P37

2025 International Image Sensor Workshop

Low-Light High Dynamic Range Single Frame
Image Denoising for Quanta Image Sensors

Yiheng Chi', Preston Rahim!, and Stanley H. Chan'

! DeepLux Technology Inc., West Lafayette, IN 47906, USA
{yiheng.chi, preston.rahim, stanley.chan}@deeplux.tech

Abstract — Imaging low-light high dynamic range
(HDR) scenes in a single capture is challenging for con-
ventional sensors when exposure bracketing is not feasible
due to application constraints. Advancements in sensor
technology have narrowed the gap, as split-pixel and dual
conversion gain (DCG) enables single-frame HDR capture
and Quanta Image Sensors (QIS) allow counting individ-
ual photons at low light. However, removing shot noise
from a single HDR image remains a difficult task due to
the spatially varying nature of noise. To address this issue,
we propose a learnable pipeline with a modular design for
processing high bit-depth QIS raw images. Compared to
existing algorithmic solutions, our approach offers supe-
rior reconstruction performance and greater robustness to
variations in illuminance and noise.

I. INTRODUCTION

Imaging a high dynamic range (HDR) scene in
a single capture is particularly challenging due
to the limited exposure range of most cameras,
which often results in overexposed highlights or
underexposed shadows. The conventional solution
is to capture multiple images and fuse them with
exposure bracketing; however, exposure bracket-
ing is not applicable for most real-time applica-
tions, especially those that pose limitations on
data throughput, power consumption, and compu-
tational complexity, such as high resolution HDR
videos, medical imaging, and autonomous driving.
Recent advances in sensor design, such as split-
pixel [10], [12] and dual conversion gain (DCG)
[9], attempt this issue by varying pixel exposure
and gain spatially, thereby generating a single HDR
image. These designs have demonstrated promis-
ing results, while post-processing is still needed
when taking images at extreme low light, where
the sensor read noise and photon shot noise are
severe compared to the image signal. Recovering
clean HDR images from the noisy single-frame
observations is a critical task, as it empowers image
sensors to see at a very low photon level while
consuming little memory, power, and latency, thus
enabling applications that have been very difficult
in the past: low-light endoscopy, night-time auto-
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Fig. 1. Existing image denoising methods typically operate
within narrow dynamic range limits. While offering satisfac-
tory results denoising 8-bit images (top row), the conven-
tional denoisers such as RF [4] and BM3D [5] and learning-
based methods such as DnCNN [13] and SLIM learnable ISP
[3] either generate blurry results or fail to remove the noise
when denoising 14-bit HDR images (bottom row).

navigation, low-light object detection and tracking,
etc.

To combat the low signal-to-noise ratio (SNR) is-
sue, single-bit and multi-bit Quanta Image Sensors
(QIS) are a candidate solution for low-light image
capture with their sub-electron read noise. Recent
research and development have also demonstrated
the potential of single-bit QIS in HDR imaging
applications [7], [8], [1], [2]. While one-bit QIS is
already capable of imaging low-light HDR scenes,
it requires capturing, transmitting, and combining
1,000 or more frames instead of a single capture.
This is an alternative approach to low light HDR
which comes with another set of challenges. Con-
versely, we use a multi-bit QIS to capture a single
image instead of single-bit with multiple captures.
Although QIS is at an advantage of imaging at
low light, removing shot noise from a single HDR
image frame is still challenging due to the spatially
varying photon shot noise characteristics corre-
sponding to the significant change in illuminance,
while existing image denoising typically operate
within narrow dynamic range limits. Therefore,
our proposed method attempts to address this
problem. Notably, multi-bit QIS pixel is similar to
any CMOS pixel, except a much lower read noise,
so our approach can be extended to high bit-depth
CMOS sensors by its nature.
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Fig. 2. Schematic diagram of the proposed method. We replace bottleneck building blocks of traditional ISP with learning-
based building blocks to simultaneously handle noise and HDR.

In this paper, we present an algorithmic solu-
tion for processing high bit-depth QIS raw images.
The input to our solution is multi-bit QIS data
from a Bayer color filter array pattern, e.g., 20-bit
images which are already achievable as reported
using the 1280 x 960 2.8um DCG and split-pixel
combined sensor [11], after standard pre-processing
steps, e.g., gray-level offset, pixel response non-
uniformity calibration, dead pixel removal, etc.
Our work focuses on single image low-light HDR
demosaicking and denoising. This problem remains
unsolved as existing HDR methods either fail to
handle heavy noise or require multiple captures
of the same scene. To address this, we propose
a learnable pipeline with a modular design that
enhances flexibility and simplifies debugging. In
contrast to traditional rule-based image signal pro-
cessing pipelines, our approach dynamically gener-
ates and applies filters to local image patches using
learned operators, offering superior reconstruction
performance and greater robustness to variations
in illuminance and noise.

II. HigH BiT-DEPTH QIS IMAGE DENOISING

Our goal is to solve the problem of recovering
the signal from noise by using only a single (HDR)
capture. A common misconception about HDR
imaging is that the noise in an HDR image can be
handled just like any conventional image. Unfortu-
nately, this is not true because the signal-to-noise
ratio (SNR) of a pixel is proportional to the number
of photons it receives. In the presence of very bright
and very dark content, the noise distribution will
be non-uniform within the single image. Figure 1
presents an example of an 8-bit image and a 14-
bit image. The 8-bit image is an LDR image. In
this example, we simulate the photon shot noise as
if the image were captured at a light level of on
average 10 photons per pixel. Although the noise
is heavy, existing image denoisers are capable of
handling the noise. However, when we switch the
problem to 14-bit (HDR), the same algorithms fail
to produce any meaningful result. This shows the
limitations of existing solutions and motivates the
need for single-image low-light HDR denoising for
high bit-depth sensors.

Figure 2 illustrates the schematic of our proposed
solution. Key components include: learnable fre-
quency demodulation for Bayer color filter array
demosaicing, content-aware feature extraction via
adaptive learning to capture spatial information
from demodulated color channels, learned contin-
uous neural indexing with learned adaptive fil-
tering to adaptively compose filters suited to the
characteristics of image patches, and a multiscale
blending design. Our proposed solution expands on
our learning-based ISP [3] with additional designs
to manage the wide dynamic range. In the pro-
posed pipeline, we replace key steps in traditional
denoising processes by learning-based methods.

Learnable Frequency Demodulation. Fre-
quency demodulation is the concept we developed
previously [6] and succeeded in [3]. The main idea
is to convert the raw Bayer pattern into the luma
and chroma channels. On HDR image denoising for
QIS, we extend this idea to tackle the low SNR
problem at low light regime of the dynamic range.
This is because, by applying frequency demodula-
tion, we obtain the luma signal which carries a SNR,
that is 3x that of individual Bayer pixels, making
the denoising easier. We then use the features
extracted from the luma signal to guide the filtering
of the two chroma channels. We design this module
learnable so that it can be co-optimized with other
components. Another idea we integrate to mitigate
low SNR is larger receptive fields. While the image
is noisy, the underlying signal still contains local
structures, such as edges, surfaces, and textures.
By accumulating more information about these
structures from a larger receptive field, it is more
likely to recover the image signal.

Adaptive Learning and Adaptive Filter-
ing. Adaptive learning and adaptive filtering are
a new concept we introduce to account for the
spatially-varying SNR. In [3] and almost all other
convolution-based network designs, the operations
in the image and the feature space are spatially
invariant and fixed after training. We recognize
that this is a big limitation if we want to handle
tasks such as removing spatially-varying noise and
generalizing it to a wide range of testing scenarios.
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In this work, we first apply a small feature encoding
which can be interpreted as an illumination or
noise level estimation. We use this result to con-
trol the subsequent feature processing. Such guid-
ance is realized by using separated mini processing
branches and feedback signals. A similar estimation
and control strategy is also applied to adjust the
strength of filtering. This concept enables our pro-
posed method to adapt to changes in SNR within
a single image, and it improves the generalization
capabilities across a wide range of environmental
factors as well, such as lighting conditions, scene
content, and color spectra.

Feature Extraction and Neural Indexing.
In [3], we replaced the conventional image denois-
ing idea of using local gradients to select filters by
using features extracted from a shallow neural net-
work. We then mapped these features to an array of
weights indicating the relative emphasis of the filter
at each index in a filter bank. Expanding this idea,
we extract more complex features with dedicated
network branches to represent more information
about local image contents, such as brightness and
noise level. These features will guide the processing
in later stages within the pipeline and determine
the final filter at each local image patch. We fur-
ther propose a new indexing scheme, called neural
indexing, that allows dense representations of filter
weights and adaptive filter construction on the fly.
Instead of directly predicting filter weights, which
can be very sparse since most filters in the filter
bank are irrelevant to any given specific image
patch, the proposed module only outputs a few
parameters and activates only the relevant filters.
Then, through a computationally cheap mapping,
these parameters and active filters are converted
into the final filter to be applied to denoise the
image patch.

III. RESULTS AND CONCLUSION

We test our method on single-frame 20-bit low-
light HDR images. We first capture LDR images
with a Sony ILCE-7TM2 camera and a Sigma Art
24-70mm F2.8 DG DN lens. At each scene, twelve
images are captured at a fixed ISO of 100 and an
aperture of £/5. The exposure times are 1/80, 1/40,
1/20,1/10, 1/5, 0.4, 0.8, 1.6, 3.2, 6, 13, and 25 sec-
onds. We then combine these frames to create HDR
images of 60 dB dynamic range using exposure
bracketing, which only serve to verify our method
and do not represent the deployment scenarios.
The input low-light QIS images for experiments are
then simulated from these HDR images assuming
a Bayer color filter array and using parameters
of 0.19e- read noise, 0.02e-/s dark current, 20-bit
analog-digital converter, 50% quantum efficiency,
and a uniform sensor response.

Figure 3 presents low-light HDR scenes and
the photon shot noise with varying strength
across single-frame high bit-depth images. It also
compares existing image denoising methods with
our proposed solution. Traditional denoising tech-
niques operate within a narrow dynamic range,
leading to either over-smoothed or noisy results,
whereas our method produces HDR image recon-
struction that adapt to the local photon shot noise
strengths.
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Fig. 3. Denoising and demosaicking results. The oracle demosaicing represents the best achievable demosaicing result,
assuming that the capture is not Bayer-filtered, i.e., every pixel already has the full RGB values, instead of having just
one due to the color filter array. This oracle case serves as a reference to illustrate the amount of noise we are handling
here. Compared to existing learning-based image denoising [13] and learnable ISP [3], our method produces HDR image
reconstruction that adapt to the local photon shot noise strengths.
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