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ABSTRACT Radio frequency (RF) fingerprinting is a hardware-based authentication technique utilizing
the distinct distortions in the received signal due to the unique hardware differences in the transmitting
device. Existing RF fingerprinting methods only utilize the naturally occurring hardware imperfections
during fabrication; hence their authentication accuracy is limited in practical settings even when state-of-
the-art deep learning classifiers are used. In this work, we propose a Chaotic Antenna Array (CAA) system
for significantly enhanced RF fingerprints and a deep learning-based device authentication method for CAA.
We provide a mathematical model for CAA, explain how it can be cost-effectively manufactured by utilizing
mask-free laser-enhanced direct print additive manufacturing (LE-DPAM), and comprehensively analyze the
authentication performance of several deep learning classifiers for CAA. Our results show that the enhanced
RF signatures of CAA enable highly accurate authentication of hundreds of devices under practical settings.

INDEX TERMS 3D printing, additive manufacturing, deep learning, device authentication, RF fingerprint-
ing, physical layer, wireless communications, security.

I. INTRODUCTION

As the number of Internet of Things (IoT) devices and amount
of wireless data communication rapidly increase, so does the
threat posed by adversarial parties trying to exploit the vulner-
abilities of wireless systems. Hence, it is vital to developmore
secure methods of authentication and communication while
satisfying the quality and efficiency constraints. With current
technology, security at higher levels in the system (such as
storing a secret key in nonvolatile memory to perform cryp-
tographic primitives) is not sufficient against sophisticated
attacks. In addition, invasive and non-invasive attacks have
been shown to learn secret keys [1], [2] as the keymust exist at
all times in digital form. Cryptography can also be prohibitive
for certain low-cost, lower-power, and resource-constrained
IoT devices. With ever increasing technology available to
attackers and the emergence of much faster computing meth-
ods, traditional encryption techniques will not always be as
secure as they currently are [3]. To this end, hardware-based
security methods can complement the upper layer defenses,
e.g., multi-factor authentication through radio frequency (RF)

fingerprinting.
RF fingerprinting is a promising authentication technique

for physical layer security. The classical RF fingerprinting
methods utilize the small amplitude, phase, and frequency
variations that are unique to each device due to the in-
evitable randomness during the fabrication of the RF inte-
grated circuits (ICs) connected to the antenna elements [4],
[5]. However, since ICmanufacturing is tailored towards cost-
effective and high volumemanufacturing of identical devices,
the fingerprint signatures from ICs are weak. For example,
while being detectable byMachine Learning (ML) algorithms
[6], state-of-the-art deep neural networks could only achieve
around 63% accuracy in authenticating 250 devices when
trying to make use of these small signatures [7]. In this work,
we build upon our previous findings, [8], to leverage a novel
randomized antenna array concept, called Chaotic Antenna
Array (CAA), for significantly enhanced RF signatures, and
in turn, highly accurate authentication.
In CAAs, shapes of the antenna elements, their locations

within the array grid, and their feed networks are intentionally
randomized based on a desired probability density function.
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Although such geometry randomizations can possibly be re-
alized with several techniques, such as the widely available
printed circuit board (PCB) manufacturing, 3D-printing tech-
niques such as laser-enhanced direct print additive manufac-
turing (LE-DPAM), stand out as strong candidates. Unlike
many types of traditional manufacturing, LE-DPAM is mask-
free and generates the device structure layer-by-layer, making
randomizations available for little to no cost. We have shown
capabilities of LE-DPAM in realizing antennas and arrays
with embedded control ICs and RF/digital lines - paving the
way for introducing randomizations at any level of the device
structure [9]–[12].

Our prior theoretical work [13] on device authentication
with CAAs assumed that the user with the CAA has knowl-
edge of the wireless channel and most importantly, its own
phase signatures. Moreover, the phase signatures were as-
sumed to be transmitted equally in all directions with no
spatial variation. However, if phase signatures are known by
the device utilizing the CAA (i.e., stored in memory), the
device will be prone to secret key based security attacks,
as the keys are also stored in memory. Hence, the device
with the CAA must be unaware of its own phase errors for
the most beneficial, real-world application. In this paper, our
goal is to extend the CAA based authentication concept to
work without knowledge of the wireless channel or its own
signatures by resorting to deep learning-based detection algo-
rithms. Another key novelty is related to the antenna element
position randomization. This type of randomization generates
an antenna element specific phase error (i.e., RF fingerprint)
which is transmitted with spatial (i.e., θ, ϕ) variance with
respect to the classical antenna array factor. This type of
spatial variation greatly benefits physical layer authentica-
tion. When combined with antenna element-specific feed line
length randomization (which creates a large scale phase error,
but with no spatial variance), the CAA provides an order of
magnitude enhanced RF fingerprint, which forms a strong
signature for ML-based authentication techniques. Overall
contributions reported in this manuscript can be summarized
as:

• We comprehensively analyze the authentication perfor-
mance of CAAs through mathematical modeling, nu-
merical simulations, and preliminary experimental re-
sults; and show that highly accurate (nearing 100%) au-
thenticationwith hundreds of devices is possible through
deep learning methods. Neither the CAA device nor the
authenticator need to know/store the RF signatures (i.e.,
phase differences).

• We explain an interesting phenomenon: a performance
drop in deep learning-based authentication when the
authentication duration matches the channel coherence
time.

• Through theoretical array factor, we show that the CAA
exhibits a direction-dependent signature due to the ran-
domized antenna location. This can provide extra se-
curity against attackers who might try to capture the

RF signature. In traditional RF fingerprinting, attackers
can simulate the signature by collecting data from any
direction and using them to train ML algorithms [14].

• We provide a practical discussion of how the antenna
elements of CAAs can be designed and manufactured
using LE-DPAM. We also demonstrate that antennas
with randomized locations and feed line lengths may
perform with good impedance matching while offering
phase error variations that are within the entire 2π range.

The remainder of the paper is organized as follows: In
Section II, the mathematical model of a CAA is presented.
The proposed authentication scheme based on CAAs and
deep learning is studied in Section III. Section IV explains
cost-effective practical implementation of CAAs. Finally, the
paper is concluded in Section V.

II. CHAOTIC ANTENNA ARRAY MATHEMATICAL MODEL
In this section, we consider the mathematical model of the
Chaotic Antenna Array (CAA) to study the electric field for
a randomized antenna array. We start with the traditional
rectangular array consisting of M × N antennas arranged
uniformly on a rectangular grid. Centers of antenna elements
in a traditional array are illustrated by the filled green circles
in Fig. 1. The center position of antenna element (m, n),
m = 1, 2, ...,M , n = 1, 2, ...,N without any perturbation is
denoted by the position vector rmn, which can be written as:

rmn = (m− 1)dx x̂+ (n− 1)dyŷ, (1)

where x̂ and ŷ are unit vectors, dx and dy are the distances
between the two antenna elements in the direction of x-axis
and y-axis, respectively. Throughout the manuscript, bold text
is used for vectors. Each antenna element, by itself, at the
center of the coordinate system radiates the electric field

Emn = emn(θ, ϕ)
e−jkr

r
(2)

where emn represents the field pattern in spherical coordinate
system as a function of θ andϕ, r is the distance to observation
point, k is the wavenumber given by 2πf /c, where f denotes
frequency and c is the speed of light. Ignoring the mutual
couplings, and assuming identical antenna elements for the
array, we can express emn(θ, ϕ) = e(θ, ϕ) ∀mn. Although
randomization of antenna shapes is also possible, we do not
investigate such randomizations in this work.
We proceed by perturbing the location of each antenna

element within the uniformly spaced antenna array. The lo-
cations of the antenna elements are denoted by the unfilled
red circles in Fig. 1 and can be expressed as

r′mn = (m− 1)dx x̂+ (n− 1)dyŷ+ αmn(x̂ cos γmn + ŷ sin γmn)
(3)

where αmn ∈ U(0, αmax) and γmn ∈ U(0, 2π) are uniformly
distributed perturbation magnitude and angle. αmax denotes
the maximum radius of perturbation. In a practical CAA
realization, αmax will be restricted by the amount of mutual
coupling that can be tolerated by the wireless communication
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FIGURE 1. Traditional uniform rectangular array antenna center locations are shown with green filled circles. Left: Randomized antenna center locations
in the CAA are shown with red unfilled circles. 3D array geometry to study electric field radiation. Right: 2D sketch of the CAA with randomized antenna
elements shown as red squares.

system. For a regular antenna array with antenna elements
spaced in half-wavelength increments, αmax therefore will be
limited to fractions of a wavelength, generating phase errors
not reaching up to the full 2π range. To address this, we
also introduce a random perturbation in the feed line length
of each antenna element, which will generate an additional
phase term of e−jLmn in the electric field equation, where
Lmn ∈ U(0, 2π).

Based on the well-known far-field approximations in an-
tenna theory [15], the electric field radiated by an antenna
element located at r′mn can be written as

Emn = e(θ, ϕ)
e−jk(r−r̂.r′mn)

r
e−jLmn , (4)

where

r̂ = x̂ sin θ cosϕ+ ŷ sin θ sinϕ+ ẑ cos θ (5)

is the unit vector along the direction of observation. Rearrang-
ing and carrying out the vector dot product in (4) leads to the
expression

Emn = e(θ, ϕ)
e−jkr

r
× ejk(m−1)dx sin θ cosϕejk(n−1)dy sin θ sinϕ

× ejkαmn cos γmn sin θ cosϕejkαmn sin γmn sin θ sinϕ

× e−jLmn .

(6)

The second line in equation (6) is well recognized as the
terms of the array factor belonging to a traditional uniformly
spaced antenna array structure. The terms in the third and
fourth lines are generated by the randomizations introduced to
create the CAA. Therefore, the phase delays implied by these
terms can also be considered as ‘‘phase errors" or ‘‘phase
signatures" that are unique to the CAA. More specifically,
the terms in the third line stem from the antenna location
randomizations αmn and γmn. These terms are dependent on

FIGURE 2. Phase signature w.r.t. a reference antenna in spherical
coordinates. The circular angle represents ϕ and the radius (i.e.,
concentric circles) represents the θ variation. The colormap illustrates the
phase difference. Left: Feed line randomization generates a constant
signature in all transmission directions. Right: Antenna geometry
randomization creates θ, ϕ dependent signature.

(θ, ϕ), implying a spatial variance in 3D space. The fourth
line is the phase delay due to the feed line randomization Lmn.
This term has no (θ, ϕ), hence the phase delay is transmitted
identically to entire 3D space. Fig. 2 presents an example to
illustrate the phase signature and spatial variance properties
of an antenna element of a CAA with respect to its own
unperturbed location and reference line. Feed line length
randomization alone creates a signature transmitted equally
in all directions, similar to a traditional RF fingerprint, but
significantly enhanced. Likewise, when antenna position ran-
domization is incorporated alongside feedline randomization,
a phase variation that depends on the direction of radiation is
generated, as evidenced by the colored phase distribution in
Fig.2. It is important to note that since the equations are based
on the far-field approximations, they are not applicable in the
near-field region. The scenario in which the authenticator is
placed within the near-field of the CAA must be investigated
separately and is beyond the scope of this manuscript.
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FIGURE 3. Circuit diagram of a CAA. Each chaotic antenna element is
sequentially turned on using switches and has a random and
direction-dependent phase signature due to its unique geometry.

III. AUTHENTICATION
Early RF fingerprint authentication schemes used statistical
detectors [16], and wavelet transforms [17]–[19]. More re-
cently, traditional machine learning methods have been ap-
plied to this problem, such as k-Nearest Neighbors (kNN) or
Support Vector Machines (SVM), among others [20], [21].
Present state-of-the-art relies on deep neural networks [7],
[22], [23], where deep convolutional neural networks (CNNs)
can successfully authenticate naturally occurring signatures
in the RF chain in idealized setups with a small number of
devices, according to recent literature [22], [23]. However,
[7] recently showed in a sizable study that naturally occurring
RF fingerprints are insufficient even for cutting-edge deep
CNNs (63% accuracy) under realistic circumstances with a
large number of devices. They go on to show that under
differing training and test environment conditions, accuracy
can drop as low as 35%. This section presents the proposed
authentication scheme based on CAA and shows that the
enhanced RF fingerprints of CAA enable close-to-perfect
(99%) authentication accuracy in scenarios similar to the ones
considered in [7]. Fig. 3 depicts the circuit diagram of the
CAA used within the proposed scheme. The terms which fol-
low the switches and digital phase shifters represent spatially
dependent phase signatures of each antenna element, denoted
by ejψi(θ,ϕ), i = 1, 2, . . . ,H , where H = MN . The digital
phase shifters are an essential part of the system for analog
beamforming during the wireless communication stage. In
addition to phase shifters, switches are included to provide
access to individual antennas during the proposedCAA-based
authentication scheme.

A. AUTHENTICATION WITH CAA AND THREAT MODEL
Consider a physical layer (PHY) authentication system em-
ploying CAAs, in which a set L of K legitimate users need
to first authenticate their identity before receiving service
(Fig. 4). During authentication, user k transmits a complex
pilot signal by sequentially turning on its H antennas using
the switches as shown in the block diagram of CAA in Fig.
3. This provides the authenticator with an H -dimensional
complex fingerprint xk ∈ CH , which includes the random
phase response of each antenna element. A distorted fin-
gerprint yk,t ∈ CH is received by the authenticator during

FIGURE 4. Threat model for authentication. Targeted: attacker knows the
login credentials of a legitimate user and tries to spoof its RF fingerprint.
Untargeted: login credentials are not used in upper layers and
authenticator checks only the RF fingerprint: AUTH if f (yk,i ) ∈ {1, ..., K},
NAUTH if f (yk,i ) = 0.

the authentication session because of wireless channel uncer-
tainties such as multiplicative and additive noise, multipath
fading, Doppler shift, etc. To deal with such uncertainties, the
authenticator builds a function f ({yk,t}t) ∈ {0, 1, . . . ,K} in
a secure training session using several training data instances
received from all legitimate users. Success in authentication
is defined as f ({yk,t}) = k for k ∈ L or f ({yj,t}) = 0 for an
illegitimate user j /∈ L.
An impersonation attack [24] is defined as an illegitimate

user j ̸∈ L trying to authenticate as a legitimate user. If there is
also an upper-layer authentication system, such as passwords
or MAC addresses, in addition to PHY authentication, then
the attacker must target a specific legitimate user. In such
targeted attacks, as shown in Fig. 4, the attacker aims to design
an RF fingerprint x j ≈ xk , different from its own fingerprint
xj through software, so that f ({yj,t}) = k , where {yj,t} is
the received signal as a result of transmitted x̄j. When there
is no additional authentication system, the attacker may also
perform an untargeted attack by simply trying to get authen-
ticated as any of the legitimate users, i.e., f ({yj,t}) ̸= 0.

B. SIMULATION SETUP
For a study on the feasibility of CAA-based RF fingerprint
authentication, we generated data using the mathematical
framework described in Section II. From this framework,
1200 antennas were simulated, which were grouped into K =
300 CAAs, each with H = 4 antenna elements configured
in a square grid as M = 2 and N = 2. αmax was set at
4 mm, dx and dy were both set at 26 mm, and the radial
distance r to the observation point was set at 5m. The azimuth
angle ϕ and the polar angle θ from the transmitting CAA to
the receiver are randomly selected within [−180◦, 180◦] and
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TABLE 1. Dataset Parameters

Var
Set

1 2 3 4 5 6 7

Fs (kHz) 10 10 10 10 10 100 1000
Vmove (m/s) 1 5 10 0.5 0.1 1 1
fd (Hz) 16.7 83.3 166.7 8.3 1.7 16.7 16.7
Tc (sec) 0.025 0.005 0.003 0.051 0.25 0.025 0.025

[0◦, 75◦], respectively. We simulated an f = 5 GHz WiFi
environment with Rician multipath fading, in which people
may be moving between the device and the receiver. Consid-
ering a movement speed Vmove ranging from 0.1 m/sec to 10
m/sec, themaximumDoppler shift fd is between 16.67Hz and
166.7 Hz following the formula fd = (Vmove/c)f . The chan-
nel coherence time under Clarke’s model, Tc = 0.423/fd ,
ranges from approximately 0.0254 to 0.00254 sec. Also, the
sampling rate Fs is varied between 10 KHz and 1 MHz to
test the robustness to different test environments. By varying
Vmove and Fs, 7 different datasets were created to allow testing
under different scenarios. Table 1 summarizes the different
datasets and their properties. The rationale behind selecting
these values is explained in Sec. III-D.

In each authentication sequence, the 4 antennas in a CAA
are turned on sequentially to transmit a complex pilot signal.
The authenticator receives the in-phase and quadrature (I/Q)
samples through multipath fading channels in addition to
additive white Gaussian noise:

yi,t = hi,t ∗ xi + wi,t (7)

where xi = ejψi(θ,ϕ) is the transmitted pilot signal from
antenna i of CAA k with constant amplitude and the corre-
sponding phase signature ψi(θ, ϕ) (array index k is dropped
for notational simplicity), hi,t is the multipath fading channel
impulse response, ∗ denotes the convolution operation, and
wi,t ∼ Nc(0, σ

2
w) is the additive white complex Gaussian

noise. The impulse response of multipath fading channel can
be represented as [25]:

hi,t =
N−1∑
n=0

ai,nejθi,nδ(t − τi,n) (8)

where N is number of multipath components, ai,nejθi,n is
the complex amplitude of the n-th multipath component for
antenna i, which in our channel model follows a Rician dis-
tribution, τi,n is the propagation delay for the n-th multipath
component, and δ is the Dirac delta function.

The I and Q samples are the real and imaginary parts of
the received signal yi,t . With 4 antenna elements in each array
and collecting I and Q samples of the received signal from
each antenna, the data used to authenticate a CAA has a
size of Na × 8, where Na and is the number of instances
within an authentication session. In our experiments, we used
Na = 1, 000. The CAA phase signatures and the received
signals through multipath fading channels were simulated us-
ingMATLAB’s Communications Toolbox. In this simulation,

a strong direct path exists between the transmitting antenna
and the authenticating receiver, accompanied by scattering in
the vicinity of the receiver’s position. Given that the distance
between the transmitting antenna and the authenticating re-
ceiver is significantly larger compared to the scattering area,
the angular spread of the departing rays is minimal [26]. Con-
sequently, all propagation paths are assumed to experience
approximately the same phase error induced by the CAA.
This corresponds to a line-of-sight (LOS) scenario, where the
user and authenticator maintain direct visibility, while objects
in the vicinity of the receiver introduce additional reflections.

However, in the initial field experiments described in Sec-
tion III-E we show that the proposed CAA-based authentica-
tion system is not restricted to the assumed channel conditions
in the simulations with scatterers focused around receiver.
In the field experiments, the transmitter and receiver were
positioned closer to each other, resulting in stronger scattering
effects on the transmitter side and all along the channel. A
horn antenna was used at the receiver, where no objects were
present in its immediate vicinity. This experimental setup
closely resembles the deployments of practical communi-
cation systems, where receivers are often installed in envi-
ronments with minimal surrounding scatterers. As shown in
Sections III-D and III-E, our authentication system achieves
high performance under different channel conditions with
different scatter and fading settings.

We include the naturally occurring signatures, used in
traditional RF fingerprinting, by modeling the power am-
plifier non-linearities [27]–[29]. In the literature, models
with or without memory are used. A model with mem-
ory using Volterra series is described in [29]. Power ampli-
fier models without memory typically use a Taylor Series
model,considering odd or even powers of the signals. Amodel
using odd powers is discussed in [28]. More recently, in [27],
the authors used a Taylor series model with even powers,
which is the model we incorporate in our experiments:

fPA(xt) = xt(1 + ψ0|xt |2 + ψ1|xt |4), (9)

where xt is the most recent I/Q sample, and ψ0, ψ1 are
coefficients unique to each power amplifier. We randomly
generate the values of ψ0 for each antenna array from a
Gaussian distribution with mean 0.2 and standard deviation
0.01. Similarly for ψ1, the mean and standard deviation are
0.15 and 0.01, respectively. The mean and standard deviation
values are obtained from [27] and [29], respectively.

Fig. 5 visualizes simulated data from four CAAs. For each
CAA, each row shows data received by the authenticator
through multipath fading channels in four different sample
authentication sessions. The original 1, 000× 8 input data is
trimmed to an 8×8 image in the figure for better visualization.
The eight columns in each authentication session (i.e., image)
are the I and Q samples from four antenna elements in the
array, as explained earlier in this section. The phase signature
ψi(θ, ϕ) of each antenna i in an array is clearly seen in the
vertical colored pattern within a column in each image. The
signatures of all antenna elements in an array (i.e., colorful
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FIGURE 5. Input data to the authentication algorithm visualized as a color
map. Each row corresponds to a CAA, and each image represents data
received in an authentication session under different channel conditions.
The first 8 of the 1, 000 instances in an authentication session are shown
for clarity. The 8 columns in each image correspond to the I and Q
samples from 4 antenna elements in each array. A consistent pattern is
observed for each array.

columns in an image) together form the signature of the array
within each image. Despite the significant randomness across
the four authentication sessions performed at different times
due to multipath fading channel noise, one can still observe
a signature pattern for each array thanks to the enhanced
RF fingerprints of CAAs. For instance, while the second
and third columns of Array 1 typically have lower values
(represented by blue),its last columns typically have higher
values (represented by red). We see such distinct but signifi-
cantly noisy patterns in each array, which makes deep learn-
ing classifiers, in particular Convolutional Neural Networks
(CNNs), promising for learning those patterns to accurately
authenticate hundreds of CAAs.
Remark 1: As shown in the literature [7], as well as our

results in Figs. 6 and 7, even with deep learning classifiers,
the naturally occurring phase signatures in traditional RF
fingerprinting are not distinct enough to survive the noise of
multipath fading channels in realistic scenarios.
Remark 2: Although there is an underlying pattern across

the images in each row, it is subject to challenging levels of
randomness in different authentication sessions due to multi-
path fading channels. Such a complex pattern recognition task
neccesitates the use of sophisticated deep learning classifiers,
which is the topic of next section, instead of simpler statistical
detectors.

C. DEEP LEARNING CLASSIFIERS
CNNs are particularly well-suited for capturing the subtle
phase differences and distortions in I/Q samples due to their
inductive bias towards local spatial structure, which aids in
modeling the phase relationships between the signals. The

convolutional filters in CNNs can learn spatially correlated
patterns within the data, allowing the network to discern the
consistent phase shifts that come from the CAAs. Further-
more, CNNs are robust to noise, allowing them to isolate
device-specific distortions in signal characteristics, even in
the presence of multipath fading channel noise, enhancing
the model’s capacity to generalize across diverse channel
conditions.

To study the effectiveness of ML algorithms for authenti-
cating CAAs, we test a spectrum of CNN based classification
models. The baseline model is a simple CNN, consisting
of two convolution-max pooling-ReLU layers, followed by
a single dense layer (CNN-3). The four other models are
described below. The model receives equalized I/Q samples
of size 1000× 8× 1, where the 8 columns correspond to the
I and Q signal samples from the 4 antenna elements.

First, we consider VGG-16 [30], a neural network architec-
ture with 16 layers. This model contains the most parameters
out of any model tested (138M ). We trained VGG-16 from
scratch on our data.

Our next model, ResNet-50 [31], introduces residual con-
nections, which effectively mitigates the vanishing gradient
problem. This in turn facilitates the training of deeper net-
works with enhanced accuracy. We selected ResNet-50 for
our tests, and considered two different approaches for train-
ing. In addition to fully training a randomly initialized version
on our data, we also fine-tuned a version that was pretrained
on the popular ImageNet-1K dataset.

FollowingResNet-50 is InceptionV3 [32], characterized by
its "network within a network" architecture, which enables
deeper and more efficient feature learning without signifi-
cantly increasing computational demand. Our InceptionV3
was pretrained on ImageNet-1K before being fine-tuned on
our data.

The final model chosen is Xception [33], which incorpo-
rates separable convolutional layers alongside residual con-
nections. Xception represents the most cutting-edge model
for off-the-shelf CNN-based classification methods. Like
ResNet-50, we use both fully trained and fine-tuned (pre-
trained on ImageNet-1K) versions of Xception.

For all models, except the simple CNN-3 network, we
slightly modify the first layer in the model to accept the I/Q
samples as input.

Through MATLAB simulations, 110 authentication se-
quences for 300 CAAs were formed. The data is partitioned
using a 100-10 split for training and testing, respectively. We
train each model with Adam [34] optimizer, a learning rate
of 10−5, decay of 10−6, for 200/500 epochs, depending on
the model. Batch size depends on model architecture, and
was selected for each model to fill the GPU VRAM. During
offline training, the 5 classifiers described above are trained
to map the input xk , k ∈ L, to probabilities {pi} for each user
i ∈ L, where

∑
pi = 1, indicating the probability of the input

sequence xk belonging to user i. The output probability vector
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is used to compute the cross-entropy loss:

LCE = −
L∑
i=1

zi log pi (10)

where zi represents the one-hot-encoded ground truth, taking
the value 0 for every user in L except the user which trans-
mitted the data. The resulting loss is back-propagated using
Adam to optimize the network parameters over the training
process. For inference, we declare the transmitting device to
be î for which pi is maximized:

î = argmax
i
pi (11)

The overall accuracy over the test set is defined as the sum of
correct classifications divided by the number of test instances.

All models mentioned are implemented using PyTorch.
The experiments were conducted using an RTX 4090 GPU
with 24GB of VRAM. The training time for each network
depends on the architecture, number of trainable parameters,
batch size, and processing power.

The selection of classifiers was informed by each model’s
differing structural advantages, to provide a wide range of
comparisons on the unique challenges presented by I/Q signal
data classification. VGG-16 has a straightforward, densely
connected structure, providing a baseline to determine if more
complex architectures are necessary for acceptable perfor-
mance on this data type. ResNet-50, InceptionV3, and Xcep-
tion, in contrast, have advanced architectures, each designed
to mitigate the vanishing gradient issue in different ways.
Thesemodels thus facilitate deeper learning of features which
we hope to see improve authentication performance under
unideal channel conditions.

D. RESULTS
Table 2 shows the test classification accuracy for each of
the networks trained and tested on each dataset mentioned
in Section III-B. For 5 out of the 7 datasets, all models,
including the baseline CNN-3, score significantly above the
63% state-of-the-art accuracy in the literature achieved by
ResNet-50 using the traditional (non-CAA) RF fingerprints
[7] in a similar setup. The performance drop in sets 5 and 6
are analyzed in detail in the following paragraphs. Comparing
the performance between the fully trained and fine-tuned
versions of the models, we notice no significant difference
in accuracy. This indicates that pretraining on large image
datasets is not necessary for RF fingerprinting. Thorough
training on the I/Q data itself is sufficient to provide optimal
performance under these circumstances.

It is seen in Table 2 that the classification accuracy depends
heavily on the ratio between the channel coherence time
Tc and authentication duration Ta = Na/Fs, reported as a
subscript in the column headings, where Na = 1, 000 is
the number of samples in an authentication sequence and
Fs is the sampling frequency. In sets 1, 2, 3, we initially
increase Vmove ∈ {1, 5, 10} m/s while keeping the sam-
pling frequency fixed at Fs = 10 kHz to study faster

FIGURE 6. Test set classification accuracy of pretrained Xception when
sweeping Tc/Ta at SNR = 20dB. Smaller/larger Tc/Ta values correspond
to faster/slower fading channels. While the traditional RF signatures
without CAA only work in scenarios where the channel varies slowly with
respect to the authentication frequency, the proposed enhanced RF
signatures with CAA enable accurate authentication in both fast and
slow-fading channels with a caveat of performance drop in a mid-range
band where the channel’s fading pattern overlaps and causes
interference with the authentication pattern (Tc/Ta ≈ 1).

FIGURE 7. Authentication accuracy of pretrained Xception on traditional
RF signatures without CAA generated by the power amplifier model in
equation (9). Movement speed in the channel is set at Vmove = 20 m/s.
Successful authentication is observed at sampling rates close to 100 MHz.
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TABLE 2. Test accuracy on data generated with CAA for SNR = 20 dB. Sets are represented with (Fs, Vmove)Tc/Ta , where Tc and Ta denote the channel
coherence time and authentication duration.

Model
Set

(10K,1)0.25 (10K,5)0.05 (10K,10)0.025 (10K,0.5)0.50 (10K,0.1)2.53 (100K,1)2.53 (1M,1)25.36

CNN-3 82.09 96.51 98.69 72.06 47.27 44.24 91.66
VGG-16 83.30 95.87 97.03 81.78 59.36 56.45 98.36
ResNet-50 89.87 99.00 98.87 74.06 57.42 55.81 98.57
Xception 90.78 99.00 100.00 85.24 58.06 53.33 97.90
ResNet-50 (Pretrained) 90.03 99.42 99.90 86.42 68.57 72.42 99.96
InceptionV3 (Pretrained) 90.00 99.15 99.96 84.78 51.18 50.09 97.03
Xception (Pretrained) 88.18 99.24 99.81 81.96 66.33 70.66 99.90

TABLE 3. Test accuracy on data generated with CAA for different SNR values for ResNet-50 model. Sets are represented with (Fs, Vmove)Tc/Ta , where Tc and
Ta denote the channel coherence time and authentication duration.

SNR
Set

(10K,1)0.25 (10K,5)0.05 (10K,10)0.025 (10K,0.5)0.50 (10K,0.1)2.53 (100K,1)2.53 (1M,1)25.36

-30 dB 68.75 85.30 90.57 61.33 45.27 45.48 70.42
-25 dB 64.93 86.57 89.66 62.63 46.84 46.09 72.06
-20 dB 71.06 82.21 90.45 63.33 45.63 47.15 69.42
-15 dB 77.09 84.36 87.78 62.30 49.24 44.60 69.78
-10 dB 86.75 95.15 95.21 72.15 53.96 54.48 88.45
-5 dB 85.45 96.66 97.93 76.42 58.72 57.18 97.39
0 dB 89.84 97.96 99.60 81.96 62.81 56.63 99.09
5 dB 88.18 98.09 98.81 80.72 65.27 63.57 98.60
10 dB 90.30 98.21 98.78 85.39 67.09 62.90 99.72
15 dB 89.93 98.96 99.48 83.96 65.60 62.48 99.24
20 dB 90.03 99.42 99.90 86.42 68.57 64.96 99.96
25 dB 90.66 98.33 99.18 85.45 66.66 64.33 99.12
30 dB 90.33 98.72 99.33 85.51 62.96 63.36 99.33

TABLE 4. Test accuracy on data generated without CAA (regular antenna arrays with only power amplifier signatures) for SNR = 20 dB. Sets are
represented with (Fs, Vmove)Tc/Ta , where Tc and Ta denote the channel coherence time and authentication duration.

Model
Set

(10K,1)0.25 (10K,5)0.05 (10K,10)0.025 (10K,0.5)0.50 (10K,0.1)2.53 (100K,1)2.53 (1M,1)25.36

CNN-3 0.27 0.27 0.33 0.27 0.48 0.69 35.33
VGG-16 0.21 0.18 0.24 0.42 0.09 0.30 62.45
ResNet-50 0.18 0.30 0.21 0.27 1.45 1.72 95.12
ResNet-50 (Pretrained) 0.39 0.21 0.36 0.39 0.90 1.72 95.80
Xception (Pretrained) 0.12 0.24 0.21 0.24 0.18 0.18 84.06

fading channels. In those scenarios, the channel coherence
time Tc ∈ {0.025, 0.005, 0.003} sec and the Tc/Ta ∈
{0.25, 0.05, 0.025} ratio both decrease, i.e., more random
channel realizations are observed during an authentication
sequence. Although counterintuitive, the performance of all
five methods increase as the wireless channel becomes more
challenging. To complete the picture, we also investigate
slower fading channels by decreasing Vmove ∈ {0.5, 0.1} m/s
in sets 4 and 5 compared to set 1. In these scenarios, the
channel coherence time Tc ∈ {0.05, 0.25} and the Tc/Ta ∈
{0.5, 2.53} ratio both increase. Interestingly, the performance
drops across all algorithms while the channel becomes less
challenging (elaborated in Remark 3). We also increase the
sampling frequency Fs ∈ {100K , 1M} Hz in sets 6 and 7
while keeping Vmove constant to further study the increasing
Tc/Ta ratio (even less channel randomness in an authentica-
tion sequence). As Tc/Ta increases to 25.36, the performance

of all algorithms again climb above 90% accuracy, reaching
up to 99.9%.
Remark 3: It is observed that the performance drop,

demonstrated by the green curve in Fig. 6 for Xception, hap-
pens in a band of scenarios in which the Tc/Ta ratio is around
unity. In those cases, the authentication duration and channel
coherence time are comparable, meaning that during each
authentication sequence the channel is renewed. Coherence
time denotes the duration in which the channel’s effect on the
transmitted signal becomes uncorrelated. When the channel
coherence time and authentication duration coincide, there is
another pattern, the channel’s fading cycle, that is overlaid on
top of the authentication signature. As the channel’s fading
pattern collides with the authentication pattern, destructive
interference occurs between the two, causing a performance
drop for classification algorithms.
To measure the robustness of CAA-based authentication to
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noise, we tested the performance of pretrained ResNet-50 for
various values of Signal-to-Noise Ratio (SNR) ranging from
−30 dB to 30 dB. The results are summarized in Table 3. We
see that the phase-based signatures introduced by CAA are
very resilient to high levels of noise.
CAA vs. Traditional RF Fingerprinting:Next, to evaluate

the contribution of CAA signatures, we generated additional
datasets for regular non-CAA antenna arrays using only the
power amplifier model in Eq. (9) under the same 7 scenarios
of (Fs,Vmove) values as in the previous experiment for CAAs.
The results in Table 4 show that without CAAs, the models
perform extremely poorly on all datasets, except dataset 7, in
which the channel is almost static within the authentication
sequence. To analyze this trend in detail, we generated more
scenarios for regular antenna arrays with different combina-
tions of moving speed and sampling frequency. As the results
in Table 5 show, highly accurate authentication with regular
antenna arrays is only possible under idealistic scenarios
where the channel does not change significantly during the
authentication process, i.e., channel coherence time is much
longer than the authentication duration. This fact is demon-
strated by the red-colored curve in Fig. 6. It is seen in Fig. 6
that under fading channels (log(Tc/Ta) < 1), traditional RF
fingerprinting signatures without CAAs are not sufficient to
be reliable, while the enhanced RF signatures of CAAs enable
high accuracy across fast and slow-fading channels, with a
caveat of some performance drop in a mid-range band where
the channel’s fading pattern overlaps and causes interference
with the authentication pattern (Tc/Ta ≈ 1). Even in that case,
the performance of CAAs does not drop below 65% accuracy.
Note that such a potential performance drop can be easily
avoided with rough knowledge of the channel condition by
selecting the sampling frequency (e.g., downsampling in soft-
ware) small enough to ensure a relatively fast-fading channel
(lower Tc/Ta values in Fig. 6). This is a remarkable feature
of CAA, as non-CAA RF signatures do not yield acceptable
results under fast-fading channels.

Since it is shown that the authentication performance de-
pends on the ratio between channel coherence time and au-
thentication duration, it seems possible to deal with the fast-
fading even with traditional antenna arrays without CAAs
by increasing the sampling frequency. To verify, we conduct
further experiments on traditional RF fingerprints by keeping
Vmove constant at 20m/s (typical vehicle speed) and varying
sampling frequency. From the results shown in Table 6 and
Fig. 7, it is observed that highly accurate authentication is
possible when the sampling frequency approaches 100 MHz.
At sufficiently high sampling rates for a given fast-fading
channel, the channel is practically static, allowing the weak
signatures introduced by the amplifiers to be picked up by
the classifier. In contrast, at lower sampling frequency values,
the channel is varying, and thus the signatures introduced
by the power the amplifier alone are not enough for reliable
authentication. However, in practice, implementing a receiver
with such high sampling rates is more costly and complex
compared to a receiver with a lower sampling rate.

In general, power consumption and circuit complexity in
ADCs increase with increasing sampling frequency. This
means the cost of ADCs increases with higher sampling
frequency, as observed for the figure of merit P vs Cost graph
in [35]. The theoretical lower bound for sampling power is
discussed in [36]. This bound is known to be directly pro-
portional to the sampling frequency. Extrapolating the power
consumption graph shown in [37], it can be seen that for
10 KHz sampling frequency the power consumption is in
the µW range, while for 100 MHz is in the mW range. The
actual power consumption depends on the ADC type and
other design factors, but in general increases with increasing
sampling frequency, as observed from experimental data col-
lected in [38]. Another consideration when designing ADCs
is the complexity of the ADC circuit as sampling frequency
increases. In [35], in a design of Sigma-Delta ADC, the
increase in filter order is discussed as sampling frequency
increases. Specifically, for 10 MHz sampling frequency, the
filter order could be as high as 5,000. In [39], the authors dis-
cuss the increased difficulty in implementing high sampling
rate ADCs due to mismatches in sampling speeds of different
sampling circuits, leading to the need of larger sized devices
which in turn lead to parasitic capacitances.
The CAA-enabled authentication system thus gives a con-

siderable advantage over traditional RF-based fingerprinting
in terms of power consumption and circuit complexity, result-
ing in cost savings in a practically feasible implementation,
which is elaborated in Section IV.
Wireless Channel Impact: To analyze the impact of the

Rician channel on the phase of the transmitted signal, we
plot and compare the phase of the input signal and the output
signal after passing through the Rician channel. The analysis
is conducted for the first antennas of four CAAs, with a fixed
position chosen for each array, consistent with the simulation
setup. The phase plot of the input signal is depicted in Fig. 8,
while the phase plot of the output signals for various walking
speeds are shown in shown in Figs. 9, 10, and 11. The input
data sequence consists of all ones, and the memoryless non-
linearity effects of the amplifier are incorporated into the
input data phase. Additionally, the phase contributions from
the CAA position and feed line randomization are included.
Since the array position remains fixed, the phase contribution
from the CAA remains constant throughout the transmission
for a single array. Consequently, distinct but constant phase
values for each array are observed in Fig. 8. The signal is
then transmitted through a Rician channel, with the Doppler
shift determined by walking speed. Higher walking speeds
correspond to more dynamic channels, resulting in faster
fading. Two walking speeds, 1 m/s and 10 m/s, are considered
to demonstrate the effects of slow and fast-fading channels,
respectively. At a walking speed of 0m/s, zeroDoppler spread
is observed, and the phase variations are solely due to AWGN,
as illustrated in Fig. 9. In the case of a slow-fading channel
with additive white Gaussian noise (AWGN), as shown in Fig.
10, a walking speed of 1 m/s and a sampling rate of 10 kHz
result in the received signal phase remaining approximately
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TABLE 5. Test accuracy on data generated without CAA (regular antenna arrays with only power amplifier signatures) for SNR = 20 dB increases as the
channel becomes static. Sets are represented with (Fs, Vmove)Tc/Ta , where Tc and Ta denote the channel coherence time and authentication duration.

Model
Set

(200K,1)5.07 (400K,1)10.14 (10K,0.01)25.36 (1.4M,1)35.50 (1.8M,1)45.65 (10K,0.001)253.62 (100K,0.001)2536.24

CNN-3 2.6 6.48 32.72 53.66 63.89 100 100
VGG-16 0.21 0.24 39.72 70.42 91.18 84.75 99.78
ResNet-50 14.96 64.27 93.6 97.9 98.63 100 100
ResNet-50 (Pretrained) 44.81 82.3 99.42 98.36 98.84 100 100
Xception (Pretrained) 36.51 66.24 98.57 99.33 98.81 100 100

TABLE 6. Test accuracy on data generated without CAA (regular antenna arrays with only power amplifier signatures) for SNR = 20 dB increases with
higher sampling rates. Sets are represented with (Fs, Vmove)Tc/Ta , where Tc and Ta denote the channel coherence time and authentication duration.

Model
Set

(10K,20)0.0126 (100K,20)0.1268 (1M,20)1.268 (10M,20)12.68 (100M,20)126.81

CNN-3 0.18 0.33 0.21 10.03 99.73
VGG-16 0.21 0.18 0.21 0.30 98.81
ResNet-50 0.39 0.45 0.36 83.00 99.24
ResNet-50 (Pretrained) 0.39 0.45 0.30 90.87 100
Xception (Pretrained) 0.39 0.18 0.21 86.39 100

TABLE 7. Model parameters, computational complexity, and inference
speed (Authentications per Second - APS) for each model.

Model Params (M) GFLOPs APS

CNN-3 2.4 0.0012 2430.4
VGG-16 139.0 15.5 437.5
ResNet-50 26.2 1.25 109.5
Xception 23.5 1.24 116.3
InceptionV3 27.8 0.35 60.7

constant over longer time intervals before changing. For the
fast-fading channel scenario, the walking speed is increased
to 10 m/s while maintaining the 10 kHz sampling rate. In
this fast-fading scenario, the channel becomes highly dy-
namic, with phase values fluctuating significantly over short
time intervals, as shown in Fig. 11. This corresponds to a
much shorter channel coherence time compared to the slow-
fading case. Phase plots effectively illustrate the behavior of
the received signal under realistic slow and fast-fading con-
ditions, consistent with theoretical expectations. Presented
work shows that these challenging phase signatures under
realistic channel conditions can be detected byML algorithms
with high accuracy.
Computational Complexity: Table 7 compares the model

paramters, computational complexity, and inference speed
(measured as Authentications per Second - APS) for the deep
learning models used in this study. All models were tested
on an Nvidia RTX 4090 GPU. The baseline CNN-3 model
is the most lightweight by far, with 2.4 million parameters
and 0.0012 GFLOPs, resulting in 2430 APS. This makes it
extremely efficient for scenarios with many devices, but as
shown in this section, lacks the accuracy of other methods.
VGG-16, ResNet-50, Xception, and InceptionV3 each of-
fer different trade-offs between complexity, size, and speed.
ResNet-50 and Xception have similar GFLOPs values (1.25

FIGURE 8. Phase of an input signal plotted after adding phase terms due
to memoryless non-linearities in addition to CAA at a fixed position for
each of the first antenna of the first four arrays.

FIGURE 9. Phase of a received signal for a walking speed of 0 m/s and
sampling frequency of 10 KHz, corresponding to static channel with only
AWGN added.

and 1.24, respectively), yet Xception outperforms ResNet-
50 in terms of APS, with 116 vs 109, likely due to Xcep-
tion’s factorized convolutions which optimize computation.
InceptionV3, with 27.8 million parameters, has much lower
GFLOPs complexity than other other advanced methods yet
barely passes 60 APS, indicating that some other bottleneck

10 VOLUME 11, 2023



McMillen et al.: Hardware and Deep Learning-Based Authentication through Enhanced RF Fingerprints of 3D-Printed Chaotic Antenna Arrays

FIGURE 10. Phase of a received signal for a walking speed of 1 m/s and
sampling frequency of 10 KHz, corresponding to slow-fading scenario.

FIGURE 11. Phase of a received signal for a walking speed of 10 m/s and
sampling frequency of 10 KHz, corresponding to fast-fading scenario.

exists for this model, likely memory speed and number of
sequential operations. VGG16, on the other hand, has vastly
more parameters and GFLOPs compared to the other models
selected (139 million parameters and 15.5 GFLOPs), but at
the same time, vastly outperforms them on APS, with 437.5.
This is due to VGG16’s highly parallelizable design, allowing
the GPU to very quickly infer from the input data.

FIGURE 12. Testbed setup with the CAAs shown on the left and
Authenticating Receiver shown on right.

E. EXPERIMENTAL VERIFICATION
To evaluate the performance of the CAA-based authentication
system using real-world data rather than synthetically gen-
erated data, we are developing a testbed in our laboratory.
As shown in Fig. 12, the testbed includes software defined
radios (SDRs), CAAs manufactured in our laboratory, nec-
essary control electronics to turn on/off antenna elements
of the CAAs, software for controlling the testbed and data
collection. Full verification of the CAA based authentication
technique presented in this manuscript, particularly the train-
ing/authentication demonstrations involving spatially variant
fingerprints of the CAAs, involve many sets of systematic
data collections that are currently being investigated. In addi-
tion, systematic data collection under different wireless chan-
nel conditions is planned using the testbed. Consequently,
the details of the testbed (hardware design and manufactur-
ing, hardware characterization, SDR programming, wireless
channel scenarios, description of data sets and their collection
conditions such as the CAA positions) and comprehensive
experimental verifications of CAA based authentication will
be reported in a future work.
The first set of experiments performed with this testbed

have the CAAs at fixed positions during the data collection.
The testbed utilizes four CAAs, each comprising four antenna
elements arranged linearly with randomized positions and
feed line lengths. Although our simulations modeled a square
array in this manuscript, this difference is negligible since the
angle-dependent signature exists both in square or linear array
arrangements. A horn antenna is connected to an Ettus USRP
X440 SDR, which serves as the receiver. Data was gathered
by sequentially activating each antenna element in a cyclic
manner. The data format matched that of the synthetic data,
allowing seamless input into our model without modification.
A total of 110 samples, each containing 1000 sequences were
collected, to match the simulations in number. To ensure
consistency with the Rician channel model used in the simu-
lations, a direct line-of-sight path wasmaintained between the
CAAs and the receiver. However, the scattering objects in the
environment are spread around the room, including the vicin-
ity of transmitters, as opposed to the channel environment
in the simulations in the previous section. This experimental
setup let us show that the proposed authentication system is
not restricted to the considered simulation environment with
focused scatterers around the receiver using the MATLAB
Communications Toolbox.
The performance results of the real-world data, processed

using the same models as for synthetic data, are presented
in Table 8. The table demonstrates that the CAA system
performs exceptionally well in field experiments, achieving
100% accuracy in three out of the four tested models. The
experiments were conducted in a dynamic lab environment,
with people walking in the background and nearby reflective
surfaces to account for multipath effects and the presence of
external interference sources, such as Wi-Fi signals.
Initial datasets collected with each CAA transmitting in

multiple different positions are also showing strong per-
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TABLE 8. Test accuracy on field experiment data with linear CAA and
fixed array positions.

Model Test Accuracy (%)

CNN-3 98.86
ResNet-50 100
Xception 100
Inception(Pretrained) 100

FIGURE 13. Substrate stack-up of the aperture-coupled patch antenna
designed for the practical realization of CAAs.

formance with accuracy approaching 98% with ResNet-50.
However, as stated, wemust significantly expand the data sets
by performing many systematic characterizations. Hence, we
plan to report the details of the testbed and a comprehensive
set of experiments conducted with it in a future work to
better assess the performance of CAA-based authentication
in increasingly realistic scenarios.

IV. PRACTICAL REALIZATION OF CAA ELEMENTS USING
ADDITIVE MANUFACTURING
Randomization in antenna positions and feed line lengths can
be carried out with traditional manufacturing technologies;
however, this is expected to be costly since low-cost is only
achieved by replication of identical circuits. To enable cost
effectiveness, we investigate practical realization of the CAAs
using additive manufacturing (AM). AM is mask-free and
can form a 3D structure layer by layer. Hence, randomization
of geometry can be carried out with no additional cost by
randomizing the printing files and/or the motions and mate-
rials of the manufacturing heads. Recent research work has
already demonstrated that laser enhanced direct print addi-
tive manufacturing (LE-DPAM) can be employed to realize
multilayered patch antennas [40], [41], structurally embedded
ICs [42], and packaging of ICs with antennas [43] up to mm-
wave frequencies, with performances comparable to those
attainable from conventional manufacturing.

Fig. 13 presents the 3D structure of the antenna ele-

ment proposed for practical CAA realizations. Although LE-
DPAM can manufacture the entirety of the shown structure,
a hybrid assembly is proposed to combine the best of two
manufacturing techniques (i.e., low-cost and rapid production
of detailed but identical geometries with PCB vs. low-cost
manufacturing of randomized geometries with LE-DPAM).
To minimize the area of conductive traces manufactured with
LE-DPAM (for faster manufacturing speed), an aperture-
coupled patch antenna is considered. The LE-DPAM (i.e. 3D-
printed) part consists of four material layers. Two of these
are dielectric acrylonitrile butadiene styrene (ABS) layers
(ϵr = 2.6, tan δ = 0.0085) that are manufactured by the
Fused Deposition Modeling (FDM) capability of LE-DPAM.
The remaining two layers are formed from CB028 conductive
paste (σ = 1 × 106 S/m) by using the microdispensing
capability of LE-DPAM. Laser processing or micro-milling
the edges of the conductive traces are likely not needed for
the shown conductive layers (i.e., antenna andmicrostrip line)
due to the larger dimensions for operation at the 5.8 GHz ISM
band. The 3D-printed part is designed to be manufactured
on the LE-DPAM platform in an upside-down manner (as in
[40]). First, the 0.5 mm ABS is printed using FDM to form
the material base. This layer also acts as a cover to hide the
antenna element from visual inspection. The process follows
with microdispensing of conductive paste to form the patch.
Subsequently, the 3 mm thick ABS material is printed using
FDM. This layer acts as the antenna substrate and mainly
controls the antenna bandwidth. Finally, the microstrip line is
microdispensed to complete the production of the 3D-printed
structure. Antenna position (relative to the coupling slot) and
microstrip line lengths are randomized geometry parameters.
The 3D-printed structurewill be screwed (or glued/bonded)

on to the PCB as illustrated with the substrate stack-up shown
in Fig. 13. The PCB is a 0.508 mm thick Rogers 4003C
substrate layer (ϵr = 3.55, tan δ = 0.0027) with two layers
of conductive traces. One layer carries the RF and antenna
ground plane with the antenna coupling slot and a larger
cutout area for preventing the overlap with the microdis-
pensed microstrip lines. Inside the cutout area, two very short
microstrip lines are included as pads to overlapwith the tips of
the microdispensed microstrip line when the entire structure
is assembled. The second layer carries the RF microstrip feed
line that enters the PCB and extends over the coupling slot
to feed the antenna element. In addition, this layer carries
a rectangular-shaped trace to act as the ground plane of the
microdispensed microstrip line. This trace is connected to
the main ground using a set of 0.3 mm diameter conductive
vias to prevent undesired radiation. Two 0.6 mm diameter
conductive vias are used to connect the RF microstrip line
with the microstrip line pads on the opposite side of the board.
After entering the board from the first conductive layer (i.e.,
the bottom layer in Fig. 13), the RF signal travels to the second
conductive layer, passes over a randomized microdispensed
microstrip line, and travels back to the first conductive layer
to feed the antenna element through a coupling slot.
Fig. 14 presents the layout of the aperture-coupled patch
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FIGURE 14. Layout details of the CAA element in Fig. 13. Dimensions that
are randomized (feed line length, and antenna location) are underlined.

antenna. Although patch dimensions can be randomized to
create differences in cross polarization and phase delay, they
are left constant in this study. An important aspect of the de-
sign is the choice of a relatively thick 3 mm antenna substrate.
Since impedance matching aperture-coupled patch antennas
is sensitive to the coupling slot position and its dimensions,
the thick antenna substrate is utilized to obtain a wideband
operation when the antenna element is centered over the
coupling slot as shown in Fig. 14. The relative position of
the patch with respect to the coupling slot is randomized as
described in Section II (αmax = 4 mm). This results in a fre-
quency shift in the antenna element, but the antenna remains
impedance matched due to its wideband characteristics. The
microdispensed feed line is bent to fit more line length within
the half-wavelength space of an antenna array, as shown in
Fig. 14. Each bent section can assume a length between 2.5
mm and 16.5 mm. Considering the 2.5 mm length as the
reference state, the total microdispensed line length can be
randomly enlarged from 0 mm to 28 mm, where the latter
corresponds to a ≈ 360◦ phase shift within the shown sub-
strate stack-up. 2.5 mm is the length allocated for the overlap
with the pads of the feed line on the PCB. This contact-based
electrical connection can be further strengthened with the
application of silver epoxy. It is also important to note that
the feed line width is 1.1 mm for the bottom conductive trace
of the PCB since the trace ismodeled to be open to air whereas
the microdispensed line is an embedded line.

The Ansys Electronics Desktop (EDT) HFSS simulation
of the antenna element (with the shown 52 × 52 mm2 cross
section, but with a short 6.5 mm feed line) shows that the
unperturbed antenna operates with 9.4% |S11| < −10 dB at
the center frequency of 5.75 GHz. The realized gain is 6.7
dBi at 5.8 GHz, corresponding to a radiation efficiency of
93%. A MATLAB m-file was written to create a script that
automates Ansys EDT HFSS to simulate antenna elements

FIGURE 15. |S11| performance of 1200 antenna elements as their
geometry is randomized.

with randomized locations and feed line lengths. The script
is also capable of exporting the parameters of interest and
repeating the process over the desired number of antenna
realizations. Both geometry randomizations are based on a
uniform distribution, as discussed in Section II. Fig. 15 shows
the |S11| (dB) (i.e., port reflection coefficient) performance
of the 1200 antenna elements automatically simulated with
the MATLAB – Ansys EDT HFSS framework. Resonance
frequency shifts are notably visible due to displacement of
the antenna element over the coupling slot.
However, it is important to note that the CAA concept

is not limited to the aperture-coupled patch antenna design
presented in this study. Alternative antenna configurations,
such as probe-fed patch antennas, could minimize or elim-
inate frequency shifts. For example, prior work [9], [11],
[44] has demonstrated the feasibility of implementing vertical
interconnects in 3D-printed substrates using conductive ink-
filled vias, which could support such designs. While these
approaches are effective, they involve additional manufactur-
ing steps that may extend the production time and we prefer
to avoid in our initial prototypes. The aperture-coupled patch
antennas are specifically designed with a much broader band-
width than the intended communication band, ensuring that
the expected resonance frequency shifts not change the fact
that the antennas remain well-matched with |S11| < 10 dB,
allowing for over 90%power acceptance. The presented study
validates this fact with all 1200 antenna instances maintaining
a lower than -10 dB |S11| across the 5.8 GHz ISM band.
Comprehensive manufacturing details, their usage within test
nodes and testbeds employing software defined radios will
be the subject of a future study. Additionally, future work
will explore alternative antenna designs to further mitigate
resonance frequency shifts and enhance compatibility with
specific wireless standards.
Wireless Communications with CAAs: The randomized

antenna positions in the CAA share similarities with non-
uniform antenna arrays, such as thinned or sparse arrays that
have been explored extensively in the literature. For a system
that can be designed to make CAAs perform beamforming by
relying on analog phase shifters behind each antenna element,
we restricted the average spacing among the antenna elements
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to half-wavelengths and avoided the issues of grating lobes.
Moreover, the magnitude of the vector used to randomize
the positions of the antennas were restricted to keep mutual
coupling among the antennas low. Under scenarios when the
randomizations are not known by the user of the CAA, pilot
signal training sequences can be employed to perform analog
beamforming as demonstrated in our recent work [45]. While
pilot signal adds an extra step for point-to-point communica-
tions, the process aligns well with the training requirements
when the analog beamforming arrays are operated within
scattering or non-line-of-sight environments. It is important to
note that the CAA concept can also be employed within sys-
tems that will perform fully digital beamforming, where the
digital system can optimize the transmission coefficients from
the CAAs to achieve the best data rates. Consequently, CAA
concept can support both authentication and communication
functionalities, most likely without compromising wireless
communication system performance. Future work will also
focus on the utilization of CAAs during wireless communi-
cations, while investigating their data rates along with their
potential for hindering eavesdropper success capabilities.

V. CONCLUSION
A novel machine learning (ML) based wireless device au-
thentication concept based on enhanced RF fingerprinting
through the utilization of chaotic antenna arrays (CAAs) was
investigated. A range of neural network architectures were
trained on several wireless channel scenarios with varying
fast- and slow-fading conditions. The authentication perfor-
mances of these trained models were shown to be promising
for advancement of the state-of-the-art in RF fingerprinting-
based authentication, with even simpler neural networks per-
forming extremely well. It is also seen that more advanced
networks achieve perfect accuracy under a variety of scenar-
ios. Relative performance degradation under scenarios where
channel coherence time nears sample duration suggests that
the sampling rate of the authenticator should be set according
to the channel statistics to avoid possible interference from
channel patterns. The results as they stand, however, indicate
that enhanced fingerprints offered by CAAs nevertheless al-
low for highly accurate RF fingerprint authentication. More
specifically, the results of deep learning-based authentication
utilizing CAA-based RF fingerprints were shown to be sig-
nificantly outperforming the existing state-of-the-art results
based on traditional RF fingerprints found in all wireless
communication devices. While the weak signatures used in
traditional RF fingerprinting are only useful under idealistic
conditions where the channel is static during authentication,
the enhanced RF signatures of CAAs enable highly accurate
authentication under realistic fast-fading wireless channel
scenarios. Moreover, we showed that the randomized antenna
locations in CAAs result in a direction-dependent signature,
which can provide extra security against RF signature cap-
turing attacks, which are known to threaten traditional RF
fingerprinting. We also presented a mathematical model of
the CAA’s electric field and explained how CAAs can be

realized using practical manufacturing techniques. The au-
thenticator is assumed to be in the far-field of the transmit-
ters. Although the antenna shapes could also be randomized,
we considered only location randomization in this work for
mathematical tractability. A future research direction is to
expand the preliminary experimental study with the testbed
for a comprehensive empirical analysis of the proposed CAA-
based authentication system.
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