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1 Introduction16

Intrinsic camera calibration is a necessary step before employing photogrammetry,1 modeling,2 and17

image-processing3 techniques. The fitness of a calibration process can be evaluated as a relation18

between the amount and quality of calibration data fed into the calibration solver, and the accuracy19

with which it then estimates the intrinsic optical parameters of the camera.4, 5 Here, “quality” is20

an abstract measure of how accurately one can determine or enforce parameters of the calibration21

data (for instance the exact size of a fiducial, or its position in 3D space).5 Generally, data with22

greater quality is more time-consuming and costly to collect. Similarly, it is more time-consuming23

and costly to acquire a numerically larger data set of a given quality.24

This paper discusses a new intrinsic calibration method (“3-Axis”) based on known move-25

ments of the fiducial along three orthogonal axes. This data collection system is intended to allow26

rapid, automated collection of high-quality data using commonly available equipment such as cut-27
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ting mills, 3D printers, or robotic arms. Additionally, we propose a new and detailed method of28

comparing the accuracy of calibration methods using simulated data with a known ground truth.29

We begin with an overview of the current state of the art, and identify the ROS-Industrial30

calibration system6 and Zhang’s calibration algorithm7 as standards of performance to which 3-31

Axis will be compared. Next, we describe in detail the operation of the calibration algorithm. We32

then propose experimental methods of comparison between ROS-Industrial, Zhang’s algorithm,33

and 3-Axis, using both simulated and real cameras. Finally, we present the performance metrics34

for all three systems, and conclude that 3-Axis is more likely to perform better than ROS-Industrial35

or Zhang’s algorithm for data sets of any given size and quality.36

2 Related Studies37

Camera calibration methods are typically divided into three categories: traditional, self-calibrating,38

and active-vision:8–10
39

• Traditional methods involve imaging artificial calibration targets deliberately placed in the40

environment. Some or all of the target’s physical parameters are known, as is some or all in-41

formation relating to its position in the scene. The assumption is that the camera parameters42

discovered in this artificial environment will remain the same when the calibration target is43

removed and the camera is used to image other objects in another environment.44

• Self-calibration methods do not require an artificial calibration target with known parame-45

ters. Rather, the camera gathers calibration information from the same visual environment46

where it will be used. This, of course, requires assumptions about what features will be47

found in the environment, but in absolute terms the camera calibrator has no control over the48

contents of the images.49
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• Active-sensing methods are similar to self-calibration methods, but the camera calibrator50

has control over the positioning of the camera (returning some control over the contents of51

the images).52

3-Axis is a traditional calibration method- traditional methods tend to be the most accurate,10 and53

are the focus of this review.54

In a 2019 systematic review,10 Long and Dongri identify three primary traditional calibration55

algorithms: the DLT algorithm by Abdel-Aziz and Karara,11 the two-step algorithm by Tsai,12
56

and the planar pattern algorithm by Zhang.7 A 2002 review by Salvi, Armangué, and Batlle4
57

compares Tsai’s algorithm to DLT-based algorithms and finds Tsai’s to be more accurate; while a58

2014 review by Li et. al.5 finds Zhang’s algorithm to be comparable in accuracy to Tsai’s. Indeed,59

it is Zhang’s algorithm that is used in common computer vision toolkits such as OpenCV13, 14 and60

Matlab,15, 16 and most commonly overall.17 It often serves as a baseline against which to compare61

other experimental calibration algorithms.18–23 Tsai’s algorithm, however, lacks such a commonly-62

used library implementation.24
63

Much development post 2019 has focused on calibration using few or single images;25–28 cali-64

bration of atypical camera types or cameras in combination with other sensors;29–33 or improvement65

of target fiducial detection.34–36 However, alternative methods of data collection and processing in66

Zhang-like algorithms continue to be explored:67

• Peng and Sturm37 have created a utility to suggest advantageous calibration target positions68

for Zhang’s algorithm (which are determined arbitrarily by a human operator in the normal69

use case), although human intervention is still required to move the target to these poses and70

the positioning is not precise.71
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• Gunen et. al.38 examine and improve the optimization solvers used in Zhang’s classical72

algorithm, as well as other common calibration algorithms.73

• Jiang et. al.19 replace the physical calibration target with a virtual target displayed on a74

screen in front of the camera, allowing for more precise and automated target movement75

with a more complicated projection model.76

• Chen, Yang, and Pan39 also employ a dynamic target generated on a screen- this one displays77

linear patterns and is moved to two different spatial locations with a precisely-known dis-78

placement, allowing for the independent calculation of distortion, principal point, and focal79

length parameters.80

• Jin and Yang22 employ a secondary calibration target viewed from a single position to esti-81

mate distortion, as a prelude to full-model calibration.82

• Juarez-Salazar, Zhang, and Diaz-Ramirez40 propose an alternative pinhole camera model83

more suited for cameras with high radial distortion, which is calibrated with classical checker-84

board targets.85

• Sun, Cheng, and Fan41 propose a method employing a target made of two opaque cylin-86

ders with known radius, length, and position with respect to each other, placed at arbitrary87

locations in the camera image.88

• Liu, Zhao, and Kou42 combine traditional rectilinear targets with circular ones, to perform89

calibration using conic asymptotes.90

• Yang, Chen, and Yu23 propose a system similar to 3-Axis, but involving a target moving91

along a sled with only a single dimension of displacement.92
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Finally, particular attention is paid to the ROS-Industrial camera calibration toolkit.6, 43 This93

calibration approach also employs a target moving at known displacements along a single axis of94

motion, assumed to be close to perpendicular to the image plane of the camera and centered in the95

middle of the field of view. It is able to collect data automatically, and interfaces with the Robot96

Operating System; the precision of the calibration data produced exceeds that of the standard ROS97

implementation of Zhang’s algorithm.18, 43, 44 For this reason, both ROS-Industrial and the ROS98

implementation of Zhang’s calibration algorithm were chosen as the state of the art against which99

to compare 3-Axis’s performance.100

3 Problem Formulation101

Camera calibration attempts to find descriptive optical parameters for a projection model P of a102

physical camera. The most commonly used are the pinhole projection model (focal length Fx and103

Fy, and image center Cx and Cy), and Brown distortion model (radial distortion parameters k1, k2,104

k3, and tangential distortion parameters p1 and p2).18 Based on these parameters, P can map an105

arbitrary point (x, y, z) in 3D metric space to a point (u, v) in 2D pixel space:106

(u, v) = P(x, y, z) (1)

uplanar =
x

z
vplanar =

y

z
(2)
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r = ∥uplanar, vplanar∥

uradial = uplanar

(
k1 · r2 + k2 · r4 + k3 · r6

)
vradial = vplanar

(
k1 · r2 + k2 · r4 + k3 · r6

)
utangential = 2 p1 · uplanar · vplanar + p2

(
r2 + 2 uplanar

2
)

vtangential = 2 p2 · uplanar · vplanar + p1
(
r2 + 2 yplanar

2
)

udistorted = uplanar + uradial + utangential

vdistorted = vplanar + vradial + vtangential

(3)

107

108

u = Fx · udistorted + Cx

v = Fy · vdistorted + Cy

(4)

The optimization of the projection model compares a (typically large) set of fiducial points109

captured in actual camera images (here referred to as (Ui, Vi)) with points projected from the110

fiducial’s physical location (Xi, Yi, Zi) by P , and attempts to minimize the Euclidean distance111

between them:112

argmin
P

∑
i

(∣∣∣∣(Ui, Vi)− P(Xi, Yi, Zi)
∣∣∣∣) (5)

Here, a simple sum of Euclidean norms is used as the aggregate distance measure, although other113

aggregations (median, mean, sum of squares, etc.) and other distance measures (for instance,114

taxicab distance) could be applied. This differs from Tsai’s two-step approach,12 as the distortion115

and projection characteristics are optimized concurrently.116
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The fiducial position (Xi, Yi, Zi) can be alternatively represented by a 3D rigid transform from117

the camera frame to the fiducial frame GCFi :118

argmin
P

∑
i

(∣∣∣∣(Ui, Vi)− P (GCFi)
∣∣∣∣) (6)

However, the position of a given fiducial in metric space with respect to the camera is often not119

known to any precision: the camera is a three-dimensional volumetric object with an optical center120

somewhere in its interior. Indeed, determining some parameters of this optical center is one of the121

objectives of calibration. Therefore, this naive method introduces three unknown parameters and122

only two known parameters for every point, in addition to the parameters within P . The result is123

an underspecified and unsolvable optimization problem:124

argmin
P, GCFi

∑
i

(∣∣∣∣(Ui, Vi)− P (GCFi)
∣∣∣∣) (7)

Zhang’s algorithm addresses this problem by including multiple fiducials on a single target of125

known dimensions. This allows the decomposition of GCFi into a set of fiducials on the same126

target j and target positions k:127

GCFj,k = GCTk · GTFj (8)

In Eq. (8), GCTk represents the position of the multi-fiducial target at position k, a parameter128

that Zhang’s algorithm does not assume to be known. GTFj is the position of fiducial j on the129

target; the box notation indicates that it is known prior to the calibration. Eq. (7) then becomes130
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argmin
P, GCTk

∑
j,k

(∣∣∣∣∣∣(Uj,k , Vj,k)− P
(
GCTk · GTFj

)∣∣∣∣∣∣) (9)

So long as the number of fiducial positions increases more rapidly than the number of target131

positions (that is to say, so long as the target has more than one fiducial visible on it), Eq. (9)132

produces a solvable optimization problem.133

Typically, the measure of quality for a camera calibration model is the reprojection error RE.4134

This is simply the minimal final cost returned by the optimization system in the course of estimat-135

ing P:136

RE = min
P

∑
i

(∣∣∣∣(Ui, Vi)− P(GCFi)
∣∣∣∣) (10)

The RE is then typically normalized by the number of data points used in the calibration.137

This is often the only possible measurement of calibration quality when calibrating real cam-138

eras, as the purpose of calibration is to identify a ground truth otherwise unknown.139

4 Methods140

Our calibration method employs an alternative decomposition of GCFi, employing a precision-141

controllable 3D movement system to produce more known parameters:142

GCFi = GCMi · GMEi ·GETi · GTFi (11)

where143
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• GTFi is the transformation between the origin of the target and a fiducial point on the target.144

Flat, two-dimensional targets can easily be constructed with known dimensions (and known145

positions for the center of each fiducial) using a commercial desktop printer. This term146

differs for each fiducial in a given target position, but is always known.147

• GETi is the transformation from the origin of the target, to the moving end of a precision-148

controllable, three-axis device such as a CNC machine, mill, or robotic arm. While it may149

be possible to affix a target to such a device in a known transformation, this was not assumed150

as a requirement for the calibration process. Therefore, it is assumed that the parameter must151

be solved for during calibration.152

• GMEi is the transformation between the tip and the origin of the 3-axis device. This is the153

nominal position requested of the device, and thus precisely known, albeit different for each154

target acquisition.155

• GCMi is the transformation from the “center” of the 3-axis device, to the “center” of the156

camera. Since both of these mechanisms are irregular solid devices with “origin points”157

determined by their physical and optical properties, these points are not considered physi-158

cally meaningful and certainly not externally measurable. Therefore, this parameter must be159

found during the process of calibration.160

It is of particular interest that the two estimated terms, GCM and GET, are consistent through-161

out the entire data set. This is untrue for the classical Zhang’s algorithm- there, a different target-162

camera transform must be estimated for each physical location of the target.7 This alteration163

changes the number of non-intrinsic terms needing to be optimized for a data set of n points, from164

9



O(n) to a constant 12 (the minimal representation of two rigid transformations as 3 displacements165

and 3 Euler angles each).166

ROS-Industrial also employs a constraint to ensure a constant number of optimized non-intrinsics167

by moving the target along a single axis in the approximate center of the camera’s field of view.18, 43
168

However, the assumption of travel along the exact view center is difficult to enforce in reality;44
169

and a comparatively smaller number of data points are collected near the edge of the image, which170

makes it more difficult to calculate distortion parameters that have a greater effect (in terms of171

absolute motion in pixels) near the edges of the image.18
172

Tsai’s algorithm does not employ a single projection model, but rather a two-step process173

wherein rough focal information is determined assuming an undistorted image, and distortion pa-174

rameters are calculated subsequently. Additionally, implementations of the algorithm assume that175

multiple targets will be present in one single image in a known configuration,12, 24 instead of a176

single target being moved and imaged subsequently.177

Next, a redundant free parameter can be identified and removed from the optimization by ex-178

panding Eq. (11) into translation and rotation terms and taking advantage of certain cancellations:179

GCF = RCM ( GME ·GET · GTF +TCM)

= RCM ( RME (GET · GTF + TME ) +TCM)

= RCM ( RME (RET ( GTF +TET) + TME ) +TCM)

(12)

GME is a known transformation that is always a pure translation, being the position of the 3D180

motion device with respect to its own origin. Therefore, the RME term is known to be identity181

and can be removed:182
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GCF = RCM (I3×3 (RET ( GTF +TET) + TME ) +TCM)

= RCM (RET ( GTF +TET) + TME +TCM)

= RCM (RET · GTF +RET ·TET + TME +TCM)

(13)

Note that the term RET ·TET is an unknown rotation, applied to an unknown translation which183

appears nowhere else in the formula. Additionally, both RET and TET are (like all of the unknown184

terms in the model) constant across all data points in the set. Therefore, for any value of RET, there185

exists some equally unknown but equally constant 3-vector PET such that PET = RET · TET.186

Substitution into (13) gives187

GCF = RCM (RET · GTF +PET + TME +TCM)

= RCM (RET · GTF +PET +TCM + TME )

(14)

Now, the two unknown 3-vectors PET and TCM appear nowhere else in the model. The sum188

of two unknown 3-vectors is, of course, another unknown 3-vector- we will call it PCT. Another189

substitution into (14) gives190

GCF = RCM (RET · GTF +PCT + TME ) (15)

Although this formulation is no longer as intuitive or physically meaningful as Eq.(11), it191

eliminates a set of redundant free parameters; and reduces the total dimensionality of the search192

space from 12 (2 unknown translations and 2 unknown rotations, each in 3 dimensions) to 9 (2193

unknown rotations and 1 unknown translation). This is distinct from the position model used in194

Tsai’s algorithm, which assumes only one aggregate transformation; that from the camera to a195
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scene where every target point is at a known location with respect to every other.12 This simpler196

model cannot accommodate multi-image calibration data where the rotation between the target and197

the object moving the target is not fixed or known.198

Although the 3-Axis algorithm can operate on any type of fiducial using any error-minimizing199

solver, we chose to employ circle grid targets13 and the Ceres optimization solver,45 because these200

were the methods used by ROS-Industrial.43
201

Finally, consideration is given to alternative measures of calibration quality analysis. When202

calibrating simulated cameras that render images of a scene in silico, the ground truth is known. It203

is thus possible to derive an “Actual Reprojection Error” statistic (ARE) that distinguished between204

the calibrated projection model PC and the ground-truth projection model PG.205

This is done by generating a set of 3D points S; and performing pinhole camera projection206

on them usingPC and then PG. The average Euclidean distance (in pixels) between a point pro-207

jected using the ground-truth intrinsics, and the corresponding point projected using the calibrated208

intrinsics, is the ARE for that calibration attempt:209

ARE =
∑
i∈S

(
∥PC(Xi, Yi, Zi)− PG(Xi, Yi, Zi)∥

)
(16)

5 Experiments and Results210

5.1 Simulation Experiment Design211

In order to determine the effectiveness of the 3-Axis calibration system compared to the current212

state of the art, tests were undertaken using synthetic images generated using the Gazebo simula-213

tion engine.46, 47 One such image is shown in Figure 1, with the simulation environment producing214

it shown in Figue 2.215
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Fig 1 Simulated camera image from Figure 2. The black padding at the edges of the image is the result of barrel
distortion added after the initial image render. As this image was used to collect data for Zhang’s algorithm, the target
is also given a psuedorandom roll, pitch, and yaw which differs for each position.

Fig 2 Simulation environment for generating target data. The camera (indicated by three colored axes) faces upward
along the Z (blue) axis to the simulated target. The target can be deleted and spawned at any position in 3D space, to
simulate the action of a precision 3-axis movement system.
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Each synthetic calibration data set was generated containing 9024 fiducial points (a 6×8 target216

imaged at 188 different positions). For the ROS-Industrial data set, all of the calibration target217

positions were at the same, non-orthogonal angle to the camera. For the data set to be used by218

Zhang’s method, each target position additionally included a pseudorandom pitch, yaw, and roll219

independently uniformly distributed between +20◦and -20◦. Repeated calibrations were run using220

less and less of this data set (pseudorandomly decimated in increments of 480 fiducial points,221

equivalent to randomly removing 10 images per iteration) to establish a relationship between data222

set size (larger data sets being more time-intensive to acquire in a real situation) and performance.223

Additionally, 4 different sources of measurement imprecision were injected into the data with224

known, variable magnitudes in 20 increments:225

• Proportional scale of the target, as a linear scaling of its actual dimensions versus nominal226

dimensions used to calculate the GTF parameter given to the calibration software. Range:227

90% – 110%228

• Detection error, as Gaussian error added to the detected pixel position (Ui, Vi) of each229

fiducial. Range: σ = 0px – σ = 10px230

• Target motion scaling, as a linear scaling of the target’s actual positions in 3D space com-231

pared to the nominal positions GMEi provided to the calibration solver. Range: 90% –232

110%233

• Target motion imprecision, as Gaussian error added to the target’s position in 3D space234

(compared to the nominal positions GMEi provided to the calibration solver). Range σ =235

0mm – σ = 10mm236
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The target detection error and target mis-scaling error sources are applicable to all three al-237

gorithms under test (Zhang, ROS-Industrial, and 3-Axis). Since Zhang’s algorithm makes no as-238

sumptions as to the position of the target, the position noise and mis-scaling error sources were239

only applicable to ROS-Industrial and 3-Axis. This resulted in the generation of a total of 10240

different 20 × 20 sets of calibration attempts (four each from 3-Axis and ROS-I, and two from241

Zhang’s algorithm). For each attempt, the stated reprojection error (RE) and actual reprojection242

error with respect to the simulation ground truth (ARE) were computed for each attempt in the243

set. The ARE was calculated using the same sequence of 1000 points uniformly pseudorandomly244

distributed through a 1-meter cubic volume for all tests.245

5.2 Simulation Experiment Results246

Figure 3 shows which calibration algorithm produced a lower actual reprojection error (ARE)247

for each source of introduced data error, arranged according to number of target images included248

and the introduced data error magnitude. Similarly, Figure 4 shows which calibration algorithm249

produced a lower reported reprojection error. Descriptive statistics for these measurements are250

given in Table 2. Finally, Table 1 covers the mean variance of the estimated intrinsics from their251

ground-truth values for each calibration method, under each source of error.252
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ROS-Industrial vs. 3-Axis (ARE)

Zhang’s Algorithm vs. 3-Axis (ARE)

Fig 3 Actual reprojection error results of simulated data with different introduced flaws, arranged with respect to
number of data points and introduced error magnitude. Light green bars indicate 3-Axis’s ARE was lower than the
competitor algorithm’s in that configuration; dark red bars indicate 3-Axis’s ARE was higher.
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ROS-Industrial vs. 3-Axis (RE)

Zhang’s Algorithm vs. 3-Axis (RE)

Fig 4 Stated reprojection error results of simulated data with different introduced flaws, arranged with respect to
number of data points and introduced error magnitude. Light green bars indicate 3-Axis’s RE was lower than the
competitor algorithm’s in that configuration; dark red bars indicate 3-Axis’s RE was higher.
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Table 1 Difference between median intrinsics as estimated by calibration methods, and ground truth, under different
introduced calibration error sources. As Zhang’s algorithm does not use known target positions, no data was collected
or results computed for it using the Movement Imprecision and Movement Mis-Scaling error sources. Additionally,
this implementation of Zhang’s Algorithm did not return a k3 term.

3-Axis vs. ROS-I

Introduced Flaw

Movement
Impreci-

sion

Movement
Mis-

Scaling

Detection
Error

Target
Mis-

Scaling

Fx Error Improvement 0.9896 4.2556 0.7135 22.815

Fy Error Improvement 1.0554 28.642 0.6677 23.491

Cx Error Improvement 0.0316 -0.1699 -0.4672 -2.3580

Cy Error Improvement -0.1247 -0.3356 -0.3138 -0.3952

k1 Error Improvement 0.0518 0.0174 0.0324 0.0317

k2 Error Improvement 0.3384 0.2593 0.1933 0.2731

k3 Error Improvement -0.0280 -0.3124 -0.0850 -0.1152

p1 Error Improvement 0.0079 0.007 0.0077 0.0065

p2 Error Improvement 0.7615 0.8026 0.6656 0.62070

3-Axis vs. Zhang

Introduced Flaw

Movement
Impreci-

sion

Movement
Mis-

Scaling

Detection
Error

Target
Mis-

Scaling

Fx Error Improvement N/A N/A 7.9141 25.078

Fy Error Improvement N/A N/A 8.5009 25.030

Cx Error Improvement N/A N/A 0.5527 7.9029

Cy Error Improvement N/A N/A 0.2214 6.9560

k1 Error Improvement N/A N/A -0.0241 0.0173

k2 Error Improvement N/A N/A -0.0681 0.0989

k3 Error Improvement N/A N/A N/A N/A

p1 Error Improvement N/A N/A -0.0012 0.0023

p2 Error Improvement N/A N/A -0.0004 0.0032

18



3-Axis performs better in ARE measures than either Zhang’s algorithm or ROS-I, although the253

difference is more extreme with Zhang’s algorithm while ROS-I performed comparatively better.254

In particular, Zhang’s algorithm performed much more poorly when subjected to target detection255

errors, while ROS-I performed best under that same condition (indeed, the detection error test256

was the only one where it beat the reprojection error of 3-Axis in a majority of comparisons). In257

general, ROS-I was more competitive with 3-Axis when the error was one of random perturbation258

than when the error was one of scaling.259

Stated reprojection error does does differ from actual calibration quality as measured by ARE260

in many tests. It is generally lower in 3-Axis than in ROS-I when the introduced error quality is261

smaller in magnitude, and the number of data points is low; and higher in the converse cases. When262

Table 2 Actual Reprojection Error (ARE) under each of the four injected error sources, in pixels. The first section of
the table provides the mean ARE for each calibration method over 400 trials; the second section provides the difference
in mean ARE between 3-Axis and the control calibration methods; and the third section provides the percentage (out
of 400 individual trials) where 3-Axis performed better than the control method. As Zhang’s algorithm does not
use known target positions, no data was collected or results computed for it using the Movement Imprecision and
Movement Mis-Scaling error sources.

Introduced Flaw

Movement
Impreci-

sion

Movement
Mis-

Scaling

Detection
Error

Target
Mis-

Scaling

3-Axis Mean ARE (px) 1.23 9.49 2.87 7.75

ROS-I Mean ARE (px) 4.29 14.72 3.38 14.18

Zhang Mean ARE (px) N/A N/A 258.16 7.483

Improvement vs. ROS-I 3.05 5.22 0.51 6.43

Improvement vs. Zhang N/A N/A 255.30 -0.268

Cases Where 3-Axis
Beat ROS-I

64.16% 94.23% 49.12% 91.97%

Cases Where 3-Axis
Beat Zhang

N/A N/A 100% 71.67%
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comparing 3-Axis against Zhang’s algorithm, 3-Axis improves on RE as detection error increases,263

and is always higher when the target is incorrectly scaled. This higher stated reprojection error is264

actually useful for a calibration algorithm, as it provides a more reliable indication that there is a265

flaw in the data being acquired (as opposed to generating an inaccurate calibration with a reported266

reprojection error comparable to that of an accurate calibration).267

5.3 Physical Experiment Design268

Calibration was also performed on a physical device, specifically the surgical endoscope of a da269

Vinci® IS-1200 Surgical Robotic System.48 This device was selected because of its compact size270

and relatively high distortion, and difficulties previously encountered in attaining any reliable cal-271

ibration from it.44
272

As there is no ground truth available for this physical device, the quality of the calibration must273

be evaluated by stated reprojection error and consistency of results across calibration runs. Five274

calibrations were performed, using a preexisting 3-axis controllable sled mechanism moved to 153275

valid detection points for C3 and ROS-I. The calibration target contained 9 by 8 circular fiducials,276

for a total of 11016 data points in each calibration. Another 153 images were acquired using the277

same target, moved in a single line along the Z-axis; these serve as a data set for the ROS-Industrial278

calibration system. The sled mechanism is shown in Figure 6, and one of the images produced by279

the endoscope camera in Figure 5. Finally, the first 153 valid random target positions from the280

simulation data set were used as references to manually position the physical target (with added281

rotations, which could not be performed using the sled system), and establish another 11016 data282

point set that was used by Zhang’s algorithm. These acquisitions were also repeated 5 times each.283
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Fig 5 Example calibration image taken with the endoscope camera.

Fig 6 Calibration target movement system for endoscope (silver cylinder in the center of the image) in 3-Axis and
ROS-I calibration. This benchtop device functions similarly to a CNC machine.
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5.4 Physical Experiment Results284

Table 3 displays the reprojection errors of all five tests for the 3-Axis, ROS-I, and Zhang calibration285

systems. Table 4 shows comparative variance statistics for each intrinsic parameter of interest, for286

each algorithm. ROS-I did not converge for three of the five tests, although in the two cases where287

it did converge it produced reprojection errors that were lower than any of those reported by 3-288

Axis. Similarly, in two cases Zhang’s algorithm produced reprojection errors that were an order of289

magnitude higher than the other three, although even those were under one pixel. 3-Axis, however,290

consistently reported sub-pixel reprojection errors for all five tests.291

Table 3 Reprojection errors under physical calibration (RPE, in pixels).
Test # 3-Axis ROS-I Zhang

1 0.9762 0.1917 4.2612
2 0.5984 84.48 3.1412
3 0.7502 0.2430 0.2482
4 0.6567 400.0 0.2905
5 0.5554 115.9 0.2891

Avg. 0.7074 120.10 1.6461

Table 4 Standard deviation statistics for intrinsics discovered under physical calibration. The studied implementation
of Zhang’s algorithm did not estimate a k3 term.

Term 3-Axis σ ROS-I σ Zhang σ

Fx 0.4800 24.85 343.4
Fy 0.7908 33.40 345.9
Cx 2.707 2.298 27.34
Cy 9.602 0.7787 12.01
k1 0.01277 0.1840 0.1263
k2 0.1734 0.7897 0.5303
k3 0.3704 0.006109 N/A
p1 0.001947 0.005730 0.005310
p2 0.002442 0.3967 0.004089

3-Axis is more consistent than ROS-I for 6 out of the 9 test parameters, and more consistent292

than Zhang’s algorithm for 6 out of 8 (this implementation of Zhang’s algorithm does not report293
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the k3 term).294

The simulation results discussed above suggest that reported reprojection error is not always a295

particularly reliable measure of actual calibration quality, but some inferences can still be drawn296

from the results. In particular, despite the ROS-I and 3-Axis data sets both being acquired using297

the same mechanical device moved to the same positions, ROS-I was not reliably able to converge298

on camera intrinsics with a subpixel reported RE. Additionally, while Zhang’s algorithm did not299

produce as large of spikes in reprojection error as ROS-I, it still demonstrated “good” and “bad”300

calibrations when fed similar data sets. 3-Axis, on the other hand, behaved consistently over all301

five calibration attempts.302

6 Conclusions303

We discussed a new intrinsic calibration method (“3-Axis”) based on known movements of the304

fiducial along three orthogonal axes. We began with an overview of the current state of the art, and305

identified the ROS-Industrial calibration system6 and Zhang’s calibration algorithm7 as standards306

of performance to which 3-Axis would be compared. Next, we described in detail the operation307

of the calibration algorithm. We then proposed experimental methods of comparison between308

ROS-Industrial, Zhang’s algorithm, and 3-Axis, using both simulated and real cameras. Finally,309

we presented the resultant performance metrics for all systems. We concluded that 3-Axis is more310

likely to provide more accurate calibration results than either ROS-Industrial or Zhang’s algorithm,311

for a calibration data set of any given size and quality. Additionally, it produces more consistent312

calibration results than ROS-Industrial or Zhang’s algorithm for any given real-world data set. Fi-313

nally, 3-Axis is shown to produce stated reprojection errors that more closely match the actual314

reprojection errors of the algorithm than ROS-I or Zhang’s algorithm. This means that the per-315
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formance of the algorithm can be assessed more accurately in cases where it is not possible to316

compare the discovered values to a ground truth. Continued validation of the work will occur as it317

is used in functional calibrations of different camera hardware.318

319

The 3-Axis utility itself is available at320

https://github.com/cwru-robotics/3d-calibration.321

322

Scripts and assets used to perform automatic simulation tests, as well as the data produced, are323

available at324

https://github.com/cwru-robotics/comparative-calibration.325

326

Software used to drive and interface with the endoscope custom mill platform is available at327

https://github.com/cwru-robotics/Calib-Sled328
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List of Figures451

1 Simulated camera image from Figure 2. The black padding at the edges of the452

image is the result of barrel distortion added after the initial image render. As this453

image was used to collect data for Zhang’s algorithm, the target is also given a454

psuedorandom roll, pitch, and yaw which differs for each position.455

2 Simulation environment for generating target data. The camera (indicated by three456

colored axes) faces upward along the Z (blue) axis to the simulated target. The457

target can be deleted and spawned at any position in 3D space, to simulate the458

action of a precision 3-axis movement system.459

3 Actual reprojection error results of simulated data with different introduced flaws,460

arranged with respect to number of data points and introduced error magnitude.461

Light green bars indicate 3-Axis’s ARE was lower than the competitor algorithm’s462

in that configuration; dark red bars indicate 3-Axis’s ARE was higher.463
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4 Stated reprojection error results of simulated data with different introduced flaws,464

arranged with respect to number of data points and introduced error magnitude.465

Light green bars indicate 3-Axis’s RE was lower than the competitor algorithm’s466

in that configuration; dark red bars indicate 3-Axis’s RE was higher.467

5 Example calibration image taken with the endoscope camera.468

6 Calibration target movement system for endoscope (silver cylinder in the center469

of the image) in 3-Axis and ROS-I calibration. This benchtop device functions470

similarly to a CNC machine.471

List of Tables472

1 Difference between median intrinsics as estimated by calibration methods, and473

ground truth, under different introduced calibration error sources. As Zhang’s474

algorithm does not use known target positions, no data was collected or results475

computed for it using the Movement Imprecision and Movement Mis-Scaling er-476

ror sources. Additionally, this implementation of Zhang’s Algorithm did not return477

a k3 term.478
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2 Actual Reprojection Error (ARE) under each of the four injected error sources, in479

pixels. The first section of the table provides the mean ARE for each calibration480

method over 400 trials; the second section provides the difference in mean ARE481

between 3-Axis and the control calibration methods; and the third section provides482

the percentage (out of 400 individual trials) where 3-Axis performed better than483

the control method. As Zhang’s algorithm does not use known target positions, no484

data was collected or results computed for it using the Movement Imprecision and485

Movement Mis-Scaling error sources.486

3 Reprojection errors under physical calibration (RPE, in pixels).487

4 Standard deviation statistics for intrinsics discovered under physical calibration.488

The studied implementation of Zhang’s algorithm did not estimate a k3 term.489
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