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Abstract

Real-life contractual relations typically involve repeated interactions between the
principal and agent, where, despite theoretical appeal, players rarely use complex
dynamic strategies and instead manage uncertainty through learning algorithms.
In this paper, we initiate the study of repeated contracts with learning agents,
focusing on those achieving no-regret outcomes. For the canonical setting where
the agent’s actions result in success or failure, we present a simple, optimal solution
for the principal: Initially provide a linear contract with scalar ³ > 0, then switch
to a zero-scalar contract. This shift causes the agent to “free-fall” through their
action space, yielding non-zero rewards for the principal at zero cost. Interestingly,
despite the apparent exploitation, there are instances where our dynamic contract
can make both players better off compared to the best static contract.
We then broaden the scope of our results to general linearly-scaled contracts, and,
finally, to the best of our knowledge, we provide the first analysis of optimization
against learning agents with uncertainty about the time horizon.

1 Introduction

In the classic contract setting, a principal (she) incentivizes an agent (he) to invest effort in a
project. The project’s success depends stochastically on the effort invested. The incentive scheme,
a.k.a. contract, is performance-based — it determines the agent’s payment based on the project’s
outcome, rather than directly on the agent’s effort. This gap between the agent’s costly effort and the
stochastic outcome creates moral hazard, and makes contract design a challenging problem.

Due to their immense importance in practice, the design of contracts has long been studied in
Economics, forming a rich body of literature that was recognized by a Nobel prize in 2016. Recently,
there has been a surge of interest in computational aspects of contract design, leading to the ongoing
development of a new algorithmic theory of contracts (see, e.g., [1, 7, 8, 20, 21, 28, 29, 33, 30, 42,
43, 34, 51, 57, 62, 67]). Much of the computational research has focused on the classic, one-shot
contract setting – the principal and agent share a single interaction, in which the principal offers a
contract and the agent chooses a best-response action.1 Yet, this overlooks the fact that in reality,

“most principal-agent relationships are repeated or long-term,” i.e., the same agent exerts effort for
the principal repeatedly over time [14]. The goal of this paper is to extend algorithmic contract
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1Another setting that has been considered is a series of one-shot interactions with multiple agents, enabling

the principal to learn the best contract for the agent population (see, e.g., [32, 23, 47, 69]). An exception is the
work of [56], which studies a novel long-term principal-agent model tailored to afforestation. Their principal
pays whenever a tree’s state – a Markov chain – progresses; their agent responds based on state (not on learning).
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theory beyond the basic single-shot setting and into the realm of repeated contracts, applying a fresh
perspective to contract design for repeated interactions.

Repeated contracts have been studied extensively in Economics. The literature explores many possible
variations of how outcomes, actions, and contracts may evolve over time as the principal and agent
interact (see, e.g., [64] and references therein; for surveys, see [24], [14, Chapter 10], and [55, Chapter
8]). The main theme of this literature is that the incentive problem grows significantly in complexity
with repetition. First, the agent’s action set becomes extremely rich, and optimizing over it is highly
non-trivial. Second, the optimal contract itself typically becomes excessively complex – “too complex
to be descriptive or prescriptive for incentive contracting in reality” [14]. Given this complexity,
agents typically respond to repeated strategic interactions in practice in a manner consistent with
no-regret learning [60, 61] (see Appendix A for a more detailed overview).

Building on this, we revisit the classic question of optimal contract design in a repeated setting,
this time considering a no-regret learning agent. Hence, the main question we address in this work,
referring to the optimal dynamic contract, is:

If the principal knows that the agent is a no-regret learner, what contract sequence should she offer?

1.1 Our Model and Contribution

Optimizing against a no-regret learner. We study the optimal dynamic contract in the following
setting: A principal and agent interact over T time steps for some large T . In each step t ∈ [T ], the
agent takes a costly action as recommended by the no-regret learning algorithm, and the principal
pays the agent according to the current contract and the action’s outcome. The contracts can be
modified by the principal over time dynamically (and adaptively). A simple benchmark is achieved by
not modifying them, that is, simply repeating the optimal one-shot contract in each round. We refer to
this as the optimal static contract. It is not hard to see that the principal’s revenue in this case against
a no-regret agent will essentially be the optimal static revenue (Observation I.1 in Appendix I).

Our main focus is on “mean-based” learning agents, who apply simple, natural and common learning
algorithms, such as multiplicative weights [4], follow the perturbed leader [45, 50], or EXP3 [6].
Intuitively, mean-based algorithms consider the cumulative payoffs from each of the actions, and play
actions which performed sub-optimally in the past with a low probability (see Section 2 for a precise
definition, taken from [15]).

We also briefly consider more sophisticated agents who utilize no-swap-regret, rather than mean-
based, learning (e.g., [13]). Against such agents, a crisp optimal strategy is immediate from previous
work on general repeated games against learners [27, 59]: It is known that the best static solution
is also the best dynamic one. In our context this means that no dynamic contract can achieve better
than the optimal static contract (Observation I.2 in Appendix I). Since no-swap-regret learning also
counts as a particular type of no-regret learning, this result also explains why focusing on mean-based
learning is necessary for a separation result. Interestingly, we show that both players can be better
off if the agent applies more naïve, mean-based learning (although, as expected, there are also many
cases where the agent winds up worse off due to this interaction). Due to space constraints, we defer
a more extended discussion of related work to Appendix A and highlight here our contributions.

Our contribution. In this paper, we give a clean, tractable answer to our main question as follows.
When the agent’s choice among n actions can lead to success/failure of the project, the principal’s
optimal dynamic contract is surprisingly simple (especially compared to the optimal dynamic auction
[15]): offer the agent one carefully-designed contract for a certain fraction of the T rounds (both
contract and fraction are poly-time computable), then switch to the zero contract (that is, pay the
agent nothing) for the remaining rounds. In this setting, simple linear (single-parameter) contracts are
optimal, and this is actually the only property required for our result. Our analysis thus generalizes to
any setting where the principal utilizes only linear contracts. Note that much of the previous literature
on algorithmic contract design has focused on the canonical contract setting with success/failure
outcomes and/or on the ubiquitous class of linear contracts (see, e.g., [1, 7, 28, 29, 33, 56]).

Unlike the optimal dynamic auction, the optimal dynamic contract divides the welfare among the
principal and agent. In fact, it can increase the utility of both players (and thus also the total welfare)
in comparison to the optimal static contract. One interpretation of this result is the following. While a
no-swap-regret algorithm is better for the agent against an adversarial player, an agent who commits to
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using a mean-based algorithm allows the principal more freedom to dynamically implement outcomes
of common interest. A similar advantage of simple no-regret learning over no-swap-regret was noted
in a different context by [16].

Our main result also generalizes to settings with a rich set of outcomes beyond success/failure, as
long as the principal changes the contract dynamically by scaling it (“single-dimensional scaling”).
However, we also show that absent this single-dimensional scaling restriction, there exist principal-
agent instances where the optimal dynamic contract does not take this form.
Equivalently, with non-linear contracts it is possible for the principal to do strictly better than offering
the same contract for several rounds and then switching to the zero contract.

As our second main result, we identify and address the following gap in the current literature on
optimizing against no-regret learners: Implicit in all our positive results, as well as in all known results
in this literature (see Appendix A), is the assumption that the optimizer knows the time horizon T .
We show that when there is (even limited) uncertainty about T , the principal’s ability to use dynamic
contracts to guarantee more revenue than the optimal static contract diminishes. We achieve this by
characterizing the optimal dynamic contract under uncertainty of T , and showing that the principal’s
added value from being dynamic sharply degrades with an appropriate measure of uncertainty.

1.2 Illustrative Example

Actions “Failure” “Success”

a1: (c1 = 0/6) 1 0
a2: (c2 = 1/6) 1/2 1/2
a3: (c3 = 3/6) 0 1

Figure 1: A canonical contract setting in
which a simple dynamic contract extracts
higher expected revenue than the best static
contract. The table entries show the outcome
probabilities given the actions.

To demonstrate our model and findings, we give an example where a simple dynamic contract yields
higher revenue than the best static contract. The analysis requires some familiarity with the basics
of contract settings, which appear in the first paragraphs of Section 2 for completeness. Consider
the setting in Figure 1. There are three actions with costs c1, c2, c3 for the agent, leading, with the
probabilities shown in the figure, to two outcomes—“failure” and “success”—with rewards 0 and 1
for the principal. Since there are two outcomes, w.l.o.g. we can consider linear contracts, which pay
the agent ³ for success (leaving the principal with a payoff of 1− ³).

Under an optimal static linear contract, the agent must be indifferent either between actions 1 and
2 or between actions 2 and 3 (otherwise, the principal is overpaying for incentivizing an action).
The indifference contracts are denoted by ³1,2 = 1/3 and ³2,3 = 2/3, respectively. These lead to
the same expected utility for the principal, where the expectation is over the probability of success:
(1− ³1,2) · 1

2 = (1− ³2,3) · 1 = 1
3 . That is, both ³1,2 and ³2,3 are optimal static contracts.

Now consider a principal interacting with a mean-based learning agent. The principal initially offers
the contract ³ = 2

3 + ϵ for T/2 time steps, with some small ϵ > 0. The agent follows his mean-based
strategy and plays action 3 (in a 1− o(T ) fraction of the time with high probability), which yields a
utility of roughly ³ · 1− c3 = 1

6 per step for the agent and 1
3 per step for the principal. Subsequently,

the principal switches to the zero contract for the remaining time steps. From the perspective of the
agent, at the time of the switch the cumulative utilities of actions 2 and 3 are roughly T

12 (compared
to zero from action 1). But in every step of the subsequent stage, the cumulative utility of action 3
is degraded by an amount of 1

2 and the cumulative utility of action 2 is degraded by an amount of
1
6 . Thus the agent “falls” to action 2 and plays it until the last period T . The overall utility for the
agent is approximately zero, and for the principal ≈ T

2 · 1
3 + T

2 · 1
2 = 5

12T > 1
3T . The principal thus

improves her utility by a factor of 5
4 compared to the optimal static contract.

Figure 2 shows a graphical representation of the above dynamic contract. It turns out that this simple
“free-fall” contract (see Definition 2.1) is also an optimal dynamic strategy for the principal, and in
fact, this is not a special property of the current example. In Section 3 we show that for any linear
contract game, there exists an optimal strategy with this form: offer a fixed contract for a period of ¼T
steps and then switch to the zero contract. Moreover, we show that, surprisingly, this simple structure
remains optimal also for general non-linear contracts, as long as their dynamics are characterized by
a single scalar parameter. For details, see Appendix D.
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Theorem (See Theorems 4.2-4.3 in Section 4). For any contract problem and error-tolerance
parameter ε > 0, there exists is some minimum time uncertainty µ so that for any minimum time
horizon T , no randomized dynamic contract can guarantee the principal a (1 + ε) multiplicative
advantage over the optimal static contract simultaneously for every time horizon T in the range
[T , µT ]. Conversely, for any contract problem and time uncertainty µ > 1, there is some nonzero
error-tolerance parameter ε > 0 such that for a sufficiently large time horizon minimum T , there is a
randomized dynamic contract that can guarantee the principal a (1 + ε) multiplicative advantage
over the optimal static contract simultaneously for every time horizon T in the range [T , µT ].

2 Model

We first present basic (non-repeated) contracts, and the class of linear contracts; a familiar reader
may wish to skip to Sections 2.1-2.2 on repeated contract settings (discrete and continuous).

Single-shot contract setting. There are two players, a principal and an agent. The agent has a
finite set [n] of n > 1 actions, among which it chooses an action a and incurs a corresponding
cost ca g 0 (in addition to a we will use i to index actions). W.l.o.g. the actions are sorted by cost
(c1 < c2 < ... < cn) and the cost of the first (null) action is zero (c1 = 0). There is a finite set [m] of
m > 1 possible outcomes, and every action a is associated with a probability distribution Fa ∈ ∆m

over the outcomes. The null action leads with probability 1 to the first (null) outcome. Every outcome
o is associated with a finite reward ro g 0 for the principal (in addition to o we will use j to index
rewards). We assume w.l.o.g. that r1 f r2 f ... f rm and r1 = 0. We denote the expected reward
by Ra = Eo∼Fa

[ro] for action a. As is standard we assume no dominated actions: i) if ca < ca′ then
Ra < Ra′ and ii) for every action there exists a contract that uniquely incentivizes it. The contract
setting (a.k.a. principal-agent problem) (c, F, r) = ({ca, Fa}na=1, {ro}mo=1) is known to both players.

The game. The game in the basic (non-repeated) setting has the following steps:
(1) The principal commits to a contract p = (pj)

m
j=1, pj g 0, where pj f pmax is the non-

negative amount the principal will pay the agent if outcome j is realized.2 In particular, p
can be the zero contract in which pj = 0 for all j.

(2) The agent selects an action a ∈ [n], unobservable to the principal, and incurs a cost ca.
(3) An observable outcome o is realized according to distribution Fa. The principal receives

reward ro and pays the agent po.
The principal thus derives a utility (payoff ) of ro − po, and the agent of po − ca.

Expected utilities and optimality. In expectation over the outcomes, the utilities from contract p
and action a are uP (p, a) = Ra − Eo∼Fa

[po] for the principal, and uA(p, a) = Eo∼Fa
[po]− ca for

the agent. Summing these up we get the expected welfare Ra − ca from the agent’s chosen action a.
For a given contract p, let BR(p) = argmaxa uA(p, a) be the set of actions incentivized by this
contract, i.e., maximizing the agent’s expected utility (usually this will be a single element, but in the
case of ties we include all actions in BR(p)).3 The goal of the contract designer is to maximize the
principal’s expected utility, also known as revenue. Such a contract is referred to as optimal.

Linear contracts. In a linear contract with parameter ³ ∈ [0, 1], the principal commits to paying
the agent a fixed fraction (commission) ³ of any obtained reward. Thus by choosing action a, the
agent gets expected utility ³Ra − ca, and the principal gets (1− ³)Ra. As ³ is raised from 0 to 1,
the agent’s expected utility is affected less by the action cost, and the agent’s incentives align more
with the principal’s and with social welfare. This intuition is formalized by [33], showing that as ³
increases, the agent responds with actions that have increasing costs, increasing expected rewards,
and increasing expected welfares.4 The critical ³ at which the agent switches from action i− 1 to
action i (for i > 1) is denoted by ³i−1,i = (ci − ci−1)/(Ri − Ri−1), and is also referred to as an
indifference point or breakpoint. For i = 1 we define ³0,1 = 0. Using this notation, for every linear
contract ³ ∈ (³i−1,i, ³i,i+1), the agent plays action i. In the linear contract setting, the focus is on
linear contracts and only such contracts are allowed.

2The non-negativity of the contractual payments is known as limited liability [49]. Without it – or some other
form of risk aversion – the principal could simply “sell the project” to the agent, trivializing the problem.

3The standard tie-breaking assumption, according to which the agent breaks ties in favor of the principal, is
less relevant here since we want to analyze all learning algorithms, regardless of how they break ties.

4We assume w.l.o.g. that for every action a there is a linear contract α which uniquely incentivizes it
(otherwise when focusing on linear contracts we may omit this action from the setting).
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2.1 Repeated Contract Setting: Discrete Version

We study a repeated contract setting (c, F, r, T ), in which the above game (c, F, r) is repeated for
T discrete rounds between the same principal and agent. The number of rounds T is called the
time horizon. The setting is known to both players,5 who update the contracts and actions in each
round. The outcomes of the actions are drawn independently per round (past outcomes affect future
outcomes only through learning). Denote the contract, action, realized outcome and reward at time
t ∈ [T ] by pt, at, ot, rt, respectively. The agent’s payoff at time t is ptot − cat . The sequence (pt)Tt=1

of contracts is called a dynamic contract, and the T pairs {(pt, at)}Tt=1 form the trajectory of play.
We define the following class:

Definition 2.1. A free-fall contract is a dynamic contract in which the principal offers a (single-shot)
contract p for the first T ′ f T rounds, and then offers the zero contract for the remaining rounds.

Learning agent. The agent’s approach to choosing an action is learning-based, by applying a
no-regret algorithm (rather than based on myopic best-responding, as in the one-shot setting). Our
analysis applies with full feedback on the performance of each action, where the agent observes the
expected payoffs of all actions (whether taken or not — e.g. by observing someone else take that
action), or with bandit feedback, where the agent observes only the achieved payoff of the action
taken. A delicate issue is that, unlike the standard scenario of learning in games, the payments for
each action are stochastic. Thus, the agent must not only learn which action to take, but also the
expected payment from each action. When T is large enough, the extra learning has a vanishing
impact, and does not affect the analysis of players’ utilities and strategies.

Our main focus is on the prominent family of mean-based algorithms. The idea behind mean-based
algorithms is that they rarely pick an action whose current mean is significantly worse than the current
best mean. There exist such algorithms with both full and bandit feedback that are mean-based and
achieve no-regret. In our setting, let uti be the expected utility the agent would achieve from taking
action i at round t, and let σt

i =
∑

t−1

t′=1
ut

′

i represent the cumulative utility achievable from action i up
to time t given the principal’s trajectory of play. Then:

Definition 2.2 ([15]). A learning algorithm is µ(T )-mean-based if whenever σt

i < σt

i′
− γ(T ) · T ,

then the probability that the algorithm takes action i in round t is at most µ(T ). We say an algorithm
is mean-based if it is µ(T )-mean-based for some µ(T ) = o(1).6

Optimal dynamic contract. The design goal in the repeated setting is to find an optimal dynamic
contract: a sequence (pt)Tt=1 that maximizes the total expected revenue against a learning agent
(whether mean-based or no-swap-regret, where in either case we assume the worst-case such learning
algorithm). In the linear contract setting, the sequence (³t)Tt=1 is composed of linear contracts. If it
maximizes the total expected revenue among all linear contract sequences, we say it is the optimal
dynamic linear contract. We remark that it is without loss of generality to consider only linear
contracts with7 ³ f 1.

Note that, as described here, the contract sequence is fixed by the principal at the beginning of the
game. We refer to such a principal as oblivious. If the principal can choose pt as a function of the
agent’s previous actions, we say the principal is adaptive. Our positive results (showing the principal
can guarantee at least some amount of utility) hold even for oblivious principals, and our negative
results hold even for adaptive principals.

Optimal static contract. In a repeated setting, a static contract is a sequence of contracts in which
the same one-shot contract is played repeatedly. The repeated game with a static contract and a
regret-minimizing agent is, in the limit T → ∞, equivalent to the classic one-shot contract game
with a best-responding agent (Observation I.1). A natural benchmark for dynamic contracts is thus
the optimal static contract, in which the optimal one-shot contract is played repeatedly.

5In Section 4 we consider what happens when T is unknown to the principal. The other parameters of the
setting, if unknown, can be easily learned via sampling. No-regret learning is possible also with unknown T .

6Some small changes need to be made to this definition for the partial-feedback (bandits) setting – see
Definition H.5 in Appendix H.3.

7This is a non-trivial consequence of our proof machinery. The proof appears as Observation I.3 in Appendix I
for completeness.

6



2.2 Repeated Contract Setting: Continuous Version

To simplify the technical analysis, we now present a continuous version of our repeated contract
setting. For the remainder of the paper we will primarily work in the continuous-time model. We
emphasize that the reduction to continuous time is for simplicity, and that the key ideas of our proofs
are unrelated to it and can be applied to the discrete version of our setting as well.

Reduction to continuous time. In [27], the authors consider the problem of strategizing against a
mean-based learner in a repeated bi-matrix game, and show it reduces to designing dynamic strategies
for a simplified continuous-time analogue (note that the choice of continuous-time analogue is tailored
to mean-based learning – it is not intended to be a special case of a general discrete-continuous
reduction against any learner). We pursue a similar reduction here, and show (in Theorem 2.4) how
to reduce the problem of designing dynamic contracts in the discrete-time setting (Section 2.1), to
a simpler problem in a continuous-time setting. We later extend the reduction to settings with an
unknown time horizon (see Theorem H.3 in Section 4).

Trajectories of continuous play. In the continuous setting, rather than specifying the trajectory
of play by a sequence of T contracts and responses, we instead specify it by a finite sequence Ã of
tuples {(pk, Äk, ak)}Kk=1, each representing a “segment” of play where the principal plays a constant
contract and the agent responds with a constant action. Here, each pk ∈ R

m
g0 represents an arbitrary

contract, each Äk ∈ Rg0 represents the (fractional) amount of time that the principal presents this
contract to the agent, and each ak ∈ [n] represents the action the agent takes during this time. In the
linear contract setting, we use the notation ³k instead of pk. We sometimes refer to Ã as a contract,
by which we mean the dynamic contract composed of p1, . . . .pK for segments of length Ä1, . . . , ÄK .

To form what we call a valid trajectory of play against a mean-based learner, the responses ak of the
agent must satisfy certain constraints. Let

T k =
k

∑

k′=1

Äk
′

; pk =
k

∑

k′=1

(pk′

Äk
′

)/T k

be the total duration of the first k segments, and the average contract offered by the principal for
the first k segments, respectively. Then each ak (for k > 1) must satisfy ak ∈ BR(pk−1) and
ak ∈ BR(pk). In words, ak must be a best-response to the historical average contract at both the
beginning and end of segment k (and therefore also throughout segment k).

The following is a continuous analogue of Definition 2.1.

Definition 2.3. A free-fall trajectory Ã is a game trajectory in which pk = 0 for all k > 1.

Optimal trajectory. The expected utility of the principal along trajectory Ã is given by

Util(Ã) =

∑K
k=1 Ä

kuP (p
k, ak)

T K
.

Let U⋆ = supÃ Util(Ã), where the sup runs over all valid trajectories of arbitrary finite length. We
can think of U⋆ as the maximum possible expected utility of the principal in the continuous setting
game. The following theorem (a direct analogue of Theorem 9 in [27]) connects U⋆ to what is
achievable by the principal in our original discrete-time game.

Theorem 2.4. Fix any repeated principal-agent problem with T rounds, and let U⋆ denote the
optimal expected utility of a principal in the continuous analogue. Then:

1. For any ε > 0, there exists an oblivious strategy for the principal that gets at least (U⋆ −
ε)T − o(T ) expected utility for the principal against an agent running any mean-based
algorithm A.

2. For any ε > 0, there exists a mean-based algorithm A such that no (even adaptive8)
principal can get more than (U⋆ + ε)T + o(T ) expected utility against an agent running A.

The proof of Theorem 2.4 closely follows the proof in [27] and is deferred to Appendix H.

8In the partial-feedback (bandit) setting, this result only holds for deterministic adaptive principals and not for
randomized adaptive principals (with full-feedback, it holds for either); see Appendix H.3 for further discussion.
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One important thing to note about Theorem 2.4 is that the first part is constructive. In fact, the discrete-
time strategy for the principal corresponding to a trajectory Ã is essentially the straightforward
extrapolation, which plays each contract pk for τ

k

T K T rounds (although a slight perturbation is
necessary to account for segments with a non-unique best-response). This means that when we show,
in Theorem 3.1, that the utility-optimizing Ã for U⋆ takes the form of a free-fall trajectory, we are
simultaneously showing that a free-fall dynamic contract is asymptotically optimal in the original
discrete-time setting.

Note that all the above definitions (and the reduction of Theorem 2.4) extend to the specific case
where the learner is only allowed to use linear contracts. In this setting, we will write ³k =
∑k

k′=1 ³
k′

Äk
′

/
∑k

i=1 Ä
k′

in place of pk.

3 Linear Contracts

In this section we focus on the case where the principal restricts to using only linear contracts in
every step of the interaction with the agent (one example is when there are m = 2 outcomes, such as
success and failure; in this case, arbitrary contracts can be described as linear contracts). We begin,
in Section 3.1, by showing that without loss of generality, optimal dynamic contracts take the form of
free-fall contracts, and in Appendix D we generalize this result to a broader class of general contracts
with single-dimensional scaling. Then, in Section 3.2, we analyze the implications of optimal free-fall
contracts on the welfare and on the agent’s utility. In particular, we show that dynamic contracts
that are optimal for the principal can improve the utilities for both players compared to their utilities
under the best static contract. Finally, in Section 3.3, we show that for unrestricted dynamic contracts,
free-fall contracts may no longer be optimal.

3.1 Free-Fall Contracts are Optimal Linear Contracts

The following theorem shows that free-fall contracts are optimal dynamic linear contracts.
Theorem 3.1. Let Ã be any linear dynamic contract. Then, there exists a free-fall linear contract Ã′

where Util(Ã′) g Util(Ã), and which can be computed in time polynomial in the problem size.

The proof is deferred to Appendix B and hinges on applying a sequence of “rewriting” rules which
allow us to gradually transform any given linear dynamic contract Ã with a free-fall linear contract
Ã′. At a high level, the crux of the proof is that any segment of the trajectory can be thought of
as a combination of “stalling” at the current action and “falling” to the action below. Under linear
contracts, the principal prefers to stall when a higher action is being induced. Grouping together all
the stall at the highest action used exactly results in a free-fall contract.

3.2 Implication to Welfare and Agent’s Utility

In the example shown in Section 1.2, the free-fall dynamic manipulation that the principal made
degraded the overall welfare, and all the added profits for the principal were at the expense of the
agent. We demonstrate that this is not always the case; there are other scenarios where dynamic
manipulations where the principal, optimizes her revenue, can actually be Pareto improvements over
the best static contract, increasing the overall welfare.
Example (Welfare improvement). Consider the setting depicted in Figure 1 with a slight variation
where the cost of action 2 is 1/2+ϵ, with ϵ < 1/(2T ). In this case, the best static contract incentivizes
action 1 and yields a utility of 1/3 for the principal and zero for the agent. However, the best dynamic
contract remains the same as in the previous analysis: it starts by incentivizing action 2 for a period
of 2

3T steps and then transitions to action 1 by offering zero payments for the remaining time. This

results in a utility of 5
12T for the principal and zero for the agent, thereby increasing welfare by a

factor of 5/4 without altering the agent’s utility.

Next, we show the existence of “win-win” scenarios where optimal dynamic contracts can enhance the
payoffs for both the principal and the agent compared to the best static contract. The improvement in
welfare can be substantial, reaching as much as O(n), essentially achieving full welfare. Specifically,
we establish that the multiplicative gap between the utilities of the best static contract and those of the
best dynamic contract can be O(n) for the principal’s utility and O(log(n)) for the agent’s utility.
Theorem 3.2 (Win-win optimal dynamic contracts). There exist repeated contract settings where
an optimal dynamic contract improves expected welfare by a Θ(n) multiplicative factor compared

8



to the best static contract, and where the agent’s expected utility improves by a factor of Θ(log(n)).
Moreover, these settings have a positive measure in the space of repeated contract games.

The idea of the proof is to look at games where the values for the principal when incentivizing each
action are similar, but the actions differ significantly in terms of welfare. Then, by investing a small
amount of additional payment in the early stages of the game (compared to the best static contract),
the principal can incentivize the agent to substantially improve welfare, initially in the form of higher
profits for the agent. This added welfare is then shared between the players during the free-fall stage
of the dynamic.

The proof is deferred to Appendix C. One interesting point about the example presented in the proof
is that if the agent had used a “smarter” learning algorithm that guaranties low swap regret, then the
outcome of the best static contract would have been obtained (see Observation I.2 in the appendix,
following the analysis of [27]). The agent in this case would have had lower utility. That is, using a
better algorithm leads to a worse outcome! The explanation for this counter-intuitive result is that a
mean-based regret-minimizing algorithm is only guaranteed to approach the set of Coarse Correlated
Equilibria (CCE),9 whereas no-swap-regret dynamics must approach the set of Correlated Equilibria
(CE, a subset of the set of CCE’s). There are games in which some CCE distributions of play give
higher utilities to the players than all CE distributions (see e.g., [36, 53] for examples in auctions,
and [16] for a related example in general games). In other words – committing to use an algorithm
with weaker worst-case guarantees yields better (non-worst-case) results.

3.3 General Contracts and Free-Fall

Unlike in the linear contract setting and the single-dimensional scaling setting, free-fall contracts are
not optimal in the general contract setting. We provide an example outlining this in Appendix G. In
fact it is an open question whether the the optimal dynamic contract is computable.

4 Unknown Time Horizon

Up until now, the principal has been able to take advantage of precisely knowing the time horizon.
Notably, this assumption of knowledge of the time horizon underlies all prior theoretical results in the
literature on optimization against learning algorithms. In this section, we explore what happens when
the principal only approximately knows this parameter. We will consider the case where the principal
knows that the time horizon T falls into some range [T , T ], and wants to guard against a worst-case
choice of time horizon from that range. What are the trade-offs between the time uncertainty and how
much additional principal utility we can get over the best static contract? To explore these concepts
precisely, we introduce the following definition:

Definition 4.1. Suppose we have a principal-agent problem (c, F, r). Let R⋆ be the single-round
profit of the optimal static linear contract for this problem. We say that a pair (ϵ, µ) is feasible with
respect to (c, F, r) if for all sufficiently large time horizons T , there exists a (potentially randomized)

principal algorithm A such that the (expected) profit of A at any time t ∈ [T , T = +Tµ,] is at least
(1 + ϵ)tR⋆ (and infeasible with respect to (c, F, r) otherwise).

The last part of our results is Theorem 4.2: for every principal-agent problem and any error-tolerance
ε > 0, it is impossible to indefinitely maintain an ε advantage over the optimal static contract. To
be more precise, when µ is exp(Ω(1/ε)) we know that the instance has become (ε, µ) infeasible
(for some instances, this infeasibility transition may occur earlier). We argue this via a potential
function; in order to stay a constant factor ahead of the optimal static contract, the principal must
be constantly giving up potential. To complement this result, in Theorem 4.3, we show that all time
ratios µ g 1 permit some advantage ε over the optimal static contract. We manage to achieve ε at
least Ω(1/(poly µ)) for all problems where the optimal dynamic contract (with known time horizon)
outperforms the optimal static contract. These ideas are captured in the theorems below:

Theorem 4.2. Suppose we have a principal-agent problem (c, F, r). For every ϵ > 0, there exists a
µ such that (ϵ, µ) is infeasible with respect to (c, F, r) for all µ g µ.

9In fact, for mean-based algorithms there is a stricter characterization of the set of equilibria to which they
may converge [53], but the above explanation still holds.
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Theorem 4.3. Suppose we have a principal-agent problem (c, F, r). If there exists a µ such that for

any ϵ > 0 and µ g µ, (ϵ, µ) is infeasible, then there are no dynamic strategies that outperform the
optimal static linear contract.

The proof of Theorem 4.2 is in Appendix E; Theorem 4.3, Appendix F. The key ideas are as follows.
For Theorem 4.2, we construct a potential function which assigns a value to the current time-averaged
linear contract, and show that any principal is forced to slowly sacrifice this potential as the possible
time horizon gap grows. For Theorem 4.3, any dynamic strategy that outperforms the optimal static
linear contract can also be made to either start or end at the optimal static linear contract. This allows
us to pad such a strategy to last for a longer amount of time by adding a segment that just stalls at
the optimal static linear contract. One technical issue we have to handle is that trajectories must be
evaluated over the interval [ 1µT K , T K ] instead of at a single time; this multidimensionality means
we must now consider distributions of trajectories (see Appendix H).

5 Conclusion

In this paper, we provide a clean and tractable answer to our main question. When the agent’s choice
among n actions can lead to the success or failure of a project, the principal’s optimal dynamic
contract is surprisingly simple. Specifically, the principal should offer a carefully designed contract
for a certain fraction of the T rounds (both the contract and the fraction are poly-time computable),
then switch to a zero contract (i.e., pay the agent nothing) for the remaining rounds. Our main result
also generalizes to settings with a rich set of outcomes beyond success/failure, as long as the principal
changes the contract dynamically by scaling it (“single-dimensional scaling”). However, we show
that without this single-dimensional scaling restriction, there exist principal-agent instances where
the optimal dynamic contract does not take this form. In these cases, with non-linear contracts, the
principal can do strictly better than offering the same contract for several rounds before switching to
a zero contract.

As our second main result, we address a significant gap in the current literature on optimizing against
no-regret learners: the assumption that the optimizer knows the time horizon T . We show that
when there is uncertainty about T , even if limited, the principal’s ability to use dynamic contracts
to guarantee more revenue than the optimal static contract diminishes. We characterize the optimal
dynamic contract under uncertainty of T , demonstrating that the principal’s added value from being
dynamic sharply degrades with an appropriate measure of uncertainty.

Open Problems. The computational study of repeated contracts, particularly with learning agents,
raises many open questions. These include determining the optimal dynamic contract when the
principal is not restricted to one-dimensional dynamics, and the computational complexity of finding
it. Additionally, it involves identifying the optimal dynamic contract against a learning agent with a
hidden type, thereby unifying our contract model with the auction model of [15]. Another intriguing
area is understanding what the optimal dynamic contract would be against a team of multiple learning
agents. Finally, it is crucial to explore the effects on welfare and utilities when there are two learning
players, rather than a learner and an optimizer.
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Appendix

A Further Related Work

Introduction to the Problem. Consider the following motivating examples: a worker joining a new
team, a student starting an internship, or a junior professor joining a committee. These agents initially
face uncertainty about the required effort and what constitutes good performance. They must decide
when to exert more effort and when to reduce it. Peer assessments introduce additional uncertainty
and noise. Furthermore, the environment is dynamic, with the value of certain outcomes changing
over time. Each agent encounters an implicit and evolving system of incentives that they must adapt to
through repeated interactions. This pattern is prevalent in many real-life contractual relationships and
is increasingly relevant to AI agents handling complex, open-ended, and computationally intensive
tasks. For details to the aforementioned examples, the interested reader can see [41] and references
therein. In settings like credit scoring, the evaluation system creates incentives for the agent while
remaining opaque to prevent gaming, forcing the agent to act under uncertainty [38].

Simplifying Contracts. Given this complexity, one line of work focuses on identifying settings
where simple contracts suffice. Notably, [48] assume constant absolute risk aversion (CARA) utilities
and Brownian motion of the output, examining a single payment at the end of the contractual
relationship based on all outcomes. Another approach involves deliberately vague contracts, leaving
agents uncertain about performance-based compensation (e.g., [3, 11, 31]). [44] explore how to learn
an agent’s private type through online principal-agent interaction and contract menus. [10] study
principal-agent problems over MDPs, where a budgeted principal offers additional rewards, and the
agent selects the MDP policy selfishly, without learning. Thus, a naturally arising question is:

How should an agent choose their actions in a contractual relationship
involving uncertainty and recurrent interactions?

Our algorithmic perspective introduces a novel, learning-based approach to address the complexity
of repeated contracts, leveraging no-regret and general mean-based agents. Below, we discuss why
learning methods are natural choices for agents’ responses in the context of existing literature.

Optimizing Against No-Regret Learners. From an econometric perspective, agents often respond
to repeated strategic interactions in auctions in ways consistent with no-regret learning [60, 61].
Inspired by these findings, [15] explore algorithmic mechanism design, demonstrating that no-
regret learning methods are natural responses for agents. No-regret learning has been extensively
studied in repeated games (e.g.,[2, 5, 12, 16, 35, 46, 54, 58, 68, 39, 40, 63, 66]), auctions and
economic interactions (e.g.,[25, 19, 37, 53, 52]), and Stackelberg security games (e.g., [9]). For a
comprehensive overview, see [65]. By assuming agents employ no-regret learning instead of complex
strategic reasoning, we propose a new approach to repeated contracting.

Optimizing Against Mean-Based Learners. Finding an optimal dynamic strategy against a mean-
based learner in general games remains an open problem. [27] show an equivalence between this
problem and an n-dimensional control problem, where n is the number of actions available to the
agent. Non-trivial optimization against a mean-based learner has been achieved only in repeated
auction settings, where [15] demonstrate that the designer can extract full welfare as revenue. [26, 18]
extend this to prior-free auction settings and multiple agents. However, even for a single agent, the
optimal auction strategy, involving alternating between second-price auctions and charging large
payments, is impractical and not intended to guide practice [18]. [19] study mechanisms for no-regret
agents, incorporating principal learning to avoid common prior assumptions in economic design
problems.

B Proof of Theorem 3.1 (Optimal Dynamic Linear Contract)

Proof overview. We will present a series of “rewriting” rules, which will allow us to replace a given
dynamic contract Ã with a simpler, more constrained, dynamic contract Ã′ with utility at least as large
as Ã. At the conclusion of our sequence of rewriting steps, we will see that our contract takes the
form of a free-fall contract, thus implying that there is an optimal free-fall contract.

We begin not with a rewriting rule, but instead a general observation about the structure of dynamic
linear contracts — namely, that it is impossible for an agent to “skip over” an action. That is, if an
agent is playing action i at some point, and action j at some later point, there must exist segments of
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For this, let ³0 denote the cumulative contract after the first k−1 segments, ³1 denote the cumulative
contract after the first k + 1 segments, ³′(t) denote the cumulative contract of Ã′ during a time t in
the merged segment, and ³(t) denote the cumulative contract of Ã during a time t in segments k or
k + 1. Observe first that for every x between ³0 and ³1, there is some t such that ³(t) = x. Because
a is a best response on the entire segments k and k + 1, this means that a is a best response to x for
all x between ³0 and ³1. Moreover, observe that ³′(t) lies between ³0 and ³1 for all t. Therefore, a
is indeed a best response to ³′(t) for all t in the merged segment, and the dynamic contract is valid.

By repeatedly applying this merging of segments, we can obtain a linear dynamic contract Ã′

satisfying the constraints of the lemma.

Figure 3 illustrates the above lemma graphically. The figure displays the cumulative contract over
time for the contract game depicted in Figure 1. The blue curve represents the trajectory of an
arbitrary dynamic contract strategy under which the agent’s best response is to take action 3 until
time t/T ≈ 0.425, and then take action 2 in the remaining time. The crossing point between the best
response regions is marked with a red dot. Lemma B.2 demonstrates that we can replace the blue
trajectory with the simpler trajectory depicted in red. In this red trajectory, every region between two
consecutive ³ values is crossed by a single linear segment (i.e., a piecewise-stationary trajectory),
resulting in the same behavior by the agent and the same revenue.

Our second rewriting rule is specific to linear contracts. It shows that for every linear contract in
which the agent is indifferent between two actions, it is beneficial for the principal to shift the contract
infinitesimally so that the agent prefers the action with the higher expected reward.

Lemma B.3. Let Ã = {(³k, Äk, ak)}Kk=1 be a dynamic linear contract where during segment k the

agent is indifferent between actions i and i+ 1 (i.e., BR(³k−1) ∩ BR(³k) § {i, i+ 1}), but ak = i.
If we form Ã′ by replacing ak with i+ 1, then Util(Ã′) g Util(Ã) (the principal always prefers that
the agent plays the action with higher expected reward).

Proof. Since actions in the linear contract setting are sorted by increasing value of expected reward,
we have that Util(Ã′)− Util(Ã) = Äk

T K

(

uP (p
k, i+ 1)− uP (p

k, i)
)

= Äk

T K

(

Ri+1 −Ri)(1− ³k
)

g
0.

Note that the principal can implement the change in the agent’s action in Lemma B.3 by simply
increasing their payment to the agent by an arbitrarily small amount – this incentivizes the agent to
break ties in favor of the action with larger expected reward (which is the action labeled with a larger
number). The fact that the principal can implement this change also follows as a direct consequence
of the discrete-to-continuous reduction of Theorem 2.4.

By applying the above two rewriting rules (Lemmas B.2 and B.3) along with our observation in
Lemma B.1, we can establish our third rewriting rule: it is always possible to rewrite a dynamic
contract so that the sequence of actions is a consecutively decreasing sequence.

Lemma B.4. Let Ã be any dynamic linear contract. Then there exists a dynamic linear contract
Ã′ = {(³k, Äk, ak)}Kk=1 with Util(Ã′) g Util(Ã) and where a1, a2, . . . , aK is a decreasing sequence

of consecutive actions (i.e., ak = a1 − (k − 1)).

Proof. Apply the two rewriting rules in Lemmas B.2 and B.3 to Ã until it satisfies the post-conditions
of both lemmas (so, no two consecutive segments incentivize the same action, and any segment on
a best-response boundary incentivizes the higher-reward action). Since Lemma B.1 implies that
consecutive segments cannot skip over an action, this means that every two consecutive actions under
Ã are consecutive: either the agent switches to the next higher action or the next lower action each
time step. We therefore just must show that any dynamic contract where the agent increases their
action can be rewritten as a decreasing contract with at least same payoff.

Consider the first segment in Ã where the agent switches to a larger action, that is, the smallest k such
that ak+1 = ak + 1. Let ak = j (so ak+1 = j + 1). Note that the agent must be indifferent between
actions j and j + 1 at the end of the jth segment (i.e., {j, j + 1} ¦ BR(³k)).

There are two cases: either segments k and k + 1 are the first two segments of the dynamic contract
Ã (i.e., k = 1), or there exists a (k − 1)st segment. In the first case, the agent is indifferent between
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Proof. Let Ã = {(³k, Äk, ak)}Kk=1 (with ak decreasing), and consider the last non-free-fall segment
(³k, Äk, ak), i.e., k is the maximal k for which ³k ̸= 0. Assume that k > 1 (if not, then Ã is already
a free-fall contract).

Let ³BR = ³ak,ak+1 be the indifference contract for the best-response boundary separating the
current action from the previously incentivized action. Consider replacing this segment with the
two consecutive segments (³BR, (³

k/³BR)Ä
k, ak), (0, (1 − ³k/³BR)Ä

k, ak)). In doing so we
essentially are doing the inverse of the first rewriting rule in Lemma B.2 – replacing a single segment
with two segments that average to the original segment – and because of this, the resulting dynamic
contract is valid and has the same utility as our original contract (the construction also guarantees
both segments stay within this region). But now we have a segment (³BR, (³

k/³BR)Ä
k, ak) that

lies along the best-response boundary ³BR, so by Lemma B.3 we can replace it with the segment
(³BR, (³

k/³BR)Ä
k, ak + 1) and strictly increase the utility of our dynamic contract (see Figure 5).

We can then merge this segment with the previous segment in (which also incentivizes action ak + 1)
to obtain a new dynamic contract with strictly greater utility than Ã and whose first non-free-fall
action occurs strictly earlier. Repeating this process, we obtain a free-fall contract Ã′ with at least the
same utility as Ã.

We can now prove the main theorem of this section.

Proof of Theorem 3.1. From Lemmas B.4 and B.5 the first part of this theorem (that there exists a
free-fall linear contract Ã′ with Util(Ã′) g Util(Ã)) immediately follows.

To show that we can efficiently compute this free-fall contract, note that the optimal free-fall linear
contract might as well start with a segment of the form (³i−1,i, Ä, i) for some indifference contract
³i−1,i (if it does not start by offering some indifference contract, we can apply the rewriting rule of
Lemma B.2 to merge this segment with the following segment, which would incentivize the same
action).

It is also true that the optimal free-fall linear contract might as well end at an indifference contract:
that is, ³K = ³j−1,j for some j. To see this, consider a free-fall linear contract Ã that does not end
on an indifference contract. It ends with a segment of the form (0, ÄK , a) for some agent action a.
Consider the contract Ã(Ä) formed by replacing the duration of the last segment with Ä ; this operation
is valid for all Ä in some interval [0, Ämax]. Note that Util(Ã(Ä)) is a convex function of Ä (it is of
the form (Util(Ã(0))T K−1 + uP (0, a)Ä)/(T K−1 + Ä)) so it is maximized when Ä equals one of the
endpoints of this interval. But at both endpoints, ³K lies on a best-response boundary (for Ä = 0,
³a,a+1, for Ä = Ämax, ³a−1,a).

Since our optimal contract is completely characterized by its start and end points, it can be computed
in polynomial time in n by testing all the pairs of indifference points {³i−1,i, ³j−1,j} with j f i as
candidates for the start and end points of the optimal initial contract (this pair of indifference points
also uniquely specifies the fraction of time that must be spent in free-fall). Note that in the case where
in the optimal free-fall contract i = j, the optimal contract is the best static contract.

In Appendix D (see Theorem D.1), we generalize Theorem 3.1, showing that free-fall contracts are
optimal for a much broader family of dynamic contracts with “single-dimensional scaling,” where the
principal is using an arbitrary non-linear contract and dynamically rescales it during the interaction
with the agent.

Our proof of Theorem D.1 is parallel to the proof of Theorem 3.1 in the sense that we demonstrate
how to gradually transform a general single-dimensional-scaling contract into a free-fall contract,
while increasing utility for the principal. The main difficulty in applying the proof of Theorem
3.1 directly is that the rewriting rule in Lemma B.3 no longer holds – for general contracts with
single-dimensional scaling, it is not the case that segments along a best-response boundary should
always incentivize the higher action for the agent. In the proof of Theorem D.1, we forego the use
of this rewriting rule and instead using the weaker condition that there cannot be two consecutive
segments along a best-response boundary.
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C Proof of Theorem 3.2 (Win-Win)

Proof. Consider the following contract game.10 There are n > 2 actions, with expected reward
Ri = vi for some v > 0. Concretely, we let v = 2. The cost of the action are specified recursively
by c1 = 0 and ci = ci−1 + Ri−1 − 1

2 for i > 1, yielding ci>1 =
∑i

k=2(2
k−1 − 1

2 ). The resulting
indifference contracts are thus ³i = 1− 2−i for 1 < i f n. In this game, the principal has the same
utility (of one unit) for all the indifference contracts. The agent’s utility under the contract ³i, as the
reader can verify, is given by 2i − 3

2 −∑i
k=1(2

k−1 − 1
2 ) =

1
2 (1 + i). Notably, this utility is higher

for the higher actions. The welfare of action i is thus wi =
1
2 (3+ i). Next, we slightly alter this game

by increasing the payoff of action 2 by a small amount ϵ > 0 such that the optimal static contract is
now ³2, which yields a utility of 1+O(ϵ) for the principal, and the agent is still indifferent under this
contract between action 2 and the null action. In the following analysis, we are mainly interested in
large (but finite) n. Notice that the optimal static contract is extremely inefficient for large n, getting
an arbitrarily low (independent of n) fraction of the optimal welfare.

Now consider an optimal dynamic strategy; by Theorem 3.1, there is an optimal strategy of a free-fall
form. We will construct a free-fall contract p that starts at ³n, so action n is played initially, where
the duration ¼T of that stage is chosen such that the final action at time T is action

⌈

1
2 log(n)

⌉

.
Specifically, we require ¼³n + (1− ¼) · 0 = ³+ 1

2
log(n),, and so ¼ = 2n

2n−1

(

1− 1√
n

)

. We show that

this free-fall strategy bounds the utilities of both players from below.

Claim C.1. In an optimal free-fall contract, the utilities for both players are at least those obtained
in the contract described above.

For ease of presentation, the proof for this claim is deferred to the following subsection. It consists of
three parts: first, we show that an optimal free-fall contract must start at ³n. This is done directly
by way of contradiction. Then, the proof shows that the last action that is played by the agent in an
optimal free-fall contract must be higher than 1

2 log n. The intuition for this part of the proof is that
as the principal continues to free fall through lower and lower actions, the marginal gain from each
action (which is the expected reward of that action because we are free falling) continues to diminish.
At some point, the marginal gain is outweighed by the current average principal utility, which we
show should occur at action Θ(log n) (since we know the principal can get an average utility of
Θ(n) and the expected reward of action i is 2i). Lastly, we compare the utilities of both players in a
free-fall strategy that begins at action n and ends at action

⌈

1
2 log n

⌉

to those of the optimal free-fall
strategy and observe that the utilities in the former case bound the respective utilities in the latter case
from below. The principal’s utility is clearly bounded from below by her utility in our strategy due to
optimality. For the agent, the total utility is determined by the stopping point. Since the agent’s utility
at ³i is increasing with i in our game, we conclude that the agent’s utility in an optimal contract is at
least 1

2 log n.

Now let us calculate the average utilities for the players under our dynamic strategy, averaged over
the whole sequence of play. The agent’s average utility at the last step is the same as the utility that
would have been obtained under the average contract at that time, which is 1

2 (1 +
⌈

1
2 log(n)

⌉

). To
calculate the utility for the principal, we define ti to be the time when the agent switches from action
i to action i− 1. We know that the transition from action n to n− 1 happens at time tn = ¼T , and
until that time the principal gains a utility of one per time unit. After that time, the average contract
at time t is the weighted average until t of the contract ³n with weight ¼T and zero contract with
weight t − ¼T . Therefore, the transition times from each action i are given by ti = ¼T ³n

³i
. After

time ¼T , the principal pays zero and extracts the full welfare from the agents actions, and so the
overall utility for the principal is ¼T +

∑n
i=+ 1

2
log(n),(ti−1 − ti)Ri−1.

Claim C.2. The utility for the principal in the free-fall contract (³n, ¼) is O(n).

10In this example we shift the rewards with an additive constant such that the reward for the principal when
the agent takes the null action equals some constant instead of zero. This simplifies the following analysis and is
without loss of generality.
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Proof. The utility from region i is ¼T +
∑n

i=+ 1
2
log(n),(ti−1 − ti)Ri−1. The time intervals are

(ti−1 − ti) = ¼T³n

( 1

³i−1
− 1

³i

)

=
¼T³n2

i

(2i − 2)(2i − 1)
.

The utility for the principal from region i > 1
2 log(n) and large n is thus:

¼T³n2
2i

2(2i − 2)(2i − 1)
= Θ(1).

Summing over n− 1
2 log(n) such terms yields a utility of O(n).

The above arguments hold similarly also for perturbed versions of this game. For example, shifting
the rewards by arbitrary and independent values in the range [−1, 1], as well as re-scaling the reward
parameter v, yielding a positive measure in the parameter space.

C.1 Proof of Claim C.1

Proof. We execute this proof in two parts. In the first part of the proof, we will show that any optimal
dynamic (free fall) contract must begin at ³n. In the second part of the proof, we show that an optimal
dynamic (free fall) contract that begins at ³n must end at ³+ 1

2
logn, or higher, if n is sufficiently

large. This is enough to imply the claim because if the optimal free fall contract stops at a higher
action than

⌈

1
2 log n

⌉

, then the principal has higher utility due to optimality and the agent has higher
utility since their utility is increasing in actions.

We now prove that any optimal dynamic contract must begin at ³n. For the sake of contradiction,
suppose that it instead begins at ³i for some action i ∈ [1, n− 1]. In particular, it begins with the
segment (p1 = ³iR, Ä

1, a1 = i) for some i ∈ [1, n− 1]. To achieve a contradiction, we will show
that this dynamic contract is not optimal by producing a better dynamic contract.

In particular, let us consider replacing this first segment with the following two segments:

(³i+1R, x ≜ ³i

³i+1
Ä1, i + 1), (0, y ≜

[

1− ³i

³i+1

]

Ä1, i) (and re-indexing all subsequent segments

appropriately). We claim that this will achieve strictly greater principal utility, while leaving the total
time unaffected. We first show how we solved for the appropriate time-split (x, y).

x+ y = Ä1 ((x, y) is a time split)

x³i+1 = Ä1³i (At time Ä1, the cumulative linear contract is still ³i)

x =
³i

³i+1
Ä1

y =

[

1− ³i

³i+1

]

Ä1

By construction, our choice of x and y keeps the total time invariant, so it remains to prove that this
results in strictly more principal utility. Since all subsequent segments are the same and generate
the same amount of principal utility, we only need to compare the principal utility of these three
segments.

The (cumulative) principal utility of the original segment (³iR, Ä
1, i) is just Ä1 since the contract

problem is designed so that all indifference contracts ³i result in one unit of utility to the principal.
The exception is action one, which was adjusted to have 1 +O(ε) principal utility and therefore has
cumulative principal utility Ä1(1 +O(ε)).

Next, we consider the cumulative principal utility of our two new segments (ai+1R, x, i + 1) and
(0, y, i). The first segment has (cumulative) principal utility equal to just x for the same reason as
above (but now i + 1 cannot be the first action). The second segment has (cumulative) principal
utility equal to y(Ri+1) where Ri+1 is the expected reward from action i+1, due to the fact that this
segment offers the zero contract. Together, these two segments generate (cumulative) principal utility
equal to the following.

x+ y(Ri+1) = (x+ y) + y(Ri+1 − 1)

= Ä1 + y(2i+1 − 1)
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However, we can see from our choice of y that y > 0 and (2i+1 − 1) > 0 since i g 1. Hence this
strictly beats the cumulative principal utility of the original segment as long as ε is sufficiently small.
This completes our contradiction, since the original dynamic contract was assumed to be optimal but
we found a strictly better one. Hence the optimal dynamic contract must free fall from ³n (which
there is no higher action to start from instead), completing the first part of the proof.

We now use this fact to prove that the optimal dynamic (free fall) contract must end at ³+ 1
2
logn, or

higher, if n is sufficiently larger. The proof plan is to consider the effect of free falling through an
additional action, and determining when that might improve the free fall contract. As a first step, we
observe that the objective function of the continuous setting, Util(Ã), is invariant when we equally
scale all times Äk. As a result, we can assume without loss of generality that the first segment of
free-fall (p1 = ³nR, Ä

1, a1 = n) uses Ä1 = 1. We can also assume without loss of generality that
the other segments {(pk = 0, Äk, ak = n− k + 1)}Kk=2 begin and end at region boundaries, which is
enough to work out their durations Äk based on when the average linear contract reaches a particular
indifference point.

Äk =
³n

³n−k+1
− ³n

³n−k+2
=

1− 2−n

1− 2−n+k−1
− 1− 2−n

1− 2−n+k−2

= [1− 2−n]
2−n+k−1 − 2−n+k−2

(1− 2−n+k−1)(1− 2−n+k−2)

= [1− 2−n]
2−n+k−2

(1− 2−n+k−1)(1− 2−n+k−2)

Hence segment k ∈ [2,K] contributes the following (cumulative) principal utility.

ÄkuP (p
k, ak) = Äk2n−k+1 = 2n−k+1 ·

[

1− 2−n
] 2−n+k−2

(1− 2−n+k−1)(1− 2−n+k−2)

=
1

2

[

1− 2−n
] 1

(1− 2−n+k−1)(1− 2−n+k−2)

Let ÃK be the trajectory that usesK segments. We can compute its objective value to be the following.

Util(ÃK) =
1 + 1

2 [1− 2−n]
∑K

k=2
1

(1−2−n+k−1)(1−2−n+k−2)

(1− 2−n)/(1− 2−n+K−1)

= (1− 2−n+K−1)

[

1/(1− 2−n) +
1

2

K
∑

k=2

1

(1− 2−n+k−1)(1− 2−n+k−2)

]
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We can take the difference of two such expressions to decide whether ÃK+1 is better than ÃK . For
n−

⌈

1
2 log n

⌉

f K f n− 1:

Util(ÃK+1)− Util(ÃK) = (1− 2−n+K)

[

1/(1− 2−n) +
1

2

K+1
∑

k=2

1

(1− 2−n+k−1)(1− 2−n+k−2)

]

− (1− 2−n+K−1)

[

1/(1− 2−n) +
1

2

K
∑

k=2

1

(1− 2−n+k−1)(1− 2−n+k−2)

]

= (1− 2−n+K)
1

2

1

(1− 2−n+K)(1− 2−n+K−1)

− 2−n+K−1

[

1/(1− 2−n) +
1

2

K
∑

k=2

1

(1− 2−n+k−1)(1− 2−n+k−2)

]

f 1

2

1

(1− 2−n+(n−1))(1− 2−n+(n−1)−1)

− 2−n+(n− 1
2
logn)−1







1

2

n−+ 1
2
logn,

∑

k=2

1







=
1

2

1

(1/2)(3/4)
− 1

2
√
n

[

1

2
(n−

⌈

1

2
log n

⌉

− 1)

]

Since the positive term has magnitude O(1) and the negative term has magnitude O(
√
n), this bound

will always be negative when n is sufficiently large. Hence it is strictly not worth it to free fall below
³+ 1

2
logn,, as desired. This completes the proof.

D General Contracts with Single-Dimensional Scaling

Here we consider general contracts, and in Theorem D.1 generalize the result of Theorem 3.1 to
families of one-dimensional (yet non-linear) dynamic contracts for which free-fall contracts are
optimal.

Given any contract p, the set of p-scaled contracts are the one-dimensional family of contracts of
the form ³p for some ³ g 0. We will consider a principal that is restricted to only play p-scaled
contracts. In the continuous-time formulation of Section 2.2, this means that each contract pk must
be p-scaled. We will let pk = ³kp, and we will often abuse notation and write ³k as shorthand for
this contract (e.g., we will specify segments of the trajectory Ã in the form (³k, Äk, ak)). Recall that
a free-fall contract denotes such a dynamic contract for the principal where ³k = 0 for all k > 1.

As with linear contracts, note that as ³ increases from 0, the contract ³p incentivizes the agent to play
an action in BRp(³) (which is unique except for at most n “breakpoint” values of ³, where the agent is
indifferent between two actions). This induces an ordering over the actions; we will relabel the actions
so that actions 1 (the null action), 2, 3, . . . are incentivized for increasing values of ³. Formally, if
the agent has n actions, we have n “breakpoints” 0 = ³0,1 < ³1,2 < ³2,3 < · · · < ³n−1,n, where
action i belongs to BRp(³) iff ³ ∈ [³i−1,i, ³i,i+1] (with ³n,n+1 = ∞).

Our main result in this section is the following theorem, by which free-fall p-scaled contracts are
optimal p-scaled dynamic contracts.

Theorem D.1. Let Ã be any p-scaled dynamic contract. Then there exists a free-fall p-scaled
contract Ã′ where Util(Ã′) g Util(Ã).

To prove Theorem D.1, we will establish a sequence of lemmas constraining the potential geometry of
an optimal p-scaled dynamic contract. Note that since linear contracts are a specific case of p-scaled
contracts, this also provides an alternate proof of Theorem 3.1.

We begin our proof with the observation that, similar to linear contracts, p-scaled contracts cannot
“skip over” actions for the agent (c.f. Lemma B.1, which has an essentially identical proof).

Lemma D.2. If Ã = {(³k, Äk, ak)} is a p-scaled dynamic contract, then ∀k, |ak − ak+1| f 1.
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Figure 9: We use a “raw” potential function ψ(α) which maps time-averaged linear contracts α to (raw)
potentials.

The high-level plan from here is to focus on a particular continuous trajectory Ã =
{

(pk, Äk, ak
}

k
apply a potential argument to it. We will then show our analysis extends to distributions D for free.
We will define a potential function È(³) that maps time-averaged linear contracts ³ to potentials
in Rg0. This potential is based only on the principal-agent problem (c, F, r). There are some
peculiarities about our potential argument, relating to the passage of time. Consider a principal
managing to produce a time-averaged linear contract of ³ after t units of time, and compare that
with a principal that has managed to arrive a time-averaged linear contract of ³ after 2t units of time
instead, i.e. twice the time. In terms of absolute (not time-averaged) units of profit we can extract
from this point, it is twice as good to be in the latter situation. With this in mind, our proof will
carefully distinguish between the raw potential È(³) and the time-weighted potential È(³) · t. If a
principal maintains a steady time-averaged linear contract, then the raw potential will remain constant
while the time-weighted potential will grow.

The purpose of the time-weighted potential is to model the ability of a principal to extract additional
profit by gradually lowering time-averaged linear contract. It will be used to demonstrate that this
extra profit produced by using up a finite resource, which will imply the desired theorem result.

We now give our raw potential function È(³). We begin by writing down the linear contract
breakpoints of (c, F, r); without loss of generality11 they are 0 < ³2 < ³3 < · · · < ³n, where the
linear contract ³i leaves the agent indifferent between actions i− 1 and i. For notational convenience,
we also define an ³1 ≜ 0 as the minimum linear contract to incentivize the first action. We also
denote the expected reward of action i with Ri. With this notation in place, our raw potential function
È : [0, ³n] → Rg0 is the following piecewise-linear function. Note that we can assume without loss
of generality that the average linear contract never exceeds ³n, because capping it to this quantity
only improves principal utility at all moments in time.

È(³) ≜

{

∑i′−1
i=1 (³i+1 − ³i)Ri + (³− ³i′)Ri′ if ³ ∈ [³i′ , ³i′+1)

∑n−1
i=1 (³i+1 − ³i)Ri if ³ = ³n

The potential above is depicted in Figure 9 and can be seen as the product of the following thought
experiment: what if the principal was allowed to offer unbounded payments (in particular, payments
can be negative and can exceed the payment bound P )? In our continuous-time setting, this gives the
principal the ability to produce segments of play (pk, Äk, ak) which have near-instantaneous times
Äk → 0 while using large-magnitude cumulative contracts pkÄk to move between the boundaries
between actions. If these near-instantaneous actions are used at time t, then the time-weighted
potential È(³) · t captures the necessary payments to alter the time-averaged linear contract. One
interesting aside about this thought experiment is that the necessary payment to near-instantaneously
move up from ³i to the next ³i+1, namely [È(³i+1)− È(³i)] t, is equal to the payout received for
near-instantaneously using a negative contract to move down from ³i+1 to ³i.

11Implicitly, this step prunes away all actions which cannot be incentivized by a linear contract.
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Potential function in hand, we return to the original problem where payments are bounded and
nonnegative. Let us consider the kth segment of play (pk = ³kR, Äk, ak) and relate the total profit
generated during this segment of play with the change in potential.

For notational convenience we define shorthand for the cumulative linear contract offered.

Ak ≜

k
∑

k′=1

Äk
′

³k

We will also use ukP to denote the (time-weighted) principal utility for segment k and uk⋆ to denote
the corresponding amount of principal utility that the optimal static contract obtains over Äk time.
Using this notation, we can compute an upper bound on how much additional principal utility this
segment manages to achieve over the optimal static contract.

ukP =
[

(1− ³k)Rak

]

Äk

uk⋆ =
[

max
a

(1− ³a)Ra

]

Äk

g [(1− ³ak)Rak ] Äk

(ukp − uk⋆) f
[

(³ak − ³k)Rak

]

Äk

At the same time, this contract has shifted the time-averaged linear contract and hence altered the
time-weighted potential.

È
(

Ak/T k
)

T k − È
(

Ak−1/T k−1
)

T k−1

=





³k

∑

i=1

(³i − ³i−1)Ri−1 +
(

Ak/T k − ³ak

)

Rak



 T k

−





³k

∑

i=1

(³i − ³i−1)Ri−1 +
(

Ak−1/T k−1 − ³ak

)

Rak



 T k−1

=



T k
³k

∑

i=1

(³i − ³i−1)Ri−1 +
(

Ak − T k³ak

)

Rak





−



T k−1
³k

∑

i=1

(³i − ³i−1)Ri−1 +
(

Ak−1 − T k−1³ak

)

Rak





= Äk
³k

∑

i=1

(³i − ³i−1)Ri−1 +
[(

³kÄk − Äk³ak

)

Rak

]

Interestingly, the expression for time-weighted potential has a term that perfectly cancels with our
bound for how much additional principal utility this segment produces over the optimal static contract.

(ukp − uk⋆) + È
(

Ak/T k
)

T k − È
(

Ak−1/T k−1
)

T k−1 f Äk
³k

∑

i=1

(³i − ³i−1)Ri−1

f
∫ T k

T k−1

È

(Ak−1 + (T − T k−1)³k

T

)

dT

The right-hand side expression above is just the integral of the current raw potential as this segment
advances the time from T k−1 to T k. Conveniently, this upper bound still works out to the same
amount even if we subdivide our segment (pk, Äk, ak) into two sub-segments (pk, x, ak), (pk, y, ak)
such that x, y ∈ [0, Äk] and x+ y = Äk (and re-index the other segments appropriately). This means
we can sum this bound to get an overall bound for any time t ∈ [0, T ], just by splitting the last
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segment appropriately. To formalize this, we introduce some more parenthetical superscript notation
to denote the corresponding objects when considering time from zero to t. In particular, u(t)⋆ denotes
the optimal static contract’s principal utility for t units of time, A(t) denotes the cumulative linear
contract for t units of time.

(u(t)p (Ã)− u
(t)
⋆ ) + È

(

A(t)/t
)

t f
∫ t

0

È

(A(T )

T

)

dT

Recall our notation where R⋆ denotes the optimal static contract’s principal utility. For t ∈ [T , T ],
we know that the excess principal utility needs to be at least εR⋆t, which implies the following.

εR⋆t+ È
(

A(t)/t
)

t f
∫ t

0

È

(A(T )

T

)

dT

È
(

A(t)/t
)

f −εR⋆ +
1

t

∫ t

0

È

(A(T )

T

)

dT

With this bound in mind, we can view every trajectory Ã that manages to successfully beat the optimal
static contract by (1 + ε) in terms of how much raw potential it has as a function of time. Note
that this bound controls the current raw potential based on the average raw potential up to this point
(minus a constant). As a result, if we just consider trajectories Ã that obey this bound, the worst
case for us would be a function that satisfies it with equality everywhere since greedily picking the
maximum value for the function early on allow for higher values later on (greedy stays ahead). We
now solve for this function f(t) which simultaneously maximizes raw potential everywhere.

εR⋆t+ f(t)t =

∫ t

0

f(T )dT

εR⋆ + f(t) + f ′(t)t = f(t)

f ′(t) = −εR⋆/t

At time T , we know the raw potential can be at most È(³n). We want to choose µ and hence T so
that f(T ) is negative in order to create a contradiction. Because f yields the maximum possible
function value attainable at time T , this means that our actual raw potential will also be negative at T .
We now solve for the largest value of µ that does not actually create a contradiction.

f(T )− f(T ) = −È(³n)
∫ T

T

f ′(t)dt = −È(³n)

−εR⋆ [ln t]
T
T = −È(³n)

ln(T/T ) =
È(³n)

εR⋆

µ = eϕ(³n)/(εR⋆)

Hence it suffices to pick a µ > eϕ(³n)/(εR⋆). This demonstrates that it is impossible for a deterministic

trajectory Ã to beat the optimal static contract by a (1 + ε) multiplicative factor.

What about randomized dynamic contracts D? We can just take the appropriate convex combination
of our bounds according to drawing Ã ∼ D. In particular, this yields:

EÃ∼D
[

(u(t)p (Ã)− u
(t)
⋆ )

]

+ EÃ∼D
[

È
(

A(t)/t
)]

t f
∫ t

0

EÃ∼D

[

È

(A(T )

T

)]

dT

We can then re-execute the remainder of the proof in the same way, replacing the deterministic
additional principal utility with expected additional principal utility and deterministic raw potential
with expected raw potential. The expected potential function is still bounded everywhere by the same
function f(T ) and we reach the same conclusions about µ. This completes the proof.
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Remark. Due to Yao’s minimax principle, Theorem 4.2 implies that there exists an adversarial
distribution over times in [T , T ] such that for any randomized principal strategy, the ratio between
expected principal utility and the principal utility of the optimal static contract for that duration of
time is strictly less than (1+ε). In order to apply Yao’s minimax principle, we need the set of relevant
principal strategies and the set of relevant adversary strategies to be finite. We already do this in
our proof of Theorem H.3: the latter can just be an ε-net since principal utility is Lipschitz with
Lipschitz constant depending on the contract problem, and after that the former then follows from
Carathéodory’s Theorem by treating each deterministic trajectory as a vector with one coordinate for
every point in our ε-net.

F Proof of Theorem 4.3 (Unknown Time Horizon – Converse)

Proof. We prove this by proving the contrapositive. Suppose for any fixed time T there is a dynamic
contract that can achieve an expected utility of (1 + ϵ)u⋆T for some ϵ > 0. By Theorem 3.1, we can
assume without loss of generality that this is a free-fall linear contract. We will show that for any µ
we will construct a dynamic contract such that for all T ∈ R and all t ∈ [T , µ · T ], we can achieve an

expected utility of (1 + f(ϵ, µ)) · u⋆ · t where f(ϵ, µ) g Ω
(

min
(

( ε4 )
O(log(1+µ)), ε

µ

))

.

As a first step, we will show that if there is a free-fall linear contract that beats the optimal static
contract, then there is a free-fall linear contract that beats the optimal static contract but also either
(1) ends at or above the optimal static contract or (2) begins at the optimal static contract. Afterwards,
we plan to analyze case (1) and (2) separately.

If our free-fall linear contract does not already satisfy case (1) or (2), then it must do one of the
following; (a) begin at a higher breakpoint than the optimal static contract and end at a lower
breakpoint than the optimal static contract or (b) being and end at lower breakpoints than the optimal
static contract. We now analyze these two cases. In the process, we will lose a constant factor which
is folded into our Ω notation.

Case A: Dynamic contracts beginning above ³⋆ and ending below ³⋆. We write our free-
fall linear contract in the usual form Ã = {(pk, Äk, ak)}Kk=1. By virtue of being in this case, we
know there is some index 2 f i < K such that the average linear contract after i segments, pi,
is exactly ³⋆. We “cut” the trajectory Ã at this point to produce two new trajectories Ã′ and Ã′′.
Specifically, Ã′ = {(pk, Äk, ak}ik=1 and Ã′′ = {(³⋆, T i, ai)} ◦ {(pk, Äk, ak}Kk=i+1 where ◦ denotes
concatenation. In other words, we construct Ã′ by ending at this point and we construct Ã′′ by
taking the optimal static contract to this point and continuing as normal. Observe that the combined
performance of Ã′ and Ã′′ is equal to the combined performance of Ã and just playing the single
segment {(³⋆, T i, ai)}: (1+ϵ)u⋆T K+u⋆T i. This results in a combined time-averaged performance
of

(1 + ϵ)u⋆T K + u⋆T i

T K + T i
= u⋆

[

(1 + ϵ)
T K

T K + T i
+ (1)

T i

T K + T i

]

g (1 + ϵ/2)u⋆

since T K g T i. Since Ã′ and Ã′′ have this combined average, one of them must have at least this
average (and we only lost a factor 1/2 on our ϵ, which is indeed a constant. Since Ã′ matches case (1)
and Ã′′ matches case (2), this completes the analysis of case (a).

Case B: Dynamic contracts beginning and ending below ³⋆. We take the obvious approach
and choose to begin at ³⋆ instead. Specifically, we replace the first segment with a sequence of
segments that begins at ³⋆ and then undergoes the appropriate number of free-fall segments to arrive
at the same endpoint as before (same total time and average linear contract). We argue that each new
segment has at least as much principal utility per unit time as the original segment. Since the total
time is the same, this is a direct improvement over the original dynamic contract, both in terms of
total principal utility and time-averaged principal utility. The argument that each new segment does
at least as well per unit time is similar to before. The first new segment just hovers at the optimal
static contract, which by definition is better than any other static contract (which our original segment
must be). The remaining new segments are freefall segments, and achieve principal utility per unit
time equal to the expected revenue of the actions they fall through. We observe that we fall through
segments in order of decreasing expected utility, meaning all of these segments have higher expected
utility than the action we originally began with, and expected revenue is at least the principal utility
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of the static contract that achieves a particular action. We finish this case by noting that we did not
diminish ϵ at all, which trivially a constant factor.

This completes our analysis of cases (a) and (b). In all cases, we managed to reduce to either case (1)
or (2), which we now consider.

Case 1: Dynamic contracts ending at or above ³⋆. First, we consider the case where for any fixed
T there is a dynamic contract Ã(T ) = ((³1, Ä1, a1), . . . , (³k, Äk, ak)) which ends at or above the
optimal static action: ak g a⋆. Given any µ and time period [T , T = µ · T ], consider the dynamic
contract which starts with Ã(T ), free falls to the optimal static contract, and then plays the optimal
static contract for the remaining time period. We again observe (as we did for case (b)) that free
falling through actions that are at least the a⋆ results in at least u⋆ principal profit per unit time.
Hence the total revenue for any time t ∈ [T , T ] for the principal is (1+ ϵ) ·u⋆T +(t−T ) ·u⋆, which
is at least (1 + ϵ/µ)R⋆t.

Case 2: Dynamic contracts starting in ³⋆. By Theorem 3.1, we know any dynamic con-
tract can be transformed into a free-fall dynamic contract with no loss in revenue. There-
fore, we assume that for any fixed time horizon T , there is a dynamic contract form Ã(T ) =
(

³⋆, Ä
1, a1), (0, Ä2, a2), . . . , (0, Äk, ak)

)

which achieves a total revenue of (1 + ε)R⋆T . Since
this is a free-fall contract, the optimal revenue from this contract can be characterized as
(1 − ³⋆)R⋆Ä

1 +
∑k

i=2 Ä
iRai

which is at least (1 + ε)R⋆t > (1 + ε)(1 − ³⋆)R⋆. Let µ be the
minimum fraction of time such that for any time T , the dynamic contract Ã(T ) achieves revenue at
least (1 + ε/2)µu⋆T . Since we know that Ã(T ) achieves a total revenue of (1 + ε)u⋆T and starts
out at the optimal static contract, we know that µ g Ä1

/
∑k

i=1
Ä i and it is a constant bounded away

from 1. Let Si = +µiT , and let p be the first index where Sp is less than T (i.e., p = + log(1+µ)
log(µ) ,) .

By construction, Si satisfy two properties:

1. Sp f T f Sp−1 f . . . S1 f T .

2. If the principal runs dynamic contract ending at Si, namely Ã(Si), then they are guaranteed
revenue (1 + ε/2)tR⋆ for any t ∈ [Si+1, Si].

We will construct a sequence of dynamic contracts Ãi which have the property that for any t ∈ [Si, µT ]
achieves revenue that is at least (1 + (ε/4)i)R⋆t. We do this via induction. For the base case, let
Ã1 = Ã(T ). By construction, we know that for all t ∈ [S1, T ], the principal will get revenue
(1 + ε/2)u⋆t. Now suppose we have such a dynamic contract Ãi, then we construct Ãi+1 by taking a
convex combination of Ãi and the optimal dynamic contract ending at Ã(Si). In particular, let

Ãi+1 =
1 + ε/2

1 + ε/2 + (ε/4)i
Ãi +

(ε/4)i

1 + ε+ (ε/4)i
Ã(Si).

For any t ∈ [Si, T ], we have that revenue we attain is at least the revenue from the contract

1 + ε/2

1 + ε/2 + (ε/4)i
Revenue(Ãi(t)) g 1 + ε/2

1 + ε/2 + (ε/4)i
(1 + (ε/4)i)u⋆t g

1 +
εi+1

/2·4i

1 + ε/2 + (ε/4)i
g (1 + (ε/4)i+1)u⋆t.

For any t ∈ [Si+1, Si], observe that we get at least u⋆t from the first contract Ãi and at least
(1 + ε/2)u⋆t in the second contract. Therefore we get at least

1 + ε/2

1 + ε/2 + (ε/4)i
u⋆t+

(ε/4)i

1 + ε/2 + (ε/4)i
(1 + (ε/2))u⋆t g (1 + (ε/4)i)u⋆t.

G General Contracts

In this section, we give a general contract instance with n = 4 actions (3 non-null actions) and m = 4
outcomes (3 non-null outcomes), where the best dynamic contract provably outperforms the best
free-fall dynamic contract. The instance in question is defined as follows:
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• The cost vector c = (c1, c2, c3, c4) = (0, 0.2, 0.4, 0.5).
• The reward vector r = (r1, r2, r3) = (0, 1.0, 1.6, 2.0).

• The forecast matrix is given by F =







1.00 0.00 0.00 0.00
0.45 0.20 0.25 0.10
0.35 0.05 0.25 0.35
0.15 0.30 0.30 0.25







This instance was found by a programmatic search12 over a large collection of instances. For this
instance, we can (again, programmatically) compute that the best free-fall dynamic contract achieves
a net asymptotic utility for the principal of at most 0.753 per round. At the same time, we can
exhibit a non-free-fall dynamic contract for this instance that achieves a utility of at least 0.764 per
round. For conciseness, we present the details of our approach in Appendix G.1, where we construct
well-tailored linear programs that provide the aforementioned intricate instance.

G.1 Programmatic LP Search for Sub-Optimal Free Fall Against Non-Linear Contracts

At a high level, the verification of the example of section 3.3 relies on the following fact: given a
sequence of actions (a1, a2, . . . , aK), we can construct a polynomial-sized linear program to find the
optimal continuous-time dynamic (general or free-fall) contract {(pk, Äk, ak)}Kk=1 with this specific
action sequence.

The variables of this LP are the Äk and pk corresponding to each action ak. The constraints follow
from the definition of a valid trajectory of play in Section 2.2 and are as follows:

• (Non-negativity) pk, Äk g 0.

• (Time normalization)
∑K

k=1 Ä
k = 1. We normalize the total duration of the trajectory to 1.

• (Beginning of segment is best response)
∑k−1

k′=1 Ä
k′

uL

(

pk′

, ak
)

g
∑k−1

k′=1 Ä
k′

uL

(

pk′

, a′
)

for any a′ ∈ [n]. This represents the constraint ak ∈ BR(pk−1).

• (End of segment is best response)
∑k

k′=1 Ä
k′

uL

(

pk′

, ak
)

g ∑k
k′=1 Ä

k′

uL

(

pk′

, a′
)

for

any a′ ∈ [n]. This represents the constraint ak ∈ BR(pk).

The objective of the LP is the optimizer utility
∑K

k=1 Ä
kuO(p

k, ak). If we want to further impose
that the contract is a free-fall contract, we can add the constraint that pk = 0 for k > 1.

For free-fall contracts, we have an additional constraint on what sequences of actions are possible.
Note that a free-fall contract will never repeat an action – in particular, after the initial segment,
the cumulative utility of each action i ∈ [n] decreases by ci per round, so the sequence of actions
(a1, a2, . . . , aK) a free-fall contract passes through must be sorted in decreasing order of cost. This
means there are at most 2n sequences of actions to check, and by checking all of them we can
provably compute the optimal free-fall contract for a given general contract instance.

On the other hand, it’s not clear if there are any constraints on how complex the sequence of actions
for the optimal general dynamic contract can be – it is an interesting open question whether there
exists any efficient (or even computable) algorithm for computing U⋆ for a general contract instance.
Luckily, in order to show this separation, we need only exhibit a single general contract which
outperforms the best free-fall contract. In the example above, we compute the best general contract
for the same action sequence that the optimal free-fall contract passes through, and observe that the
general contract obtains strictly larger utility.

12The code verifying this example can be found at: https://colab.sandbox.google.com/gist/
jschnei/4d067ac2892d6b7c215dcea909577c53/optimal-dynamic-contracts-minimal-example.
ipynb
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H Simplifying Tool: Reductions from Discrete to Continuous Time

H.1 Proof of Theorem 2.4

In this section we prove Theorem 2.4, showing that instead of working with discrete-time learning
algorithms, it instead suffices to work with the set of continuous-time trajectories piecewise-linear
trajectories described in Section 2.2. Our proof will generally follow the proof structure of [27]
(which proves a similar reduction in the case of two-player bi-matrix games), with a few slight
additional complexities due to some differences in notation (namely, we do not insist that every
segment lies in the interior of a best-response region).

Before we begin the proof, it will be useful to establish a helpful auxiliary lemma about trajectories.
Call a segment (pk, Äk, ak) of a trajectory Ã degenerate if it lies on the boundary of two best-response
regions (i.e., |BR(pk−1) ∩ BR(pk)| g 2), and non-degenerate otherwise. Let Util0(Ã) be the utility
contributed by just non-degenerate segments. We begin by showing that starting with any trajectory
Ã, we can construct a mostly non-degenerate trajectory Ã0 with Util0(Ã0) almost as large as Util(Ã).

Lemma H.1. For any trajectory Ã and any ε > 0, there exists a trajectory Ã0 such that Util0(Ã0) g
(1− ε)Util(Ã).

Proof. Let Ã = {(pk, Äk, ak)}. We will produce Ã0 by interleaving a sequence of small perturbations
(qk, ¶k) into Ã for some qk ∈ R

m
g0 and ¶k > 0; that is, we will let Ã0 be defined by the sequence of

segments (q1, ¶1), (p1, Ä1, a1), (q2, ¶2), . . . , (qk, ¶k), (pk, Äk, ak). Note that we have not specified
the best-response of the learner for the perturbation segments (qk, ¶k), because we will not count the
utility from these segments (in fact, these perturbation segments might cross best-response boundaries,
in which case we can split them into smaller segments). We will show that if we choose qi and ¶i

correctly, ak is the unique best-response for each of the shifted (pk, Äk, ak) segments.

Without loss of generality, assume
∑

k Ä
k = 1. For any t ∈ [0, 1], we will let p(t) be the average

contract at time t under trajectory Ã. That is, if t = Ä1 + Ä2 + · · ·+ Ä i−1 + Ä with 0 f Ä < Ä i, then

p(t) =
Ä1p1 + Ä2p2 + · · ·+ Ä i−1pi−1 + Äpi

t
.

For each i ∈ [k], we will also let ∆i = ¶1 + ¶2 + · · ·+ ¶i, and Qi = (¶1q1 + ¶2q2 + · · ·+ ¶iqi)/∆i.
Now, if t = Ä1 + Ä2 + · · · + Ä i−1 + Ä with 0 f Ä < Ä i, we will let p0(t) be the average contract
under trajectory Ã0 at time ∆i + Ä (i.e., time Ä into segment (pi, Ä i, ai)). It is the case that for such t,

p0(t) =
Qi∆i + tp(t)

∆k + t
= p(t) +

∆i

∆i + t
(Qi − p(t)).

We would like to choose Qi and ∆i such that for each i ∈ [k], for a large sub-interval of Ä ∈ [0, Ä i),
the unique best response to p0(t) is exactly ai. To begin, note that for any sequence of strictly positive
contracts Qi ∈ R

m
>0, there is a sequence of qi and ¶i that implements it (because we can make each

Qi any convex combination of Qi−1 and qi). Moreover, we can make ∆k arbitrarily small, because
scaling all the ¶i simultaneously does not affect the values of the Qi.

Now, for each i, we will set Qi to a positive contract that uniquely incentivizes action ai. Note that
a non-negative contract exists by our assumption in Section 2; but since infinitesimal perturbations
maintain the property that the contract uniquely incentivizes ai, there must also be a positive contract
with this property. We claim that if BR(Qk) = {ak} and ak ∈ BR(p(t)), then for any ¼ f 1,
BR(p(t) + ¼(Qk − p(t))) = {ak}. To see this, note that we can write p(t) + ¼(Qk − p(t)) =
(1− ¼)p(t) + ¼Qk. Since the utility of the agent is an affine linear function in the contract they are
offered, for any action a′ ̸= a we have that uA((1− ¼)p(t) + ¼Qk, ak) = (1− ¼)uA(p(t), a

k) +
¼uA(Q

k, ak) > (1− ¼)uA(p(t), a
′) + ¼uA(Q

k, a′) = uA((1− ¼)p(t) + ¼Qk, ak).

It follows that if we choose theQi in this way, BR(p0(t)) = {ak}, and therefore each of the segments
(pi, Ä i, ai) is non-degenerate. We will set ∆k equal to ε. Doing so, we have that:
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Util0(Ã0) g
∑k

i=1 uP (p
i, ai)Ä i

1 + ∆k
g (1− ε)Util(Ã)

Equipped with Lemma H.1, we can now prove Theorem 2.4.

Proof of Theorem 2.4. We follow the proof structure of [27] and prove both parts separately.

Part 1. Let Ã = {(pk, Äk, ak)}Kk=1 represent a valid strategy for the principal in the continuous-time
problem. Without loss of generality, assume

∑

k Ä
k = 1 (if not, we can divide all Äk through by

∑

k Äk without changing the value of this strategy). We will convert Ã into the following discrete-time
strategy for the principal: for each i ∈ [K] (in order), the principal offers the contract pk for ÄkT
rounds.

Our goal is to show that for any ¶ > 0 and any mean-based algorithm A, the above strategy results in
at least (Util0(Ã)− ¶)T − o(T ) utility for the optimizer. The conclusion then follows by choosing a
trajectory Ã for which Util0(Ã) > U⋆ − ε/2 (such a Ã exists by Lemma H.1 and the definition of
U⋆) and some ¶ < ε/2. In the remainder of this proof, we will fix a specific mean-based algorithm A
that is µ(T )-mean-based for some µ(T ) = o(1).

As in Definition 2.2, let Ãi,t denote the aggregate utility of action i to the agent over the first t rounds.
Let T k =

∑k
j=1 Ä

jT , and consider the values of Ãt for rounds t ∈ [T k−1, T k] corresponding to the
kth segment. Note that Ãt is linear in this interval and so we can interpolate

Ãt =
(t− T k−1)ÃTk−1 + (T k − t)ÃTk

ÄkT
. (1)

Furthermore, assume that segment k is non-degenerate, and so BR(pk−1) ∩ BR(pk) = {ak}. In
particular, for any t ∈ [T k−1, T k] and a′ ̸= ak, either ÃTk−1,ak > ÃTk−1,a′ or ÃTk,ak > ÃTk,a′ .
As a consequence of (1), this means that for any εk > 0, there exists a ¶k > 0 such that for
t ∈ [T k−1 + εkÄ

k, T k − εkÄ
k], Ãt,ak g Ãt,a′ + ¶kT . For sufficiently large T , ¶kT > µ(T )T , and so

the learner will put weight at least (1− nµ(T )) on action ak. The total utility of the principal from
these rounds is therefore at least

(1− nµ(T ))(1− 2εk)Ä
kuP (p

k, ak) g ÄkuP (p
k, ak)− (nµ(T ) + 2εk)T. (2)

Summing over all non-degenerate segments k, we find the total utility of the principal is at least

∑

k

ÄkuP (p
k, ak)−

∑

k

k(nµ(T ) + 2εk)T = Util0(Ã)−
∑

k

k(nµ(T ) + 2εk)T.

By choosing εk sufficiently small, we can guarantee that this is at least Util0(Ã)− ¶T for sufficiently
large T , as desired.

Part 2. Fix any ε > 0. Assume that for some sufficiently large T0, there exists a (possibly
adaptive) dynamic strategy for the principal that guarantees utility at least (U⋆ + ε)T0 against every
mean-based agent. We will show that this implies the existence of a continuous trajectory Ã and
Util(Ã) g U⋆ + ε, contradicting the definition of U⋆. Fix µ(T ) = T−1/2 and at any time t, let
Jt = {j ∈ [n]|(maxi Ãt,i) − Ãt,j < µ(T )T} be the set of actions for the learner whose historical
performance are within µ(T )T of the optimally performing action. The set Jt contains exactly the
set of actions that the mean-based guarantee implies the agent must play with high probability. Our
agent will do the following: if the principal is about to play contract pt, the agent will play the action
j ∈ Jt that minimizes uL(pt, j) (note that because we are tailoring the agent to this principal, we can
do this).

Assume that this results in the principal playing the sequence of contracts p1, p2, . . . , pT0 . Consider
the trajectory Ã defined by the sequence of tuples (p1, 1/T0), (p

2, 1/T0), . . . , (p
T0 , 1/T0). In this
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description of the trajectory, we’ve omitted the response action for the agent, which can be any
best-response action for that segment. In fact, some segments may not be valid, as they start in one
best response region and end in another; for those, we can subdivide them into however many parts
are necessary to form a valid trajectory.

Now, note that the sub-segments corresponding to the step (pt, 1/T0) only contain agent actions in
the set Jt. This is since the agent utility at the start of this segment is Ãt, the agent utility at the end
of this segment is Ãt+1, each component of Ãt+1 − Ãt is at most 1 (since the problem is bounded),
but any action j not in Jt is at least µ(T ) away from optimal. The principal’s utility contributed by
this segment is therefore at least 1

T0
minj∈Jt

uP (p
t, j). But this is exactly the utility the principal

obtained in round t of the discrete-time game. Therefore the total utility Util(Ã) of this trajectory is
at least U⋆ + ε – but this contradicts the definition of U⋆, as desired.

We will need the following lemma which says we can restrict our attention to finite-support D without
loss of generality.

Lemma H.2. Fix a principal-agent problem, a µ > 1, and an ε > 0. Let D be any distribution over
trajectories. Then there exists a finite-support distribution D′ over trajectories with the property that
Utilµ(D′) g Utilµ(D).

Proof. We first claim the following: if a distribution D has the property that EÃ∼D[u
(t)
P (Ã)] g Ut for

each t in the discretized set of time-intervals Sε,µ = {1/µ, 1/µ + ε/µ, 1/µ + 2ε/µ, . . . , 1− ε/µ, 1},

then it is the case that EÃ∼D[u
(t)
P (Ã)] g (U − ε)t for all t ∈ [1/µ, 1]. This follows from the fact that

the principal’s profit per round is bounded above by 1, so |u(t
′)

P (Ã)−u
(t)
P (Ã)| f |t′− t|. In particular,

if t′ is the closest element of Sµ,ε to a t ∈ [1/µ, 1], it is the case that |u(t
′)

P (Ã)−u
(t)
P (Ã)| f ε/µ f εt.

Now, associate to each trajectory Ã the |Sε,µ |-tuple of real numbers f(Ã) = {u(t)P (Ã)}t∈Sε,µ
; define

f(D) = EÃ∼D[f(Ã)]. Define X = {f(Ã) | Ã is a trajectory} ¢ R
|S| to be the set of all such tuples.

By Caratheodory’s theorem, we can construct a distribution over at most |S| + 1 elements of X
that (is arbitrarily close to) f(D), for any D. If we let D′ be the corresponding distribution over
trajectories, this satisfies the constraints of the theorem statement.

H.2 Reduction from Discrete to Continuous Time with Unknown Time Horizons

In this section, we extend the previous reduction to the case where the time horizon can belong to an
interval. One of the biggest differences is the introduction of this parameter µ g 1 which equals the
multiplicative ratio (T/T ). Instead of a trajectory Ã = {(pk, Äk, ak}Kk=1 being solely evaluated at
its end time T K , we now care about its performance over its final interval of multiplicative width µ,
namely [ 1µT K , T K ].

In order to quantify the performance of a trajectory at a certain time t, we will introduce some
corresponding parenthetical superscript notation. In particular, u(t)P (Ã) will denote the cumulative
expected principal utility of trajectory Ã from time zero to t, and is formally defined as

u
(t)
P (Ã) ≜

{

∑k′−1
k=1 Ä

kuP (p
k, ak) + (t− T k′

)uP (p
k′

, ak
′

) if t ∈ [T k′

, T k′+1)
∑k′−1

k=1 Ä
kuP (p

k, ak) if t = T K .

Then, the worst-case (under possible time horizons) expected (under drawing from the distribution
and actions producing random outcomes) utility of the principal for distribution D is given by

Utilµ(D) = min
x∈[1/µ,1]

EÃ∼D
u
(xT K)
P (Ã)

xT K
,

where each T K is according to the drawn trajectory Ã.

Finally, let U⋆
µ = supD Utilµ(D), where the sup runs over all distributions of valid trajectories of

arbitrary finite length. We can think of U⋆
µ as the maximum possible worst-case utility of the principal

in the unknown time horizon continuous setting game.
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Theorem H.3. Fix any principal-agent problem and µ g 1. We have the following two results:

1. For any ε > 0, there exists an oblivious strategy for the principal that gets at least (U⋆
µ −

ε)t− o(t) utility for the principal for all t ∈ [T, +µT ,] for sufficiently large T .

2. For any ε > 0, there exists a mean-based algorithm A such that no (even adaptive13)
principal can get more than (U⋆

µ + ε)t + o(t) utility against an agent running A for all

t ∈ [T, +µT ,] for any T .

Proof of Theorem H.3. Part 1. Begin by picking a strategy D for the optimizer in the continuous-
time game that achieves utility at least U⋆

µ − ε/2. This strategy D is a distribution over trajectories Ã;
by Lemma H.2, we can assume (at the cost of losing an arbitrarily small O(ε) term) that D has finite
support. For each of these trajectories, we apply Lemma H.1 to transform Ã into a new trajectory Ã′

which obtains at least (1− ε) fraction of the utility of Ã on non-degenerate segments. We will also
normalize the total duration of each Ã′ to 1.

Now, note that since inequality (2) holds per segment (and indeed, even fractionally per segment), we
can convert each resulting trajectory Ã′ to a discrete-time strategy over T rounds, with the property
that for sufficiently large values of T , for any t ∈ [T = T/µ, T ], the utility of this discrete-time

strategy until time t is at least u(t)P (Ã). Taking the corresponding distribution over these discrete-time
strategies (choosing a sufficiently large T for all such strategies – note that we can do this because D
has finite support), we obtain a discrete-time randomized (but otherwise oblivious) strategy for the
principal that satisfies the theorem statement.

Part 2. As in the previous proof, fix an ε > 0, assume to the contrary there exists a T0 along with a
discrete-time (possibly randomized / adaptive) dynamic strategy which achieves at least (U⋆

µ + ε)t
utility for the principal for all t ∈ [T0/µ, T0] against any mean-based bidder. Construct the same
mean-based bidder as in the proof of part 2 of Theorem 2.4, which always picks the action in the set
of approximate best-responses that least to the minimum expected utility for the principal.

When this principal plays against this agent, this leads to a distribution over sequences of con-
tracts (p1, p2, . . . , pT0). Each such sequence can be converted to a trajectory Ã of the form
{(p1, 1/T0), (p2, 1/T0), . . . , (pT0 , 1/T0)}. This trajectory Ã not only has the property that Util(Ã)T
upper bounds the utility of the discrete-time agent (as in the proof of part 2 of Theorem 2.4), but
in fact u(t)P (Ã) is at least the utility of the agent discrete-time agent at time tT0 (by exactly the
same logic). It follows that if we let D be the distribution over such trajectories, it is the case that
Utilµ(D) g U⋆

µ + ε. This contradicts the definition of U⋆
µ , as desired.

Finally, we conclude this supplementary section with the proof of a preliminary lemma exploited in
Section 3.1

Lemma H.4. (Restated Lemma B.2) Consider any dynamic contract. For any time interval in which
a mean-based agent plays a single action, we can replace the contracts in this interval with their
average and obtain overall a revenue-equivalent dynamic contract.

Proof. The result follows since the utility for the principal uP is affine in its first argument.
Formally, let Ã = {(pk, Äk, ak)}Kk=1 be a dynamic contract, with ak = ak+1 = a for
some k. Consider a different contract Ã′ where we replace the consecutive pair of segments
(pk, Äk, ak) and (pk+1, Äk+1, ak+1) with the their average segment, i.e., (p, Äk + Äk+1, a), where
p = (pkÄk + pk+1Äk+1)/(Äk + Äk+1), and all other segments remain the same as in Ã. Then,

we have Util(Ã′) − Util(Ã) = 1∑
K
k=1

Äk

(

ÄkuP (p
k, a) + Äk+1uP (p

k+1, a) − (Äk + Äk+1)p
)

= 0.

That is, both contracts give same utility for the principal. A similar argument holds for the discrete
formulation of the model as well.

13As with the known time-horizon result, this holds against adaptive principals in the full-feedback setting, or
if the principal is deterministic. See Appendix H.3 for details.
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H.3 Mean-Based Algorithms in the Partial-Feedback Setting

We conclude with some clarifying remarks on the definition of a mean-based learning algorithm
in a stochastic, partial-feedback setting (the bandits setting). The proofs of Theorems 2.4 and H.3
continue to hold essentially as written, but there are some subtleties that are worth pointing out.

We begin by clarifying the definition of mean-based in a partial-information setting. Formally, we
write it as follows. Recall that Ãt

i =
∑t−1

t′=1 u
t′

i is equal to the expected utility the learner would
receive if they had played action i for the first t− 1 rounds, assuming the sequence of contracts the
principal offers the learner remains static (so in particular, for an adaptive / stochastic principal, Ãt is
a random variable).

Definition H.5. (Mean-based algorithms in partial-information settings) A learning algorithm in a
partial-information setting is µ(T )-mean-based if the following conditions hold: Fix any adaptive
dynamic strategy of the principal and let (for each round t ∈ [T ]), Xt be the event that Ãt

i <
Ãt
i′ − µ(T ) · T , and Yt be the event that the algorithm takes action i in round t. Then the algorithm is

mean based if the probability Pr[Xt'Yt] (over all randomness in the learner’s algorithm, principal’s
strategy, and problem setting) is at most µ(T ). We say an algorithm is mean-based if it is µ(T )-mean-
based for some µ(T ) = o(1).

The above definition is very similar to Definition 2.2; the main reason for stating it like this is
to avoid implying the slightly stronger constraint that event Xt deterministically implies that the
probability of Yt is small conditioned on the current history of play. This implication is fine in the
full-information setting where algorithms like multiplicative weights will indeed deterministically
place small weight on action i′ if the event Xt holds; but in the partial-information setting, there is
always a chance that the learner is unable to accurately observe whether Xt holds, and therefore
no partial-information algorithm can achieve that guarantee. On the other hand, standard bandit
algorithms with high-probability guarantees such as EXP3 (see [17]) satisfy the above definition of
mean-based learning.

The proof of Theorem 2.4 works equally well with Definition H.5. The only subtlety is in Part 2,
where to show a principal cannot do well against all mean-based agents, we design a mean-based
agent that foils this specific principal. If the principal is randomized and adaptive, the agent cannot
accurately predict the expected contract pt the principal will play in round t (note that if the principal
is adaptive but deterministic, the agent can still simulate the principal’s behavior – likewise, if the
principal is oblivious and randomized, the agent can compute the expected contract pt at any round).
The proof of Theorem H.3 is similar.

I Final Remarks

The following are observations about our repeated contract games with learning agents that arise
from our analysis and from known results on learning agents in general games.

Observation I.1. In the fixed contract setting, for any regret-minimizing agent in the limit T → ∞
the support of the average empirical distribution of play includes only best-response actions with
probability one. Therefore, the repeated game with a static contract against a regret-minimizing
agent is essentially equivalent to the single-shot game against a rational agent.

Proof. This follows directly from the regret-minimization property. Indeed, suppose, for the sake of
contradiction, that there exists an action a in the support which is not a best response. Denote the
best-response utility by OPT . Action a is played with probability p > 0. Notice that since there is
only one player, the regret from any other action cannot be negative. Then we have that the regret is
Regret g p(OPT − u(a))T = O(T ), a contradiction.

Observation I.2. If the agent is using a no-swap-regret algorithm, then the optimal static contract
played repeatedly is also optimal in the dynamic setting. As a corollary, this is the case also for
general no-regret algorithms if the agent has at most two actions.

Proof. The result follows from [27], who show that in any game between an optimizer and a no-
swap-regret algorithm, the optimizer cannot extract higher payoff than the Stackelberg value of the
game where the optimizer plays the first move. The corollary is since with (at most) two actions
internal regret and external regret are equivalent.
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Below we show that in our analysis of dynamic linear contracts, it suffices to only examine linear
contracts with ³ ∈ [0, 1]. Note that although this is obvious in the static setting (offering ³ > 1
requires the principal to suffer negative utility), it is not a priori clear that the principal cannot benefit
via a dynamic strategy which offers a contract with ³ > 1 for some fraction of the time horizon
(perhaps counterbalancing it by offering a contract with a much smaller ³ later on). In fact, [43]
show that when the agents have private information (“types”) the principal can benefit by offering a
randomized menu of linear contracts which possibly contains linear contracts with ³ > 1.

Nonetheless, we show that the principal cannot benefit by doing this in the dynamic setting. The
proof below follows from a slight modification of Lemma B.3 in our proof of Theorem 3.1.

Observation I.3. Let Ã = {(³k, Äk, ak)Kk=1} be any linear dynamic contract with some linear

contract ³i > 1. Then there exists a dynamic linear contract Ã′ = {(³k, Äk, ak)}Kk=1 with Util(Ã′) g
Util(Ã) and where ³k f 1 for all k.

Proof. We first observe that in Lemma B.3, when an agent is indifferent between actions i and i+ 1
then the change in utility for the principal by choosing an action i + 1 over i is proportional to
(1− ³i). This is negative if ³i > 1 and therefore the principal will prefer to agent to play action i
when ³i > 1. However if ³i < 1 , then the principal will prefer that the agent play action i+1. Thus
in this modified rewriting lemma, contracts with breakpoints greater than 1, will prefer the lower
action and breakpoints lower than 1, will prefer the higher action. By modifying Lemma B.3, we can
rewrite any linear contract Ã using the rewriting rules of Theorem 3.1 into a new linear contract Ã′

with a breakpoints that are at most 1, without any loss in utility.
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Answer: [Yes]
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proofs in the rest of the paper. The paper is theoretical and the proofs are self-contained.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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Answer: [Yes]

Justification: Our paper focuses on the case of linear contracts; the general contracts setting
is also discussed and is much more difficult (e.g. in some cases it is not known whether
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• The answer NA means that the paper has no limitation while the answer No means that
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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a complete (and correct) proof?
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: This is a purely theoretical paper and it does not include any experiments.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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tions to faithfully reproduce the main experimental results, as described in supplemental
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Answer: [NA]

Justification: This paper does not include any experiments requiring code.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This is a purely theoretical paper and does not include any experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This is a purely theoretical paper and does not include any experiments.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper does not use humans or data. The authors do not believe the listed
potential harmful societal impacts apply.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work is purely theoretical and works in an abstract setting and has no
direct foreseeable impact to society.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper is purely abstract and theoretical and has no foreseeable risk for
misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The project neither involves crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The project neither involves crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
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• For initial submissions, do not include any information that would break anonymity (if
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