

1 Precision Camera Calibration Using Known Target Motions Along 2 Three Perpendicular Axes

3 Thomas E. Shkurti^{a*}, Ammar Nahari^a, Wyatt Newman^b, M. Cenk Çavuşoğlu^b

4 ^aDepartment of Computer & Data Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH,
5 USA, 44106

6 ^bDepartment of Electrical & Computer Engineering, Case Western Reserve University, 10900 Euclid Avenue,
7 Cleveland, OH, USA, 44106

8 Abstract. This paper presents a new method for precision intrinsic calibration of pinhole-model cameras. We refer
9 to this method as “3-Axis”. The algorithm employs a target moving with known displacements along 3 perpendicular
10 axes, to decrease the number of unknown terms that must be determined. This method is described in detail along with
11 new evaluation strategies for comparing the accuracy of calibration algorithms. The 3-Axis approach is then compared
12 to the current state of the art in simulated and physical settings, and is shown to exceed it in accuracy for an equal
13 number of samples acquired.

14 Keywords: Camera Calibration, Photogrammetry, Robotics.

15 *Thomas E. Shkurti, tes77@case.edu

16 1 Introduction

17 Intrinsic camera calibration is a necessary step before employing photogrammetry,¹ modeling,² and
18 image-processing³ techniques. The fitness of a calibration process can be evaluated as a relation
19 between the amount and quality of calibration data fed into the calibration solver, and the accuracy
20 with which it then estimates the intrinsic optical parameters of the camera.^{4,5} Here, “quality” is
21 an abstract measure of how accurately one can determine or enforce parameters of the calibration
22 data (for instance the exact size of a fiducial, or its position in 3D space).⁵ Generally, data with
23 greater quality is more time-consuming and costly to collect. Similarly, it is more time-consuming
24 and costly to acquire a numerically larger data set of a given quality.

25 This paper discusses a new intrinsic calibration method (“3-Axis”) based on known move-
26 ments of the fiducial along three orthogonal axes. This data collection system is intended to allow
27 rapid, automated collection of high-quality data using commonly available equipment such as cut-

28 ting mills, 3D printers, or robotic arms. Additionally, we propose a new and detailed method of
29 comparing the accuracy of calibration methods using simulated data with a known ground truth.

30 We begin with an overview of the current state of the art, and identify the ROS-Industrial
31 calibration system⁶ and Zhang’s calibration algorithm⁷ as standards of performance to which 3-
32 Axis will be compared. Next, we describe in detail the operation of the calibration algorithm. We
33 then propose experimental methods of comparison between ROS-Industrial, Zhang’s algorithm,
34 and 3-Axis, using both simulated and real cameras. Finally, we present the performance metrics
35 for all three systems, and conclude that 3-Axis is more likely to perform better than ROS-Industrial
36 or Zhang’s algorithm for data sets of any given size and quality.

37 **2 Related Studies**

38 Camera calibration methods are typically divided into three categories: traditional, self-calibrating,
39 and active-vision:⁸⁻¹⁰

- 40 • **Traditional** methods involve imaging artificial calibration targets deliberately placed in the
41 environment. Some or all of the target’s physical parameters are known, as is some or all in-
42 formation relating to its position in the scene. The assumption is that the camera parameters
43 discovered in this artificial environment will remain the same when the calibration target is
44 removed and the camera is used to image other objects in another environment.
- 45 • **Self-calibration** methods do not require an artificial calibration target with known parame-
46 ters. Rather, the camera gathers calibration information from the same visual environment
47 where it will be used. This, of course, requires assumptions about what features will be
48 found in the environment, but in absolute terms the camera calibrator has *no control* over the
49 contents of the images.

50 • **Active-sensing** methods are similar to self-calibration methods, but the camera calibrator
51 has control over the positioning of the camera (returning some control over the contents of
52 the images).

53 3-Axis is a traditional calibration method- traditional methods tend to be the most accurate,¹⁰ and
54 are the focus of this review.

55 In a 2019 systematic review,¹⁰ Long and Dongri identify three primary traditional calibration
56 algorithms: the DLT algorithm by Abdel-Aziz and Karara,¹¹ the two-step algorithm by Tsai,¹²
57 and the planar pattern algorithm by Zhang.⁷ A 2002 review by Salvi, Armangué, and Batlle⁴
58 compares Tsai's algorithm to DLT-based algorithms and finds Tsai's to be more accurate; while a
59 2014 review by Li et. al.⁵ finds Zhang's algorithm to be comparable in accuracy to Tsai's. Indeed,
60 it is Zhang's algorithm that is used in common computer vision toolkits such as OpenCV^{13,14} and
61 Matlab,^{15,16} and most commonly overall.¹⁷ It often serves as a baseline against which to compare
62 other experimental calibration algorithms.¹⁸⁻²³ Tsai's algorithm, however, lacks such a commonly-
63 used library implementation.²⁴

64 Much development post 2019 has focused on calibration using few or single images;²⁵⁻²⁸ cali-
65 bration of atypical camera types or cameras in combination with other sensors;²⁹⁻³³ or improvement
66 of target fiducial detection.³⁴⁻³⁶ However, alternative methods of data collection and processing in
67 Zhang-like algorithms continue to be explored:

68 • Peng and Sturm³⁷ have created a utility to suggest advantageous calibration target positions
69 for Zhang's algorithm (which are determined arbitrarily by a human operator in the normal
70 use case), although human intervention is still required to move the target to these poses and
71 the positioning is not precise.

72 • Gunen et. al.³⁸ examine and improve the optimization solvers used in Zhang's classical
73 algorithm, as well as other common calibration algorithms.

74 • Jiang et. al.¹⁹ replace the physical calibration target with a virtual target displayed on a
75 screen in front of the camera, allowing for more precise and automated target movement
76 with a more complicated projection model.

77 • Chen, Yang, and Pan³⁹ also employ a dynamic target generated on a screen- this one displays
78 linear patterns and is moved to two different spatial locations with a precisely-known dis-
79 placement, allowing for the independent calculation of distortion, principal point, and focal
80 length parameters.

81 • Jin and Yang²² employ a secondary calibration target viewed from a single position to esti-
82 mate distortion, as a prelude to full-model calibration.

83 • Juarez-Salazar, Zhang, and Diaz-Ramirez⁴⁰ propose an alternative pinhole camera model
84 more suited for cameras with high radial distortion, which is calibrated with classical checker-
85 board targets.

86 • Sun, Cheng, and Fan⁴¹ propose a method employing a target made of two opaque cylin-
87 ders with known radius, length, and position with respect to each other, placed at arbitrary
88 locations in the camera image.

89 • Liu, Zhao, and Kou⁴² combine traditional rectilinear targets with circular ones, to perform
90 calibration using conic asymptotes.

91 • Yang, Chen, and Yu²³ propose a system similar to 3-Axis, but involving a target moving
92 along a sled with only a single dimension of displacement.

93 Finally, particular attention is paid to the ROS-Industrial camera calibration toolkit.^{6,43} This
 94 calibration approach also employs a target moving at known displacements along a single axis of
 95 motion, assumed to be close to perpendicular to the image plane of the camera and centered in the
 96 middle of the field of view. It is able to collect data automatically, and interfaces with the Robot
 97 Operating System; the precision of the calibration data produced exceeds that of the standard ROS
 98 implementation of Zhang's algorithm.^{18,43,44} For this reason, both ROS-Industrial and the ROS
 99 implementation of Zhang's calibration algorithm were chosen as the state of the art against which
 100 to compare 3-Axis's performance.

101 **3 Problem Formulation**

102 Camera calibration attempts to find descriptive optical parameters for a projection model \mathcal{P} of a
 103 physical camera. The most commonly used are the pinhole projection model (focal length F_x and
 104 F_y , and image center C_x and C_y), and Brown distortion model (radial distortion parameters $k_1, k_2,$
 105 k_3 , and tangential distortion parameters p_1 and p_2).¹⁸ Based on these parameters, \mathcal{P} can map an
 106 arbitrary point (x, y, z) in 3D metric space to a point (u, v) in 2D pixel space:

$$(u, v) = \mathcal{P}(x, y, z) \quad (1)$$

$$u_{planar} = \frac{x}{z} \quad v_{planar} = \frac{y}{z} \quad (2)$$

$$r = \|u_{planar}, v_{planar}\|$$

$$u_{radial} = u_{planar} (k_1 \cdot r^2 + k_2 \cdot r^4 + k_3 \cdot r^6)$$

$$v_{radial} = v_{planar} (k_1 \cdot r^2 + k_2 \cdot r^4 + k_3 \cdot r^6)$$

$$u_{tangential} = 2 p_1 \cdot u_{planar} \cdot v_{planar} + p_2 (r^2 + 2 u_{planar}^2) \quad (3)$$

$$v_{tangential} = 2 p_2 \cdot u_{planar} \cdot v_{planar} + p_1 (r^2 + 2 v_{planar}^2)$$

$$u_{distorted} = u_{planar} + u_{radial} + u_{tangential}$$

$$v_{distorted} = v_{planar} + v_{radial} + v_{tangential}$$

107

108

$$u = F_x \cdot u_{distorted} + C_x \quad (4)$$

$$v = F_y \cdot v_{distorted} + C_y$$

109 The optimization of the projection model compares a (typically large) set of fiducial points
 110 captured in actual camera images (here referred to as (U_i, V_i)) with points projected from the
 111 fiducial's physical location (X_i, Y_i, Z_i) by \mathcal{P} , and attempts to minimize the Euclidean distance
 112 between them:

$$\arg \min_{\mathcal{P}} \sum_i \left(\|(U_i, V_i) - \mathcal{P}(X_i, Y_i, Z_i)\| \right) \quad (5)$$

113 Here, a simple sum of Euclidean norms is used as the aggregate distance measure, although other
 114 aggregations (median, mean, sum of squares, etc.) and other distance measures (for instance,
 115 taxicab distance) could be applied. This differs from Tsai's two-step approach,¹² as the distortion
 116 and projection characteristics are optimized concurrently.

117 The fiducial position (X_i, Y_i, Z_i) can be alternatively represented by a 3D rigid transform from
 118 the camera frame to the fiducial frame $\mathbf{G}_{\mathbf{CF}i}$:

$$\arg \min_{\mathcal{P}} \sum_i \left(\left\| (U_i, V_i) - \mathcal{P}(\mathbf{G}_{\mathbf{CF}i}) \right\| \right) \quad (6)$$

119 However, the position of a given fiducial in metric space with respect to the camera is often not
 120 known to any precision: the camera is a three-dimensional volumetric object with an optical center
 121 somewhere in its interior. Indeed, determining some parameters of this optical center is one of the
 122 objectives of calibration. Therefore, this naive method introduces three unknown parameters and
 123 only two known parameters for every point, in addition to the parameters within \mathcal{P} . The result is
 124 an underspecified and unsolvable optimization problem:

$$\arg \min_{\mathcal{P}, \mathbf{G}_{\mathbf{CF}i}} \sum_i \left(\left\| (U_i, V_i) - \mathcal{P}(\mathbf{G}_{\mathbf{CF}i}) \right\| \right) \quad (7)$$

125 Zhang's algorithm addresses this problem by including multiple fiducials on a single target of
 126 known dimensions. This allows the decomposition of $\mathbf{G}_{\mathbf{CF}i}$ into a set of fiducials on the same
 127 target j and target positions k :

$$\mathbf{G}_{\mathbf{CF}j,k} = \mathbf{G}_{\mathbf{CT}k} \cdot \boxed{\mathbf{G}_{\mathbf{TF}j}} \quad (8)$$

128 In Eq. (8), $\mathbf{G}_{\mathbf{CT}k}$ represents the position of the multi-fiducial target at position k , a parameter
 129 that Zhang's algorithm does not assume to be known. $\boxed{\mathbf{G}_{\mathbf{TF}j}}$ is the position of fiducial j on the
 130 target; the **box** notation indicates that it is known prior to the calibration. Eq. (7) then becomes

$$\arg \min_{\mathcal{P}, \mathbf{G}_{\mathbf{CT}^k}} \sum_{j,k} \left(\left\| (U_{j,k}, V_{j,k}) - \mathcal{P} \left(\mathbf{G}_{\mathbf{CT}^k} \cdot \boxed{\mathbf{G}_{\mathbf{TF}^j}} \right) \right\| \right) \quad (9)$$

131 So long as the number of fiducial positions increases more rapidly than the number of target
 132 positions (that is to say, so long as the target has more than one fiducial visible on it), Eq. (9)
 133 produces a solvable optimization problem.

134 Typically, the measure of quality for a camera calibration model is the reprojection error **RE**.⁴
 135 This is simply the minimal final cost returned by the optimization system in the course of estimat-
 136 ing \mathcal{P} :

$$\mathbf{RE} = \min_{\mathcal{P}} \sum_i \left(\left\| (U_i, V_i) - \mathcal{P}(\mathbf{G}_{\mathbf{CF}^i}) \right\| \right) \quad (10)$$

137 The RE is then typically normalized by the number of data points used in the calibration.
 138 This is often the only *possible* measurement of calibration quality when calibrating real cam-
 139 eras, as the purpose of calibration is to identify a ground truth otherwise unknown.

140 4 Methods

141 Our calibration method employs an alternative decomposition of $\mathbf{G}_{\mathbf{CF}^i}$, employing a precision-
 142 controllable 3D movement system to produce more known parameters:

$$\mathbf{G}_{\mathbf{CF}^i} = \mathbf{G}_{\mathbf{CM}^i} \cdot \boxed{\mathbf{G}_{\mathbf{ME}^i}} \cdot \mathbf{G}_{\mathbf{ET}^i} \cdot \boxed{\mathbf{G}_{\mathbf{TF}^i}} \quad (11)$$

143 where

144 • $[G_{TFi}]$ is the transformation between the origin of the target and a fiducial point on the target.

145 Flat, two-dimensional targets can easily be constructed with known dimensions (and known
146 positions for the center of each fiducial) using a commercial desktop printer. This term
147 differs for each fiducial in a given target position, but is always known.

148 • G_{ETi} is the transformation from the origin of the target, to the moving end of a precision-
149 controllable, three-axis device such as a CNC machine, mill, or robotic arm. While it may
150 be possible to affix a target to such a device in a known transformation, this was not assumed
151 as a requirement for the calibration process. Therefore, it is assumed that the parameter must
152 be solved for during calibration.

153 • $[G_{MEi}]$ is the transformation between the tip and the origin of the 3-axis device. This is the
154 nominal position requested of the device, and thus precisely known, albeit different for each
155 target acquisition.

156 • G_{CMi} is the transformation from the “center” of the 3-axis device, to the “center” of the
157 camera. Since both of these mechanisms are irregular solid devices with “origin points”
158 determined by their physical and optical properties, these points are not considered physi-
159 cally meaningful and certainly not externally measurable. Therefore, this parameter must be
160 found during the process of calibration.

161 It is of particular interest that the two estimated terms, G_{CM} and G_{ET} , are consistent through-
162 out the entire data set. This is *untrue* for the classical Zhang’s algorithm- there, a different target-
163 camera transform must be estimated for each physical location of the target.⁷ This alteration
164 changes the number of non-intrinsic terms needing to be optimized for a data set of n points, from

₁₆₅ $\mathcal{O}(n)$ to a constant 12 (the minimal representation of two rigid transformations as 3 displacements
₁₆₆ and 3 Euler angles each).

₁₆₇ ROS-Industrial also employs a constraint to ensure a constant number of optimized non-intrinsics
₁₆₈ by moving the target along a single axis in the approximate center of the camera's field of view.^{18,43}
₁₆₉ However, the assumption of travel along the exact view center is difficult to enforce in reality;⁴⁴
₁₇₀ and a comparatively smaller number of data points are collected near the edge of the image, which
₁₇₁ makes it more difficult to calculate distortion parameters that have a greater effect (in terms of
₁₇₂ absolute motion in pixels) near the edges of the image.¹⁸

₁₇₃ Tsai's algorithm does not employ a single projection model, but rather a two-step process
₁₇₄ wherein rough focal information is determined assuming an undistorted image, and distortion pa-
₁₇₅ rameters are calculated subsequently. Additionally, implementations of the algorithm assume that
₁₇₆ multiple targets will be present in one single image in a known configuration,^{12,24} instead of a
₁₇₇ single target being moved and imaged subsequently.

₁₇₈ Next, a redundant free parameter can be identified and removed from the optimization by ex-
₁₇₉ panding Eq. (11) into translation and rotation terms and taking advantage of certain cancellations:

$$\begin{aligned}
 \mathbf{G}_{\text{CF}} &= \mathbf{R}_{\text{CM}} (\boxed{\mathbf{G}_{\text{ME}}} \cdot \mathbf{G}_{\text{ET}} \cdot \boxed{\mathbf{G}_{\text{TF}}} + \mathbf{T}_{\text{CM}}) \\
 &= \mathbf{R}_{\text{CM}} (\boxed{\mathbf{R}_{\text{ME}}} (\mathbf{G}_{\text{ET}} \cdot \boxed{\mathbf{G}_{\text{TF}}} + \boxed{\mathbf{T}_{\text{ME}}}) + \mathbf{T}_{\text{CM}}) \quad (12) \\
 &= \mathbf{R}_{\text{CM}} (\boxed{\mathbf{R}_{\text{ME}}} (\mathbf{R}_{\text{ET}} (\boxed{\mathbf{G}_{\text{TF}}} + \mathbf{T}_{\text{ET}}) + \boxed{\mathbf{T}_{\text{ME}}}) + \mathbf{T}_{\text{CM}})
 \end{aligned}$$

₁₈₀ $\boxed{\mathbf{G}_{\text{ME}}}$ is a known transformation that is always a pure translation, being the position of the 3D
₁₈₁ motion device with respect to its own origin. Therefore, the $\boxed{\mathbf{R}_{\text{ME}}}$ term is known to be identity
₁₈₂ and can be removed:

$$\begin{aligned}
G_{CF} &= R_{CM} (I_{3 \times 3} (R_{ET} (\boxed{G_{TF}} + T_{ET}) + \boxed{T_{ME}}) + T_{CM}) \\
&= R_{CM} (R_{ET} (\boxed{G_{TF}} + T_{ET}) + \boxed{T_{ME}} + T_{CM}) \\
&= R_{CM} (R_{ET} \cdot \boxed{G_{TF}} + R_{ET} \cdot T_{ET} + \boxed{T_{ME}} + T_{CM})
\end{aligned} \tag{13}$$

183 Note that the term $R_{ET} \cdot T_{ET}$ is an unknown rotation, applied to an *unknown translation which*
 184 *appears nowhere else in the formula*. Additionally, both R_{ET} and T_{ET} are (like all of the unknown
 185 terms in the model) constant across all data points in the set. Therefore, for *any* value of R_{ET} , there
 186 exists some equally unknown but equally constant 3-vector P_{ET} such that $P_{ET} = R_{ET} \cdot T_{ET}$.

187 Substitution into (13) gives

$$\begin{aligned}
G_{CF} &= R_{CM} (R_{ET} \cdot \boxed{G_{TF}} + P_{ET} + \boxed{T_{ME}} + T_{CM}) \\
&= R_{CM} (R_{ET} \cdot \boxed{G_{TF}} + P_{ET} + T_{CM} + \boxed{T_{ME}})
\end{aligned} \tag{14}$$

188 Now, the two unknown 3-vectors P_{ET} and T_{CM} appear nowhere else in the model. The sum
 189 of two unknown 3-vectors is, of course, another unknown 3-vector- we will call it P_{CT} . Another
 190 substitution into (14) gives

$$G_{CF} = R_{CM} (R_{ET} \cdot \boxed{G_{TF}} + P_{CT} + \boxed{T_{ME}}) \tag{15}$$

191 Although this formulation is no longer as intuitive or physically meaningful as Eq.(11), it
 192 eliminates a set of redundant free parameters; and reduces the total dimensionality of the search
 193 space from 12 (2 unknown translations and 2 unknown rotations, each in 3 dimensions) to 9 (2
 194 unknown rotations and 1 unknown translation). This is distinct from the position model used in
 195 Tsai's algorithm, which assumes only one aggregate transformation; that from the camera to a

196 scene where every target point is at a known location with respect to every other.¹² This simpler
197 model cannot accommodate multi-image calibration data where the rotation between the target and
198 the object moving the target is not fixed or known.

199 Although the 3-Axis algorithm can operate on any type of fiducial using any error-minimizing
200 solver, we chose to employ circle grid targets¹³ and the Ceres optimization solver,⁴⁵ because these
201 were the methods used by ROS-Industrial.⁴³

202 Finally, consideration is given to alternative measures of calibration quality analysis. When
203 calibrating *simulated* cameras that render images of a scene *in silico*, the ground truth is known. It
204 is thus possible to derive an “*Actual Reprojection Error*” statistic (**ARE**) that distinguished between
205 the calibrated projection model \mathcal{P}_C and the ground-truth projection model \mathcal{P}_G .

206 This is done by generating a set of 3D points S ; and performing pinhole camera projection
207 on them using \mathcal{P}_C and then \mathcal{P}_G . The average Euclidean distance (in pixels) between a point pro-
208 jected using the ground-truth intrinsics, and the corresponding point projected using the calibrated
209 intrinsics, is the ARE for that calibration attempt:

$$\text{ARE} = \sum_{i \in S} (\|\mathcal{P}_C(X_i, Y_i, Z_i) - \mathcal{P}_G(X_i, Y_i, Z_i)\|) \quad (16)$$

210 **5 Experiments and Results**

211 *5.1 Simulation Experiment Design*

212 In order to determine the effectiveness of the 3-Axis calibration system compared to the current
213 state of the art, tests were undertaken using synthetic images generated using the Gazebo simula-
214 tion engine.^{46,47} One such image is shown in Figure 1, with the simulation environment producing
215 it shown in Figure 2.

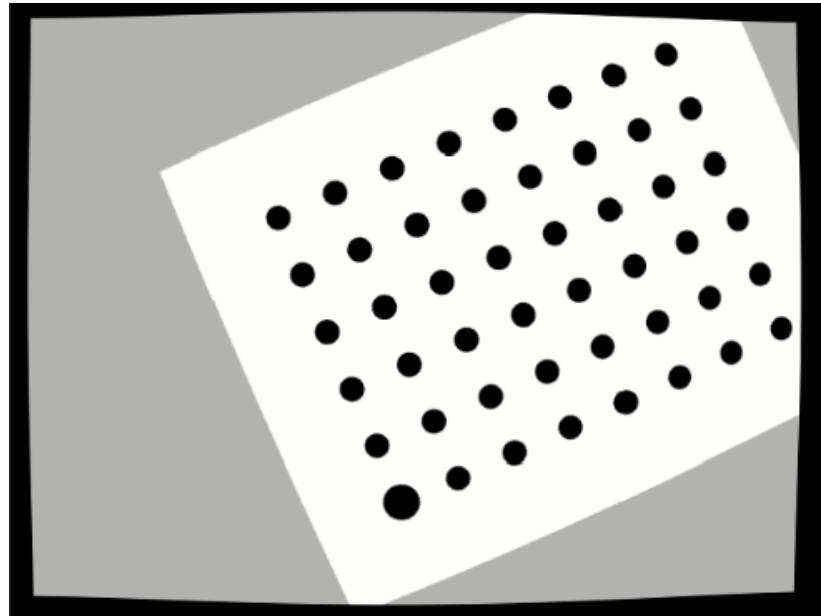


Fig 1 Simulated camera image from Figure 2. The black padding at the edges of the image is the result of barrel distortion added after the initial image render. As this image was used to collect data for Zhang's algorithm, the target is also given a pseudorandom roll, pitch, and yaw which differs for each position.

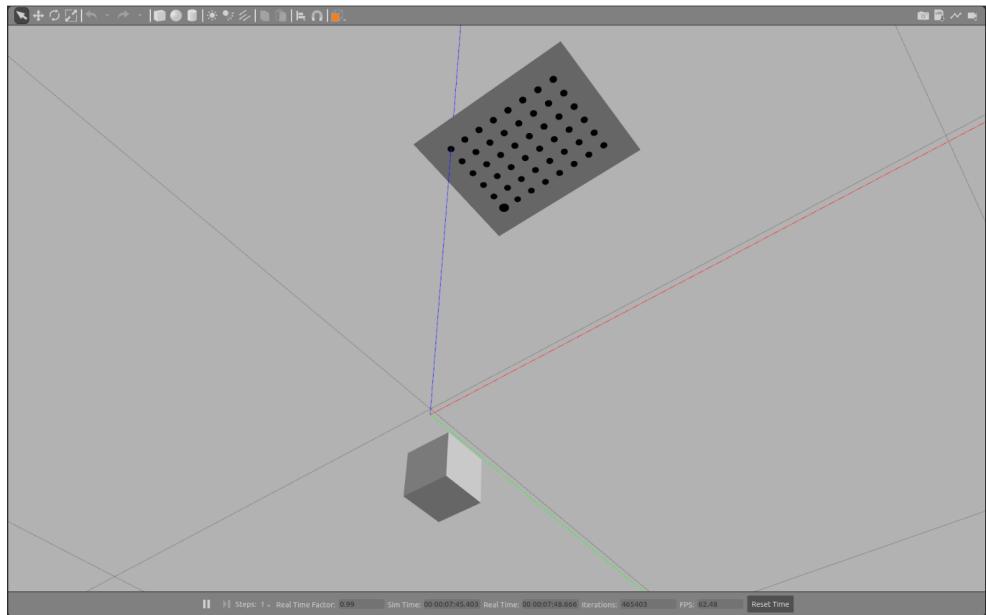


Fig 2 Simulation environment for generating target data. The camera (indicated by three colored axes) faces upward along the Z (blue) axis to the simulated target. The target can be deleted and spawned at any position in 3D space, to simulate the action of a precision 3-axis movement system.

216 Each synthetic calibration data set was generated containing 9024 fiducial points (a 6×8 target
217 imaged at 188 different positions). For the ROS-Industrial data set, all of the calibration target
218 positions were at the same, non-orthogonal angle to the camera. For the data set to be used by
219 Zhang's method, each target position additionally included a pseudorandom pitch, yaw, and roll
220 independently uniformly distributed between $+20^\circ$ and -20° . Repeated calibrations were run using
221 less and less of this data set (pseudorandomly decimated in increments of 480 fiducial points,
222 equivalent to randomly removing 10 images per iteration) to establish a relationship between data
223 set size (larger data sets being more time-intensive to acquire in a real situation) and performance.

224 Additionally, 4 different sources of measurement imprecision were injected into the data with
225 known, variable magnitudes in 20 increments:

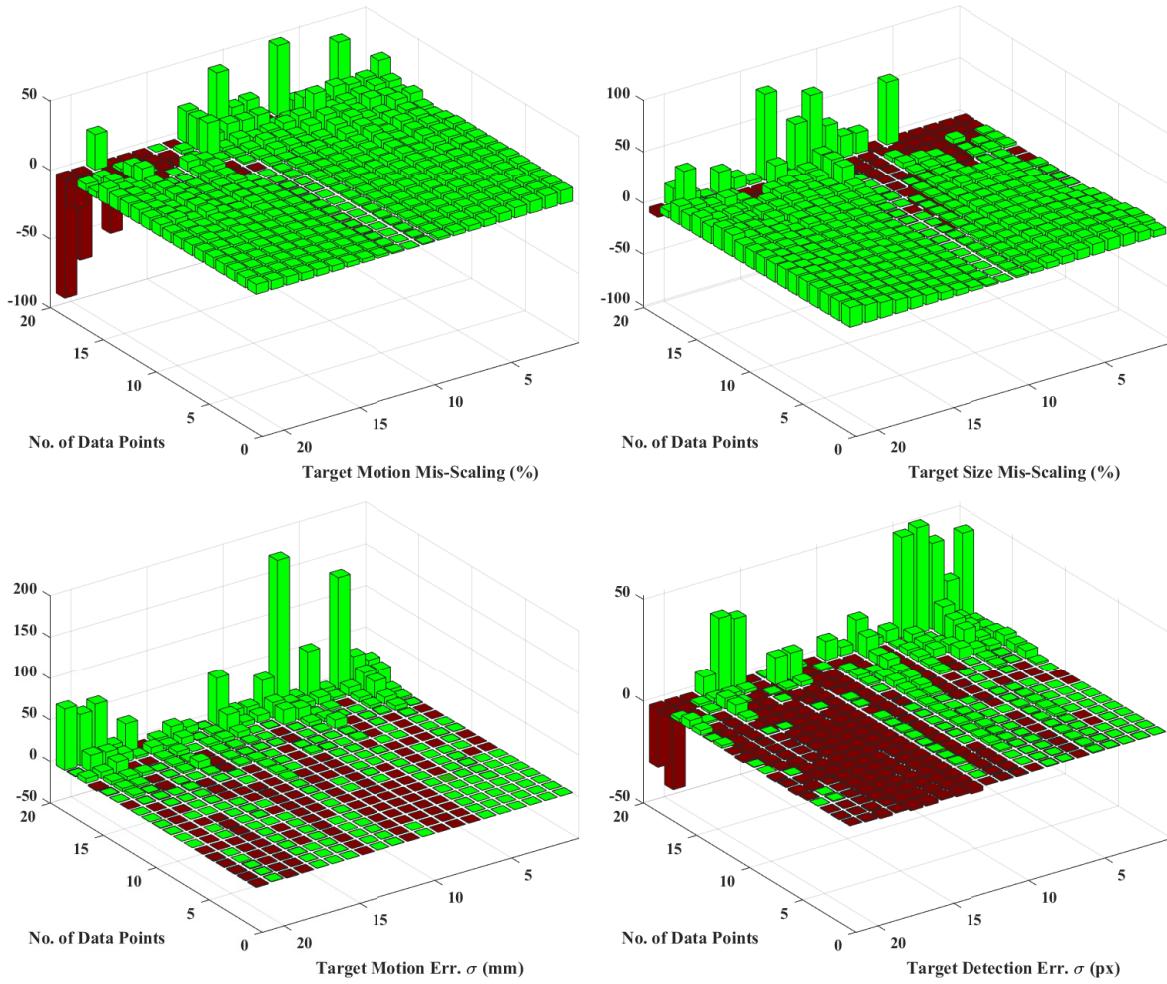
- 226 • **Proportional scale of the target**, as a linear scaling of its actual dimensions versus nominal
227 dimensions used to calculate the $\boxed{G_{TF}}$ parameter given to the calibration software. *Range*:
228 $90\% - 110\%$
- 229 • **Detection error**, as Gaussian error added to the detected pixel position (U_i, V_i) of each
230 fiducial. *Range*: $\sigma = 0\text{px} - \sigma = 10\text{px}$
- 231 • **Target motion scaling**, as a linear scaling of the target's actual positions in 3D space com-
232 pared to the nominal positions $\boxed{G_{ME_i}}$ provided to the calibration solver. Range: $90\% -$
233 110%
- 234 • **Target motion imprecision**, as Gaussian error added to the target's position in 3D space
235 (compared to the nominal positions $\boxed{G_{ME_i}}$ provided to the calibration solver). Range $\sigma =$
236 $0\text{mm} - \sigma = 10\text{mm}$

237 The target detection error and target mis-scaling error sources are applicable to all three al-
238 gorithms under test (Zhang, ROS-Industrial, and 3-Axis). Since Zhang's algorithm makes no as-
239 sumptions as to the position of the target, the position noise and mis-scaling error sources were
240 only applicable to ROS-Industrial and 3-Axis. This resulted in the generation of a total of 10
241 different 20×20 sets of calibration attempts (four each from 3-Axis and ROS-I, and two from
242 Zhang's algorithm). For each attempt, the stated reprojection error (RE) and actual reprojection
243 error with respect to the simulation ground truth (ARE) were computed for each attempt in the
244 set. The ARE was calculated using the same sequence of 1000 points uniformly pseudorandomly
245 distributed through a 1-meter cubic volume for all tests.

246 *5.2 Simulation Experiment Results*

247 Figure 3 shows which calibration algorithm produced a lower *actual* reprojection error (ARE)
248 for each source of introduced data error, arranged according to number of target images included
249 and the introduced data error magnitude. Similarly, Figure 4 shows which calibration algorithm
250 produced a lower *reported* reprojection error. Descriptive statistics for these measurements are
251 given in Table 2. Finally, Table 1 covers the mean variance of the estimated intrinsics from their
252 ground-truth values for each calibration method, under each source of error.

ROS-Industrial vs. 3-Axis (ARE)



Zhang's Algorithm vs. 3-Axis (ARE)

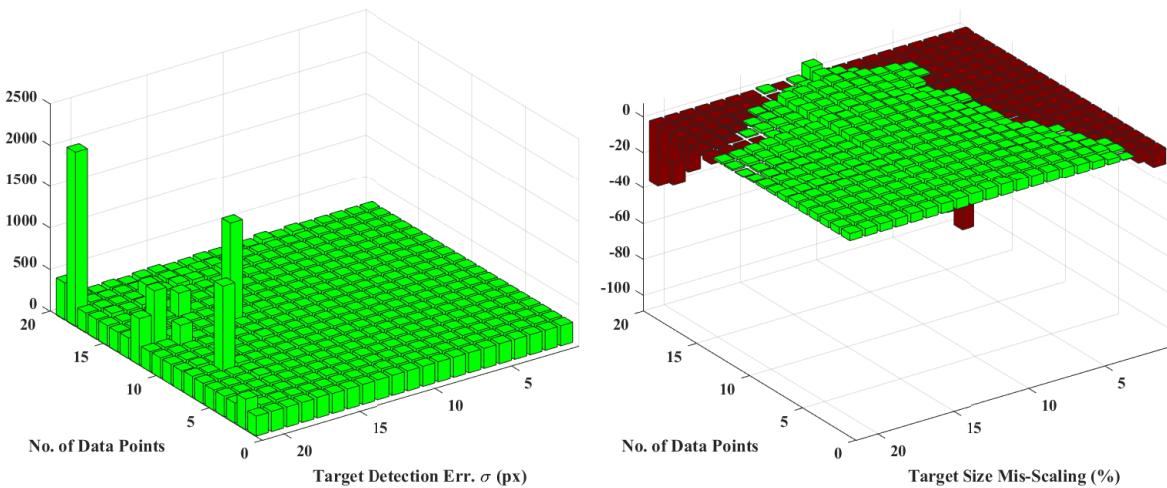
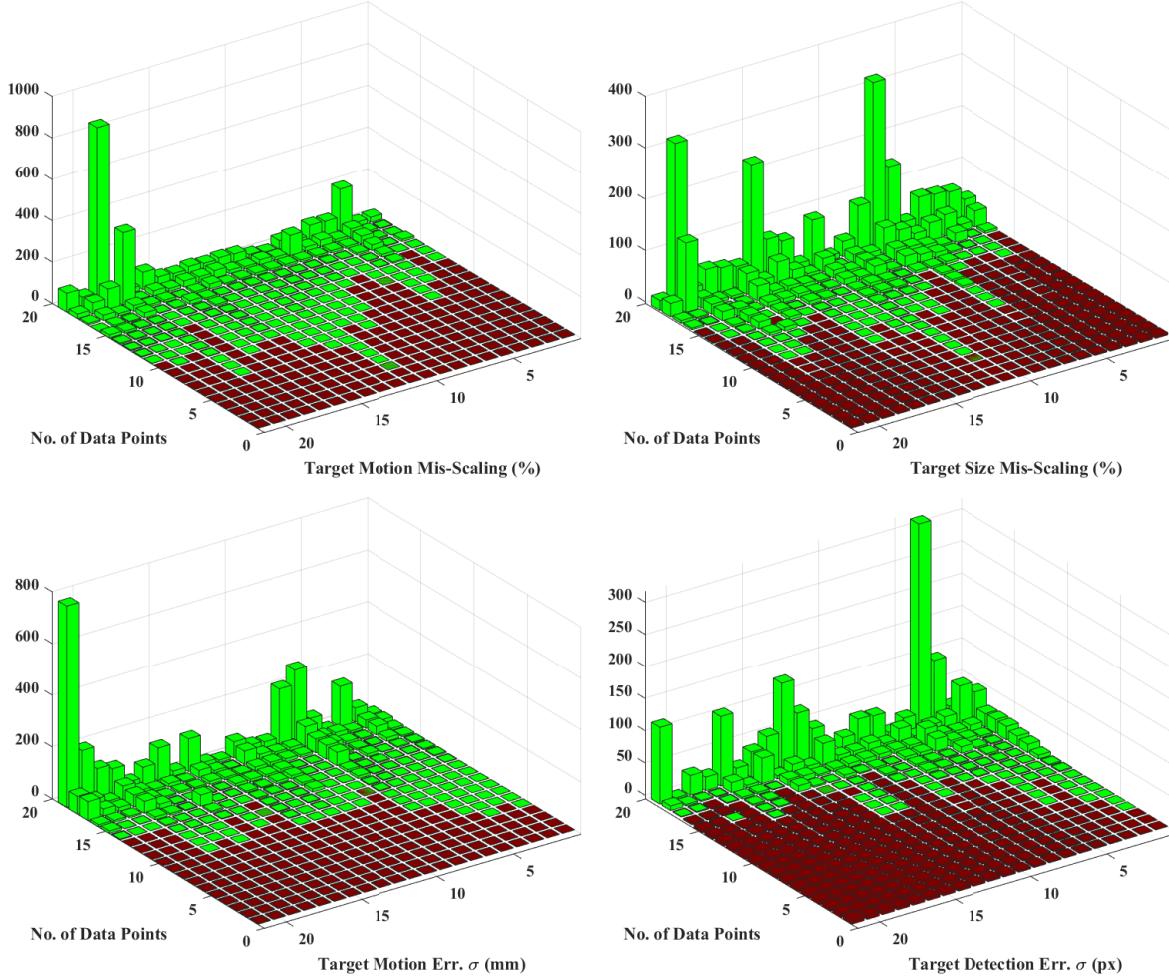


Fig 3 Actual reprojection error results of simulated data with different introduced flaws, arranged with respect to number of data points and introduced error magnitude. Light green bars indicate 3-Axis's ARE was lower than the competitor algorithm's in that configuration; dark red bars indicate 3-Axis's ARE was higher.

ROS-Industrial vs. 3-Axis (RE)



Zhang's Algorithm vs. 3-Axis (RE)

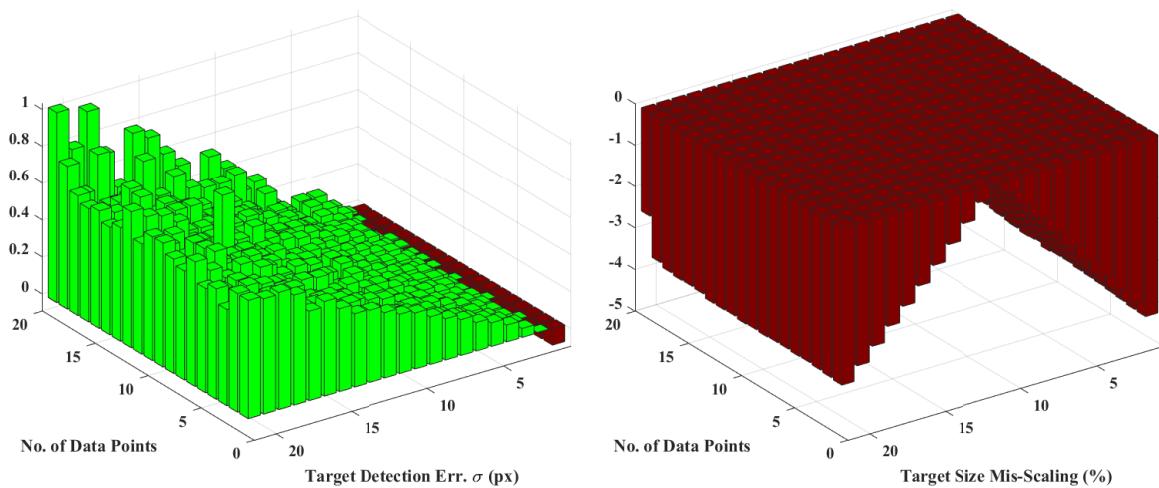


Fig 4 Stated reprojection error results of simulated data with different introduced flaws, arranged with respect to number of data points and introduced error magnitude. Light green bars indicate 3-Axis's RE was lower than the competitor algorithm's in that configuration; dark red bars indicate 3-Axis's RE was higher.

Table 1 Difference between median intrinsics as estimated by calibration methods, and ground truth, under different introduced calibration error sources. As Zhang’s algorithm does not use known target positions, no data was collected or results computed for it using the Movement Imprecision and Movement Mis-Scaling error sources. Additionally, this implementation of Zhang’s Algorithm did not return a k_3 term.

3-Axis vs. ROS-I

<i>Introduced Flaw</i>	<i>Movement Imprecision</i>	<i>Movement Mis-Scaling</i>	<i>Detection Error</i>	<i>Target Mis-Scaling</i>
F_x Error Improvement	0.9896	4.2556	0.7135	22.815
F_y Error Improvement	1.0554	28.642	0.6677	23.491
C_x Error Improvement	0.0316	-0.1699	-0.4672	-2.3580
C_y Error Improvement	-0.1247	-0.3356	-0.3138	-0.3952
k_1 Error Improvement	0.0518	0.0174	0.0324	0.0317
k_2 Error Improvement	0.3384	0.2593	0.1933	0.2731
k_3 Error Improvement	-0.0280	-0.3124	-0.0850	-0.1152
p_1 Error Improvement	0.0079	0.007	0.0077	0.0065
p_2 Error Improvement	0.7615	0.8026	0.6656	0.62070

3-Axis vs. Zhang

<i>Introduced Flaw</i>	<i>Movement Imprecision</i>	<i>Movement Mis-Scaling</i>	<i>Detection Error</i>	<i>Target Mis-Scaling</i>
F_x Error Improvement	N/A	N/A	7.9141	25.078
F_y Error Improvement	N/A	N/A	8.5009	25.030
C_x Error Improvement	N/A	N/A	0.5527	7.9029
C_y Error Improvement	N/A	N/A	0.2214	6.9560
k_1 Error Improvement	N/A	N/A	-0.0241	0.0173
k_2 Error Improvement	N/A	N/A	-0.0681	0.0989
k_3 Error Improvement	N/A	N/A	N/A	N/A
p_1 Error Improvement	N/A	N/A	-0.0012	0.0023
p_2 Error Improvement	N/A	N/A	-0.0004	0.0032

253 3-Axis performs better in ARE measures than either Zhang's algorithm or ROS-I, although the

254 difference is more extreme with Zhang's algorithm while ROS-I performed comparatively better.

255 In particular, Zhang's algorithm performed much more poorly when subjected to target detection

256 errors, while ROS-I performed best under that same condition (indeed, the detection error test

257 was the only one where it beat the reprojection error of 3-Axis in a majority of comparisons). In

258 general, ROS-I was more competitive with 3-Axis when the error was one of random perturbation

259 than when the error was one of scaling.

260 *Stated* reprojection error does does differ from *actual* calibration quality as measured by ARE

261 in many tests. It is generally *lower* in 3-Axis than in ROS-I when the introduced error quality is

262 smaller in magnitude, and the number of data points is low; and higher in the converse cases. When

Table 2 Actual Reprojection Error (ARE) under each of the four injected error sources, in pixels. The first section of the table provides the mean ARE for each calibration method over 400 trials; the second section provides the difference in mean ARE between 3-Axis and the control calibration methods; and the third section provides the percentage (out of 400 individual trials) where 3-Axis performed better than the control method. As Zhang's algorithm does not use known target positions, no data was collected or results computed for it using the Movement Imprecision and Movement Mis-Scaling error sources.

Introduced Flaw	<i>Movement Imprecision</i>	<i>Movement Mis-Scaling</i>	<i>Detection Error</i>	<i>Target Mis-Scaling</i>
3-Axis Mean ARE (px)	1.23	9.49	2.87	7.75
ROS-I Mean ARE (px)	4.29	14.72	3.38	14.18
Zhang Mean ARE (px)	<i>N/A</i>	<i>N/A</i>	258.16	7.483
Improvement vs. ROS-I	3.05	5.22	0.51	6.43
Improvement vs. Zhang	<i>N/A</i>	<i>N/A</i>	255.30	-0.268
Cases Where 3-Axis Beat ROS-I	64.16%	94.23%	49.12%	91.97%
Cases Where 3-Axis Beat Zhang	<i>N/A</i>	<i>N/A</i>	100%	71.67%

263 comparing 3-Axis against Zhang's algorithm, 3-Axis improves on RE as detection error increases,
264 and is always higher when the target is incorrectly scaled. This higher stated reprojection error is
265 actually useful for a calibration algorithm, as it provides a more reliable indication that there is a
266 flaw in the data being acquired (as opposed to generating an *inaccurate* calibration with a reported
267 reprojection error comparable to that of an *accurate* calibration).

268 *5.3 Physical Experiment Design*

269 Calibration was also performed on a physical device, specifically the surgical endoscope of a da
270 Vinci® IS-1200 Surgical Robotic System.⁴⁸ This device was selected because of its compact size
271 and relatively high distortion, and difficulties previously encountered in attaining any reliable cal-
272 ibration from it.⁴⁴

273 As there is no ground truth available for this physical device, the quality of the calibration must
274 be evaluated by stated reprojection error and consistency of results across calibration runs. Five
275 calibrations were performed, using a preexisting 3-axis controllable sled mechanism moved to 153
276 valid detection points for C3 and ROS-I. The calibration target contained 9 by 8 circular fiducials,
277 for a total of 11016 data points in each calibration. Another 153 images were acquired using the
278 same target, moved in a single line along the Z-axis; these serve as a data set for the ROS-Industrial
279 calibration system. The sled mechanism is shown in Figure 6, and one of the images produced by
280 the endoscope camera in Figure 5. Finally, the first 153 valid random target positions from the
281 simulation data set were used as references to manually position the physical target (with added
282 rotations, which could not be performed using the sled system), and establish another 11016 data
283 point set that was used by Zhang's algorithm. These acquisitions were also repeated 5 times each.

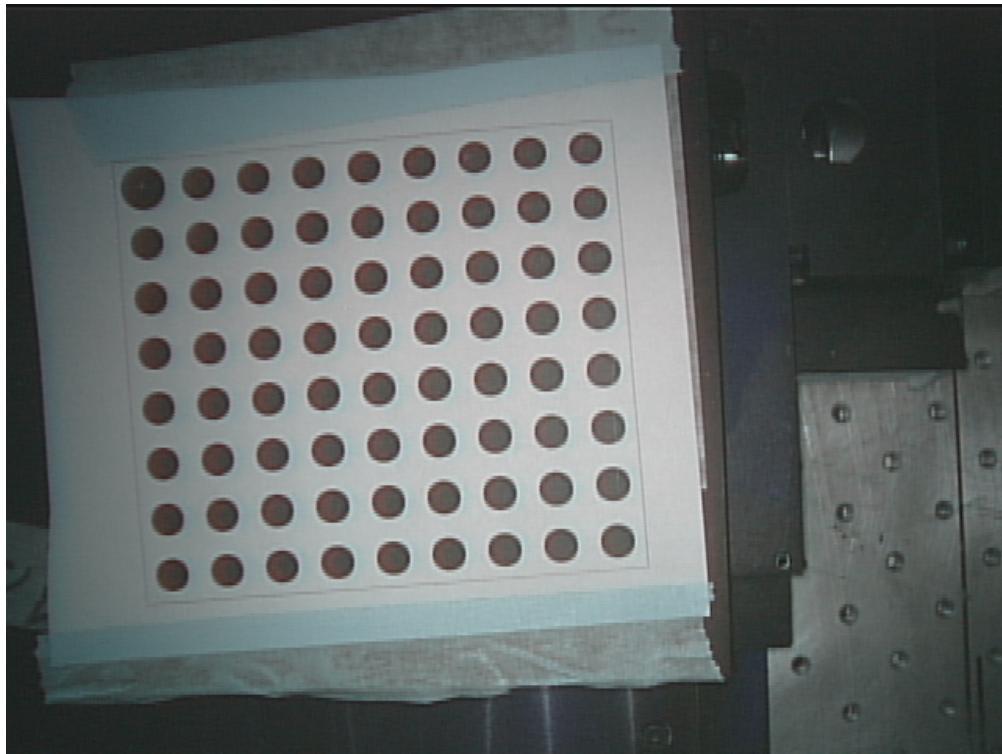


Fig 5 Example calibration image taken with the endoscope camera.

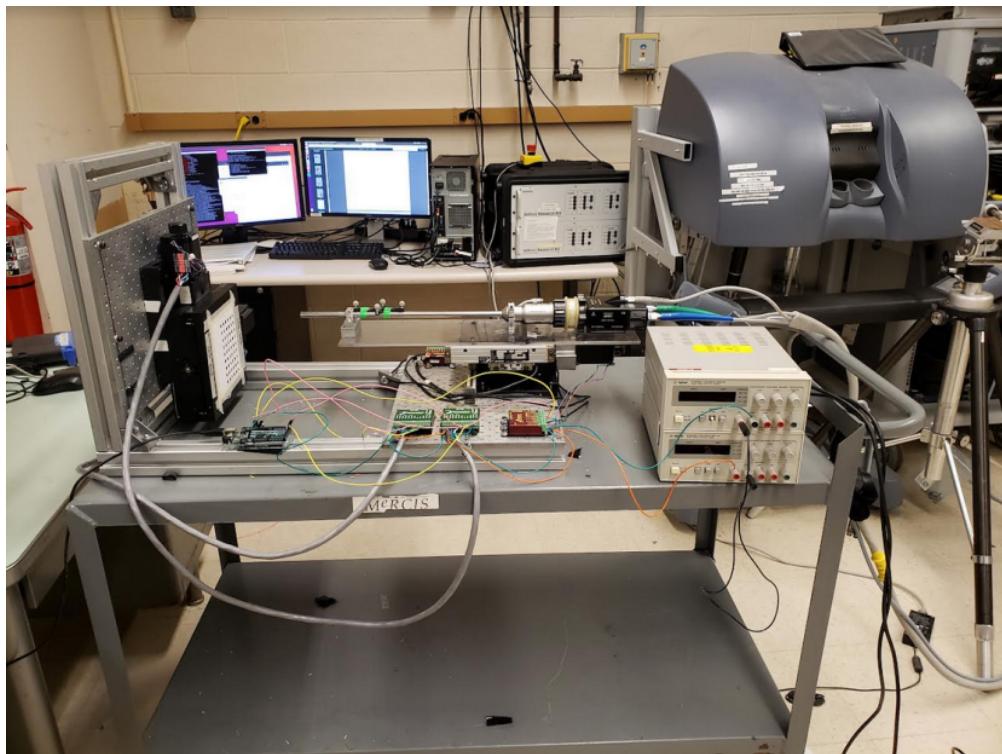


Fig 6 Calibration target movement system for endoscope (silver cylinder in the center of the image) in 3-Axis and ROS-I calibration. This benchtop device functions similarly to a CNC machine.

284 *5.4 Physical Experiment Results*

285 Table 3 displays the reprojection errors of all five tests for the 3-Axis, ROS-I, and Zhang calibration
 286 systems. Table 4 shows comparative variance statistics for each intrinsic parameter of interest, for
 287 each algorithm. ROS-I did not converge for three of the five tests, although in the two cases where
 288 it did converge it produced reprojection errors that were lower than any of those reported by 3-
 289 Axis. Similarly, in two cases Zhang’s algorithm produced reprojection errors that were an order of
 290 magnitude higher than the other three, although even those were under one pixel. 3-Axis, however,
 291 consistently reported sub-pixel reprojection errors for all five tests.

Table 3 Reprojection errors under physical calibration (RPE, in pixels).

Test #	3-Axis	ROS-I	Zhang
1	0.9762	0.1917	4.2612
2	0.5984	84.48	3.1412
3	0.7502	0.2430	0.2482
4	0.6567	400.0	0.2905
5	0.5554	115.9	0.2891
Avg.	0.7074	120.10	1.6461

Table 4 Standard deviation statistics for intrinsics discovered under physical calibration. The studied implementation of Zhang’s algorithm did not estimate a k_3 term.

Term	3-Axis σ	ROS-I σ	Zhang σ
F_x	0.4800	24.85	343.4
F_y	0.7908	33.40	345.9
C_x	2.707	2.298	27.34
C_y	9.602	0.7787	12.01
k_1	0.01277	0.1840	0.1263
k_2	0.1734	0.7897	0.5303
k_3	0.3704	0.006109	N/A
p_1	0.001947	0.005730	0.005310
p_2	0.002442	0.3967	0.004089

292 3-Axis is more consistent than ROS-I for 6 out of the 9 test parameters, and more consistent
 293 than Zhang’s algorithm for 6 out of 8 (this implementation of Zhang’s algorithm does not report

294 the k_3 term).

295 The simulation results discussed above suggest that reported reprojection error is not always a
296 particularly reliable measure of actual calibration quality, but some inferences can still be drawn
297 from the results. In particular, despite the ROS-I and 3-Axis data sets both being acquired using
298 the same mechanical device moved to the same positions, ROS-I was not *reliably* able to converge
299 on camera intrinsics with a subpixel reported RE. Additionally, while Zhang’s algorithm did not
300 produce as large of spikes in reprojection error as ROS-I, it still demonstrated “good” and “bad”
301 calibrations when fed similar data sets. 3-Axis, on the other hand, behaved consistently over all
302 five calibration attempts.

303 **6 Conclusions**

304 We discussed a new intrinsic calibration method (“3-Axis”) based on known movements of the
305 fiducial along three orthogonal axes. We began with an overview of the current state of the art, and
306 identified the ROS-Industrial calibration system⁶ and Zhang’s calibration algorithm⁷ as standards
307 of performance to which 3-Axis would be compared. Next, we described in detail the operation
308 of the calibration algorithm. We then proposed experimental methods of comparison between
309 ROS-Industrial, Zhang’s algorithm, and 3-Axis, using both simulated and real cameras. Finally,
310 we presented the resultant performance metrics for all systems. We concluded that 3-Axis is more
311 likely to provide more accurate calibration results than either ROS-Industrial or Zhang’s algorithm,
312 for a calibration data set of any given size and quality. Additionally, it produces more *consistent*
313 calibration results than ROS-Industrial or Zhang’s algorithm for any given real-world data set. Fi-
314 nally, 3-Axis is shown to produce *stated* reprojection errors that more closely match the *actual*
315 reprojection errors of the algorithm than ROS-I or Zhang’s algorithm. This means that the per-

316 formance of the algorithm can be assessed more accurately in cases where it is not possible to
317 compare the discovered values to a ground truth. Continued validation of the work will occur as it
318 is used in functional calibrations of different camera hardware.

319

320 The 3-Axis utility itself is available at

321 <https://github.com/cwru-robotics/3d-calibration>.

322

323 Scripts and assets used to perform automatic simulation tests, as well as the data produced, are
324 available at

325 <https://github.com/cwru-robotics/comparative-calibration>.

326

327 Software used to drive and interface with the endoscope custom mill platform is available at
328 <https://github.com/cwru-robotics/Calib-Sled>

329 **Disclosures**

330 The authors declare no conflicts of interest.

331 **Code, Data, and Materials Availability**

332 Data underlying the results presented in this paper are available in Ref.⁴⁹

333 **Acknowledgments**

334 This work was supported in part by the National Science Foundation under grants CISE IIS-
335 1524363, CISE IIS-1563805, and SBE SES-2129072; and by Roadprintz, Inc.

336 *References*

337 1 O. Faugeras and O. A. Faugeras, *Three-dimensional computer vision: a geometric viewpoint*,
338 MIT press (1993).

339 2 R.-J. Ahlers and J. Lu, “Stereoscopic vision-an application oriented overview,” in *Optics*,
340 *Illumination, and Image Sensing for Machine Vision IV*, **1194**, 298–308, SPIE (1990).

341 3 A. Casals, *Sensor devices and systems for robotics*, vol. 52, Springer Science & Business
342 Media (2012).

343 4 J. Salvi, X. Armangué, and J. Batlle, “A comparative review of camera calibrating methods
344 with accuracy evaluation,” *Pattern Recognition* **35**(7), 1617–1635 (2002).

345 5 W. Li, T. Gee, H. Friedrich, *et al.*, “A Practical Comparison between Zhang’s and Tsai’s
346 Calibration Approaches,” in *Proceedings of the 29th International Conference on Image and*
347 *Vision Computing New Zealand, IVCNZ ’14*, 166–171, Association for Computing Machin-
348 ery, (New York, NY, USA) (2014).

349 6 “ROS Industrial.”

350 7 Z. Zhang, “A flexible new technique for camera calibration,” *IEEE Transactions on pattern*
351 *analysis and machine intelligence* **22**(11), 1330–1334 (2000).

352 8 W. Qi, F. Li, and L. Zhenzhong, “Review on camera calibration,” in *2010 Chinese Control*
353 *and Decision Conference*, 3354–3358 (2010).

354 9 T. Luhmann, C. Fraser, and H.-G. Maas, “Sensor modelling and camera calibration for close-
355 range photogrammetry,” *ISPRS Journal of Photogrammetry and Remote Sensing* **115**, 37–
356 46 (2016). Theme issue ‘State-of-the-art in photogrammetry, remote sensing and spatial
357 information science’.

358 10 L. Long and S. Dongri, “Review of camera calibration algorithms,” in *Advances in Computer*
359 *Communication and Computational Sciences*, S. K. Bhatia, S. Tiwari, K. K. Mishra, *et al.*,
360 Eds., 723–732, Springer Singapore, (Singapore) (2019).

361 11 Y. Abdel-Aziz and H. Karara, “Direct linear transformation into object space coordinates
362 in close-range photogrammetry, in proc. symp. close-range photogrammetry,” *Urbana-*
363 *Champaign* , 1–18 (1971).

364 12 R. Y. Tsai, “An efficient and accurate camera calibration technique for 3D machine vision,”
365 in *CVPR’86*, (1986).

366 13 Opencv Dev Team, “findcirclesgrid,” *Opencv API Reference* (2019).

367 14 Y. M. Wang, Y. Li, and J. B. Zheng, “A camera calibration technique based on OpenCV,”
368 in *The 3rd International Conference on Information Sciences and Interaction Sciences*, 403–
369 406 (2010).

370 15 MathWorks, Inc., “What is camera calibration?,” *Matlab Help Center* (2022).

371 16 G. D’Emilia and D. D. Gasbarro, “Review of techniques for 2D camera calibration suitable
372 for industrial vision systems,” *Journal of Physics: Conference Series* **841**, 012030 (2017).

373 17 K. Zhan, D. Fritsch, and J. F. Wagner, “Stability analysis of intrinsic camera calibration using
374 probability distributions,” *IOP Conference Series: Materials Science and Engineering* **1048**,
375 012010 (2021).

376 18 G. Chiou, “Reducing the variance of intrinsic camera calibration results in the ros camera
377 calibration package,” Master’s thesis, University of Texas at San Antonio (2017).

378 19 J. Jiang, L. Zeng, B. Chen, *et al.*, “An accurate and flexible technique for camera calibration,”
379 *Computing* **101**(12), 1971–1988 (2019).

380 20 J.-H. Chuang, C.-H. Ho, A. Umam, *et al.*, “Geometry-based camera calibration using closed-
381 form solution of principal line,” *IEEE Transactions on Image Processing* **30**, 2599–2610
382 (2021).

383 21 X. Wang, Y. Zhao, and F. Yang, “Camera calibration method based on Pascal’s theorem,”
384 *International Journal of Advanced Robotic Systems* **16**(3), 1729881419846406 (2019).

385 22 D. Jin and Y. Yang, “Using distortion correction to improve the precision of camera calibra-
386 tion,” *Optical Review* **26**(2), 269–277 (2019).

387 23 M. Yang, X. Chen, and C. Yu, “Camera calibration using a planar target with pure transla-
388 tion,” *Appl. Opt.* **58**, 8362–8370 (2019).

389 24 M. Tapper, P. J. McKerrow, and J. Abrantes, “Problems encountered in the implementation of
390 tsai’s algorithm for camera calibration,” in *Proc. 2002 Australasian Conference on Robotics
391 and Automation, Auckland*, 66–70, Citeseer (2002).

392 25 J. Zhang, H. Yu, H. Deng, *et al.*, “A robust and rapid camera calibration method by one
393 captured image,” *IEEE Transactions on Instrumentation and Measurement* **68**(10), 4112–
394 4121 (2019).

395 26 H. Zhu, Y. Li, X. Liu, *et al.*, “Camera calibration from very few images based on soft con-
396 straint optimization,” *Journal of the Franklin Institute* **357**(4), 2561–2584 (2020).

397 27 Z. Zhang, R. Zhao, E. Liu, *et al.*, “A single-image linear calibration method for camera,”
398 *Measurement* **130**, 298–305 (2018).

399 28 M. Lopez, R. Mari, P. Gargallo, *et al.*, “Deep single image camera calibration with radial
400 distortion,” in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
401 Recognition (CVPR)*, (2019).

402 29 D. Su, A. Bender, and S. Sukkarieh, “Improved cross-ratio invariant-based intrinsic calibra-
403 tion of a hyperspectral line-scan camera,” *Sensors* **18**(6) (2018).

404 30 Z. Lu and L. Cai, “Camera calibration method with focus-related intrinsic parameters based
405 on the thin-lens model,” *Opt. Express* **28**, 20858–20878 (2020).

406 31 J. Kümmerle and T. Kühner, “Unified intrinsic and extrinsic camera and LiDAR calibration
407 under uncertainties,” in *2020 IEEE International Conference on Robotics and Automation*
408 (*ICRA*), 6028–6034 (2020).

409 32 G. H. An, S. Lee, M.-W. Seo, *et al.*, “Charuco board-based omnidirectional camera calibra-
410 tion method,” *Electronics* **7**(12) (2018).

411 33 H. Duan, L. Mei, J. Wang, *et al.*, “A new imaging model of Lytro light field camera and
412 its calibration,” *Neurocomputing* **328**, 189–194 (2019). Chinese Conference on Computer
413 Vision 2017.

414 34 Y. Zhang, X. Zhao, and D. Qian, “Learning-based distortion correction and feature detection
415 for high precision and robust camera calibration,” *IEEE Robotics and Automation Letters*
416 **7**(4), 10470–10477 (2022).

417 35 S. Sels, B. Ribbens, S. Vanlanduit, *et al.*, “Camera calibration using Gray code,” *Sensors*
418 **19**(2) (2019).

419 36 B. Chen and B. Pan, “Camera calibration using synthetic random speckle pattern and digital
420 image correlation,” *Optics and Lasers in Engineering* **126**, 105919 (2020).

421 37 S. Peng and P. Sturm, “Calibration wizard: A guidance system for camera calibration based
422 on modelling geometric and corner uncertainty,” in *Proceedings of the IEEE/CVF Interna-*
423 *tional Conference on Computer Vision (ICCV)*, (2019).

424 38 M. A. Gunen, E. Besdok, P. Civicioglu, *et al.*, “Camera calibration by using weighted differ-
425 ential evolution algorithm: a comparative study with ABC, PSO, COBIDE, DE, CS, GWO,
426 TLBO, MVMO, FOA, LSHADE, ZHANG and BOUGUET,” *Neural Computing and Appli-*
427 *cations* **32**(23), 17681–17701 (2020).

428 39 C. Chen, F. Yang, and B. Pan, “Model-free method for intrinsic camera parameters calibration
429 and lens distortion correction,” *Optical Engineering* **60**(10), 104102 (2021).

430 40 R. Juarez-Salazar, J. Zheng, and V. H. Diaz-Ramirez, “Distorted pinhole camera modeling
431 and calibration,” *Appl. Opt.* **59**, 11310–11318 (2020).

432 41 J. Sun, X. Cheng, and Q. Fan, “Camera calibration based on two-cylinder target,” *Opt. Ex-*
433 *press* **27**, 29319–29331 (2019).

434 42 X. Liu, Y. Zhao, and X. Kou, “Calibration of intrinsic camera parameters with a conic and its
435 asymptotes,” *Appl. Opt.* **60**, 10024–10034 (2021).

436 43 “Ros Industrial camera calibration.”

437 44 T. Shkurti, “Simulation and control enhancements for the da Vinci surgical robot,” Master’s
438 thesis, Case Western Reserve University (2019).

439 45 S. Agarwal, K. Mierle, and T. C. S. Team, “Ceres Solver,” (2022).

440 46 C. Aguero, N. Koenig, I. Chen, *et al.*, “Inside the virtual robotics challenge: Simulating real-
441 time robotic disaster response,” *Automation Science and Engineering, IEEE Transactions on*
442 **12**, 494–506 (2015).

443 47 N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an open-source multi-
444 robot simulator,” in *IEEE/RSJ International Conference on Intelligent Robots and Systems*,
445 2149–2154, (Sendai, Japan) (2004).

446 48 P. Kazanzides, Z. Chen, A. Deguet, *et al.*, “An open-source research kit for the da Vinci®
447 surgical system,” in *IEEE International Conference on Robotics and Automation (ICRA)*,
448 (2014).

449 49 “Comparative calibration data.”

450 <https://github.com/cwru-robotics/comparative-calibration>.

451 List of Figures

- 452 1 Simulated camera image from Figure 2. The black padding at the edges of the
453 image is the result of barrel distortion added after the initial image render. As this
454 image was used to collect data for Zhang’s algorithm, the target is also given a
455 pseudorandom roll, pitch, and yaw which differs for each position.
- 456 2 Simulation environment for generating target data. The camera (indicated by three
457 colored axes) faces upward along the Z (blue) axis to the simulated target. The
458 target can be deleted and spawned at any position in 3D space, to simulate the
459 action of a precision 3-axis movement system.
- 460 3 *Actual* reprojection error results of simulated data with different introduced flaws,
461 arranged with respect to number of data points and introduced error magnitude.
462 Light green bars indicate 3-Axis’s ARE was lower than the competitor algorithm’s
463 in that configuration; dark red bars indicate 3-Axis’s ARE was higher.

464 4 *Stated* reprojection error results of simulated data with different introduced flaws,
465 arranged with respect to number of data points and introduced error magnitude.
466 Light green bars indicate 3-Axis's RE was lower than the competitor algorithm's
467 in that configuration; dark red bars indicate 3-Axis's RE was higher.
468 5 Example calibration image taken with the endoscope camera.
469 6 Calibration target movement system for endoscope (silver cylinder in the center
470 of the image) in 3-Axis and ROS-I calibration. This benchtop device functions
471 similarly to a CNC machine.

472 List of Tables

473 1 Difference between median intrinsics as estimated by calibration methods, and
474 ground truth, under different introduced calibration error sources. As Zhang's
475 algorithm does not use known target positions, no data was collected or results
476 computed for it using the Movement Imprecision and Movement Mis-Scaling er-
477 ror sources. Additionally, this implementation of Zhang's Algorithm did not return
478 a k_3 term.

479 2 Actual Reprojection Error (ARE) under each of the four injected error sources, in
480 pixels. The first section of the table provides the mean ARE for each calibration
481 method over 400 trials; the second section provides the difference in mean ARE
482 between 3-Axis and the control calibration methods; and the third section provides
483 the percentage (out of 400 individual trials) where 3-Axis performed better than
484 the control method. As Zhang’s algorithm does not use known target positions, no
485 data was collected or results computed for it using the Movement Imprecision and
486 Movement Mis-Scaling error sources.

487 3 Reprojection errors under physical calibration (RPE, in pixels).

488 4 Standard deviation statistics for intrinsics discovered under physical calibration.

489 The studied implementation of Zhang’s algorithm did not estimate a k_3 term.