n all y d o w n- c o n v ert e d t o a 1 k H z si g n al. T h e A SI C us es t h e L O
si g n al fr o m t h e si g n al g e n er at or t o a c c o m plis h t h e h et er o d y n e d o w n-
c o n v ersi o n. T h e 1 k H z o ut p ut si g n als c o nt ai n all t h e i nf or m ati o n
n e e d e d f or t h e F D- NI R S, n a m el y t h e i nt e nsit y ( I) a n d p h as e ( ϕ ) of
t h e p h ot o n d e nsit y w a v e r e c o v er e d fr o m t h e m e di u m i n t h e f or m
of t h e a m plit u d e a n d t h e p h as e s hift of t h es e el e ctri c al si g n als. At
t h e p e n ulti m at e st a g e, t h e 1 k H z o ut p ut si g n als ar e s a m pl e d wit h t h e
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i nt e gr at e d a n al o g-t o- di git al c o n v ert ers of a n S T M 3 2 G 4 9 1 mi cr o c o n-
tr oll er t o e xtr a ct t h e i nt e nsit y a n d p h as e i nf or m ati o n b y a p pl yi n g f ast
F o uri er tr a nsf or m ( F F T) al g orit h ms. O n c e t h e i nt e nsit y a n d p h as e
ar e g at h er e d, t h e y ar e s e nt t o t h e fi n al st a g e: a R as p b err y Pi 4, f or
t h e c o m p ut ati o n of μ a a n d μ ′

s of t h e m e di u m (s e e S e c. II). T h e R as p-
b err y Pi 4 is als o us e d t o or g a ni z e t h e ti m e- di visi o n m ulti pl e xi n g,
pr o gr a m t h e D D S, pr o vi d e a n i nt erf a c e f or t h e us er t o c o ntr ol t h e
e x p eri m e nt fl o w, a n d m o nit or t h e i nstr u m e nt’s st at e. S w e e pi n g all
t h e l as ers, s a m pli n g t h e o ut p uts, a n d pr o c essi n g t h e d at a f or o n e
fr a m e t a k es a b o ut 1. 4 s, w hi c h c orr es p o n ds t o a 0. 7 H z a c q uisiti o n
r at e p er D S d at a p oi nt of i nt e nsit y a n d p h as e of b ot h w a v el e n gt hs.

I V. R E S U L T S

A. S oli d p h a n t o m m e a s u r e m e n t s

T h e i nstr u m e nt w as first t est e d o n a s oli d tiss u e- mi mi c ki n g
p h a nt o m wit h k n o w n o pti c al pr o p erti es ( μ a ∼ 0. 0 0 6 m m − 1 ,

μ ′
s ∼ 0. 7 m m − 1 at t h e w a v el e n gt h of i nt er est h er e). T his s oli d p h a n-

t o m w as f a bri c at e d i n- h o us e usi n g tit a ni u m di o xi d e a n d I n di a i n k
as s c att eri n g a n d a bs or bi n g c o m p o n e nts, r es p e cti v el y. T esti n g o n a
p h a nt o m all o ws o n e t o c h ar a ct eri z e t h e i nstr u m e nt i n t er ms of st a-
bilit y a n d n ois e as w ell as d et er mi n e if its p erf or m a n c e is s uit a bl e f or
i n vi v o e x p eri m e nts.

I n Fi g. 3 , t h e m e as ur e d i nt e nsit y a n d p h as e of t h e A SI Cs’
o ut p uts fr o m 6 9 0 n m s o ur c es f or a 3 0 mi n l o n g s oli d p h a nt o m e x p er-
i m e nt ar e pr es e nt e d. Fi g ur es 3( a) – 3( d) s h o w t h e i nt e nsit y ( I) , a n d
Fi gs. 3( e) – 3( h) s h o w t h e p h as e ( ϕ ) of all f o ur c o m bi n ati o ns of t h e
t w o s o ur c es a n d t w o d et e ct ors. Fi g ur e 3(i) s h o ws c h a n g es i n S S 1

a n d S S 2 f or t h e l n[ r 2 I] sl o p e wit h r es p e ct t o t h e first p oi nt f or t h e
t w o S Ss a n d D S. Fi g ur e 3(j) s h o ws t h e ϕ a bs ol ut e S Ss a n d D S. T h e
i nt e nsit y ( I) a n d p h as e ( ϕ ) r es ults ar e d e n ot e d wit h t h eir s o ur c e a n d
d et e ct or d esi g n ati o ns, a n d S Ss ar e d e n ot e d b y w hi c h s o ur c e t h e y ar e
o bt ai n e d fr o m ( c o nsi d eri n g t h e y utili z e b ot h d et e ct ors). F or e x a m-
pl e, t h e t w o S S m e as ur e m e nts f or p h as e d at a ar e o bt ai n e d fr o m p h as e

FI G. 3. M e a s ur e d i nt e n sit y a n d p h a s e
d at a fr o m 6 9 0 n m s o ur c e s d uri n g a h alf-
h o ur p h a nt o m e x p eri m e nt. P a n el s ( a)
t hr o u g h ( d) s h o w t h e i nt e n siti e s, a n d ( e)
t hr o u g h ( h) s h o w t h e p h a s e s f or diff er e nt
S D s ( s e e Fi g. 1 ). (i) s h o w s t h e si n gl e-
sl o p e ( S S) a n d d u al- sl o p e ( D S) c h a n g e s
r el ati v e t o t h e fir st ti m e p oi nt f or t h ei nt e n-
siti e s ( I’ s), a n d (j) s h o w s t h e a b s ol ut e
si n gl e- sl o p e s ( S S s) a n d t h e d u al- sl o p e
( D S) f or p h a s e ( ϕ ) .

R e v. S ci. I n str u m. 9 5 , 1 1 4 7 0 6 ( 2 0 2 4); d oi: 1 0. 1 0 6 3/ 5. 0 2 2 7 3 6 3 9 5 , 1 1 4 7 0 6- 5

P u bli s h e d u n d er a n e x cl u si v e li c e n s e b y AI P P u bli s hi n g

 
2
0 

M
arc

h 
2
0
2
5 

1
8:

1
5:

1
6

https://pubs.aip.org/aip/rsi


R e vi e w of
S ci e nti fi c I n str u m e nt s

A R TI C L E p u b s. ai p. or g/ ai p/r si

m e as ur e m e nts at S 1 D 1 a n d S 1 D 2 ( S S1 ) a n d S2 D 2 , S2 D 1 ( S S2 ). T h e
a v er a g e of t h es e t w o S Ss is t h e D S m e as ur e m e nt. T h e s a m e l o gi c
als o f oll o ws f or t h e i nt e nsit y ( I) d at a. As m e nti o n e d i n S e c. II, t h e
pr o c e d ur e fr o m t h es e m e as ur e m e nts f or t h e r e c o v er y of t h e o pti-
c al pr o p erti es is b as e d o n a n it er ati v e s ol uti o n of t h e s e mi-i n fi nit e
m e di u m m o d el of t h e diff us e r e fl e ct a n c e a n d e x pl ai n e d i n d et ail b y
Bl a n e y et al. 7

T h e m ost i m p ort a nt r es ult i n Fi g. 3 is t h e a p p ar e nt r e m o v al
of i nstr u m e nt al drifts b y t h e a ut o- c ali br ati o n f e at ur es of S C/ D S.
D u e t o t h er m al eff e cts o n t h e s o ur c e a n d d et e ct or, all f o ur i nt e n-
siti es s h o w v ar yi n g d e gr e es of drift, w hi c h is r e fl e ct e d as drift o n
S S 1 a n d S S 2 i n Fi g. 3(i) . H o w e v er, d u e t o t h e pr o p erti es of t h e
S C/ D S s o ur c e – d et e ct or c o n fi g ur ati o n, t h e drift of t h e t w o S Ss c a n c els
o ut w h e n c al c ul ati n g D S. N ot e t h at i n Fi g. 3(i) , t h e i nt e nsit y sl o p e
c h a n g es wit h r es p e ct t o t h e i niti al i nt e nsit y sl o p e (sl o p e of l n [ r 2 I] )
v al u es w er e r e p ort e d t o d e m o nstr at e t his a ut o- c ali br ati o n f e at ur e
of S C/ D S g e o m etri es. 5 3, 5 9 T h es e i niti al a bs ol ut e sl o p es ar e − 0. 1 6 4,
− 0. 0 7 2, a n d − 0. 1 1 8 m m − 1 f or S S1 , S S2 , a n d D S, r es p e cti v el y.

H er e, w e us e st a n d ar d d e vi ati o n t o q u a ntif y t h e n ois e l e v el
of m e as ur e d ϕ ’s a n d st a n d ar d d e vi ati o n o v er m e a n t o q u a ntif y
t h e n ois e o v er si g n al r ati o f or e v er yt hi n g els e (i. e., i nt e nsiti es I’s,
et c.). I n t his e x p eri m e nt, t h e a v er a g e st a n d ar d d e vi ati o n o v er t h e
m e a n f or i nt e nsiti es fr o m t h e 2 5 m m s o ur c e – d et e ct or s e p ar ati o n
( S1 D 1 a n d S 2 D 2 ) w as 0. 0 7 %. F or t h e 3 5 m m s o ur c e – d et e ct or s e p a-
r ati o n, t his a v er a g e r el ati v e err or is 0. 1 1 % ( S 1 D 2 a n d S 2 D 1 ). F or t h e
p h as e, t h e a v er a g e st a n d ar d d e vi ati o n w as m e as ur e d t o b e 0. 0 6 9 ○ f or
t h e 2 5 m m s o ur c e – d et e ct or s e p ar ati o n a n d 0. 0 8 2○ f or t h e 3 5 m m
s o ur c e – d et e ct or s e p ar ati o n. It is w ort h n oti n g t h at t h e st a bilit y m et-
ri c (i. e., p h as e v ari ati o n) is b ett er f or t h e si g n als o bt ai n e d fr o m
2 5 m m s o ur c e – d et e ct or s e p ar ati o ns t h a n 3 5 m m. T his is e x p e ct e d
si n c e t h e r e c o v er e d si g n als w e a k e n as t h e s e p ar ati o n i n cr e as es a n d
t h e n ois e-t o-si g n al r ati o b e c o m es l ar g er. A d diti o n all y, w e h a v e p er-
f or m e d r e p e at e d pr o b e pl a c e m e nt e x p eri m e nts w h er e w e pl a c e d
t h e pr o b e o n t h e p h a nt o m f or 3 0 ti m es. T h e i nstr u m e nt a c hi e v e d
a 3. 5 % st a n d ar d d e vi ati o n o v er t h e m e a n f or i nt e nsit y a n d 0. 6 4 ○

st a n d ar d d e vi ati o n f or t h e p h as e at 2 5 m m s o ur c e – d et e ct or s e p ar a-
ti o n a n d 3. 3 % st a n d ar d d e vi ati o n o v er t h e m e a n f or i nt e nsit y a n d
0. 7 7 ○ st a n d ar d d e vi ati o n f or t h e p h as e at 3 5 m m s o ur c e – d et e ct or
s e p ar ati o n.

Si mil arl y, t h e r e c o v er e d o pti c al pr o p erti es fr o m t his e x p eri m e nt
c a n b e s e e n i n Fi g. 4 . I n Fi gs. 4( a) a n d 4( b) , t h e m e as ur e d μ a a n d μ ′

s

f or b ot h w a v el e n gt hs ar e pr es e nt e d, r es p e cti v el y. F or t h e r e c o v er e d
o pti c al pr o p erti es, t h e st a n d ar d d e vi ati o n o v er m e a n f or μ a w as m e a-
s ur e d as 0. 6 % a n d 0. 5 % f or 8 3 0 a n d 6 9 0 n m s o ur c es, r es p e cti v el y.
F or μ ′

s , t his r el ati v e err or w as m e as ur e d as 1 % a n d 0. 8 % f or 8 3 0 a n d
6 9 0 n m, r es p e cti v el y.

W e h a v e als o c o m p ar e d t h e st a bilit y a n d drift p erf or m a n c e of
i nt e nsit y a n d p h as e t o t h e I S S I m a g e nt V 2 i nstr u m e nt. I n t er ms of
st a bilit y m etri cs m e nti o n e d b ef or e, I m a g e nt V 2 a c hi e v e d 0. 0 3 % a n d
0. 0 9 % st a n d ar d d e vi ati o n o v er t h e m e a n f or i nt e nsiti es f or 2 5 a n d
3 5 m m s o ur c e – d et e ct or s e p ar ati o n, r es p e cti v el y, w hil e o ur i nstr u-
m e nt h a d a c hi e v e d 0. 0 7 % a n d 0. 1 1 %. F or t h e p h as es, I m a g e nt V 2
a c hi e v e d 0. 0 1 3 ○ a n d 0. 0 4 3 ○ st a n d ar d d e vi ati o n c o m p ar e d t o o ur
0. 0 6 9 ○ a n d 0. 0 8 2 ○ f or 2 5 a n d 3 5 m m s e p ar ati o ns, r es p e cti v el y. T h e
drift i n i nt e nsit y f or I m a g e nt V 2 w as m e as ur e d as 2. 3 % f or 2 5 m m
a n d 1. 6 % f or 3 5 m m s o ur c e – d et e ct or s e p ar ati o ns o v er a d ur ati o n
of 1 0 mi n. O ur i nstr u m e nt h as a c hi e v e d 1. 2 % drift f or 2 5 m m
a n d 0. 9 % f or 3 5 m m s o ur c e – d et e ct or s e p ar ati o ns. F or t h e p h as e

FI G. 4. ( a) M e a s ur e d a b s or pti o n c o ef fi ci e nt ( μ a ) a n d ( b) r e d u c e d s c att eri n g
c o ef fi ci e nt ( μ ′

s ) d uri n g a h alf- h o ur p h a nt o m e x p eri m e nt.

drifts, I m a g e nt V 2’s p erf or m a n c e w as 0. 0 6 ○ f or 2 5 m m a n d 0. 0 4○

f or 3 5 m m s o ur c e – d et e ct or s e p ar ati o n. T his i nstr u m e nt a c hi e v e d
0. 0 2 ○ f or 2 5 m m a n d 0. 0 4○ f or 3 5 m m s o ur c e – d et e ct or s e p ar ati o n.
E v e n t h o u g h w e c o ul d m at c h or s ur p ass t h e I m a g e nt V 2 i n t er ms
of drift p erf or m a n c e, t h es e r es ults s h o w t h at t h er e is still r o o m f or
i m pr o v e m e nt f or o ur i nstr u m e nt f or st a bilit y.

B. V a s c ul a r o c cl u si o n e x p e ri m e n t

Aft er c h ar a ct eri zi n g t h e i nstr u m e nt o n a s oli d p h a nt o m a n d
v erif yi n g its c a p a biliti es, a n i n vi v o v as c ul ar o c cl usi o n e x p eri m e nt
w as c o n d u ct e d o n a h e alt h y, 3 0- y e ar- ol d m al e h u m a n s u bj e ct i n
a c c or d a n c e wit h t h e T ufts U ni v ersit y I nstit uti o n al R e vi e w B o ar d
(I R B). I n t his e x p eri m e nt, a n i n fl at a bl e c uff w as pl a c e d o n t h e l eft
u p p er ar m. A n i n fl at e d c uff pr ess ur e of 8 0 m m H g w as a p pli e d, w hi c h
is b el o w art eri al pr ess ur e b ut a b o v e v e n o us pr ess ur e t o i n d u c e a
v e n o us o c cl usi o n. T h e c al c ul at e d r a di a nt e x p os ur e t o s ki n w as c al-
c ul at e d t o b e 9 7 mJ/ c m 2 , w hi c h is w ell wit hi n t h e r e q uir e m e nts fr o m
A N SI Z 1 3 6. 1 l as er s af et y st a n d ar ds. 4 T h e e x p eri m e nt al pr o c e d ur e
w as as f oll o ws:

● T h e s u bj e ct w as s e at e d o n a c h air wit h t h eir l eft l o w er ar m
pl a c e d o n a t a bl e, u n d er t h e D S pr o b e.

● T h e D S pr o b e w as p ositi o n e d o n t h e br ac hi or a di alis m us-
cl e, a n d a n i n fl at a bl e c uff w as wr a p p e d ar o u n d t h e l eft u p p er
ar m.

● 5 mi ns of b as eli n e o pti c al d at a w er e c oll e ct e d.
● T h e c uff w as i n fl at e d t o 8 0 m m H g, a n d 3 mi n of o c cl usi o n

d at a w er e c oll e ct e d.
● T h e c uff w as d e fl at e d, a n d 2 mi n of r e c o v er y d at a w er e

c oll e ct e d.

W h e n t h e c uff is i n fl at e d, it is e x p e ct e d t o o c cl u d e o nl y t h e
v ei ns a n d n ot t h e art eri es. T h er ef or e, bl o o d c a n e nt er t h e l o w er ar m

R e v. S ci. I n str u m. 9 5 , 1 1 4 7 0 6 ( 2 0 2 4); d oi: 1 0. 1 0 6 3/ 5. 0 2 2 7 3 6 3 9 5 , 1 1 4 7 0 6- 6
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FI G. 5. O x y h e m o gl o bi n ([ H b O 2 ]), d e o x y h e m o gl o bi n ([ H b]), a n d t ot al- h e m o gl o bi n ([ H b T]) c o n c e ntr ati o n s d uri n g v e n o u s o c cl u si o n i n di c at e d b y t h e s h a d e d ar e a. ( a) S elf-
c ali br ati n g ( S C) r e c o v er e d a b s ol ut e c o n c e ntr ati o n s [ s e e Fi g. 6( a) ]. ( b) D u al- sl o p e i nt e n sit y ( D SI) r e c o v er e d c o n c e ntr ati o n c h a n g e. ( c) D u al- sl o p e p h a s e ( D Sϕ ) r e c o v er e d
c o n c e ntr ati o n c h a n g e.

i n a n o x y g e n-ri c h st at e t hr o u g h t h e u n o bstr u ct e d art er y, y et it c a n-
n ot l e a v e t h e l o w er ar m t hr o u g h t h e o c cl u d e d v ei ns. As a r es ult, w e
e x p e ct t o s e e a ris e i n b ot h [ H b O 2 ] a n d [ H b R] i n t h e l o w er ar m as
bl o o d- v ol u m e i n cr e as e d. 6 3

I n Fi g. 5 , t h e m e as ur e d [ H b O2 ] a n d [ H b R], as w ell as t h eir
s u m m ati o n, t ot al h e m o gl o bi n c o n c e ntr ati o n ([ H b T]; f or a bs ol ut e
m e as ur e m e nt wit h S C), ar e pr es e nt e d. T h e o c cl usi o n i nt er v al is i n di-
c at e d b y t h e s h a d e d r e gi o n. It c a n b e s e e n fr o m Fi g. 5 t h at d uri n g
b as eli n e ( first 3 0 0 s), h e m o gl o bi n c o n c e ntr ati o ns d o n ot i n cr e as e
or d e cr e as e. W h e n t h e o c cl usi o n st arts, b ot h [ H b O 2 ] a n d [ H b R]
ris e st e a dil y u ntil t h e c uff is r el e as e d at 4 8 0 s, aft er w hi c h p oi nt
t h e h e m o gl o bi n l e v els r et ur n t o t h eir b as eli n e l e v els. T h e b as eli n e
tiss u e o x y g e n s at ur ati o n ( St O2 ) l e v el w as m e as ur e d as 6 0 %, w hi c h
is c o nsist e nt wit h pr e vi o usl y r e p ort e d v al u es f or t h e h u m a n f or e-
ar m. 6 4 Fi g ur e 5 s h o ws t hr e e v ersi o ns of t h es e tr a c es i n t hr e e p a n els:
t h e l eft p a n el s h o ws t h e a bs ol ut e c o n c e ntr ati o ns r e c o v er e d b y S C,5 3

t h e c e nt er p a n el s h o ws t h e c h a n g e i n c o n c e ntr ati o n r e c o v er e d b y
D S I,6, 5 4 a n d t h e ri g ht p a n el s h o ws t h e c h a n g e i n c o n c e ntr ati o n
r e c o v er e d b y D Sϕ .6, 5 4 Diff er e n c es b et w e e n [ H b O 2 ] a n d [ H b R] tr a c es
r e c o v er e d b y D SI or D S ϕ r es ult fr o m t h e d at a t y p es’ s e nsiti vit y t o
diff er e nt r e gi o ns wit hi n t h e tiss u e. 2, 6 5 T h e S C r e c o v er e d tr a c es, o n
t h e ot h er h a n d, ar e a c o m bi n ati o n of b ot h I a n d ϕ d at a a n d all o w
μ ′

s t o v ar y wit h ti m e (Fi g. 6 ) w hil e D S m et h o ds fi x μ ′
s ( S e c. II).6

Ass u mi n g μ ′
s is fi x e d at a b as eli n e v al u e ( as wit h D S m et h o ds) is

m or e r e pr es e nt ati v e of t h e p h ysi ol o gi c al r e alit y, a n d t h e c h a n g es
i n t h e b ott o m p a n el of Fi g. 6 (r e c o v er e d b y S C) ar e m ost li k el y
a n artif a ct r es ulti n g fr o m cr oss-t al k b et w e e n a bs or pti o n a n d s c at-
t eri n g. V e n o us o c cl usi o n c a us es a l ar g e c h a n g e i n μ a t h at m a y n ot
b e s p ati all y h o m o g e n e o us wit hi n t h e i n v esti g at e d tiss u e v ol u m e.
B e c a us e i n o ur a n al ysis w e tr e at t h e a bs or pti o n c h a n g e as s p ati all y
h o m o g e n e o us, e v e n a p ur el y a bs or pti o n c h a n g e m a y r es ult i n a n
a p p ar e nt s c att eri n g c h a n g e as a r es ult of cr oss-t al k b et w e e n t h e

m e as ur e d a bs or pti o n a n d s c att eri n g c h a n g es. 6 6 W hil e a n i n cr e as e
i n r e d bl o o d c ell c o n c e ntr ati o n m a y r es ult i n gr e at er o pti c al s c at-
t eri n g i n tiss u e, t h e l ar g e s c att eri n g c h a n g e (∼ 2 0 %) a n d its dir e cti o n
( d e cr e as e) o bs er v e d i n o ur e x p eri m e nt d uri n g v e n o us o c cl usi o n is

FI G. 6. S elf- c ali br ati n g ( S C) r e c o v er e d a b s or pti o n c o ef fi ci e nt [ μ a ; ( a)] a n d r e d u c e d
s c att eri n g c o ef fi ci e nt [ μ ′

s ; ( b)] d uri n g v e n o u s o c cl u si o n, a s i n di c at e d b y t h e s h a d e d
ar e a.

R e v. S ci. I n str u m. 9 5 , 1 1 4 7 0 6 ( 2 0 2 4); d oi: 1 0. 1 0 6 3/ 5. 0 2 2 7 3 6 3 9 5 , 1 1 4 7 0 6- 7
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assigned to a model-based cross-talk between measured absorption
and scattering changes.

V. DISCUSSION
We have developed and validated a dual-wavelength, minia-

turized frequency-domain near-infrared spectroscopy (FD-NIRS)
instrument, focusing on its application in non-invasive measure-
ments of oxyhemoglobin and deoxyhemoglobin concentrations in
human tissues using dual-slope (DS) or self-calibrating (SC) tech-
niques. This FD-NIRS system features an on-board signal generator,
laser drivers with linear current control topology to modulate the
intensity of laser diodes, and two APDs with corresponding custom-
designed ASICs for heterodyne down-conversion and signal extrac-
tion. The instrument utilizes an STM32G491 microcontroller for
digitization and a Raspberry Pi 4 for user interface, flow control,
and computation. This work was a significant improvement over
our previous iteration51 on three aspects. First, we employed com-
pact solutions such as an STM32G491 microcontroller for readout
instead of a large data acquisition system from National Instru-
ments. This removed a major obstacle against our ultimate goal
of making a wearable instrument. Second, this instrument was
also designed to be compatible with DS or SC techniques, which
removes the need for pre-calibration for absolute measurements,
and finally, the overall size of the instrument has been significantly
reduced. Considering its compact design and DS/SC functionality, it
is promising for applications in research and clinical settings.

We first conducted rigorous instrument testing using a solid
phantom to assess its stability and noise performance. During the
half-hour long solid phantom experiment, 0.08○ phase noise and
0.11% standard deviation over mean for intensities were mea-
sured at a source–detector distance of 35 mm. These resulted in
an average of 0.5% and 0.9% precision for the absorption and
reduced scattering coefficients, respectively. We also compared our
instrument’s drift and stability characteristics to ISS Imagent V2
and found that in terms of drifting, our instrument performed bet-
ter or was comparable in both intensity and phase for both 25 and
35 mm source–detector separations. However, there is still room
for improvement for stability. These measurements suggested that
the instrument would be appropriate for further human testing.
Furthermore, the results illustrated the efficacy of the SC/DS tech-
nique in addressing systematic errors induced by thermal drifts
and other instrumental or environmental factors. We confirmed
the instrument’s capability to measure hemodynamic changes effec-
tively through subsequent in vivo testing with a vascular occlusion
experiment on a healthy human subject. The occlusion pressure was
picked to induce a venous occlusion. The experiment consisted of
5 min of baseline, 3 min of occlusion, and 2 min of recovery. In this
experiment, we have successfully observed the absolute [HbO2] and
[HbR] to rise steadily during the occlusion and recover to their base-
line levels after the occlusion was released. The dual-slope analysis
performed separately on the intensity and phase data types showed
some differences due to these two data types being more sensitive to
different regions.2

We have also taken notice of several areas to be improved
in the future. The acquisition rate of the instrument is currently
not high enough to compare with many of the instruments in
the literature. We believe the acquisition rate can be improved

without modifying the hardware, but with software improvements.
We located the major bottleneck to be the serial communication rate
between the Raspberry Pi 4 and the STM32G491 microcontroller.
Another shortcoming is the limited modulation frequency. Even
though the signal generator can generate signals up to 250 MHz,
the -3 dB bandwidth of our ASIC has been the reason behind using
a modulation frequency of 55 MHz in this work. This relatively
low modulation frequency compromises the phase contrast that
the instrument can achieve since the phase difference between the
source and the recovered light increases with increasing modulation
frequency.67 Assuming the additional integrated noise from the elec-
tronics due to higher bandwidth does not degrade the SNR of the
data, a higher modulation frequency of the order of 100–150 MHz
would be preferable. Finally, to accommodate for longer and shorter
source–detector separations at the same time, a scheme allowing
for larger dynamic range would be beneficial. The next significant
milestone of this project is to tape out a new generation of ASIC.
This would feature improved bandwidth (>100 MHz), a lower noise
transimpedance amplifier, and most importantly, phase and ampli-
tude readouts. Upon success, we believe the next major iteration
of the instrument to consist of only the optics, DDS, a microcon-
troller, and the ASIC. Such an instrument can be of a wearable form
factor.

VI. CONCLUSION
In this work, we have presented our new miniaturized, dual

wavelength FD-NIRS instrument, featuring custom designed analog
front-end ASICs designed in a 130 nm IBM process compatible with
the dual-slope method. The instrument employs time division mul-
tiplexing to coordinate the light sources and detector readings and
heterodyne down-conversion to ease the sampling requirements.

The instrument was first tested and characterized on a solid
phantom with a half hour long continuous measurement. In this
experiment, an average of 0.075○ phase noise and 0.09% standard
deviation over themean for the intensities was achieved. These phase
and intensity stability performances translated into 0.5% and 0.9%
standard deviation over the mean for the μa and μ′s , respectively.
During this Phantom experiment, the self-calibration feature of the
dual-slope probe was also observed. After validating the instrument
on a phantom, a vascular occlusion experiment on the brachioradi-
alis muscle was performed. The cuff pressure was selected to induce
venous occlusion, and the expected [HbO2] and [HbR] trends dur-
ing and after a venous occlusionwere successfully observed.We have
also discussed several shortcomings of the instrument. Some of these
shortcomings could be mitigated without modifying the hardware
but through software improvements, e.g., the bottleneck for the slow
acquisition rate was determined to be the data rate between the Rasp-
berry Pi 4 and the STM32G491 microcontroller. However, other
shortcomings pointed us toward a new generation of the ASIC. This
new generation would also mean further integration, such as the
phase and amplitude readout. Another possible future improvement
on this device would be to slightly modify the probe configuration to
allow for multi-distance data acquisition.

To summarize, we present a portable DS FD-NIRS instrument
for non-invasive optical measurements of hemoglobin concentra-
tions. It is a valuable tool with potential for various biomedical
applications, including functional brain imaging, neonatal care, and
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disease diagnosis through tissue oxygenation. In the future, we will
focus on further miniaturization through a new generation of ASIC
and expand the range of clinical applications to realize the potential
of this innovative DS FD-NIRS system.
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