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Abstract. This paper presents a new method for precision intrinsic calibration of pinhole-model cameras. We refer
to this method as “3-Axis”. The algorithm employs a target moving with known displacements along 3 perpendicular
axes, to decrease the number of unknown terms that must be determined. This method is described in detail along with
new evaluation strategies for comparing the accuracy of calibration algorithms. The 3-Axis approach is then compared
to the current state of the art in simulated and physical settings, and is shown to exceed it in accuracy for an equal
number of samples acquired.
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1 Introduction

Intrinsic camera calibration is a necessary step before employing photogrammetry,' modeling,? and
image-processing® techniques. The fitness of a calibration process can be evaluated as a relation
between the amount and quality of calibration data fed into the calibration solver, and the accuracy
with which it then estimates the intrinsic optical parameters of the camera.*> Here, “quality” is
an abstract measure of how accurately one can determine or enforce parameters of the calibration
data (for instance the exact size of a fiducial, or its position in 3D space).” Generally, data with
greater quality is more time-consuming and costly to collect. Similarly, it is more time-consuming
and costly to acquire a numerically larger data set of a given quality.

This paper discusses a new intrinsic calibration method (“3-Axis”) based on known move-
ments of the fiducial along three orthogonal axes. This data collection system is intended to allow

rapid, automated collection of high-quality data using commonly available equipment such as cut-
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ting mills, 3D printers, or robotic arms. Additionally, we propose a new and detailed method of
comparing the accuracy of calibration methods using simulated data with a known ground truth.
We begin with an overview of the current state of the art, and identify the ROS-Industrial
calibration system® and Zhang’s calibration algorithm’ as standards of performance to which 3-
Axis will be compared. Next, we describe in detail the operation of the calibration algorithm. We
then propose experimental methods of comparison between ROS-Industrial, Zhang’s algorithm,
and 3-Axis, using both simulated and real cameras. Finally, we present the performance metrics
for all three systems, and conclude that 3-Axis is more likely to perform better than ROS-Industrial

or Zhang’s algorithm for data sets of any given size and quality.

2 Related Studies

Camera calibration methods are typically divided into three categories: traditional, self-calibrating,

and active-vision:®1°

* Traditional methods involve imaging artificial calibration targets deliberately placed in the
environment. Some or all of the target’s physical parameters are known, as is some or all in-
formation relating to its position in the scene. The assumption is that the camera parameters
discovered in this artificial environment will remain the same when the calibration target is

removed and the camera is used to image other objects in another environment.

* Self-calibration methods do not require an artificial calibration target with known parame-
ters. Rather, the camera gathers calibration information from the same visual environment
where it will be used. This, of course, requires assumptions about what features will be
found in the environment, but in absolute terms the camera calibrator has no control over the

contents of the images.
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* Active-sensing methods are similar to self-calibration methods, but the camera calibrator
has control over the positioning of the camera (returning some control over the contents of

the images).

3-Axis is a traditional calibration method- traditional methods tend to be the most accurate,'® and
are the focus of this review.

In a 2019 systematic review,'’ Long and Dongri identify three primary traditional calibration
algorithms: the DLT algorithm by Abdel-Aziz and Karara,'! the two-step algorithm by Tsai,'?
and the planar pattern algorithm by Zhang.” A 2002 review by Salvi, Armangué, and Batlle*
compares Tsai’s algorithm to DLT-based algorithms and finds Tsai’s to be more accurate; while a
2014 review by Li et. al.’ finds Zhang’s algorithm to be comparable in accuracy to Tsai’s. Indeed,
it is Zhang’s algorithm that is used in common computer vision toolkits such as OpenCV!*!* and
Matlab,'>'® and most commonly overall.!” It often serves as a baseline against which to compare
other experimental calibration algorithms.'®>* Tsai’s algorithm, however, lacks such a commonly-
used library implementation.?*

Much development post 2019 has focused on calibration using few or single images;>>® cali-

bration of atypical camera types or cameras in combination with other sensors;**=** or improvement

of target fiducial detection.’¢ However, alternative methods of data collection and processing in

Zhang-like algorithms continue to be explored:

* Peng and Sturm®’ have created a utility to suggest advantageous calibration target positions
for Zhang’s algorithm (which are determined arbitrarily by a human operator in the normal
use case), although human intervention is still required to move the target to these poses and

the positioning is not precise.



72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

1%

Gunen et. a examine and improve the optimization solvers used in Zhang’s classical

algorithm, as well as other common calibration algorithms.

Jiang et. al.!”” replace the physical calibration target with a virtual target displayed on a
screen in front of the camera, allowing for more precise and automated target movement

with a more complicated projection model.

Chen, Yang, and Pan*® also employ a dynamic target generated on a screen- this one displays
linear patterns and is moved to two different spatial locations with a precisely-known dis-
placement, allowing for the independent calculation of distortion, principal point, and focal

length parameters.

Jin and Yang?? employ a secondary calibration target viewed from a single position to esti-

mate distortion, as a prelude to full-model calibration.

Juarez-Salazar, Zhang, and Diaz-Ramirez*’ propose an alternative pinhole camera model
more suited for cameras with high radial distortion, which is calibrated with classical checker-

board targets.

Sun, Cheng, and Fan*! propose a method employing a target made of two opaque cylin-
ders with known radius, length, and position with respect to each other, placed at arbitrary

locations in the camera image.

Liu, Zhao, and Kou*? combine traditional rectilinear targets with circular ones, to perform

calibration using conic asymptotes.

Yang, Chen, and Yu?® propose a system similar to 3-Axis, but involving a target moving
along a sled with only a single dimension of displacement.

4
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Finally, particular attention is paid to the ROS-Industrial camera calibration toolkit.>** This
calibration approach also employs a target moving at known displacements along a single axis of
motion, assumed to be close to perpendicular to the image plane of the camera and centered in the
middle of the field of view. It is able to collect data automatically, and interfaces with the Robot
Operating System; the precision of the calibration data produced exceeds that of the standard ROS
implementation of Zhang’s algorithm.!®**% For this reason, both ROS-Industrial and the ROS
implementation of Zhang’s calibration algorithm were chosen as the state of the art against which

to compare 3-Axis’s performance.

3 Problem Formulation

Camera calibration attempts to find descriptive optical parameters for a projection model P of a
physical camera. The most commonly used are the pinhole projection model (focal length F}, and
F,, and image center C, and C,), and Brown distortion model (radial distortion parameters &, ko,
ks, and tangential distortion parameters p; and p,).'8 Based on these parameters, P can map an

arbitrary point (z,y, z) in 3D metric space to a point (u, v) in 2D pixel space:

(u,v) = P(z,y, 2) (D

8

2)

Uplanar = Z Uplanar = —
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r= Huplanara Uplanar“
Uradial = Uplanar (kl : TQ + k2 : T4 + ]{53 : TG)
Uradial = Uplanar (kl ’ TQ + kQ ’ 7”4 + kg : 7"6)
Utangential = 2 P1 * Uplanar * Uplanar + Do (T2 + 2 Uplanar2) (3)
Vtangential = 2 P2 - Uplanar * Uplanar + b1 (TQ +2 yplanarz)
Udistorted = Uplanar + Uradial + Utangential

Udistorted = Uplanar + Vradial + Vtangential

u = Fx * Udistorted T+ Cx
“)

U= Fy * Vdistorted + Cy
The optimization of the projection model compares a (typically large) set of fiducial points
captured in actual camera images (here referred to as (U;,V;)) with points projected from the

fiducial’s physical location (X, Y;, Z;) by P, and attempts to minimize the Euclidean distance

between them:

argminZ(H(Ui,Vi) —P(Xl-,Yi,Zi)H) (5)
P i

Here, a simple sum of Euclidean norms is used as the aggregate distance measure, although other
aggregations (median, mean, sum of squares, etc.) and other distance measures (for instance,
taxicab distance) could be applied. This differs from Tsai’s two-step approach,'? as the distortion

and projection characteristics are optimized concurrently.



117 The fiducial position (X;, Y;, Z;) can be alternatively represented by a 3D rigid transform from

1s the camera frame to the fiducial frame Ggp; :

arg;ninzi:(H(Ui,V;) — P(GCFZ-)H) (6)

119 However, the position of a given fiducial in metric space with respect to the camera is often not
120 known to any precision: the camera is a three-dimensional volumetric object with an optical center
121 somewhere in its interior. Indeed, determining some parameters of this optical center is one of the

122 objectives of calibration. Therefore, this naive method introduces three unknown parameters and

n

123 only two known parameters for every point, in addition to the parameters within P. The result is

124 an underspecified and unsolvable optimization problem:

arg min Z(H(UMVZ) —P(GCF,-)H) (7

P, Gori <
125 Zhang’s algorithm addresses this problem by including multiple fiducials on a single target of

126 known dimensions. This allows the decomposition of Gcr; into a set of fiducials on the same

127 target j and target positions k:

Gorjr = Geri - [Grry) (®)

128 In Eq. (8), Gory, represents the position of the multi-fiducial target at position &, a parameter
120 that Zhang’s algorithm does not assume to be known. is the position of fiducial j on the

o target; the notation indicates that it is known prior to the calibration. Eq. (7) then becomes

1

w
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argmin Y (\ Wy Vi) = P (Gome - [Grr )| D ©)
7.k

P, GeTk

So long as the number of fiducial positions increases more rapidly than the number of target
positions (that is to say, so long as the target has more than one fiducial visible on it), Eq. (9)
produces a solvable optimization problem.

Typically, the measure of quality for a camera calibration model is the reprojection error RE.*
This is simply the minimal final cost returned by the optimization system in the course of estimat-

ing P:

RE = min Z(H(Ui, Vi) — P(GCF»H) (10)

The RE is then typically normalized by the number of data points used in the calibration.
This is often the only possible measurement of calibration quality when calibrating real cam-

eras, as the purpose of calibration is to identify a ground truth otherwise unknown.

4 Methods

Our calibration method employs an alternative decomposition of G¢r;, employing a precision-

controllable 3D movement system to produce more known parameters:

Gceri = Gomi  [GuEi - Geri - [Grri (1)

where



144 . is the transformation between the origin of the target and a fiducial point on the target.

145 Flat, two-dimensional targets can easily be constructed with known dimensions (and known
146 positions for the center of each fiducial) using a commercial desktop printer. This term
147 differs for each fiducial in a given target position, but is always known.

148 * GEr; is the transformation from the origin of the target, to the moving end of a precision-
149 controllable, three-axis device such as a CNC machine, mill, or robotic arm. While it may
150 be possible to affix a target to such a device in a known transformation, this was not assumed
151 as a requirement for the calibration process. Therefore, it is assumed that the parameter must
152 be solved for during calibration.

153 . is the transformation between the tip and the origin of the 3-axis device. This is the

154 nominal position requested of the device, and thus precisely known, albeit different for each
185 target acquisition.

156 * G, is the transformation from the “center” of the 3-axis device, to the “center” of the
157 camera. Since both of these mechanisms are irregular solid devices with “origin points”
158 determined by their physical and optical properties, these points are not considered physi-
159 cally meaningful and certainly not externally measurable. Therefore, this parameter must be
160 found during the process of calibration.

161 It is of particular interest that the two estimated terms, Gy and Ggr, are consistent through-

12 out the entire data set. This is untrue for the classical Zhang’s algorithm- there, a different target-
s camera transform must be estimated for each physical location of the target.” This alteration

e« changes the number of non-intrinsic terms needing to be optimized for a data set of n points, from
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O(n) to a constant 12 (the minimal representation of two rigid transformations as 3 displacements
and 3 Euler angles each).

ROS-Industrial also employs a constraint to ensure a constant number of optimized non-intrinsics
by moving the target along a single axis in the approximate center of the camera’s field of view.!%4?
However, the assumption of travel along the exact view center is difficult to enforce in reality;*
and a comparatively smaller number of data points are collected near the edge of the image, which
makes it more difficult to calculate distortion parameters that have a greater effect (in terms of
absolute motion in pixels) near the edges of the image.'®

Tsai’s algorithm does not employ a single projection model, but rather a two-step process
wherein rough focal information is determined assuming an undistorted image, and distortion pa-
rameters are calculated subsequently. Additionally, implementations of the algorithm assume that

12,24 instead of a

multiple targets will be present in one single image in a known configuration,
single target being moved and imaged subsequently.

Next, a redundant free parameter can be identified and removed from the optimization by ex-

panding Eq. (11) into translation and rotation terms and taking advantage of certain cancellations:

Ger = Rom ([Gumel- Ger - [Gorl+ Tewm)
= Rem ([Rme|(Ger - [Gre] +[Tume| ) + Tom) (12)
= Rem ([Rme| (Rer ([Grel+ Ter) +[Tve|) + Tem)

Gumg| is a known transformation that is always a pure translation, being the position of the 3D
motion device with respect to its own origin. Therefore, the term is known to be identity

and can be removed:

10
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Gcr = Rem (Isxs (ReT ( + Tgr) + )+ Tem)
= Rem (Rer ([Gorl+ Ter) +[Tyme| + Tom) (13)
= RcMm (ReT '+ Rer - Ter ++ Tcm)

Note that the term Rgr - Tt is an unknown rotation, applied to an unknown translation which
appears nowhere else in the formula. Additionally, both Rgr and Tt are (like all of the unknown
terms in the model) constant across all data points in the set. Therefore, for any value of Rg, there
exists some equally unknown but equally constant 3-vector Pgr such that Pgr = Rgr - Tgr.

Substitution into (13) gives

Gcr = Rem (Rer - [Gor| + Per + [TME| + ToMm)
= RoMm (Rer - [Grrl+ Per + Tem + [Tl )

(14)

Now, the two unknown 3-vectors Pgr and T ¢y appear nowhere else in the model. The sum
of two unknown 3-vectors is, of course, another unknown 3-vector- we will call it Pcr. Another

substitution into (14) gives

Gcer = RoMm (Ret - [Grg] + Per + [Tumel ) (15)

Although this formulation is no longer as intuitive or physically meaningful as Eq.(11), it
eliminates a set of redundant free parameters; and reduces the total dimensionality of the search
space from 12 (2 unknown translations and 2 unknown rotations, each in 3 dimensions) to 9 (2
unknown rotations and 1 unknown translation). This is distinct from the position model used in

Tsai’s algorithm, which assumes only one aggregate transformation; that from the camera to a

11



196

197

198

199

200

201

202

203

204

206

207

208

209

210

211

212

213

214

215

scene where every target point is at a known location with respect to every other.'> This simpler
model cannot accommodate multi-image calibration data where the rotation between the target and
the object moving the target is not fixed or known.

Although the 3-Axis algorithm can operate on any type of fiducial using any error-minimizing
solver, we chose to employ circle grid targets'® and the Ceres optimization solver,*> because these
were the methods used by ROS-Industrial.*?

Finally, consideration is given to alternative measures of calibration quality analysis. When
calibrating simulated cameras that render images of a scene in silico, the ground truth is known. It
is thus possible to derive an “Actual Reprojection Error” statistic (ARE) that distinguished between
the calibrated projection model Pg and the ground-truth projection model Pg.

This is done by generating a set of 3D points .S; and performing pinhole camera projection
on them usingP¢ and then Pg;. The average Euclidean distance (in pixels) between a point pro-
jected using the ground-truth intrinsics, and the corresponding point projected using the calibrated

intrinsics, is the ARE for that calibration attempt:

ARE = " (|Pe(X,, Y, Z) — Po(X,, Vi, Z)]) 16)

€S

5 Experiments and Results
5.1 Simulation Experiment Design

In order to determine the effectiveness of the 3-Axis calibration system compared to the current
state of the art, tests were undertaken using synthetic images generated using the Gazebo simula-
tion engine.*>*” One such image is shown in Figure 1, with the simulation environment producing

it shown in Figue 2.

12



Fig 1 Simulated camera image from Figure 2. The black padding at the edges of the image is the result of barrel
distortion added after the initial image render. As this image was used to collect data for Zhang’s algorithm, the target
is also given a psuedorandom roll, pitch, and yaw which differs for each position.

Fig 2 Simulation environment for generating target data. The camera (indicated by three colored axes) faces upward
along the Z (blue) axis to the simulated target. The target can be deleted and spawned at any position in 3D space, to

simulate the action of a precision 3-axis movement system.

13
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Each synthetic calibration data set was generated containing 9024 fiducial points (a 6 X 8 target
imaged at 188 different positions). For the ROS-Industrial data set, all of the calibration target
positions were at the same, non-orthogonal angle to the camera. For the data set to be used by
Zhang’s method, each target position additionally included a pseudorandom pitch, yaw, and roll
independently uniformly distributed between +20°and -20°. Repeated calibrations were run using
less and less of this data set (pseudorandomly decimated in increments of 480 fiducial points,
equivalent to randomly removing 10 images per iteration) to establish a relationship between data
set size (larger data sets being more time-intensive to acquire in a real situation) and performance.

Additionally, 4 different sources of measurement imprecision were injected into the data with

known, variable magnitudes in 20 increments:

* Proportional scale of the target, as a linear scaling of its actual dimensions versus nominal
dimensions used to calculate the parameter given to the calibration software. Range:

90% — 110%

* Detection error, as Gaussian error added to the detected pixel position (U;, V;) of each

fiducial. Range: 0 = Opx — o = 10px

* Target motion scaling, as a linear scaling of the target’s actual positions in 3D space com-
pared to the nominal positions provided to the calibration solver. Range: 90% —

110%

* Target motion imprecision, as Gaussian error added to the target’s position in 3D space
(compared to the nominal positions provided to the calibration solver). Range ¢ =

Omm — ¢ = 10mm

14
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The target detection error and target mis-scaling error sources are applicable to all three al-
gorithms under test (Zhang, ROS-Industrial, and 3-Axis). Since Zhang’s algorithm makes no as-
sumptions as to the position of the target, the position noise and mis-scaling error sources were
only applicable to ROS-Industrial and 3-Axis. This resulted in the generation of a total of 10
different 20 x 20 sets of calibration attempts (four each from 3-Axis and ROS-I, and two from
Zhang’s algorithm). For each attempt, the stated reprojection error (RE) and actual reprojection
error with respect to the simulation ground truth (ARE) were computed for each attempt in the
set. The ARE was calculated using the same sequence of 1000 points uniformly pseudorandomly

distributed through a 1-meter cubic volume for all tests.

5.2 Simulation Experiment Results

Figure 3 shows which calibration algorithm produced a lower actual reprojection error (ARE)
for each source of introduced data error, arranged according to number of target images included
and the introduced data error magnitude. Similarly, Figure 4 shows which calibration algorithm
produced a lower reported reprojection error. Descriptive statistics for these measurements are
given in Table 2. Finally, Table 1 covers the mean variance of the estimated intrinsics from their

ground-truth values for each calibration method, under each source of error.

15



ROS-Industrial vs. 3-Axis (ARE)
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Zhang’s Algorithm vs. 3-Axis (ARE)
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Fig 3 Actual reprojection error results of simulated data with different introduced flaws, arranged with respect to
number of data points and introduced error magnitude. Light green bars indicate 3-Axis’s ARE was lower than the
competitor algorithm’s in that configuration; dark red bars indicate 3-Axis’s ARE was higher.

16



ROS-Industrial vs. 3-Axis (RE)
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Zhang’s Algorithm vs. 3-Axis (RE)
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Fig 4 Stated reprojection error results of simulated data with different introduced flaws, arranged with respect to
number of data points and introduced error magnitude. Light green bars indicate 3-Axis’s RE was lower than the
competitor algorithm’s in that configuration; dark red bars indicate 3-Axis’s RE was higher.
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Table 1 Difference between median intrinsics as estimated by calibration methods, and ground truth, under different
introduced calibration error sources. As Zhang’s algorithm does not use known target positions, no data was collected
or results computed for it using the Movement Imprecision and Movement Mis-Scaling error sources. Additionally,

this implementation of Zhang’s Algorithm did not return a k3 term.

3-Axis vs. ROS-1

Movement | Movement . Target
Impreci- Mis- Detection Mis-
Introduced Flaw p . Error .
sion Scaling Scaling

F, Error Improvement 0.9896 4.2556 0.7135 22.815

F, Error Improvement 1.0554 28.642 0.6677 23.491

C, Error Improvement 0.0316 -0.1699 -0.4672 -2.3580

C, Error Improvement -0.1247 -0.3356 -0.3138 -0.3952

ki Error Improvement 0.0518 0.0174 0.0324 0.0317

ks Error Improvement 0.3384 0.2593 0.1933 0.2731

ks Error Improvement -0.0280 -0.3124 -0.0850 -0.1152

p1 Error Improvement 0.0079 0.007 0.0077 0.0065

0.7615 0.8026 0.6656 0.62070

p2 Error Improvement

3-Axis vs. Zhang

Movement | Movement ) Target
Introduced Flaw | mPreci- Mis- DeEtectzon Mis-
sion Scaling or Scaling
F, Error Improvement N/A N/A 7.9141 25.078
F, Error Improvement N/A N/A 8.5009 25.030
C, Error Improvement N/A N/A 0.5527 7.9029
C, Error Improvement N/A N/A 0.2214 6.9560
ki Error Improvement N/A N/A -0.0241 0.0173
k2 Error Improvement N/A N/A -0.0681 0.0989
ks Error Improvement N/A N/A N/A N/A
p1 Error Improvement N/A N/A -0.0012 0.0023
po Error Improvement N/A N/A -0.0004 0.0032

18
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3-Axis performs better in ARE measures than either Zhang’s algorithm or ROS-I, although the
difference is more extreme with Zhang’s algorithm while ROS-I performed comparatively better.
In particular, Zhang’s algorithm performed much more poorly when subjected to target detection
errors, while ROS-I performed best under that same condition (indeed, the detection error test
was the only one where it beat the reprojection error of 3-Axis in a majority of comparisons). In
general, ROS-I was more competitive with 3-Axis when the error was one of random perturbation
than when the error was one of scaling.

Stated reprojection error does does differ from actual calibration quality as measured by ARE
in many tests. It is generally lower in 3-Axis than in ROS-I when the introduced error quality is

smaller in magnitude, and the number of data points is low; and higher in the converse cases. When

Table 2 Actual Reprojection Error (ARE) under each of the four injected error sources, in pixels. The first section of
the table provides the mean ARE for each calibration method over 400 trials; the second section provides the difference
in mean ARE between 3-Axis and the control calibration methods; and the third section provides the percentage (out
of 400 individual trials) where 3-Axis performed better than the control method. As Zhang’s algorithm does not
use known target positions, no data was collected or results computed for it using the Movement Imprecision and

Movement Mis-Scaling error sources.

Movement | Movement . Target
I . Mis- Detection Mis-
Introduced Flaw mp rect . Error .
sion Scaling Scaling
3-Axis Mean ARE (px) 1.23 9.49 2.87 7.75
ROS-I Mean ARE (px) 4.29 14.72 3.38 14.18
Zhang Mean ARE (px) N/A N/A 258.16 7.483
Improvement vs. ROS-I 3.05 5.22 051 6.43
Improvement vs. Zhang N/A N/A 255.30 -0.268
Cases Where 3-Axis | 64.16% 94.23% 49.12% 91.97%
Beat ROS-1
Cases Where 3-Axis N/A N/A 100% 71.67%
Beat Zhang

19
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comparing 3-Axis against Zhang’s algorithm, 3-Axis improves on RE as detection error increases,
and is always higher when the target is incorrectly scaled. This higher stated reprojection error is
actually useful for a calibration algorithm, as it provides a more reliable indication that there is a
flaw in the data being acquired (as opposed to generating an inaccurate calibration with a reported

reprojection error comparable to that of an accurate calibration).

5.3 Physical Experiment Design

Calibration was also performed on a physical device, specifically the surgical endoscope of a da
Vinci® IS-1200 Surgical Robotic System.*® This device was selected because of its compact size
and relatively high distortion, and difficulties previously encountered in attaining any reliable cal-
ibration from it.**

As there is no ground truth available for this physical device, the quality of the calibration must
be evaluated by stated reprojection error and consistency of results across calibration runs. Five
calibrations were performed, using a preexisting 3-axis controllable sled mechanism moved to 153
valid detection points for C3 and ROS-I. The calibration target contained 9 by 8 circular fiducials,
for a total of 11016 data points in each calibration. Another 153 images were acquired using the
same target, moved in a single line along the Z-axis; these serve as a data set for the ROS-Industrial
calibration system. The sled mechanism is shown in Figure 6, and one of the images produced by
the endoscope camera in Figure 5. Finally, the first 153 valid random target positions from the
simulation data set were used as references to manually position the physical target (with added
rotations, which could not be performed using the sled system), and establish another 11016 data

point set that was used by Zhang’s algorithm. These acquisitions were also repeated 5 times each.

20



Fig 6 Calibration target movement system for endoscope (silver cylinder in the center of the image) in 3-Axis and
ROS-I calibration. This benchtop device functions similarly to a CNC machine.
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5.4 Physical Experiment Results

Table 3 displays the reprojection errors of all five tests for the 3-Axis, ROS-I, and Zhang calibration
systems. Table 4 shows comparative variance statistics for each intrinsic parameter of interest, for
each algorithm. ROS-I did not converge for three of the five tests, although in the two cases where
it did converge it produced reprojection errors that were lower than any of those reported by 3-
Axis. Similarly, in two cases Zhang’s algorithm produced reprojection errors that were an order of
magnitude higher than the other three, although even those were under one pixel. 3-Axis, however,

consistently reported sub-pixel reprojection errors for all five tests.

Table 3 Reprojection errors under physical calibration (RPE, in pixels).

Test# | 3-Axis | ROS-1 | Zhang
109762 | 0.1917 | 4.2612

2| 0.5984 | 84.48 | 3.1412

3| 0.7502 | 0.2430 | 0.2482

4 | 0.6567 | 400.0 | 0.2905

5] 05554 | 1159 | 0.2891
Avg. | 0.7074 | 120.10 | 1.6461

Table 4 Standard deviation statistics for intrinsics discovered under physical calibration. The studied implementation

of Zhang’s algorithm did not estimate a k3 term.

Term 3-Axis o ROS-1 o0 Zhang o
E, 0.4800 24.85 343.4
F, 0.7908 33.40 3459
C, 2.707 2.298 27.34
Cy 9.602 0.7787 12.01
kq 0.01277 0.1840 0.1263
ko 0.1734 0.7897 0.5303
ks 0.3704 0.006109 N/A
p1 | 0.001947 0.005730 0.005310
py | 0.002442 0.3967 0.004089

3-Axis is more consistent than ROS-I for 6 out of the 9 test parameters, and more consistent

203 than Zhang’s algorithm for 6 out of 8 (this implementation of Zhang’s algorithm does not report
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the k3 term).

The simulation results discussed above suggest that reported reprojection error is not always a
particularly reliable measure of actual calibration quality, but some inferences can still be drawn
from the results. In particular, despite the ROS-I and 3-Axis data sets both being acquired using
the same mechanical device moved to the same positions, ROS-I was not reliably able to converge
on camera intrinsics with a subpixel reported RE. Additionally, while Zhang’s algorithm did not
produce as large of spikes in reprojection error as ROS-I, it still demonstrated “good” and “bad”
calibrations when fed similar data sets. 3-Axis, on the other hand, behaved consistently over all

five calibration attempts.

6 Conclusions

We discussed a new intrinsic calibration method (“3-Axis”) based on known movements of the
fiducial along three orthogonal axes. We began with an overview of the current state of the art, and
identified the ROS-Industrial calibration system® and Zhang’s calibration algorithm’ as standards
of performance to which 3-Axis would be compared. Next, we described in detail the operation
of the calibration algorithm. We then proposed experimental methods of comparison between
ROS-Industrial, Zhang’s algorithm, and 3-Axis, using both simulated and real cameras. Finally,
we presented the resultant performance metrics for all systems. We concluded that 3-Axis is more
likely to provide more accurate calibration results than either ROS-Industrial or Zhang’s algorithm,
for a calibration data set of any given size and quality. Additionally, it produces more consistent
calibration results than ROS-Industrial or Zhang’s algorithm for any given real-world data set. Fi-
nally, 3-Axis is shown to produce stated reprojection errors that more closely match the actual

reprojection errors of the algorithm than ROS-I or Zhang’s algorithm. This means that the per-
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formance of the algorithm can be assessed more accurately in cases where it is not possible to
compare the discovered values to a ground truth. Continued validation of the work will occur as it

1s used in functional calibrations of different camera hardware.

The 3-Axis utility itself is available at

https://github.com/cwru-robotics/3d-calibration.

Scripts and assets used to perform automatic simulation tests, as well as the data produced, are
available at

https://github.com/cwru-robotics/comparative-calibration.

Software used to drive and interface with the endoscope custom mill platform is available at

https://github.com/cwru-robotics/Calib-Sled
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List of Figures

1 Simulated camera image from Figure 2. The black padding at the edges of the
image is the result of barrel distortion added after the initial image render. As this
image was used to collect data for Zhang’s algorithm, the target is also given a
psuedorandom roll, pitch, and yaw which differs for each position.

2 Simulation environment for generating target data. The camera (indicated by three
colored axes) faces upward along the Z (blue) axis to the simulated target. The
target can be deleted and spawned at any position in 3D space, to simulate the
action of a precision 3-axis movement system.

3 Actual reprojection error results of simulated data with different introduced flaws,
arranged with respect to number of data points and introduced error magnitude.
Light green bars indicate 3-Axis’s ARE was lower than the competitor algorithm’s

in that configuration; dark red bars indicate 3-Axis’s ARE was higher.
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Stated reprojection error results of simulated data with different introduced flaws,
arranged with respect to number of data points and introduced error magnitude.
Light green bars indicate 3-Axis’s RE was lower than the competitor algorithm’s
in that configuration; dark red bars indicate 3-Axis’s RE was higher.

Example calibration image taken with the endoscope camera.

Calibration target movement system for endoscope (silver cylinder in the center
of the image) in 3-Axis and ROS-I calibration. This benchtop device functions

similarly to a CNC machine.

List of Tables

1

Difference between median intrinsics as estimated by calibration methods, and
ground truth, under different introduced calibration error sources. As Zhang’s
algorithm does not use known target positions, no data was collected or results
computed for it using the Movement Imprecision and Movement Mis-Scaling er-
ror sources. Additionally, this implementation of Zhang’s Algorithm did not return

a ks term.
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Actual Reprojection Error (ARE) under each of the four injected error sources, in
pixels. The first section of the table provides the mean ARE for each calibration
method over 400 trials; the second section provides the difference in mean ARE
between 3-Axis and the control calibration methods; and the third section provides
the percentage (out of 400 individual trials) where 3-Axis performed better than
the control method. As Zhang’s algorithm does not use known target positions, no
data was collected or results computed for it using the Movement Imprecision and
Movement Mis-Scaling error sources.

Reprojection errors under physical calibration (RPE, in pixels).

Standard deviation statistics for intrinsics discovered under physical calibration.

The studied implementation of Zhang’s algorithm did not estimate a k3 term.
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