
Learning Dynamic Tasks on a Large-scale Soft Robot
in a Handful of Trials

Sicelukwanda Zwane1, Daniel Cheney2, Curtis C. Johnson2, Yicheng Luo1, Yasemin Bekiroglu1,3,
Marc D. Killpack2, Marc Peter Deisenroth1

Abstract— Soft robots offer more flexibility, compliance, and
adaptability than traditional rigid robots. They are also typi-
cally lighter and cheaper to manufacture. However, their use
in real-world applications is limited due to modeling challenges
and difficulties in integrating effective proprioceptive sensors.
Large-scale soft robots (≈ two meters in length) have greater
modeling complexity due to increased inertia and related
effects of gravity. Common efforts to ease these modeling
difficulties such as assuming simple kinematic and dynamics
models also limit the general capabilities of soft robots and
are not applicable in tasks requiring fast, dynamic motion like
throwing and hammering. To overcome these challenges, we
propose a data-efficient Bayesian optimization-based approach
for learning control policies for dynamic tasks on a large-
scale soft robot. Our approach optimizes the task objective
function directly from commanded pressures, without requiring
approximate kinematics or dynamics as an intermediate step.
We demonstrate the effectiveness of our approach through both
simulated and real-world experiments.

I. INTRODUCTION

Elephant trunks, snakes, and certain invertebrates are ca-
pable of highly dynamic and fast motion while maintaining
their flexibility, and compliance. However, despite being
modeled after these biological entities, soft robots still strug-
gle to perform highly dynamic control tasks. This is because
it is difficult to derive accurate kinematic or dynamics models
that describe their motion well enough to allow for the design
of controllers that fully exploit their capabilities.

Large-scale soft robots (a few meters in length) are attrac-
tive because of their high force-to-weight ratio [1]. However,
their increased inertia, surface area, and related gravitational
effects also present further modeling difficulties.

Previous innovations in soft robot modeling, such as
constant curvature [2], PDEs [3], finite elements [4], first-
principles [5], splines [6], and deep learning [7] have allowed
soft robots to perform well enough at static control tasks.
However, they generally require the robot to move slower

1UCL Centre for Artificial Intelligence, Univer-
sity College London, UK. Corresponding author email:
sicelukwanda.zwane.20@ucl.ac.uk

2 Department of Mechanical Engineering, Brigham Young University,
Provo, Utah, UT 84602, USA

3Department of Electrical Engineering, Chalmers University of Technol-
ogy, Göteborg SE-41296, Sweden

This work was partially supported by the National Science Founda-
tion under Grant No. 1935312 and the Engineering and Physical Sci-
ences Research Council (EPSRC) [EP/S021566/1]. For the purpose of
Open Access, the author has applied a CC BY public copyright li-
cence to any Author Accepted Manuscript version arising from this
submission. The codebase associated with this paper is available at
https://github.com/Sicelukwanda/BayesOptSoftRobotControl

Fig. 1: The soft robot design used in this paper for hardware
experiments. This is a 12 DOF pneumatically actuated, large-
scale soft robot about 1.3 meters long. It consists of three
continuum joints connected by two rigid links.

to maintain lower tracking error, and fail when the robot is
carrying non-uniform loads or operating at higher velocities.

Modeling approaches with high data requirements (i.e.,
deep neural networks), are less suitable for soft robots as
the data collection process may cause “wear and tear” on
the “soft” parts of the robot. This may affect the robot’s
dynamics. Other effects such as temperature may also affect
the robot’s dynamics or contribute to measurement noise.

Given these modeling challenges, we adopt a task-
oriented, Bayesian optimization-based control learning ap-
proach that does not require an explicit model of the soft
robot. Our approach improves the efficiency of building a
controller by significantly reducing the number of necessary
hardware evaluations on the robot. Unlike existing soft
robot control methods, our approach makes fewer platform-
specific assumptions, making it easier to adapt for use on
morphologically different soft robots.

Our contributions can be summarized as follows:

1) We present a Bayesian optimization-based approach
to soft robot control tuning, capable of learning dy-
namic, high-dimensional behaviors directly from low-
dimensional control parameterizations.

2) We learn successful control policies with remarkably
few interactions with the soft robot, minimizing pos-
sible wear and tear on the robot hardware.

3) We evaluate on two challenging tasks: throwing and
hammering, which require highly dynamic motions and
complex velocity profiles for successful completion.

4) We demonstrate our approach on a real large-scale soft
robot (shown in Figure 1), successfully learning con-

https://github.com/Sicelukwanda/BayesOptSoftRobotControl

trol parameters for a “pseudo-throwing” task despite
uncertain objective function observations.

II. HARDWARE DESCRIPTION

In this work, we consider the large-scale soft robot
shown in Figure 1. It consists of three continuum joints
connected together using rigid links. Each continuum joint
is constructed with four plastic pressure chambers, which
are individually pressure controlled. These chambers are
arranged in an antagonistic pattern, such that each pair
of pressure chambers causes a net bending torque along
the longitudinal section of the robot. Each joint’s bending
stiffness is related to the material properties of the plastic
pressure chambers. Although the robot is designed to resist
elongation and twisting, these effects can still occur under
high velocity or non-uniform loading conditions, introducing
additional sources of uncertainty.

We control the robot by issuing a vector of 12 pressure
commands (4 commands for each continuum joint).

III. ROBOT CONTROL USING BAYESIAN OPTIMIZATION

In this section, we detail our approach for finding good
policy parameters using Bayesian Optimization (BayesOpt).

A. Setting

We consider finite-episodic tasks, where the environment
(robot and task objects) can be “reset” to the same starting
conditions. To avoid having to find a state description and the
need for a kinematic model for the large-scale soft robot, we
consider an open-loop policy π(θ) with parameters θ ∈ RD.
For each trial, the policy is expected to produce a sequence
of controls u ∈ RU over the task horizon H . At the end of
the trial, after executing all control commands u1:H = π(θ),
we receive a single observation from a task utility function

J(θ) = E [R(u1:H) | θ] , (1)

where R(·) may be any value indicating the performance
over the entire action sequence u1:H . For example, in a
throwing task, we may use a tape measure to record the
final displacement of a projectile after sequentially executing
individual control actions ut on the soft robot.

B. Problem Formulation

The search for optimal policy parameters θ∗ with an
unknown objective function J(θ) can be formulated as a
black-box optimization problem

θ∗ = arg max
θ∈RD

J(θ). (2)

Because J is unknown, we have to adopt a data-driven
strategy to find θ∗. Moreover, this strategy has to be data-
efficient since performing a large number of evaluations on
the soft robot may cause changes to its dynamics. Although
measuring such changes is not an easy task, we can directly
observe that even the equilibrium configuration changes over
the period of minutes if the robot is left in a specific
configuration due to material properties. This variation in
system dynamics and the need to minimize the number

of hardware evaluations makes Bayesian optimization an
effective approach to address these problems.

C. Bayesian Optimization based Control

BayesOpt solves problems of the form Equation (2) by
learning a surrogate model or response surface of the ob-
jective function from data. Next, it optimizes an acquisition
function α(·) over the input space to find the next objective
function input to evaluate. This input and resulting objective
function observation are added to the dataset which is used
to improve the surrogate model and the process is repeated.

In our robot control context, we apply this approach
according to Algorithm 1, with a dataset consisting of
the policy parameters and corresponding objective function
observations D = {θi, J(θi)}Ni=1.

Algorithm 1 Bayesian Optimization for Robot Control
Input: Task objective function J , domain RD, initial obser-
vations D0 = {(θi, J(θi))}Ninit

i=1 , where θi ∈ RD and an
acquisition function α(θ).

1: Fit a GP on the initial dataset D0

2: for n = 1, 2, . . . , N do
3: Select θn by optimizing the acquisition function:

θn = arg max
θ∈RD

α(θ | Dn−1)

4: Get action sequence from the policy u1:H = π(θn)
5: Execute action sequence u1:H on the soft robot
6: Record task performance J(θn) for u1:H

7: Update the dataset Dn = Dn−1 ∪ {(θn, J(θn))}
8: Update the GP model with Dn

9: end for
Output: The control parameters θ∗ ∈ {θ1, . . . , θN} with
the maximum objective function value J(θ).

The performance of BayesOpt greatly relies on the chosen
surrogate model and acquisition function. We briefly explain
these concepts in the following subsections and motivate our
specific choices in this work.

1) Gaussian process Surrogate Model: For the dynamic,
high-inertia tasks we consider in this work, we expect
measurement noise in the objective function evaluations, i.e.,
the same set of policy parameters θ may not yield exactly the
same J(θ). This is especially true in the case of experiments
on the physical soft robot. Due to this measurement noise,
the optimum of Equation (1) may not exactly coincide with
the optimum of the true objective, which corresponds to the
best possible task-solving behavior [8]. This motivates the
use of a probabilistic surrogate model, which can cope well
with noisy observations. For this reason, we use a Gaussian
process surrogate model.

A Gaussian process (GP) [9] has the capacity to learn an
unknown non-linear function and express it as a posterior
distribution over all possible functions under a given prior
distribution and training dataset. Given a set of query control
parameters θ∗, we can obtain the mean and covariance of the

GP predictive posterior in closed form as follows:

µ(θ∗) = KT
∗
(
K + σ2

εI
)−1

y (3)

cov(θ∗) = K∗∗ −KT
∗
(
K + σ2

εI
)−1

K∗, (4)

where K∗∗ = k(θ∗,θ∗), K∗ = k(Θ,θ∗), and K =
k(Θ,Θ) are matrices constructed using the GP kernel func-
tion k(·, ·) and training data Θ =

[
θ1 · · · θN

]
, y =[

J(θ1) · · · J(θN)
]
. I is the identity matrix, and σ2

ε is
the measurement noise variance in the objective function
observations y.

The kernel function choice is particularly important in
BayesOpt because it is directly responsible for optimization-
relevant properties, such as the number and frequency of
local minima, differentiability (smoothness), and convexity
of the learned objective function. In this work, following the
recommendations of [10], we use the automatic relevance
determination (ARD) Matern52 kernel

k(θ,θ′) = σ2
f

(
1 +

√
5d2 +

5d2

3

)
exp

(
−
√
5d2

)
, (5)

where σ2
f is the signal variance and

d2 =

D∑
i=1

(θi − θ′i)
2

l2i
.

We train the GP on the latest set of observations Dn by
maximizing the log marginal likelihood

log p(y | {θn}Nn=1) =− 1

2
yT

(
K + σ2

εI
)−1

y

− 1

2
log|K + σ2

εI|−
N

2
log 2π

(6)

during the GP update step (Line 8 of Algorithm 1). We
use gradient-based (L-BFGS-B) multi-start optimization to
optimize over the full set of GP parameters consisting of
the likelihood variance σ2

ε and the Matern52 kernel hyperpa-
rameters which include the lengthscales Λ = [l1, l2, . . . , lD]
and signal variance σ2

f , training a new GP each time the
dataset D is updated. In all BayesOpt experiments, we use a
minimal initial dataset size of D+1, where D is the number
of dimensions in θ.

2) Acquisition Functions: The acquisition function bal-
ances the trade-off between exploring input regions where
there is high uncertainty about the objective function and
“exploiting” input regions where the surrogate model predicts
high objective function values. This balance is crucial to effi-
ciently find the global optimum of the objective function with
as few evaluations as possible. We consider two common
acquisition functions, namely the Upper Confidence Bound
(UCB)

α(θ) = µ(θ) +
√
κσ(θ) (7)

and the Expected Improvement (EI)

α(θ) = σ(θ) [vΦ(v) + ϕ(v)] ; v =
F − µ(θ)

σ(θ)
, (8)

where F is the best objective function value so far. Φ(·)
and ϕ(·) are the cumulative density function and probability

density function of the normal distribution, respectively.
UCB (Equation (7)) is the function representing some scalar
(i.e., κ) number of standard deviations σ(θ) above the mean
function µ(θ) of the GP predictive posterior (Equation (3))
and σ(θ) is the corresponding standard deviation derived
from predictive posterior at θ (Equation (4)). As the name
suggests, EI takes an expectation of improvements (positive
changes in function value) over multiple surrogate model
posterior samples at a given parameter configuration θ, for
surrogate models with Gaussian likelihoods, this simplifies to
the form presented in Equation 8. In this work, we employ
the Log Expected Improvement (LEI) [11], an EI variant
particularly well-suited for high-dimensional problems.

D. Few-parameter Control Policy

To perform policy evaluation (Line 4 of Algorithm 1), we
require an efficient mapping from policy parameters θ ∈ RD

to a sequence of H , U -dimensional pressure commands
{ut}Ht=1. One potential method is to allocate a single “free
parameter” to each degree of freedom. For a task horizon
H = 5 on the soft robot, this translates to 60 parameters
because we need a 12 DOF pressure command at each
time step in the task horizon. However, using a GP as a
surrogate model imposes restrictions both on the size of the
training data D and the dimensionality of the parameter space
RD. In fact, for computational feasibility, the recommended
number of dimensions in θ is D < 20 [12]. Various
strategies have been presented in previous works to reduce
the dimensionality of the control space when using GP-based
BayesOpt. [8] discretized the continuous parameters of a
bipedal robot’s leg joints into three states—flex, hold, and
extend—before fine-tuning a finite-state machine over these
states using BayesOpt. Similarly, [13] confined the actuation
of each leg of a spider robot to five discrete settings.

Adopting a parallel strategy, we discretize our soft robot’s
command pressures into P distinct values spanning from
minimum to maximum pressures. Under the discretization P ,
we generate the set of all possible actions AP = {ui}i∈I
with I ⊂ N serving as the index set. Our control policy,
π ◦ g, is defined in this indexed space, mapping parameters
θ ∈ RD to an action sequence within AP . Here, g : θ → IH

is a transformation that converts the continuous parameters
into H indices from the set I. Unlike the “free parameter”
setting, our index set control policy only requires D = H
parameters.

The problem of choosing a sequence of H action indices
from a set of M = |AP | actions has MH possible solutions
(i.e., action sequences). We condense the size of this search
space by pairing pressure chambers such that we let ρi =
ρmax − ρj for a given antagonistic pair (ρi, ρj) ∈ u on our
large scale soft robot (See Figure 1). This reduces the overall
degrees of freedom from U = 12 to U = 6. However,
evaluating all action sequences on the physical soft robot
to find the most performant one is still impractical even for
small values of P . As such, we employ BayesOpt to effi-
ciently search for “objective-maximizing” policy parameters
in a handful of trials.

Fig. 2: The simulated version of the physical robot. Each
continuum joint is approximated by individual disks that are
connected by universal joints with springs and dampers con-
nected in parallel, shown in green. Compressive antagonistic
forces from pneumatic actuators are applied between disks,
along the x and y axes, shown in red and blue, respectively.

IV. SIMULATION EXPERIMENTS AND RESULTS

A. Simulation Description

We use MuJoCo [14] to simulate the physical soft robot for
the simulation experiments. We approximate each continuum
joint with a series of thin disks, as shown in Figure 2. We use
the simulator to evaluate the performance of our BayesOpt
pipeline, run ablation studies, and compare different policy
optimization approaches.

Below, we detail dynamic tasks that leverage the flexible
characteristics of the soft robot, but also showcase the dif-
ficulty of finding effective mappings between control inputs
and effective performance.

1) Throwing Task: For this task, we attach a prismatic
gripper to the simulated robot, allowing it to hold and
release a 0.25 kg “life-size” object. We include an additional
parameter tR ∈ [1, . . . ,H], which corresponds to the release
time of the cube and set up an objective function

J(θ) =

tR∑
t=1

∥ẋt∥+ 1H(t) ·Dcube, (9)

where ẋt corresponds to the end-effector velocity and Dcube
is the displacement in meters of the thrown object from
the base of the robot. 1H(t) is an indicator function which
returns 1 when t = H and zero elsewhere.

The soft robot starts each trial with the object attached to
the end-effector (Figure 3a), performs the prescribed pressure
commands, and releases the object when time step t = tR
is reached (Figure 3b). We use BayesOpt to find policy
parameters θ = [θ1, . . . , θH , tR] that maximize Equation (9).

2) Hammering task: To set up a hammering task, we
attach a 2kg mass to the tip of the robot to use as the
“hammer” and place a force sensor (diameter = 0.5 m)
near the simulated soft robot at a fixed Cartesian position
g = [−0.5, 0.5, 0.0]. To activate the sensor as shown in
Figure 4b, the robot has to exert a minimum force of 5N.
For this task, the objective function

J(θ) =

H∑
t=1

mẋz
t + Ft − 1t0:H(t) · ∥xt − g∥2 (10)

(a) (b)

Fig. 3: Throwing task: The robot starts with the gripper
holding the object 3a), generates high end-effector velocity,
and has to release the object at the right time 3b) to throw
successfully.

(a) (b)

Fig. 4: Hammering task. Starting from the equilibrium state
(Figure 1), the robot has to “wind-up” enough energy 4a) to
activate the touch force sensor 4b).

is a cumulative sum of the vertical momentum of the hammer
mẋz

t and the measured impact force Ft for t < t0. When
t ≥ t0, we add a Euclidean distance between the hammer
and the force sensor, encouraging the robot to make contact
with the sensor. We found t0 = 0.7H to work well in our
experiments.

B. Experiment Setup

In this section, we introduce alternative global optimiza-
tion strategies to compare with our BayesOpt approach: the
Cross Entropy Method (CEM) [15] and Random Search.
These methods are configured as follows:

1) CEM: We set the population size to 50 trials and the
elite percentage to 20%. To determine the initial population
distribution parameters, we randomly sample D + 1 trials,
compute a sample mean and artificially set the variance to
cover all possibilities for θ in RD.

2) Random Search: Similar to CEM, Random Search
searches through a population of 50 trials at each optimiza-
tion step. Unlike BayesOpt which has access to a surrogate
model for the objective, both CEM and Random Search have
to evaluate all candidates in the population on the robot.

We focus on the pressure command discretization hyper-
parameter P . In general, higher P allows for more granular
pressure commands and may result in the discovery of
better control sequences u1:H . However, the size of the
policy parameter search space MH (where M = |AP |) also
increases greatly. For all experiments, we set a task horizon
of H = 10 over a period of 5 seconds. The transformation g

Trials P = 2 P = 5 P = 7 P = 10

BayesOpt-UCB (κ = 0.9) 100 28.53± 4.03 25.96± 2.86 21.84± 7.43 21.24± 6.14
500 34.18± 5.42 29.09± 3.66 26.02± 7.86 28.44± 6.0

BayesOpt-LEI 100 30.37± 6.86 30.35± 6.55 32.21± 3.71 31.51± 4.54
500 37.7± 1.68 38.29± 2.58 40.89± 1.38 40.17± 1.83

CEM
100 28.94± 2.76 20.73± 0.92 19.72± 1.99 20.63± 2.06
500 33.65± 1.79 24.03± 2.63 22.73± 2.79 22.87± 3.42
10K 41.94± 1.9 38.93± 1.9 36.94± 2.76 35.41± 2.41

Random Search
100 27.44± 1.35 22.13± 1.76 19.17± 1.8 20.61± 3.25
500 30.35± 1.84 23.84± 1.69 22.33± 1.07 22.27± 1.92
10K 34.13± 1.47 28.83± 1.46 26.03± 0.49 26.63± 2.96

TABLE I: Simulated throwing performance — Best solution so far, averaged across 5 random seeds. The top three methods
for each discretization setting P , are marked in bold.

Trials P = 2 P = 5 P = 7 P = 10

BayesOpt-UCB (κ = 0.9) 100 1.14± 0.48 1.34± 0.62 2.59± 1.02 1.6± 1.29
500 1.78± 0.4 2.55± 0.71 2.72± 1.06 2.28± 0.91

BayesOpt-LEI 100 2.57± 0.67 1.92± 0.94 2.62± 0.96 2.84± 0.83
500 3.39± 0.37 4.22± 1.1 3.53± 0.19 3.54± 0.42

CEM
100 1.18± 0.47 1.14± 0.15 1.16± 0.18 1.16± 0.32
500 1.49± 0.27 1.38± 0.27 1.3± 0.29 1.23± 0.31
10K 2.17± 0.8 2.03± 0.6 2.34± 0.64 2.17± 0.54

Random Search
100 1.44± 0.62 1.14± 0.14 1.15± 0.07 1.08± 0.12
500 2.03± 0.22 1.44± 0.35 1.21± 0.16 1.24± 0.13
10K 3.0± 0.54 2.44± 0.23 2.37± 0.08 2.28± 0.3

TABLE II: Simulated hammering performance — Best solution so far, averaged across 5 random seeds. The top three
methods for each discretization setting P , are marked in bold.

scales the parameter values to the range [0,M], and “floors”
to the nearest integer, yielding an index from the set I.

C. Results
Table I and Table II present performance and sample-

efficiency comparisons between BayesOpt, CEM, and Ran-
dom Search. We observe that BayesOpt-UCB and BayesOpt-
LEI perform comparably or surpass CEM and Random
Search, particularly for limited-data scenarios (100 and 500
trials). For P = 2, all methods yield similar performance
after 100 trials in the throwing task. This is possibly due
to there being many sub-optimal solutions. However, the
hammering task is less forgiving and mainly rewards contact
between the robot and the force sensor. For this task,
BayesOpt with LEI is superior. As P increases, we see
the benefit of the LEI acquisition function being able to
efficiently explore in high dimensions as highlighted in [11].
This suggests that LEI is well-suited for optimizing high-
dimensional control problems in this domain. We found that
UCB acquisition (with κ = 0.9) function also performs
reasonably well across all settings of P for both tasks. The
higher value for κ improved exploration but also increased
the standard deviation in performance. A video showing the
final policies for throwing and hammering in simulation can
be seen at https://youtu.be/OHcxJl7rC4E.

D. Reinforcement Learning Experiments
The absence of rich state information makes applying

traditional feedback control approaches, including reinforce-
ment learning (RL), particularly challenging in this setting.
Nonetheless, we investigated the use of the recent REDQ
[16] agent, a data-efficient, model-free RL algorithm.

For the REDQ agent, we provided end-effector velocities,
positions of task-relevant objects, and step-wise rewards
derived from the objective function. Both the policy and critic
use a two-layer neural network with a hidden size of 256.
We use an ensemble size of 2 for the critic. We use a high
Update-To-Data (UTD) ratio of 16, and, for fair comparison,
provided 2500 transitions (250 trials) as pre-training data.

Our findings (Table III) indicate that REDQ struggles to
learn effective policies for both dynamic tasks when given a
limited data budget and restricted state information.

The results for simulated experiments show that BayesOpt
is a viable strategy for controlling soft robots in dynamic
task scenarios where the robot dynamics are complex. Its
sample efficiency minimizes the required number of physical
trials, preserving robot integrity and making BayesOpt highly
attractive for real-world soft robot applications.

V. REAL-ROBOT EXPERIMENTS

A. Hardware Setup

We simplified the hardware setup by not attaching a grip-
per or object, focusing on maximizing the tip velocity over a
five-second trajectory instead. While this is not equivalent to
throwing, the tip velocity should correlate with the velocity
imparted to an object when thrown, allowing us to validate
whether BayesOpt can find an effective policy on hardware.
We measured the tip position and velocity using an HTC Vive
Tracker attached via a blue 3D printed fixture (see Figure
1). For safety of the robot, we set nominal pressures for all
twelve pressure commands to lift the robot tip away from the
base. Any commands generated by BayesOpt or randomized
policies were added to these nominal pressures. Additionally,

https://youtu.be/OHcxJl7rC4E

Trials Without Approximate Joints With Approximate Joints
Throw Hammer Throw Hammer

250 14.78± 2.94 0.12± 0.07 15.72± 2.77 0.24± 0.21
500 27.36± 0.86 1.41± 0.13 30.35± 1.81 2.1± 0.42
10K 33.02± 0.98 2.34± 0.06 37.72± 2.22 3.12± 0.07

TABLE III: Simulated results for the REDQ agent with and
without the presence of approximate joint state information
— Best solution so far, averaged across 5 random seeds.

BayesOpt only varied the pressure in steps of up to 30 kPa,
even though the maximum available pressure was around
205 kPa. This constraint limited potential velocities but still
allowed the robot to achieve tip velocities over 4 m/s.

Due to the complexity of running randomized trajectories
at high speed on hardware, we only allowed BayesOpt to
execute 12 random policies for each acquisition function
(LEI and UCB), before executing 60 iterations in each case.

B. Hardware Experiment Results

To successfully maximize the robot tip velocity, BayesOpt
has to find pressure commands within AP that are temporally
correlated, (i.e. higher velocities are only possible by storing
energy and then releasing it over the five second window).

The UCB acquisition function produced a better overall
policy than LEI, though both significantly increased tip
velocity compared to random policies. Figure 5 shows the tip
velocity over time for a random policy, the best LEI policy,
and the best UCB policy, with the UCB policy achieving over
4 m/s. A video of the UCB optimization trial is available at
https://youtu.be/OHcxJl7rC4E.

Fig. 5: Tip velocities that resulted from using BayesOpt-LEI,
BayesOpt-UCB, and a random policy.

VI. CONCLUSION

In addition to increased load-bearing capacity, large-scale
soft robots also offer inherent advantages in terms of flexibil-
ity, compliance, and impact-resistance for challenging tasks
in complex environments. Although these properties make
them capable of dynamic maneuvers, inherent modeling

difficulties present hurdles for real-world deployment. In
this work, we have demonstrated a Bayesian optimization
(BayesOpt) approach to efficiently learn dynamic, high-
dimensional behaviors from simple, low-dimensional con-
troller parameterizations for a large-scale soft robot arm. We
bypass explicit kinematic and dynamic modeling, and instead
focus directly on optimizing task performance.

We compare against other control approaches which yield
good performance when plenty of robot data is available.
However, data-efficiency is a high priority in soft robots as
the dynamics can exhibit variations and uncertainties over
extended use. Our results show that BayesOpt excels in this
low-data regime, where precise robot dynamics models are
unavailable. Moreover, the simulation results translate well
onto the physical soft robot, demonstrating that BayesOpt
is able to maximize the tip velocity with only a handful of
trials as training data.

REFERENCES

[1] X. Li, H. Yue, D. Yang, K. Sun, and H. Liu, “A large-scale inflatable
robotic arm toward inspecting sensitive environments: Design and
performance evaluation,” IEEE Transactions on Industrial Electronics,
2023.

[2] M. W. Hannan and I. D. Walker, “Kinematics and the implementation
of an elephant’s trunk manipulator and other continuum style robots,”
Journal of Robotic Systems, vol. 20, no. 2, pp. 45–63, 2003.

[3] D. Trivedi, A. Lotfi, and C. D. Rahn, “Geometrically exact models for
soft robotic manipulators,” IEEE Transactions on Robotics, vol. 24,
no. 4, pp. 773–780, 2008.

[4] S. Grazioso, G. Di Gironimo, and B. Siciliano, “A geometrically exact
model for soft continuum robots: The finite element deformation space
formulation,” Soft robotics, vol. 6, no. 6, pp. 790–811, 2019.

[5] C. C. Johnson, T. Quackenbush, T. Sorensen, D. Wingate, and M. D.
Killpack, “Using first principles for deep learning and model-based
control of soft robots,” Frontiers in Robotics and AI, vol. 8, 2021.

[6] S. Luo, M. Edmonds, J. Yi, X. Zhou, and Y. Shen, “Spline-based
modeling and control of soft robots,” in IEEE/ASME International
Conference on Advanced Intelligent Mechatronics. IEEE, 2020, pp.
482–487.

[7] R. L. Truby, C. Della Santina, and D. Rus, “Distributed proprioception
of 3d configuration in soft, sensorized robots via deep learning,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 3299–3306, 2020.

[8] R. Calandra, A. Seyfarth, J. Peters, and M. P. Deisenroth, “Bayesian
optimization for learning gaits under uncertainty: An experimental
comparison on a dynamic bipedal walker,” Annals of Mathematics
and Artificial Intelligence, vol. 76, pp. 5–23, 2016.

[9] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. MIT Press, 2006.

[10] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian
optimization of machine learning algorithms,” Advances in Neural
Information Processing Systems, vol. 25, 2012.

[11] S. Ament, S. Daulton, D. Eriksson, M. Balandat, and E. Bakshy,
“Unexpected improvements to expected improvement for Bayesian
optimization,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

[12] P. I. Frazier, “A tutorial on Bayesian optimization,” arXiv preprint
arXiv:1807.02811, 2018.

[13] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can
adapt like animals,” Nature, vol. 521, no. 7553, pp. 503–507, 2015.

[14] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[15] Z. I. Botev, D. P. Kroese, R. Y. Rubinstein, and P. L’Ecuyer, “The
cross-entropy method for optimization,” in Handbook of statistics.
Elsevier, 2013, vol. 31, pp. 35–59.

[16] X. Chen, C. Wang, Z. Zhou, and K. Ross, “Randomized ensembled
double q-learning: Learning fast without a model,” arXiv preprint
arXiv:2101.05982, 2021.

https://youtu.be/OHcxJl7rC4E

	Introduction
	Hardware Description
	Robot Control using Bayesian Optimization
	Setting
	Problem Formulation
	Bayesian Optimization based Control
	Gaussian process Surrogate Model
	Acquisition Functions

	Few-parameter Control Policy

	Simulation Experiments and Results
	Simulation Description
	Throwing Task
	Hammering task

	Experiment Setup
	CEM
	Random Search

	Results
	Reinforcement Learning Experiments

	Real-robot Experiments
	Hardware Setup
	Hardware Experiment Results

	Conclusion
	References

