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Abstract. We consider the problem of repeatedly auctioning a single
item to multiple i.i.d buyers who each use a no-regret learning algorithm
to bid over time. In particular, we study the seller’s optimal revenue,
if they know that the buyers are no-regret learners (but only that their
behavior satisfies some no-regret property—they do not know the precise
algorithm/heuristic used).

Our main result designs an auction that extracts revenue equal to the
full expected welfare whenever the buyers are “mean-based” (a property
satisfied by standard no-regret learning algorithms such as Multiplicative
Weights, Follow-the-Perturbed-Leader, etc.). This extends a main result
of [4] which held only for a single buyer.

Our other results consider the case when buyers are mean-based but
never overbid. On this front, [4] provides a simple LP formulation for
the revenue-maximizing auction for a single-buyer. We identify several
formal barriers to extending this approach to multiple buyers.

1 Introduction

Classical Bayesian auction design considers a static auction where buyers partic-
ipate once. Here, the study of truthful auctions is ubiquitous following Myerson’s
seminal work [31]. But many modern auction applications (such as ad auctions)
are repeated : the same buyers participate in many auctions over time. More-
over, the vast majority of auction formats used in such settings are not truthful
(e.g. first-price auctions, generalized first-price auctions, generalized second-price
auctions). Even those that are based on a truthful format (such as the Vickrey-
Clarke-Groves mechanism [10,21,34]) are no longer truthful when the repeated
aspect is taken into account (because the seller may increase or decrease reserves
in later rounds based on buyers’ behavior in earlier rounds). As such, it is imper-
ative to have a study of non-truthful repeated auctions.

Over the past several years, this direction has seen significant progress on
numerous fronts (we overview related work in Sect. 1.1). Our paper follows a
recent direction initiated by [4] and motivated by empirical work of [32]. Specifi-
cally, [32] find that bidding behavior on Bing largely satisfies the no-regret guar-
antee (that is, there exist values for the buyers such that their bidding behavior
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guarantees low regret—the paper makes no claims about any particular algo-
rithm the buyers might be using). This motivates the following question: if buyer
behavior guarantees no-regret, what auction format for the designer maximizes
her expected revenue?

[4] initiated this study for a single buyer. The main focus of our paper is to
initiate the study for multiple buyers. We formally pose the model in Sect. 2,
and overview our main results here.

The concept of a “mean-based” no-regret learning algorithm appears in [4],
and captures algorithms which pull an arm with very high probability when it
is historically better than all other arms (formal definition in Sect. 2). While
it is common to design non-mean-based algorithms for dynamic environments,
standard no-regret algorithms such as Multiplicative Weights, EXP3, etc. are all
mean-based.1

Main Result (Informal—See Theorem 3:) When any number of i.i.d. buyers use
bidding strategies which satisfy the mean-based no-regret guarantee, there exists
a repeated single-item auction for the seller which guarantees them expected
revenue arbitrarily close to the optimal expected welfare.

One main result of [4] proves the special case with just a single buyer. While
we defer technical details of our construction to Sect. 3, we briefly overview
the main challenges here. The one-buyer [4] auction is already surprising, as it
requires the seller to both (a) give the buyer the item every round, yet (b) charge
them their full value (without knowing their value). The key additional challenge
for the multi-buyer setting is that the seller must now give the item not just to
a buyer in every round, but to the buyer with the highest value. This means, in
particular, that we must set up the auction so that buyers will pull a distinct
arm for each possible value, and yet we must still charge each buyer their full
expected value by the end of the auction.

Our auction, like that of [4], is fairly impractical (for example, it alternates
between running a second-price auction every round, and charging huge sur-
charges to the winner) and is not meant to guide practice. Still, Theorem 3 estab-
lishes that full surplus is possible for multiple mean-based buyers, and therefore
sets a high benchmark for this setting without further modeling assumptions.

No Overbidding. Indeed, the main impracticality in our Full-Surplus-
Extraction auction is that lures buyers into overbidding significantly, and eventu-
ally paying more than their value. In practice, it may be reasonable for buyers to
be clever, and just remove from consideration all bids exceeding their value (but
guarantee no-regret on the remaining ones). To motivate this, observe that over-
bidding is a dominated strategy in all the aforementioned non-truthful auctions.
So we next turn to analyze auctions for clever, mean-based buyers.

1 Note also that these canonical algorithms are mean-based even if the learning rate
changes over time, as long as the learning rate is ω(1/T ).
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Here, the second main result of [4] characterizes the revenue-optimal repeated
auction via a linear program, and shows that it takes a particularly simple form.
On this front, we identify several formal barriers to extending this result to
multiple buyers. Specifically:

– For a single buyer, [4] write a concise polytope (we call it the ‘BMSW poly-
tope’) characterizing auctions which can be implemented for a single clever
mean-based buyer (i.e. being in this polytope is necessary and sufficient to
be implementable). We show that two natural extensions of this polytope to
multiple buyers contain auctions which cannot be implemented for multiple
clever mean-based buyers (we show that being in either natural polytope is
necessary, but not sufficient). This is in Sect. 4.1.

– For a single buyer, [4] shows that the optimal auction is “pay-your-bid with
declining reserve.2” We show that a natural generalization of this “pay-your-
bid uniform auctions with declining reserve” to multiple buyers captures many
extreme points of the multi-buyer BMSW polytope. But, we also show that
such auctions are not necessarily optimal (meaning that this aspect of [4] does
not generalize to multiple buyers either). This is in Sect. 4.2.

– Finally, we establish that not only does the particular multi-buyer BMSW
polytope not capture all implementable auctions for clever mean-based buy-
ers, but the space of implementable auctions is not even convex ! This is in
Sect. 4.3.

While our results are not a death sentence for the future work in the [4]
model for clever mean-based buyers, the barriers do shut down most natural
multi-buyer extensions of their approach. Still, these barriers also help focus
future work towards other potentially fruitful approaches.

1.1 Related Work

There is a vast body of work at the intersection of learning and auction design.
Much of this considers learning from the perspective of the seller (e.g. sample
complexity of revenue-optimal auctions), and is not particularly related [5,6,
18–20,22–25]. More related is the recent and growing literature on dynamic
auctions [1,14,17,26,28–30,33] Like our model, the auction is repeated. The
distinction between these works and ours is that they assume the buyer is fully
strategic and processes fully how their actions today affect the seller’s decisions
tomorrow, perhaps the buyer needs to learn their (whereas we instead model
buyers as no-regret learners).

2 That is, each round there is a reserve. Any bid above the reserve wins the item, but
pays their bid. The reserve declines over time.
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The most related work to ours is in the [4] model itself, which studies the
one seller one buyer scenario, where the buyer employs a mean-based no-regret
algorithm. Follow-ups to [4] have extended the setting in [4] in a few different
directions. First, [11,15,16] studies convergence of no-regret learning agents in
a fixed mechanism such as first price auction, which diverges from the mecha-
nism design perspective of [4]. More relevantly, [13,27] considers the problem of
playing a two-player game against a no-regret learner. While technically not an
auctions problem, there is thematic overlap with our main result. [12] extends
the single-buyer results in [4] to be prior-free. Specifically, they show how to
design auctions achieving the same guarantees as those in [4] but where the
buyer’s values are chosen adversarially. In comparison to these works, ours is the
first to extend the model to consider multiple buyers.

Finally, [8] considers interaction between a learning buyer and a learning
seller. Their seller does not have a prior against which to optimize, and instead
itself targets a no-regret guarantee. In comparison, our seller (like the seller in
all previously cited works) optimizes expected revenue with respect to a prior.

1.2 Organization

The rest of the paper will be organized as follows. In Sect. 2, we discuss our
setting where buyer behavior falls under a broad class of no regret learning
algorithms and introduce notations that will be used throughout the paper. In
Sect. 3, we show that full surplus extraction is possible when buyers are using
naive no-regret policies. In Sect. 4, we establish formal barriers in understanding
optimal auction design when no regret buyers do not overbid their value. All
missing proofs in Sect. 3 and Sect. 4 can be found in the full version of our
paper3.

2 Preliminaries

We consider the same setting as [4], extended to multiple buyers. Specifically,
there are n buyers and T rounds. In each round, there is a single item for sale.
Each buyer i has value vi,t for the item during round t, and each vi,t is drawn
from D independently (that is, the buyers are i.i.d., and the rounds are i.i.d. as
well). For simplicity of exposition (and to match prior work), we assume D has
finite support 0 ≤ w1 < w2 < . . . < wm ≤ 1 and we define qj to be the
probability wj is drawn from D.

Each round, the seller presents K arms for the buyers. Each arm is labeled
with a bid, and we assume that one of the arms is labeled with 0 (to represent
a bid of “don’t participate”). Note that the same set of arms is presented to all
buyers, and the same set of arms is presented in each round.

3 https://arxiv.org/abs/2307.04175.

https://arxiv.org/abs/2307.04175


Selling to Multiple No-Regret Buyers 117

In each round t, the seller defines an anonymous auction. Specifically, for all
i, t, the seller defines ai,t(b) to be the probability that buyer i gets the item in
round t, and pi,t(b) ∈ [0, bi ·ai,t(b)] to be the price buyer i pays, when each buyer
j pulls the arm labeled bj . To be anonymous, it must further be that for all per-
mutations σ of the buyers that (aσ(i),t(σ(b)), pσ(i),t(σ(b)) = (ai,t(b), pi,t(b)) (the
auction is invariant under relabeling buyers). The only additional constraints
on a are that

∑

i ai,t(b) ≤ 1, for all t, b (item can be awarded at most once),
and that b′

i > bi ⇒ ai,t(bi; b−i) ≤ ai,t(b
′
i; b−i) for all i, b−i, bi, b

′
i (allocation is

monotone). p must also be monotone (b′
i > bi ⇒ pi,t(bi; b−i) ≤ pi,t(b

′
i; b−i)).

When we state prior work in the single-buyer setting, we may drop the buyer
subscript of i (for instance, we will write a1,t(b1) as at(b)).

2.1 Contextual Bandits

Like [4], we model the buyers as online learners. Also like [4], our results apply
equally well to the experts and bandits model, where vi,t serves as buyer i’s
context for round t. Specifically:

– For all subsequent definitions below, fix a buyer i, fix a bid vector b−i,t for
all rounds t, and fix ai,t(·).

– For any bid b, buyer i, and round t, define ribt(v) := v·ai,t(b; b−i)−pi,t(b; b−i).
That is, define ribt(v) to be the utility during round t that buyer i would enjoy
by bidding b with value v.

– For an algorithm S (decides a bid for round t based only on what it observes
through rounds t − 1, and its value vi,t)

4 that submits bids bit in round
t, its total payoff is P (S) := E[

∑

t ribitt(vi,t)]. The expectation is over any
randomness in the bids bit, as S may be a randomized algorithm, and the
randomness in vi,t.

– An algorithm is fixed-bid if vit = vit′ ⇒ bit = bit′ . That is, the algorithm
may make different bids in different rounds, but only due to changes in the
buyer’s value. Let F denote the set of all fixed-bid strategies.

– The regret of an online learning algorithm S is maxF∈F{P (F ) − P (S)}.
– An algorithm is δ-low regret if it guarantees regret at most δ on every fixed

sequence of auctions, and fixed bids of the other players. We say that an
algorithm is no-regret if it is δ-low regret for some δ = o(T ).

Like [4], we are particularly interested in algorithms “like Multiplicative
Weights Update:”

Definition 1 (Mean-Based Online Learning Algorithm, [4]). Let
σi,b,s(v) :=

∑

t<s ribt(v). An algorithm is γ-mean-based if whenever σi,b,s(vi,s) <
σi,b′,s(vi,s)−γT (for any b, b′), then the probability that the algorithm bids b dur-
ing round s is at most γ. An algorithm is mean-based if it is γ-mean-based for
some γ = o(1).

4 In the bandits model, buyer i learns only ribt(v) for the bid b := bit after each round
t (and all v). In the experts model, buyer i learns ribt(v) for all b (and all v).
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As noted in [4], natural extensions of Multiplicative Weights, EXP3, Follow
the Perturbed Leader, etc. to the contextual setting are all mean-based online
learning algorithms.

2.2 Learners and Benchmarks

Before formally stating our main results, we first provide relevant benchmarks.
We use Valn(D) := Ev←Dn [maxi vi] to denote the expected maximum value
among the n buyers. We use Myen(D) to denote the expected revenue of the
optimal truthful auction when n buyers have values drawn from D. We make the
following quick observation, which holds for any low regret learning algorithm
(and extends an observation made in [4] for a single buyer).

Observation 1. The seller cannot achieve expected revenue beyond T ·Valn(D)+
o(T ) when buyers guarantee no-regret, even if the seller knows precisely what
algorithms the buyers will use.

Finally, we will consider two types of no-regret learners. One type we will
consider is simply no-regret learners who use a mean-based learning algorithm.
Second, we will consider no-regret learners who use a no-regret learning algo-
rithm but never overbid. Specifically, such learners immediately remove from
consideration all bids bit > vi,t, but otherwise satisfy the no-regret guarantee.
We refer to such learners are clever. [4] motivate such learners by observing
that in most (perhaps all) standard non-truthful auction formats, overbidding
is a dominated strategy. For example, it is always better to bid truthfully than
to overbid in a first-price auction, generalized first-price auction, generalized
second-price auction, and all-pay auction.

2.3 Border’s Theorem

Some of our work will use Border’s theorem [2], which considers the following.
Consider a monotone, anonymous (not necessarily truthful) single-item auction,
and a fixed strategy s(·) which maps values to actions. Let x(wj) denote the
probability that a buyer using action s(wj) wins the item, assuming that all
other buyers’ values are drawn i.i.d. from D and use strategy s as well. Border’s
theorem asks the following: when given some vector 〈x1, . . . , xm〉, does there
exists a monotone anonymous (not necessarily truthful) single-item auction such
that x(wj) = xj for all j? If so, we say that x is Border-feasible. Below is Border’s
theorem. We will not actually use the precise Border conditions in any of our
proofs, just the fact that they exist and are linear in x.



Selling to Multiple No-Regret Buyers 119

Theorem 2 (Border’s Theorem [3,7,9]). When the buyers are drawn i.i.d
from D (meaning each buyer’s probability of valuing the item at wj is qj), x is
Border-feasible if and only if it satisfies the Border conditions:

n
∑

�≥j

qj · xj ≤ 1 − (1 −
∑

�≥j

qj)
n ∀j ∈ [m].

3 Full Surplus Extraction from Mean-Based Buyers

Here, we show a repeated auction which achieves expected revenue arbitrarily
close to T · Valn(D) when buyers are mean-based (but consider overbidding).
We also note that our auction does not depend on the particular mean-based
algorithms used. The auction does barely depend on D, but only in initial “setup
rounds” (the auction during almost all rounds does not depend on D). Recall
this guarantee is the best possible, due to Observation 1.

Theorem 3. Whenever n buyers use strategies satisfying the mean-based guar-
antee, there exists a repeated auction which obtains revenue T · (1− δ)Valn(D)−
o(T ) for any constant δ < 1.

In this language, one main result of [4] proves Theorem 3 when n = 1. Before
diving into our proof, we remind the reader of the main challenge. In order to
possibly extract this much revenue, the auction must somehow both (a) charge
each winning buyer their full value, leaving them with zero utility, yet also (b)
figure out which buyer has the highest value in each round, and give them the
item. The distinction between the n = 1 and n > 1 case is in (b). When n = 1,
it is still challenging to give the buyer the item every round while charging their
full value, but at least the buyer does not need to convey any information to
the seller (so, for example, it is not necessary to incentivize the buyer to pull
distinct arms for each possible value—the buyers just need to pay their full value
on average by the end). When n > 1, we need the buyer to pull a distinct arm
for each of their possible values, because we need to make sure that the highest
buyer wins the item (and the only information we learn about each buyer’s value
is the arm they pull).

Additional Notation. We now provide our auction and analysis, beginning
with some additional notation for this section. We will divide the T rounds of
the auction into phases of 2R consecutive rounds, where R = Ω(T ). There are
P := T/(2R) total phases (so P is a constant, but it will be a large constant
depending on δ). In our contruction, the first m − 1 phases will be the setup
phases and the last P − m + 1 phases will be the main phases. The goal of the
setup phases is to align buyer’s incentives so that they will behave in a particular
manner in later phases. The main phases are where we will extract most of our
revenue.

Recall that there are K non-zero arms labeled b1 < . . . < bK . Our construc-
tion will use K := P arms. Because the buyers consider overbidding, the precise
bid labels are not important, so long as they are sufficiently large (concretely,
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we set bi := 2wm + i). We will sometimes index arms using bτ
j := bP+j−τ . This

notation will be helpful to remind the reader that bτ
j is the arm that we intend

to be pulled by a buyer with value wj during main phase τ .5

3.1 Defining the Auction

Intuitively, our auction tries to do the following. In each phase τ , there is a
targeted arm bτ

j for each possible value wj , so there are m arms that are (intended
to be) pulled during each phase. Ideally, since wj needs to transition from pulling
bτ−1
j in phase τ − 1 to pulling bτ

j in phase τ , at the beginning of phase τ , wj

should be indifferent between pulling bτ−1
j , wj ’s favourite arm in phase τ − 1;

and bτ
j ,wj ’s intended arm for phase τ . Let us for now assume this is true and see

how we design the auction during phase τ (which contains 2R rounds).
The base auction each round is just a second-price auction, where pulling

arm bτ
j submits a bid of wj . For the first R rounds of each phase, this is exactly

the auction executed. Because the second-price auction is dominant strategy
truthful, this lures a mean-based buyer with value wj into having high cumulative
reward for arm bτ

j (and in particular, strictly higher than any other arm). For the
second R rounds of each phase, the base auction will still be the same second-
price auction, except we will now overcharge each buyer so that their average
utility during all 2R rounds of auction in phase τ is close to zero. In principle,
this is possible because the buyers have high cumulative utility for this arm from
the first R rounds, and are purely mean-based (and so they will pay more than
their value to pull an arm which is historically much better than all others).

Now, by design our auction in phase τ gives the item to the highest buyer
most of the time, therefore the expected welfare is almost optimal. Meanwhile,
the expected utility is close to 0, which means we have managed to extract
revenue that is almost the full welfare in phase τ . Lastly, notice that cumulative
utility for arm bτ+1

j increases during phase τ , so our phase cannot last forever.

If we set the phase length to be too long, then bτ+1
j will become wj ’s favourite

arm before phase τ ends. This is exactly why we need multiple phases instead
of one phase. Let us set our phase length in such a way that at the end of τ , the
increase in cumulative utility for arm bτ+1

j is just enough for wj to be indifferent

between bτ
j and bτ+1

j , then the exact condition we assume at the start of phase
τ is satisfied, but for phase τ + 1. Thus we can safely start a new phase τ + 1
and extract almost full welfare by the same auction design.

Of course, this is just intuition for why an auction like this could possibly
work—significant details remain to prove that it does in fact work (including
precisely the choice of overcharges, analyzing incentives between phases, etc.).
The formal description of our auction can be found in the full version of our
paper.

Definition 2 (Full Surplus Extraction Auction). The FSE Auction uses
the following allocation and payment rule in each round. There are two steps in

5 So for example, arm bP−m will first be (intended to be) pulled by buyers with value
w1 in phase m + 1, then by buyers with value w2 in phase m + 2, etc.
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each round. First, based on the arm pulled, a bid is submitted on behalf of the
buyer into a secondary auction. Then, the secondary auction is resolved. There
are three types of arms:

– Some arms are dormant. These arms don’t enter the secondary auction
(i.e. no item and 0 payment).

– Some arms are active. Pulling arm bP−τ+j = bτ
j enters a bid of wj into a

secondary auction.
– Some arms are retired. Pulling a retired arm enters a bid of wm + 1 into a

secondary auction.

Which arms are dormant/active/retired change each phase. In addition, the
secondary auction resolves differently for the first m−1 phases (we call these the
setup phases) versus the last P − m + 1 phases (we call these the main phases).
Think of P � m, so the main phases are what matter most, the setup phases are
just a technical setup to get incentives to work out. In any main phase (τ ≥ m):

– Active arms: bP−τ+1 = bτ
1 through bP−τ+m = bτ

m. Dormant: below bP−τ+1.
Retired: above bP−τ+m. Note that by our definition, the index of active
arms decreases as τ increases. For instance, if in nth phase the active
arms are bh, bh−1, · · · , bl, then in the n + 1th phase the active arms are
bh−1, bh−2, · · · , bl−1.

– The secondary auction awards the item to a uniformly random buyer who
submits the highest bid.

– If the winning arm was retired (i.e., submitted a bid of wm + 1), they pay
2wm.

– If the winning arm was active, the winner pays the second-highest bid.
– Additionally, in the second R rounds of a phase, if the highest bid is wj

and the second-highest bid is w�, the winner pays an additional surcharge of
2(wj − w�).

Due to space constraint, the description of the setup phase can be found in the
full version of the paper.

We first quickly confirm that the FSE Auction is monotone.

Observation 4. The allocation and payment rule for the FSE auction are both
monotone.

3.2 Mean-Based Behavior

Before analyzing the expected revenue of the seller, we first analyze the behavior
of mean-based buyers. The challenge, of course, is that the payoff from each arm
depends on the behavior of the other buyers, who are themselves mean-based.
So our goal is to establish that mean-based learning in the FSE auction forms
some sort of “equilibrium”, in the sense that one mean-based buyer pulls the
desired arm almost-always provided that all other buyers pull the desired arm
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almost-always. Our first step is characterizing a buyer’s payoff for each arm at
each round, assuming that all other buyers pull the intended arm almost always.

The main steps in our proof are as follows. First, we analyze the cumulative
payoff for a buyer with each possible value for each possible arm, assuming that
each other buyer pulls their intended arm. We then conclude that a buyer with
value wj has highest cumulative utility for their intended arm for the entirety of
each phase. However, we also establish that the utility they enjoy during each
phase for their intended arm is 0. This means that every buyer has 0 utility at
the end (up to o(T )), meaning that the seller’s revenue is equal to the expected
welfare. Because we give the item to the highest value buyer whenever they pull
the intended arm, the welfare is T · Val(D). We now proceed with each step.

In each of the technical lemmas below, we let Hs(v, b) denote the cumulative
payoff during rounds 0 to s that a buyer with value v would have enjoyed in
hindsight by pulling arm b in the FSE Auction, assuming that all other buyers
pull their intended arm for at least a 1−o(1) fraction of the rounds during every
main phase τ , and that they pull either their intended arm (if it exists) or bP

(otherwise) during every setup phase τ . We let XV CG(v) denote the probability
that a bidder with value v wins a second-price auction when bidding truthfully
against n − 1 values drawn independently from D (ties broken randomly). And
we let PV CG(v) denote the interim payment made by a bidder with value v to a
second-price auction, in expectation over n−1 other values drawn independently
from D.6

Lemma 1. At the end of phase τ , the change in cumulative payoff of a buyer
with value v for each arm satisfies:

– For dormant arms b, H2Rτ (v, b) − H2R(τ−1)(v, b) = 0.
– For active arms: H2Rτ (v, bτ

j ) − H2R(τ−1)(v, bτ
j ) = 2R · (v − wj) · XV CG(wj) ±

o(T ).
– For retired arms: H2Rτ (v, bj) − H2R(τ−1)(v, bj) = 2R · (v − 2wm) ± o(T ).

Corollary 1. At the end of phase τ , the cumulative payoffs for a buyer with
value v satisfy:

– If bj is dormant during phase τ (j ≤ P − τ): H2Rτ (v, b) = 0.
– If bj is active during phase τ (j ∈ [P − τ + 1, P − τ + m]):

H2Rτ (v, bj) = 2R ·

(

j+τ−P
∑

k=1

(v − wk) · XV CG(wk)

)

± o(T ).

– If bj is retired during τ (j ≥ P − τ + m + 1):

H2Rτ (v, b) = 2R ·

(

(τ − m) · (v − 2wm) +

m
∑

k=1

(v − wk) · XV CG(wk)

)

± o(T ).

6 Formally, let Xi be independent draws from D for i = 1 to n − 1. Define X0 := v.
Let X := maxi≥1{Xi}, and Y be an indicator random variable for the event that a
uniformly random element in arg maxi≥0{Xi} is 0. Then PV CG(v) := E[X · Y ].
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Lemma 2. For all τ , at the start of each phase τ , when j ≤ τ , a buyer with
value wj has highest cumulative utility for arm bτ

j , and also bτ−1
j . Specifically,

for all other arms b�:

H2R(τ−1)(wj , b
τ−1
j ) ± o(T ) = H2R(τ−1)(wj , b

τ
j ) > H2R(τ−1)(wj , b�) + Ω(T ).

When j > τ , for all b� 
= τ , H2R(τ−1)(wj , b
τ
τ ) > H2R(τ−1)(wj , b�) + Ω(T ).

Lemma 3. For all τ , assuming that all other buyers pull their intended arm
except for o(T ) rounds, a mean-based buyer with value wj pulls arm bτ

j (if it
exists) for the first R rounds, except for at most o(T ) rounds. Otherwise, they
pull arm bP = bτ

τ for the first R rounds, except for at most o(T ) rounds.

Lemma 4. For all τ , assuming that all other buyers pull their intended arm
except for o(T ) rounds, a mean-based buyer with value wj pulls arm bτ

j (if it
exists) for the last R rounds, except for at most o(T ) rounds. Otherwise, they
pull arm bP = bτ

τ for the last R rounds, except for at most o(T ) rounds.

Finally, we combine everything together to conclude the following:

Proposition 1. When all buyers are mean-based, they all pull their intended
arm in the FSE Auction, except for at most o(T ) rounds.

3.3 Analyzing the Revenue

Finally, we show that when all buyers pull their intended arm, the FSE auction
extracts full surplus.

Proof (Proof of Theorem 3). Except for the setup phases, and for rounds where
buyers do not pull their intended arm, the auction gives the item to the highest
buyer. Therefore, the expected welfare of the auction is at least (1 − m/P )T ·
Val(D)−o(T ). Moreover, Lemma 1 establishes that through an entire phase, the
cumulative utility of a buyer for pulling their intended arm is 0±o(T ). Therefore,
the total utility of the mean-based buyer is at most o(T ). Therefore, the revenue
is at least (1 − m/P )T · Val(D) − o(T ). Setting P ≥ m/δ completes the proof.

4 Clever Mean-Based Buyers

In this section we consider clever mean-based buyers, and identify three formal
barriers to developing optimal auctions for multiple clever mean-based buyers.
We develop each barrier in the subsections below. Section 4.1 reminds the reader
of the [4] Linear Program, which exactly captures the optimal auction for a single
clever mean-based buyer, and provides a natural extension to multiple buyers.
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4.1 A Linear Programming Upper Bound

We first remind the reader of the [4] Linear Program, and give a natural extension
to multiple buyers. We first explicitly define variables for the results of a repeated
auction.

Let A be a repeated auction with n i.i.d buyers of value distribution D. For
each buyer i, let Si denote a strategy which takes as input a value vit for round
t (and all other information available from previous rounds) and outputs an

arm bSi

it (vit) to pull in round t. Let v := 〈vit〉i∈[n],t∈T , which is drawn from the
product distribution ×nT D. We use the following notation:

RevA(D, S1, . . . , Sn) := E
v

[

n
∑

i=1

∑

t

pi,t

(

bSi

it (vit); b
S−i

−it (v−it)
)

]

Revn(D, S1, . . . , Sn) := max
A

{RevA(D, S1, . . . , Sn)}

XA
ij(D, S1, . . . , Sn) =

1

T
E
v

[

∑

t

ait

(

bSi

it (wj); b
S−i

−it (v−it)
)

]

Y A
ij (D, S1, . . . , Sn) =

1

T
E
v

[

∑

t

ait

(

wj ; b
S−i

−it (v−it)
)

]

UA
ij (D, S1, . . . , Sn) =

1

T
E
v

[

∑

t

wj · ait

(

bSi

it (wj); b
S−i

−it (v−it)
)

− pit

(

bSi

it (wj); b
S−i

−it (v−it)
)

]

Definition 3 (Auction Feasible). A tuple of m-vectors (x∗, y∗, u∗) is n-
buyer auction feasible if there exists a repeated auction A, such that for
all γ = o(T ), whenever n buyers with values drawn i.i.d. from D run
clever γ-mean-based strategies S1, . . . , Sn, then ∀i,XA

ij (D, S1, . . . , Sn) = x∗
j ±

O(γ);Y A
ij (D, S1, . . . , Sn) = y∗

j ± O(γ);UA
ij (D, S1, . . . , Sn) = u∗

j ± O(γ). We call
(x∗, u∗) n-buyer auction feasible if there exists y∗ such that (x∗, y∗, u∗) is n-buyer
auction feasible.

One key insight in [4] is that the space of auction feasible tuples is convex
and can be characterized by simple linear equations. Below, note that the “only
if” direction is slightly non-trivial, and we rederive it later for arbitrary n. The
“if” direction requires designing an auction (for which we refer the interested
reader to [4, Theorem 3.4]). We will not rederive the “if” direction, although we
define the relevant auction later as well.

Theorem 5 ([4]). (x, u) is 1-buyer auction feasible if and only if it satisfies the
BMSW constraints:7

ui ≥ (wi − wj) · xj , ∀i, j ∈ [m] : i > j,

xi ≥ xj , ∀i ∈ [m], i > j,

ui ≥ 0, xi ∈ [0, 1], ∀i ∈ [m].

7 In fact, the ‘only if’ portion of this theorem holds when replacing the clever mean-
based buyer with just a clever buyer. But the ‘if’ portion requires the stronger
assumption of mean-based learning.
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Intuitively, the first BMSW constraint is the interesting one, which is nec-
essary for the buyer to not regret pulling arm bj when their value is wi (again
recall this is non-trivial, but we argue this shortly as a special case for general
n). The second constraint is necessary because the auction must be monotone.
The final constraint is necessary because the auction must have a null arm, and
because all allocation probabilities must be in [0, 1] every round.

[4] also observe that the expected revenue of an auction A can be computed as
a linear function of XA

ij(D, S1, . . . , Sn) and UA
ij (D, S1, . . . , Sn) (because revenue

= welfare − utility). Therefore, Theorem 5 enables a simple LP formulation to
find the optimal auction for clever buyers.

We consider two natural attempts to generalize Theorem 5, and show that
both hold only in the ‘only if’ direction. The reason the BMSW constraints don’t
work verbatim for multiple buyers is that the feasibility constraints are wrong:
it is not feasible to (for instance) have each buyer win the item with probability
1 every round. Indeed, there is only one copy of the item, implying (for instance)
that n

∑

i qi ·x(wi) ≤ 1, but also stronger conditions. These conditions are known
as Border’s constraints from Theorem 2 [2].

Proposition 2. A tuple (x, y, u) is n-buyer auction feasible only if it satisfies
the n-buyer BMSW constraints below. A tuple (x, u) is n-buyer auction feasible
only if it satisfies the reduced n-buyer BMSW constraints.8

n-buyer BMSW Constraints Reduced n-buyer BMSW Constraints

ui ≥ (wi − wj) · yj , ∀i > j ∈ [m], ui ≥ (wi − wj) · xj , ∀i > j ∈ [m],

yi ≥ xi, ∀i ∈ [m],

ui ≥ 0, ∀i ∈ [m], ui ≥ 0, ∀i ∈ [m],

x satisfies Border’s constraints, x satisfies Border’s constraints,

x,y monotone. x monotone.

We next turn to see whether the other direction holds, as in Theorem 5 for
the single-buyer case. If it did, then we could again write a linear program to
find the optimal n-buyer feasible auction, because the expected revenue can be
written as a function of (x, u). However, we provide an example showing that
this extension is false.

Theorem 6. There exist (x, y, u) that satisfy the n-buyer BMSW Constraints
but are not n-buyer auction feasible, and (x, u) that satisfy the Reduced n-buyer
BMSW Constraints but are not n-buyer auction feasible.

4.2 Uniform Auctions with Declining Reserves

In this section, we consider the following possibility: although n-buyer BMSW
constraints don’t characterize the n-buyer feasible auctions, it is conceivable

8 In fact, this claim holds when replacing mean-based clever buyers with just clever
buyers, just like the ‘only if’ part of Theorem 5.
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(although perhaps unlikely) that the Linear Programming solution (optimizing
expected revenue subject to n-buyer BMSW constraints) happens to always yield
an n-buyer feasible auction. The reason this is a priori possible is because the
objective function and BMSW constraints are related: the objective function
depends on D, and so do the n-buyer Border constraints (this is another way
in which n-buyer and 1-buyer auctions differ: 1-buyer Border constraints don’t
depend on D).

For the single-buyer case, [4] shows that not only is every tuple satisfying the
BMSW constraints 1-buyer auction feasible, but the auction witnessing this is
particularly simple. First, whenever the buyer gets the item, they pay their bid
(and in each round, each arm gives the item with probability 0 or 1). Second,
the minimum winning bid is declining over time. We generalize both definitions
below to multiple buyers, and show a connection between these auctions and
certain types of tuples which satisfy the n-buyer BMSW conditions.

Definition 4 (Pay-your-bid). A repeated auction is pay-your-bid if pi,t(b) =
bi · ai,t(b) for all i, t.

Definition 5 (Uniform Auction with Declining Reserve). A repeated auc-
tion is a uniform auction with declining reserve when: (a) there exists a reserve
rt for every round t which is monotonically decreasing in t, and (b) in each round
the item is awarded to a uniformly random buyer among those with bit ≥ rt.

Definition 6 (Correspondence). We call (x, y, u) the corresponding tuple of
repeated auction A if for 0-mean-based strategies S1, . . . , Sn and all i, j:
XA

ij(D, S1, . . . , Sn) = xj ; Y A
ij (D, S1, . . . , Sn) = yj ;U

A
ij (D, S1, . . . , Sn) = uj.

9

In this language, [4] shows that when n = 1, every tuple which satisfies the
BMSW conditions can be implemented as a pay-your-bid uniform auction with
declining reserve (and this establishes the ‘if’ direction of Theorem 5). Due to
Theorem 6, this claim clearly cannot extend to n > 1. However, we show that
certain kinds of natural tuples can all be implemented as pay-your-bid uniform
auctions with declining reserves.

Theorem 7. Consider any repeated auction A and its corresponding tuple
(x, y, u). If (x, y, u) satisfies the n-buyer BMSW constraints, and x = y, and
A is pay-your-bid, then A is a uniform auction with declining reserve.

With Theorem 7 in mind, another possible avenue towards characterizing
optimal n-buyer feasible auctions would be through pay-your-bid uniform auc-
tions with declining reserves. To this end, we first show that the optimal pay-
your-bid uniform auction with declining reserve can be found by a linear pro-
gram. However, we also show that examples exist where the optimal n-buyer
feasible auction strictly outperforms the best pay-your-bid uniform auction with
declining reserve.

9 Observe that this is always well-defined, as the unique 0-mean-based strategy is
Follow-the-leader.
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Theorem 8. The optimal10 pay-your-bid uniform auction with declining reserve
can be found by a linear program of size Poly(m). However, there exist 2-buyer
instances where the optimal 2-buyer feasible auction strictly outperforms the best
pay-your-bid uniform auction with declining reserve.

4.3 Non-convexity of N-Buyer Feasible Auctions

Finally, we consider the possibility that while the n-buyer BMSW constraints
don’t capture the space of n-buyer feasible auctions, perhaps some other com-
pact, convex space does. This too is not the case, as we show that the space of
n-buyer feasible triples is non-convex (subject to one technical restriction).

Theorem 9. Let P denote the set of all (x, y, u) that are n-buyer feasible auc-
tions where the bid space is equal to the support of D. Then P is not necessarily
convex, even when n = 2.
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