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Entropic order

Yiqiu Han1, Xiaoyang Huang1, Zohar Komargodski2, Andrew Lucas 1 &
Fedor K. Popov2

Ordered phases of matter, such as solids, ferromagnets, superfluids, or
quantum topological order, typically only exist at low temperatures. Despite
this conventional wisdom, we present explicit local models in which all such
phases persist to arbitrarily high temperature. This is possible since order in
one degree of freedom can enable other degrees of freedom to strongly
fluctuate, leading to entropic order, whereby typical high energy states are
ordered. Our construction, which utilizes interacting bosons, avoids existing
no-go theorems on long-range order or entanglement at high temperature.We
propose a simple model for high-temperature superconductivity using these
general principles.

Statisticalmechanics is the theoryof simple collective phenomena that
arise out of many-body physical systems. The most striking phenom-
enon is that of a phase transition: as a parameter—which we take here
to be temperature T—is tuned beyond a critical value Tc, the macro-
scopic phase of matter abruptly changes. For example, when solid ice
is heated above Tc = 0 °C, it abruptly melts into liquid water.

Here, the low-temperature phase is more ordered than the high-
temperature phase. Solid ice forms a crystal and spontaneously breaks
translation and rotation symmetries: the crystalline lattice has a spe-
cific orientation, and the atoms prefer to be in specific places relative
to others, over arbitrarily long length scales. In liquidwater, there is no
long-range order: translation and rotation symmetry are restored.
Breaking these symmetries makes ice an ordered phase and water a
disordered phase.

In thermodynamics, systems minimize the free energy

F = E ! TS, ð1Þ

where E denotes energy, T temperature, and S entropy. If we cross a
phase transition from A to B at some temperature Tc (in this paper,
other external parameters, e.g., volume, are fixed), the high-
temperature phase has higher entropy at T > Tc. This is readily seen
from the lawsof thermodynamics, which imply that F = minðFA, FBÞ and

S= !
∂F
∂T

: ð2Þ

Entropy is usually associated with disorder, so we expect the dis-
ordered phase at high T.

But sometimes, the ordered phase is at high temperature. This is
because the ordered phase can have higher entropy, however unlikely
it sounds. We will say that such a phase has entropic order. Experi-
mental realizations include crystalline ordering in the Rochelle salt1

and inverse melting2,3; see also refs. 4,5. But the most famous example
is the Pomeranchuk effect in 3He: atT < 10−7 K (and 30 atmpressure)we
find a liquid, while for 10−7 K < T < 1 K we find a solid6. When the atoms
lock into a crystal, atomic isospin degrees of freedom can freely fluc-
tuate, while they cannot in the liquid. By sacrificing the translational
entropy and forming a crystal, we overcompensate with extra isospin
entropy. Analogous phenomena have also been found in magic-angle
graphene7. A somewhat related mechanism at low temperatures is
known as order by disorder8.

In all of these examples, upon sufficiently heating the system, one
again finds a disordered phase. Under seemingly mild conditions,
which we review in the Supplementary Material (SM), one can even
prove that the high-temperature phase of any discrete lattice model
must be disordered and have no quantum entanglement9,10. At the
same time, certain quantum field theories order at arbitrarily high
temperature11–21 (closely related constructions using the AdS/CFT
correspondence appeared in refs. 22–26, and some nonlocal theories
were considered in refs. 27,28).

It is an outstanding question whether or not such an order is
possible in simple lattice models. What is the physical mechanism for
it? If it is possible to indeed avoid the no-go theorems9,10 on high-
temperature order in lattice models, explicit models could enable
more faithful simulations of the unconventional quantum field the-
ories (QFTs) described above, and perhaps even lead to experimental
realizations of high-temperature entropic order.
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We will answer the above questions, presenting explicit models
with order as T → ∞, both in lattice models and field theory. Illustrative
examples include high-temperature ferromagnets, solids, superfluids,
quantum topological order, and superconductivity. There is a unifying
principle behind all of our examples: interacting bosons have an
unbounded number of fluctuations, which are enhanced by the exis-
tence of order in a second degree of freedom, e.g., spins. The bosonic
entropy overcompensates for the reduced spin entropy due to
ordering, and we find that the spins can order in most states at fixed
(high) energy. This is why we adopt the terminology entropic order.
We show that thismechanismunderlies high-Torder in the field theory
models mentioned above. We emphasize the toy models for very high
temperature superconductivity, which may guide a search for this
long-sought phenomenon.

Let us briefly recall basic statistical mechanics, using a classical
example for illustration (details of both classical and quantummodels
are in the SM). Consider a two-dimensional square lattice, where at
every vertex v we choose to put nv ∈ {0, 1} particles. The collection of
all n = {nv} is called a microstate. In statistical mechanics, the prob-
ability of observing a particular microstate at temperature T = 1/β is

PðnÞ=
e!βHðnÞ

Z ðβÞ
ð3Þ

where H(n) is the energy (Hamiltonian) of the microstate, and the
partition function

Z ðβÞ=
X

n
e!βHðnÞ = e!βFðβÞ

ð4Þ

both normalizes the probability distribution and defines the free
energy F. A system is amany-body system ifH(n) can be expressed as a
sum of terms, each of which only depends on a finite number of nv,
which we take here to be nearest-neighbors on the lattice.

A famous illustrative example of how phase transitions usually
arise is the lattice gas29

H =U
X

u$v
nunv ! μ

X

v
nv, ð5Þ

where u ~ v denote nearest neighbors on the lattice. Here nu ∈ {0, 1}.
(This model is also equivalent to the Ising anti-ferromagnet in a
constant magnetic field.) Let us consider 0 ≤ μ ≤ 4U, where at low
temperatures, the repulsion dominates over the chemical potential.
Then the ground states are a checkerboard, where we pick a sub-
lattice with n = 1. These two states, corresponding to the two
sublattices, maximize the number of occupied sites, and thus μ∑n,
while avoiding any occupied nearest neighbors. The two checker-
board states spontaneously break translation symmetry and are
transformed into each other if we shift by one lattice site. This is a
solid phase. By contrast, as T → ∞, the ensemble (3) is uniform:
PðnÞ= 2!L2 . Here L is the number of vertices along a side of the
square. This ensemble is disordered: all configurations are equally
likely. In fact, this last statement is true at T = ∞ (β = 0)
independently of H, since all n are valid configurations. This is the
heart of a no-go theorem30,31 on entropic order as T → ∞ (see SM).
Indeed, many familiar systems observed in nature are disordered at
high T.

Forμoutside the range [0, 4U], themodel has nophase transitions
and the zero-temperature ground state is unique; all sites either have
n = 0 (if μ < 0) or n = 1 (if μ > 4U).

Results
We are going to explore how the no-go theorem above canbe avoided.
Clearly, this is only possible if the thermal distribution (3) does not

look uniform as β → 0. On the L × L square lattice, one way to achieve
this is if there are an infinite number of microstates: e.g.,
nv∈ {0, 1, 2,…} can take any non-negative integer value. Just as there is
not a uniform distribution over the integers, a uniform β = 0 ensemble
will then not exist. We choose

H =U
X

u$v
n2
un

2
v +
X

v
nv: ð6Þ

Note the similarity with (5) where we have fixed μ = −1; indeed, we are
choosing to measure energy scales (T, U) relative to ∣μ∣. Our model (6)
is well defined; it has finitely many states n obeying H(n)≤E for any
finite E. The repulsion U between particles at adjacent sites can grow
slower than quadratically (but faster than linearly) in the nu, without
changing the conclusions.

Intuitively, as β → ∞, the dominant states in the thermal ensemble
will have nv = 0 on most sites, since each particle costs energy. For a
large but finite β≫ 1, some finite fraction ~ e−β of sites will be occupied,
most with a single particle. Since this fraction of sites is small, the
occupied sites can essentially be drawn randomly, so there is no long-
range order. This is a gas phase.

We now claim that for sufficiently small β < βc, the model is an
entropic ordered solid. To justify this claim, notice that if one site is
occupied but none of its neighbors are, the typical number of par-
ticles !n1 obeys β!n1 $ 1, or !n1 $ T . In contrast, if two adjacent sites
both have !n2 particles, β!n4

2 $ 1 or !n2 $ T 1=4. If we consider the
checkerboard arrangement from before, we can occupy half of the
sites leading to partition function !nL2=2

1 $ TL2=2, which is much larger
than !nL2

2 $ TL2=4 if we consider the disordered state. This suggests
that the dominant contribution to Z(β) comes from checkerboard-
like states for sufficiently small β. Therefore the high-temperature
phase is a solid phase that spontaneously breaks the lattice trans-
lational symmetry.

An analytic formula for Z(β) is not known to us, but we can
deduce the phase diagram by numerical Markov Chain
simulations32,33, using a classical Gibbs sampler to (approximately)
sample microstates n with probability (3). The results are sum-
marized in Fig. 1a, where typical states clearly are disordered at low
temperature and ordered at high temperature, with the order
manifesting in the anticipated checkerboard pattern. In statistical
physics, we can more quantitatively diagnose the presence of order
by calculating the order parameter

Δ=
1
L4

XL

x, y= 1

ð!1Þx + ynðx, yÞ

 !2* +

=
hðNA ! NBÞ

2i
L4

: ð7Þ

which counts the imbalance in total particles occupying the two pos-
sible checkerboards, parameterized by whether x + y is an even (A
sublattice) or odd (B sublattice) integer. The factor L−4 in front ensures
that Δ > 0 as L → ∞ in a solid phase, while Δ = 0 as L → ∞ in a disordered
phase. Figure 1b demonstrates that Δ takes an L-independent value for
β ≲ βc ≈ 0.19 at U = 1, suggesting that βc ≈ 0.19 is the critical tem-
perature separating order and disorder. We expect that the uni-
versality class of this transition matches the two-dimensional Ising
model, which we confirm by a standard scaling analysis in Fig. 1c
(see SM for details).

An interesting limit that we can say more about is to take U → ∞
with fixed β. This is a variant of the hardcore lattice gas, which is
typically defined as follows: lettingnu∈ {0, 1}34,35, wewish to restrict the
configuration space only to configurations where nunv = 0 for any pair
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of adjacent sites u ~ v. Then we find

Z =
X

fnug with nunv =0 if u$v

z
P

u
nu =

XL2=2

M =0

FMz
M ð8Þ

where z = eβμ. Notice that L2
2 is the maximal number of occupied sites.

We have defined FM as the number of ways to occupy M sites on the
L × L lattice obeying the constraint. The model (8) is the U → ∞ limit of
the model (5).

If μ > 0, then the low temperature phase (z → ∞) is a solid and the
high temperature phase (z → 1) is a gas. If μ < 0, there is a gas at all

temperatures. The phase transition at μ > 0 on the square lattice is in
the Ising universality class and occurs at z ≈ 3.7934,36.

Nowwe return to theU→∞ limit of ourmodel (6). Becausewe are
no longer restricted to having 0 or 1 particles per site, we now find

Z ðβÞ=
XN2=2

M =0

FM e!β + e!2β + % % %
! "M

=
XN2=2

M =0

FM

ðeβ ! 1ÞM
: ð9Þ

We see that the phase diagram is exactly flipped relative to the stan-
dardhardcore lattice gas: now z = ðeβ ! 1Þ

!1
is small at low temperature

(β → ∞), and large at high temperature (β → 0). Therefore, the model

Fig. 1 | Phase diagram and finite-size scaling of the classical bosonic lattice gas.
a The phase diagram of the classical bosonic lattice gas (6). We choose two points
T = 1/β = 2 and T = 20 and show the corresponding late-time snapshots of themodel
on a 20 × 20 square lattice simulated using theMonteCarlo algorithm. The color on
each site denotes the number of particles on a site,with brighter color representing
more particles.bThe square of the particle density differenceof sublatticesA and B

vs β for different system sizes on a log-log scale. The black dashed line corresponds
to the theoretical prediction assuming a defect-free solid. c A finite-size scaling
analysis of the order parameter eΔ, defined analogously to Δ but with n(x, y) replaced
by 1! δnðx, yÞ , 0, is consistent with the Ising universality class. For all simulations, we
take the interaction strength U = 1, which gives the critical point Tc = 1/βc ≈ 1/0.19.
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describes a low-temperature gas and a high-temperature entropically
ordered solid.

The mechanism underlying the formation of this high-
temperature solid is that sacrificing the mobility of the particles and
placing them in a checkerboard pattern allows to gain entropy due to
the fluctuations on site. In fact, it is not necessary to allow an arbitrary
number of particles at each site for this mechanism to work! If we
denote the maximum allowed number of particles at each site by K, so
long as K≥4, we still find a solid at high temperature on the rectangular
lattice.

This model with finite K (and U = ∞) has finitely many states, but
still leads to high temperature order, because the configuration space
is not a direct product, due to the hardcore constraint. Similarly, one
can construct other examples of high-temperature order in systems at
a fixed charge sector. For example, themodel (8) at a fixed density will
have high-temperature order for sufficiently large density (that cor-
responds to fixed βμ with β → 0). We focus on realizing entropic order
without such constraints.

Lastly, wenote that there are infinitelymany terms (suchas ϵ
P

vn
k
v

for any k > 2) that one could add to (6) that change the phase diagram
as T → ∞. In this case, the entropic order will persist below a critical
temperature Tc, which diverges as ϵ → 0.

To illustrate that (6) is just one of many simple models with
entropic order, we now describe some exactly solvable models, start-
ing with a classical model of ferromagnetism at high T, based on the
Ising model. Let sv ∈ { ± 1} be spins sitting on the vertices of a square
lattice, while nuv ∈ {0, 1, 2, …} are bosons sitting on the edges; take

H =
X

u$v
a! bsusv
# $

ðnuv + 1Þ ð10Þ

wherea> b>0. Thismodel has a twofold degenerate ground statewith
su = 1 or su = −1. The model therefore has the usual magnetic order at
low temperatures.

We now evaluate the partition function by exactly summing over
nuv, and find

Z ðβÞ=
X

sv

X

nuv

e!βH =
X

su = ± 1

e!A +Bsusv
ð11Þ

where we define

e!2A =
e!2βa

1! e!βða+bÞ
# $

1! e!βða!bÞ
# $ , ð12aÞ

e2B = e2βb
1! e!βða+bÞ

1! e!βða!bÞ :
ð12bÞ

Equation (11) takes the form of an Ising partition function at effective
inverse temperature B(β). At β → ∞, B → ∞ and the model is in the
ordered phase, as anticipated. At β → 0+, we have that Bð0Þ= 1

2 log
a+b
a!b.

Using the exact critical temperature of the Ising model on the square
lattice, we conclude that if a

b < 1 +
ffiffiffi
2

p
, the system (10) has ferro-

magnetism (long-range order in s) at all temperatures. Indeed, one can
check thatB is amonotonically decreasing function of temperature, so
one never leaves the magnetically ordered phase. The high tempera-
ture magnetism arises from entropic order; when the discrete spins
form a ferromagnet, they enable vastly more fluctuations in the
number of bosons nuv. The reduction in entropy from the spins is
outweighed by the gain in entropy from nuv fluctuations. If one is only
interested in obtaining very high temperature ordered phases, it is not
necessary to have infinitely many bosons nuv ∈ {0, 1, 2, …}: limiting
nuv ≤ K is sufficient. The same comments apply for the
constructions below.

It is possible to use similar link bosons nuv to construct ordered
high temperature phases in a broad variety of other models. For
example, adding link bosons to a three-dimensional classical XY
model, we can obtain superfluidity at arbitrarily high temperatures.
Similarly, adding bosons to the four-dimensional toric code37, we can
construct examples of entropic topologically ordered states at high
temperature. This construction demonstrates a clear loophole in the
recent theorem that all quantum lattice models have no quantum
entanglement at sufficiently high T10. As in the classical setting, this
theorem assumed that the local Hilbert space was finite-dimensional,
an assumption violated by the bosons above. Details can be found
in the SM.

Models of entropic order also exist in continuous space, i.e., in
QFTs as first considered in ref. 38. To be able to push entropic order all
theway to infinite temperature inQFT, theQFThas to beUV-complete,
i.e., exist independentlyof anunderlying latticemodel. Our goal here is
to show that the QFTs of refs. 11,12,21 are entropically ordered at high
temperature: ordered states carry more entropy than the
disordered ones.

For simplicity, wewill focus onQFTs in2 <d< 3 spatial dimensions
(see SM for details). A similar, albeitmore complicated, analysis can be
carried out in d = 2 as well (the conclusions remain the same).

The model that we study contains a boson ψ and a vector of N
bosons ϕ with Lagrangian (in Euclidean signature)

L=
1
2
ð∂ψÞ2 +

1
2
ð∂ϕÞ2 +

λ
4N

ϕ2 ! ψ2
! "2

, ð13Þ

This model has local interactions, and the energy is bounded from
below. The classical Hamiltonian has a degeneracy of ground states
with ϕ2 = ψ2 but this degeneracy is lifted quantum mechanically11,12,21,
and there is a unique ground state at zero temperature in the full
theory. In fact, themodel (13) leads to an interacting conformal theory
at zero temperature. That conformal theory is multi-critical since
several relevant parameters are tuned to zero. We investigate the high
temperature behavior of the multi-critical fixed point, since that fixes
the high temperature behavior of the nearby ordered and disordered
zero temperature phases as well.

Our goal is to calculate the free energy of a configuration with
average field configurations !ϕ= ð!ϕ, 0, . . . , 0Þ and !ψ. Using standard
techniques of thermal field theory, in the large N limit, the answer is
given by

F
N

& !c1T
d + 1 + c2T

! 2
d!2 c3T

d!1 +ϕ2 ! ψ2
! " d

d!2 + % % % ð14Þ

where c1,2,3 > 0 are constants and ⋯ stand for terms which are sub-
leading at large N. F above still has a manifold of thermal minima
c3T

d!1 + !ϕ
2 ! !ψ

2 = 0. This degeneracy is resolved once one includes
further corrections in the 1/N expansion. The final answer is that11,12,21F
is minimized when !ϕ

2 = 0 and !ψ
2 = c3T

d!1. Since !ψ
2 >0, the Z2

symmetry ψ → −ψ of (13) is spontaneously broken at any T > 0. To
see that this ordered statemaximizes the entropy density, we calculate
it explicitly: at !ϕ=0,

S
N

= !
1
N

∂F
∂T

& '

!ϕ, !ψ
= ðd + 1Þc1T

d

!
T! d

d!2c2ðc3T
d!1 ! !ψ

2Þ
2

d!2

d ! 2
2!ψ2 + ðd2 ! d ! 2Þc3T

d!1
! "

:

ð15Þ

Indeed, ordering !ψ increases the overall entropy.
Entropic order as T → ∞ persists when the theory is deformed by

relevant perturbations. For example, adding ϵψ2 to (13) simply causes
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the same perturbation to (14); at large T, theminimumofF remains at
!ψ≠0. If irrelevant perturbations are added, the theory is not UV-
complete and therefore the question of high-temperature order is not
meaningful within the framework of QFT.

Now that we understand how to build quantum field
theories and lattice models with entropic order, we discuss a
model of high-temperature superconductivity. The standard
Bardeen–Cooper–Schrieffer (BCS) model for superconductivity39

contains a finite density Fermi surface of spin-12 electrons ψ↑,↓ with
an attractive two-body interaction, leading to a spontaneously
broken U(1) symmetry, measured by a non-vanishing order para-
meter Δ = 〈ψ↑ψ↓〉. At low temperatures relative to a cutoff energyω*,
which can be large compared to room temperature, we find super-
conductivity whenever the BCS gap equation (see SM) has a solu-
tion:

1
geff

= ν
Zβω*

0

dx
tanh 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + ðβΔÞ2

q& '

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + ðβΔÞ2

q , ð16Þ

where ν is the fermionic density of states, and geff is the effective
interaction strength. Regardless of the value of Δ, the integral above
goes to zero as β → 0. Therefore, at sufficiently high temperature, one
finds no solution if geff is temperature independent, and thus there is
no superconductivity at high temperature. Crucially, we can build a
model where geff(T) increases with temperature. Keeping details in
the SM,wewrite a theory ofN≫ 1 critical bosons coupled toN≫ 1 spin-12
fermions, similar to (13), but where ψ2 is replaced by ∣Δ∣2. We find
entropic order, which manifests in a geff which grows at higher tem-
perature. This temperature dependence of geff enables super-
conductivity for all βω* ≳ 1 (the effective field theory does not make
sense at higher temperatures). This is in contrast to the usual case,
where superconductivity persists up to βc $ ω!1

* e1=geffν≫ω!1
* , i.e., we

have found an exponential increase in Tc.

Discussion
Wehave described entropic order, whereby typical high-energy states,
of either classical or quantum systems, can exhibit long-range order
and/or quantum entanglement. This counterintuitive idea is possible
because sometimes ordering a subset of degrees of freedom enables
many more possible microstates for the rest.

Wehave demonstrated this concept for lattice gases that turn into
solids at high T, magnets that remain magnetic at high T, persistent
superfluidity, topological order, and high-Tc superconductivity.
Entropic order was also seen to explain the recent demonstration of
T → ∞ order in QFT.

An important ingredient in our construction of high-temperature
superconductivity was interacting bosons, which, under the circum-
stances we described, lead to entropically driven superconductivity.
This is in contrast to simply enhancing the effective zero-temperature
coupling40. It would be very interesting if such ideas were realizable.

Data availability
The numerical data generated in this study are provided in Supple-
mentary Data 2.

Code availability
The code used in this study are provided in Supplementary Data 1.
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