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Solute transport in a channel has important implications in industrial processes, biomechanics,
and drug delivery. When flow is driven down a channel by a pressure gradient, solute is spread
axially by shear and laterally by molecular di↵usion. The combination causes the e↵ective axial
di↵usivity to exceed the molecular di↵usivity, a phenomenon known as Taylor dispersion. Here we
show, however, that if the channel walls are permeable to the fluid but not to the solute, solute
in the channel can be consolidated, making the e↵ective axial di↵usivity negative, a phenomenon
we call “anti-dispersion.” We present a theoretical model, with numerical validation, to study anti-
dispersion, demonstrating that it occurs both with boluses of solute and with moving solute fronts.
We determine the conditions in which anti-dispersion exceeds dispersion: high dimensionless per-
meability, moderate dimensionless flow speed, and concentration gradients that are not too steep.
Our findings may inform understanding of biological circulation systems and design of systems for
controlling solute concentration, as in drug delivery and desalination.

Considering a bolus of solute moving through a
long, narrow channel in steady, pressure-driven, vis-
cous (Poiseuille) flow, Taylor [1] demonstrated that shear
spreads solute and generates sharp concentration gra-
dients perpendicular to the flow direction, which are
rapidly smoothed out by di↵usion across the channel’s
narrow width. The combination of shear and di↵usion
drives rapid mixing, increases entropy, and widens the
bolus more quickly than either process could do alone —
a phenomenon known as Taylor dispersion [1, 2]. The
rate at which a bolus spreads, or equivalently, the e↵ec-
tive di↵usivity, is increased by the greatest factor for a
low-di↵usivity, large-molecular-weight solute, which oth-
erwise di↵uses slowly. Taylor dispersion, in simplest
form, occurs in channels with impermeable walls.

However, solutes are often transported along channels
whose walls are semipermeable, blocking solute molecules
but allowing fluid to leak in or out of the channel, like
a sieve. For example, water purification and desalina-
tion depend on reverse osmosis through semipermeable
membranes [3, 4]. The phospholipid bilayers that consti-
tute most cell membranes typically block large molecules
but have embedded aquaporin proteins which allow wa-
ter to easily cross the membrane [5]. In capillaries, water
leaks through the walls into the surrounding tissue [6],
while cells and large molecules in the blood are retained.
Similarly, in perivascular spaces that surround blood ves-
sels in the brain, cerebrospinal fluid leaks into surround-
ing tissue but large particles do not [7, 8]. If fluid leaks
out through channel walls, flow speed within the chan-
nel drops as fluid moves downstream. The resulting ve-
locity gradient a↵ects solute transport and dispersion.
Although it is well known that a porous (not semiperme-
able) wall reduces Taylor dispersion [9], to our knowledge,
no study has discussed the potential for semipermeable
walls to concentrate and narrow a solute bolus.

In this Letter, we report a phenomenon opposite to
Taylor dispersion: for flow in a channel with semiper-
meable walls, a bolus can narrow and become increas-
ingly concentrated, so that the solute becomes less mixed

and its concentration less uniform. The e↵ective di↵usiv-
ity is negative, in contrast to ordinary di↵usivity, which
is prohibited from being negative by the second law of
thermodynamics. We derive a reduced-order model to
demonstrate this “anti-dispersion” e↵ect, and we validate
the model through three-dimensional simulations. We
also find that concentration gradients experience anti-
dispersion, as boluses do. We explore the range of condi-
tions in which anti-dispersion occurs. Our findings could
enhance studies of biological transport, microfluidic de-
vice design, and the development of medical applications,
such as the design of catheters for drug delivery.
We consider the flow in a narrow channel between two

infinite, parallel, semipermeable plates, as illustrated in
Fig. 1. We assume the flow to be laminar, steady, and
fully-developed. The channel has width 2h and length L.
We consider the case in which " = h/L ⌧ 1, so we can
determine the flow analytically using lubrication theory,
in which the continuity and momentum equations are
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where x and y are the axial and transverse coordinates, u
and v are the corresponding velocity components, p is the
pressure, and µ is the dynamic viscosity. The pressure is
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FIG. 1. A fluid-filled channel of length L, with semipermeable
walls at y = h and y = �h. Steady pressure p0 > 0 is applied
at the left end of the channel, driving axial flow within the
channel and driving fluid, but not solute, through the wall.
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FIG. 2. Dispersion and anti-dispersion of solute boluses in
channels (" = 0.002). a–b, With impermeable walls (B = 0),
the dimensionless pressure P drops linearly with dimension-
less position X, and the dimensionless axial mean velocity Ū
is uniform; over dimensionless time T , the profile of the di-
mensionless concentration C̄ of a bolus becomes wider and
shorter. c–d, With semipermeable walls (B = 2.3), both the
slope of P and value of Ū decrease with X; the profile of
C̄ becomes narrower and taller over time. See also Supple-
mental Video 1 [32]. e, The normalized maximum concentra-
tion C̄max decreases with time for B = 0 but increases with
time for B = 2.3. f, C̄max at T = 1.2 is large when B is
large and Pe is moderate. g–i, With semipermeable walls
(B = 1.3) and very slow (Pe = 0.14) or very fast (Pe = 71)
flow, the profile of C̄ widens over time. But with moderate
flow (Pe = 14), C̄ narrows over time. See also Supplemental
Video 2 [32].

p0 > 0 at the inlet and p = 0 at the outlet. The walls are
no-slip boundaries (uy=h = uy=�h = 0) but they allow
fluid to exit according to the Starling filtration law

vy=h = �vy=�h = Lp(p� pext) , (2)

where Lp is the hydraulic conductivity of the porous
wall (linearly proportional to the wall permeability) and
pext = 0 is the pressure external to the porous wall. We
neglect osmotic e↵ects.

Defining a characteristic velocity u0 = p0h"/(2µ) and
the dimensionless variables X = x/(h/"), Y = y/h, P =
p/p0, U = u/u0, and V = v/(u0"), Eqs. 1 and 2 lead to
P = � sinh(B(X�1))/ sinh(B), where the dimensionless
quantity B ⌘

p
3Lpµ/h/", which varies with the ratio

of the hydraulic conductivity of the leaky wall to that
of the channel itself, is an important parameter. The
corresponding velocity field is

U =
dP

dX
(Y 2 � 1) , V = � d2P

dX2
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Mathematical details are presented in the Appendix. De-
jam and Hassanzade [10] derived an analytical solution
that characterizes the e↵ect of a semipermeable wall on
dispersion, but the flow field considered in their model
is one-dimensional and thereby independent of the ax-
ial direction. Gri�ths et al. [11] considered axial flow
gradients, but in the absence of semipermeability.
The advection-di↵usion equation governing solute

transport in the channel is
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where C is the dimensionless solute concentration (0 
C  1), t is time, and D is the di↵usivity of the solute.
Defining the scaled time T = t/t0 = t/(h"�1u�1
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where Pe = u0h/D is the Péclet number, another impor-
tant dimensionless parameter (independent of B). Per-
forming a Reynolds decomposition, we let C = C̄(X,T )+
C 0(X,Y, T ) and U = Ū(X) + U 0(X,Y ), where C̄(X,T )
and Ū(X) are the cross-sectional averages of concentra-
tion and axial velocity, respectively. Considering times
t0 � h2/D, assuming that transverse solute transport is
dominated by di↵usion ("Pe ⌧ 1), and averaging both
sides of Eq. 5 leads to
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(6)
where F = 2/105 [11]. The third term in Eq. 6 describes
the enhanced di↵usion in the axial direction due to Tay-
lor dispersion [2], and the last term describes the solute
transport through the semipermeable walls.
At the semipermeable wall at Y = 1, the solute flux is

J = VY=1(C̄ + C 0)� 1
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, (7)

where VY=1 is the transverse flow velocity at the wall.
The solute flux at the wall at Y = �1 is given by a
similar expression. For a solute that cannot permeate
the wall, J = 0. Applying this condition to Eq. 6 and
assuming C̄ � C 0, we have
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If a bolus of solute (a localized region of high concen-
tration) is present, the last term in Eq. 8 is positive, act-
ing as a source that increases concentration. Meanwhile,
the second (advection) term narrows the bolus due to a
negative axial velocity gradient, as described by Eq. 3.
The third term accounts for Taylor dispersion, which
tends to broaden the bolus and reduce concentration.

We set zero concentration at the inlet (C|X=0 = 0) and
zero concentration gradient at the outlet (dC̄/dX|X=1 =
0), allowing solute e✏ux through pure advection. We
assume the initial concentration to have a Gaussian pro-
file, CT=0 = C0 exp(�(X �X0)2/(2�2)), where C0 = 1,
X0 = 0.2, and � = 0.09. Equation 8 is solved in the fre-
quency domain using a Laplace transform, and mapped
to the time domain using a numerical inverse Laplace
transform and a spectral method in space [12, 13].

When the wall is impermeable (B = 0), the pressure
gradient and axial velocity are uniform from inlet to out-
let (Fig. 2a). In that case, over time, the bolus’s width
increases and its maximum concentration decreases, both
due to Taylor dispersion (Fig. 2b). However, when the
wall is semipermeable (B = 2.3), the pressure gradient is
steeper near the inlet than near the outlet, causing a neg-
ative axial velocity gradient (Fig. 2c). In that case, over
time, the bolus’s width decreases and its maximum con-
centration increases (Fig. 2d), a behavior we call “anti-
dispersion.” Figure 2e shows that the maximum concen-
tration decreases over time when B = 0 but increases
over time when B = 2.3. Eventually, the bolus becomes
so narrow that dispersion overcomes anti-dispersion and
the peak concentration begins to drop again.

In both of those cases, we considered flows with Pe =
14, but the results depend on Pe as well as B. For ex-
ample, choosing B = 1.3 but considering very slow flow
(Pe = 0.14) or very fast flow (Pe = 71), we observed
boluses spreading over time, not narrowing (Fig. 2g,i),
while choosing a moderate flow speed (Pe = 14) lead to
anti-dispersion (Fig. 2h). Figure 2f shows how the max-
imum concentration C̄max at time T = 1.2 varies with
both Pe and B. Increasing B increases C̄max (promotes
anti-dispersion) because a leakier channel leads to flows
with steeper velocity gradients that compress the bolus.
Increasing Pe from values near zero to values of order
unity increases C̄max and promotes anti-dispersion, but
increasing Pe further decreases C̄max and hinders anti-
dispersion. That finding is consistent with Eq. 8: anti-
dispersion occurs when Pe is large enough for the velocity
gradient to be steep but not so large that Taylor disper-
sion overwhelms anti-dispersion. Our analytic model was
validated with numerical simulations (see the Appendix).

We now examine the case of a uniform boundary out-
flow speed VY=1 (instead of uniform hydraulic conduc-
tivity Lp). Assuming that the average concentration
profile is Gaussian with characteristic width �, we have
@2C̄/@X2 = �C̄/�2 at X = X0, where the concentration

is maximum. Equation 8 then becomes
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where D/DT is the material derivative and M =
�"��2Pe�1(1 + FŪ2Pe2) + VY=1. Peak concentration
decreases and the bolus widens when M < 0; peak con-
centration increases and the bolus narrows when M > 0.
The value of M depends on Ū(X) and �(X,T ). We con-

sider here M0 = �"��2
0 Pe�1(1 + FhŪi2Pe2) + VY=1,

which is independent of space and time, where �0 is

the width of the initial bolus, hŪi =
RX=1
X=0 Ū(X) dX

is the axial velocity averaged in the axial direction, and
VY=1 = B2

X=0/2. The first term on the right depends on
�, Ū , and Pe.
Alternatively, we can write Eq. 9 as
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where De↵/D = �Pe�2M/", is the ratio between the
e↵ective di↵usivity and the inherent di↵usivity of the
solute, where a negative value indicates anti-dispersion.
Again, we consider De↵0/D = �Pe�2

0M0/", which is in-
dependent of space and time.
If VY=1 is uniform, conductivity must vary spatially:

Lp(X) =
Lp|X=0

(B2
X=0/2)X

2 + (↵� 1�B2
X=0/2)X + 1

,

(11)
where ↵p0 is the pressure at the outlet (0 < ↵ < 1).
In this case, Lp increases withX, P is a parabolic func-

tion of X, and Ū is a linear function of X (Fig. 3a,b).
Figure 3c shows C̄max at T = 1.2 for di↵erent values of
B and Pe. The regime where anti-dispersion dominates
can be determined analytically by the sign of M and ap-
proximated by the sign of M0. The region in Fig. 3d
where M0 > 0 approximately overlaps the region where
anti-dispersion dominates. Figure 3e shows that C̄max in-
creases with �. Again, the region whereM0 > 0 in Fig. 3f
overlaps with the region where anti-dispersion dominates.
Finally, we move from boluses to examine the case in

which the concentration at the inlet is suddenly altered
according to a step function, as at the beginning of a
steady injection of solute, producing a moving concen-
tration front. With nearly impermeable walls (B = 0.1),
the profile of C̄ is smoothed over time but remains mostly
flat on both sides of the front (Fig. 4a). However, with
semipermeable walls (B = 3.2), the profile of C̄ curves
upward over time as solute accumulates near the front
(Fig. 4b). The peak concentration occurs at the front
and exceeds the inlet concentration. Figure 4c shows
how C̄max varies over time with di↵erent values of B,
remaining nearly constant when B is small but grow-
ing and saturating when B is large. Interestingly, the
largest values of C̄max far exceed those observed for bo-
luses (Fig. 2e). That observation is consistent with our
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FIG. 3. Dispersion and anti-dispersion in channels (" = 0.001)
with uniform outflow through the walls. a, If the wall’s con-
ductivity Lp(X) obeys Eq. 11, the outflow velocity VY =1 is
constant. Here, ↵ = 0.1. b, In this case, P is parabolic, and Ū
is linear. (c) C̄max at T = 1.2 is large when BX=0 is large and
Pe is moderate. To a good approximation, C̄max > 1 where
M0 > 0. d, The normalized e↵ective di↵usivity �De↵0/D is
large when BX=0 is large and Pe is moderate. To a good ap-
proximation, �De↵0/D > 1 where M0 > 0. e, C̄max is large
when � is large and Pe is moderate. To a good approxima-
tion, C̄max > 1 where M0 > 0. f, �De↵0/D is large when �
is large and Pe is moderate. �De↵0/D > 1 where M0 > 0.

finding, above, that anti-dispersion is stronger for wide
boluses (large �); the semi-infinite region of high con-
centration behind a moving front can be understood as
a very wide bolus. Large B consistently leads to large
C̄max, but for moving fronts, altering Pe has little e↵ect
(Fig. 4d). That observation is consistent with the fact
that Taylor dispersion has little e↵ect, since C is nearly
uniform except near the front. For some values of B, con-
centration gradients near the front become so steep that,
eventually, dispersion overcomes anti-dispersion and the
peak concentration begins to drop.

We have shown that solute traveling along a chan-
nel with semipermeable walls can become less mixed
over time, with high-concentration regions becoming
more concentrated and low-concentration regions becom-
ing less so. This “anti-dispersion” is possible because
semipermeable walls leak fluid but not solute. For a bo-
lus, anti-dispersion is strong when B is large (leakier,
longer, and narrower channels), the Péclet number Pe is
moderate, and concentration gradients are not too steep.
Anti-dispersion is driven by the axial velocity gradient
in the channel, which scales as B2Pe; therefore, its ef-

FIG. 4. Anti-dispersion of moving concentration fronts (" =
0.001). a, With nearly impermeable walls (B = 0.1), the
profile of C̄ is smoothed at the front over time but remains
flat elsewhere. b, In a leaky channel with semipermeable walls
(B = 3.2), the profile of C̄ curves upward over time. See also
Supplemental Video 3 [32]. c–d, C̄max at T = 1.2 increases
and saturates over time, growing more when B is larger but
showing little variation with Pe. A star marks the parameter
values considered in (b).

fects are negligible when axial transport is dominated by
di↵usion (Pe ⌧ 1). Its e↵ects are also negligible when
Pe � 1 because of strong Taylor dispersion.
We varied the permeability of the wall to achieve uni-

form fluid leakage along the channel (Figure 3a), enabling
us to derive an analytical expression for the e↵ective dif-
fusivity of a Gaussian-profiled bolus. When the e↵ec-
tive di↵usivity becomes negative, the bolus narrows and
becomes more concentrated (Figure 3d). Notably, the
maximum concentration increases with the characteristic
bolus width �, indicating that a broader bolus is more
prone to concentration than dispersion (Figure 3f). This
is consistent with our steady-injection study, where the
solute reaches a maximum width at steady state. For
solute fronts, anti-dispersion depends less on Pe because
the solute is already uniformly distributed in most places,
weakening dispersion.
We expect anti-dispersion to be observable with avail-

able materials and flow parameters. For example, a
membrane with 45-nm pores with wall permeability
5⇥10�7 m/Pa/s [14] would readily pass water molecules
(with a radius around 0.2 nm) but block solute molecules
with radius 100 nm, whose di↵usivity at room tempera-
ture is about 5.6 ⇥ 10�12 m2/s [15]. In a channel 5 mm
long and 20 µm wide with peak inlet velocity 10 µm/s,
B = 1.8 and Pe = 35, and we would expect to see anti-
dispersion, according to Fig. 2. Due to the higher Péclet
number, solutes with lower di↵usivity experience more
pronounced stretching and dispersion within the chan-
nel, making them more susceptible to dilution.
Anti-dispersion might be applied to drug delivery,

where precise control of concentration is essential [16, 17].
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For controlled drug release, Taylor dispersion can cause
premature release, but combining it with anti-dispersion
(by dynamically manipulating Pe) might help precisely
control the drug concentration during the injection. In
tumor therapy [18], anti-dispersion could reduce mixing
and dilution of the drug before it reaches the target site,
enhancing its e↵ectiveness. A typical microcatheter for
drug delivery has a radius of r ⇠ 0.5 mm (similar to the
channel width h we considered) and a length of L ⇠ 1000
mm [19], leading to a small aspect ratio of ⇠ 0.0005. Ac-
cording to Fig. 2f, when the catheter wall has a perme-
ability greater than ⇠ 1 ⇥ 10�7 m/Pa/s (corresponding
to B ⇠ 2), a drug bolus can be concentrated through
anti-dispersion during the injection at Pe ⇠ 10. The
Péclet number can be tuned by adjusting the injection
flow speed based on the di↵usivity of the specific drug.

Anti-dispersion might also be used to separate solutes
of di↵erent di↵usivities, causing some solutes to experi-
ence anti-dispersion while others are dispersed. For ex-
ample, to separate particles of sizes 0.1 µm and 1 µm [20],
which have di↵usivities di↵ering by orders of magni-
tude [15], we can maintain a moderate Pe (Fig. 2h) so
that the small particles undergo anti-dispersion while the
large, high-Pe particles disperse (Fig. 2i).

The ability to concentrate a solute is desirable in mi-
crofluidic applications spanning industrial, biochemical,
and medical settings. For example, increasing the con-
centration of a dilute solute could decrease the detec-
tion limit and increase the signal-noise-ratio in bioas-
say tests [21, 22], such as pregnancy and COVID-19
tests [23, 24]. A coronavirus particle has a diameter of
⇠ 100 nm, much larger than that of a water molecule,
making it possible to anti-disperse using a semipermeable
membrane in the assay. As the antigen solution moves
from the sample pad to the test line under capillary force,
the process can be modeled as a moving concentration
front (Figure 4d), where anti-dispersion occurs despite
the relatively high flow speed in the assay (⇠ 0.1 mm/s).

Existing approaches for concentrating solutes can be
divided into active techniques (manipulating particles or
species with an externally applied force, such as electric,
magnetic, acoustic, or optical) and passive techniques
(e.g., di↵usiophoresis, evaporation, or filtration). Here
we describe how a solute can be concentrated in certain
lateral-flow scenarios. The framework we present for pre-
dicting anti-dispersion can be used to design microfluidic
devices that concentrate a solute. Those devices typically
have a larger ✏ (⇠ 0.01) than catheters [14], implying
that a higher permeability (Lp > 1 ⇥ 10�6 m/Pa/s) is
required to anti-disperse a bolus there.

Many channels in biological systems have slippery
walls or are filled with porous material. In either case, the

shear in the flow is reduced, diminishing the e↵ect of Tay-
lor dispersion and thus promoting anti-dispersion. When
the channel is filled with porous material, both fluid and
solute must pass through small pores, and the shear is
determined by the characteristic width of these narrower
pathways, resulting in much weaker dispersion. On the
other hand, the hydraulic conductivity of a porous chan-
nel is smaller than that of an open channel, leading to a
higher value of B and thereby enhancing anti-dispersion.
Bounded by permeable tissue, a perivascular space sur-

rounding a penetrating artery in the brain is a pathway
for cerebrospinal fluid flow. In mice, the characteristic
width of such a perivascular space is ⇠ 5 µm, the length
is ⇠ 1000 µm, and the speed is ⇠ 1 µm/s [25]. Gaps in
the wall have width ⇠ 20 nm [26, 27], making it perme-
able to smaller solutes only. These parameter values are
likely within the regime of anti-dispersion. Measurement
of flow in these spaces using particle tracking velocime-
try is not currently feasible, however. Moreover, in vivo
measurement of wall permeability is prevented by the
optical di↵raction limit. However, small-molecule tracer
experiments are currently available, and using them to
quantify dispersion and anti-dispersion in a perivascular
space might reveal the permeability of its outer wall and
the velocity of the cerebrospinal fluid within [28, 29].
Our study has caveats. First, osmotic pressure — pro-

portional to the solute concentration [30] — has been
neglected in our model and in related studies [10]. This
neglect is justified when the osmotic pressure is much
smaller than the applied pressure driving the flow, par-
ticularly in cases involving dilute solutes, viscous flows,
or channels with high outlet resistance. Although devel-
oping a corresponding reduced model is challenging and
beyond the scope of this study, osmotic pressure should
be incorporated in a future study. Second, our model
considers a two-dimensional channel for simplicity. How-
ever, the model can be readily extended to other geome-
tries, such as circular or annular channels. It can also be
adapted to accommodate di↵erent boundary conditions.
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APPENDIX

1. Derivation of the reduced-order model

a. The flow field

Under lubrication theory, the pressure di↵erences in
the y direction are negligible in the two-dimensional
Navier–Stokes equations, leading to

@u

@x
+

@v

@y
= 0,

@p

@x
= µ

@2u

@y2
,

@p

@y
= 0, (12)

where u is the flow velocity in the axial direction (x), v
is the flow velocity in the transverse direction (y) and p
is the pressure. Solving Eq. 12 with a no-slip boundary
condition at the wall gives

u =
1

2µ

dp

dx
(y2 � h2), v =

1

µ

d2p

dx2 (h
2 y

2
� y3

6
) . (13)

The velocity at the permeable wall (y = h), according
to the Starling law and neglecting the osmotic compo-
nent, is given by v(y = h) = Lp(p � pext), where Lp is
the permeability of the outer wall, and pext is the pres-
sure outside the permeable wall. Combining the equa-
tions above, with an inlet pressure of p0 and an outlet
pressure of 0, and pext = 0, we have

Lpp =
h3

3µ

d2p

dx2 . (14)

For a tube with a length L, we have

p = p0
sinhB(1� x/L)

sinhB
, (15)

where B =
p
3kµ/h/".

We can express these equations in dimensionless form,
using the dimensionless quantities T = t/t0, X =
x/(h/"), " = h/L, Y = y/h, P = p/p0, U = u/u0,
V = v/(u0") (from the continuity equation). We define
p0 as p0 = 2µu0/h" = 2µv0/h"2, which ensures that a
prescribed pressure of p0 will drive a velocity of u0 at
the center line (y=0) of the tube when the outer wall is
impermeable. The dimensionless pressure distribution is

P = � sinh(B(X � 1))

sinh(B)
, (16)

and therefore the fully resolved velocity components are

U =
dP

dX
(Y 2 � 1), V = � d2P

dX2
(
Y 3

3
� Y ) . (17)

b. The advection-di↵usion equation

Within the tube, the governing advection-di↵usion equa-
tion is

@C

@t
+ u

@C

@x
+ v

@C

@y
= D(

d2C

dx2 +
d2C

dy2
) . (18)

Letting T = t/(h/u�1
0 "�1)=t/t0, this equation has the

dimensionless form

@C

@T
+ U

@C

@X
+ V

@C

@Y
=

1

Pe
("

d2C

dX2 +
1

"

d2C

dY 2 ) , (19)

where Pe = u0h/D is the Péclet number. This equation
is consistent with [31]. Using Reynolds decomposition,
we express the concentration and the axial velocity as
the sum of a mean term and a perturbation term,

C(X,Y, T ) = C(X,T ) + C 0(X,Y, T ) , (20)

U(X,Y ) = U(X) + U 0(X,Y ) , (21)

where the cross-sectional average of the perturbation
terms is zero.
For a two-dimensional rectangular channel, we have

Ū(X) = �2

3

dP

dX
, U 0(X,Y ) = �(

1

3
� Y 2)

dP

dX
. (22)

Equation 19 after the decomposition reads

@C̄

@T
+

@C 0

@T
+ Ū

@C̄

@X
+ U 0 @C̄

@X
+ Ū

@C 0

@X
+ U 0 @C

0

@X
+ V

@C 0

@Y

=
1

Pe
("

d2C̄

dX2 + "
d2C 0

dX2 +
1

"

d2C 0

dY 2 ) .

(23)

In Eq. 23, the fifth term (Ū@C 0/@X) is negligible com-
pared to the third term Ū@C̄/@X because C 0 ⌧ C. Av-
eraging Eq. 23 over the cross section, we have

@C̄

@T
+Ū

@C̄

@X
+U 0 @C

0

@X
+V

@C 0

@Y
=

1

Pe
("

d2C̄

dX2 +
1

"

dC 0

dY
|Y=1
Y=0) ,

(24)
and subtracting Eq. 24 from Eq. 23, we have

@C 0

@T
+ U 0 @C̄

@X
+ (U 0 @C

0

@X
� U 0 @C

0

@X
) + (V

@C 0

@Y
� V

@C 0

@Y
)

=
1

Pe
("
d2C 0

dX2
+

1

"

d2C 0

dY 2 � 1

"

dC 0

dY
|Y=1
Y=0) .

(25)

The first term in this equation can be neglected when
di↵usion in the transverse direction has completed (t �
h2/D). The third term is much less than the second
term, given that C̄ � C 0. The fourth term, repre-
senting advection in the transverse direction, can be ne-
glected when the transport in the transverse direction is
di↵usion-dominated (because the channel is narrow); The
quantity "@2C 0/@2X in the di↵usion term on the right
can be neglected, given that axial di↵usion is negligi-
ble compared to transverse di↵usion (because " is small).
Therefore, we have

U 0 @C̄

@X
=

1

"Pe

✓
d2C 0

dY 2 � dC 0

dY
|Y=1
Y=0

◆
. (26)
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Integrating Eq. 26 over y twice, we have

C 0 = "Pe Ū
@C̄

@X

✓
Y 2

4
� Y 4

8
� 7

120

◆
+
dC 0

dY
|Y=1
Y=0

✓
Y 2

2
� 1

6

◆
.

(27)
Note that the unknown constants in this expression were
evaluated given the definition that

R 1
0 C 0dY = 0 and

C 0(Y ) = C 0(�Y ) (the geometry is symmetric). Insert-
ing this expression for C 0 (Eq. 27) and the expressions
for U 0 and V (Eqs. 22) into the cross-sectionally aver-
aged Eq. 24, the second and third unknown terms are
determined to be

U 0 @C
0

@X
= �2Ū"Pe

105

✓
@Ū

@X

@C̄

@X
+ Ū

@2C̄

@X2

◆
� Ū

15

@2C 0

@X@Y
|Y=1
Y=0

(28)
and

V
@C 0

@Y
= "

3

35
V |Y=1ŪPe

@C̄

@X
+

2

5
V |Y=1

@C 0

@Y
|Y=1
Y=0 . (29)

V @C 0/@Y represents advection in the transverse direc-
tion, which we later prove is negligible when transport in
that direction is dominated by di↵usion ("Pe ⌧ 1).

Plugging Eqs. 28 and 29 into Eq. 24, we arrive at the
leading-order equation for C:

@C̄

@T
+

✓
Ū � "Pe

2

105
Ū
@Ū

@X
+

3"Pe

35
V |Y=1

◆
@C̄

@X

+
2

5
V |Y=1

@C 0

@Y
|Y=1
Y=0 =

"

Pe
(1 +

2

105
Ū2Pe2)

d2C̄

dX2+

1

"Pe

dC 0

dY
|Y=1
Y=0 +

1

15
Ū

@2C 0

@X@Y
|Y=1
Y=0 .

(30)

At the semipermeable wall (Y = 1), the solute flux is

J = VY=1(C̄ + C 0)� 1

"Pe

@C 0

@Y
|Y=1, (31)

where VY=1 is the transverse flow velocity at the semiper-
meable wall (Y = 1) and @C 0/@Y |Y=1 is the concentra-
tion gradient in the y direction there.

For a solute that cannot permeate the wall, we have
J = 0. Applying this boundary condition to Eq. 6 [10].
Neglecting C 0 in the first term (because C̄ � C 0), the
leading-order boundary condition gives

@C 0/@Y |Y=1 = V |Y=1"PeC̄ , (32)

and Eq. 30 becomes

@C̄

@T
+

✓
Ū + "Pe

✓
� 2Ū

105

@Ū

@X
+ (

3

35
� 1

15
Ū)V |Y=1

◆◆
@C̄

@X

=
"

Pe
(1 +

2

105
Ū2Pe2)

d2C̄

dX2

+

✓
V |Y=1 + "Pe

✓
�2

5
V |Y=1

2 +
1

15
Ū
@V |Y=1

@X

◆◆
C̄ ,

(33)

FIG. A1. Comparison between the reduced order

model and 2D COMSOL simulation In the simulation,
the rectangular channel has width 20 µm and length 5000 µm.
The side walls have a permeability k = 1⇥ 10�15 m2 and are
separated by 5 µm. The viscosity is 7 ⇥ 10�4Pa · s, and the
hydraulic conductivity is Lp = 2.86 ⇥ 10�7 m/Pa/s. (a,b)

The average pressure, varying axially, in the reduced-order
model and the simulation. (c) The cross-sectionally averaged
concentration profile, in the model and the simulation, with
zero solute flux through the wall.

When "Pe ⌧ 1, we can further simplify this equation by
keeping only the leading-order term in the second advec-
tion term and the last source terms, respectively:

@C̄

@T
+Ū

@C̄

@X
=

"

Pe
(1+

2

105
Ū2Pe2)

d2C̄

dX2 +V |Y=1C̄ . (34)

2. Validating the model with simulations

We performed two-dimensional simulations in COMSOL
to validate the reduced model. A bolus, initially 500 µm
wide and with uniform concentration, was placed at the
inlet of a rectangular channel with width 2h = 20 µm and
length L = 5000 µm. With zero pressure at the outlet,
a pressure p0 = 10 Pa was applied at the inlet to drive
flow. The hydraulic conductivity of the semipermeable
walls was Lp = 2.86 ⇥ 10�7 m Pa�1 s�1. The fluid was
water at 37�C (µ = 7⇥10�4 Pa·s). The solute di↵usivity
was D = 10�10 m2/s. Thus, " = 0.002, B = 3.87, and
Pe = 14.3. The simulated pressure and velocity at the
centerline (Y = 0) matched the reduced-order model well
(Fig. A1a,b). The simulated, cross-sectionally averaged
concentration profile varied over time and matched the
reduced-order model well, showing that the bolus first
became narrower and more concentrated, then became
wider and more dilute (Fig. A1c).


