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Abstract. Cerebrospinal fluid (CSF) plays a critical role in brain metabolism and 
protection from external forces. Traditional MRI can provide some insights into 
CSF dynamics; however, more advanced and cost-effective methods are needed 
for precise and comprehensive visualization of flow patterns, velocities, and direc-
tions in clinical settings. In this paper, we demonstrate a new application of a few 
open-source computer vision software packages to capture CSF motion from time 
spatial inversion pulse (Time-SLIP) MRI clinical images (in DICOM format). To 
test the hypothesis that the CSF flow depends on head motions, a reliable and 
robust pipeline of processing Time-SLIP MRI images is developed to extract both 
anatomy and CSF motion dynamics. The paper presents a methodology for extract-
ing unsteady flow information from Time-SLIP MRI images and the results of its 
application. The results show that the computer vision method can be applied to 
extract unsteady CSF flow information. We also discuss observations and identify 
future areas for improvement by integrating CFD simulations for validation as a 
vital component for studying CSF dynamics. 
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1 Introduction 

Cerebrospinal fluid (CSF) is a clear, colorless fluid in the ventricles and subarachnoid 
space, enveloping and supporting the brain and spinal cord [1, 2]. Although the CSF 
system only accounts for ~10% of the entire cerebral cavity, it is pivotal in cushioning 
the brain within its bony enclosure, providing structural support and protection, and 
facilitating brain metabolism by transporting nutrients, removing metabolic waste, and 
maintaining chemical balance [3, 4]. CSF motion is influenced by complex interactions 
among head motions, arterial pulsations, and respiratory cycles [5, 6]. Naturally there 
remains a strong interest in understanding the CSF response to head motions, e.g., those 
due to active exercise or to uninitiated rapid impacts (i.e., a blow to the head).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
H. R. Arabnia et al. (Eds.): CSCI 2024, CCIS 2511, pp. 212–225, 2025. 
https://doi.org/10.1007/978-3-031-94962-3_19 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-94962-3_19&domain=pdf
https://doi.org/10.1007/978-3-031-94962-3%5Csb%2520%7B19%7D


MRI Image-Based Mapping of Human Head Motion and Brain 213

Traditional CSF flow dynamics imaging studies rely on contrast media and fluores-
cent agents to capture motion and have proven useful in anatomy and diagnostics but 
cannot provide precise and comprehensive measurements of velocity or direction, unless 
specialized techniques like Phase-Contrast MRI are used, or resolve fast or complex fluid 
dynamics. For instance, 4D MRI, though effective for non-invasive visualization and 
quantification of CSF flow in the brain and spinal cord, is resource-intensive, requiring 
significant time and operational costs as well as expensive hardware and software. In 
addition, the interpretation of 4D flow imaging results, which requires signal averaging, 
can be compromised when data are collected using only cardiac gating in the presence of 
multiple driving forces, such as CSF flow pulsation. In contrast, Time-Spatial Labeling 
Inversion Pulse (Time-SLIP) MRI [7–9] offers a cost-effective alternative that can be 
implemented on existing MRI systems with minimal upgrades. This technique selectively 
labels or “inverts” the magnetization of specific regions at a chosen time, allowing for 
non-invasively tracking the movement of fluid over time within those regions. Time-SLIP 
MRI provides both high-resolution brain anatomy imaging and real-time visualization of 
CSF flow patterns [10], making it particularly useful for conditions like hydrocephalus 
or studying CSF dynamics around brain structures. Compared to 4D MRI, Time-SLIP 
is more affordable, practical for qualitative imaging and flow visualization, and requires 
less radiologist time, computational resources, and interpretation effort. 

Utilizing Time-SLIP MRI to study CSF dynamics requires a robust DICOM image 
processing workflow and a reliable pipeline for extracting unsteady flow field informa-
tion. In this study, each patient’s scan generated three sets of DICOM images: one set 
showing brain anatomy in all three planes, another set of images recorded on the mid-
sagittal and mid-axial planes in the stationary head, and a third set of images taken on 
the mid-sagittal plane during instructed head motion. The workflow began with SPM12 
(a medical-image processing tool) [11], which was used to remove the skull from the 
anatomical MRI images and segment the resulting T1-weighted images to extract CSF 
anatomical geometry using 3D Slicer. Next, OpenCV [12] was employed to track fluid 
motion and estimate instantaneous velocities at discrete points of interest from the non-
anatomical image sets. Subsequently, SPM12’s realignment functionality was utilized 
on the head-motion image set to calculate the head’s time-varying translational and rota-
tional displacements and thereby generate the head-motion schedules. Finally, the CSF 
geometry and head-motion schedules were imported into a computational fluid dynam-
ics (CFD) software [13], to simulate ventricular CSF flow [14], enabling comparison 
with the velocity estimates derived by application of the computer vision method to 
Time-SLIP MRI medical images. 

This work is significant as it introduces a robust toolset for advancing research in 
CSF dynamics. It leverages Time-SLIP MRI to revisit fundamental aspects of CSF 
physiology and gain deeper insights into its roles in both normal and pathological states. 
Additionally, it facilitates the assessment of how head movement and respiration influ-
ence CSF dynamics, enhances understanding of phenomena such as contrecoup injuries, 
and provides critical insights into the pathological progression of concussive brain injury.
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2 Methodology 

2.1 Processing of DICOM Images with SPM 

In the clinical setting, each subject’s scan generated three sets of DICOM images: one 
set showing brain anatomy in all three planes (sagittal, axial, and coronal), another set 
capturing images on the mid-sagittal and mid-axial planes while the head was stationary, 
and a third set consisting of images taken on the mid-sagittal plane during instructed 
head motion. The last two sets are Time-SLIP MRI images that show the CSF flow. 
The anatomy set contained both T1- and T2-weighted images. In T1-weighted images, 
tissues with shorter T1 relaxation times, like adipose tissue, appear hyperintense (bright), 
while those with longer T1 times, such as CSF, appear hypointense (dark). As a result, 
CSF appears darker, while cortical tissue displays a lighter gray-white contrast. 

To minimize noise from the skull in brain MRI images and accurately evaluate 
CSF volumes, the images were pre-processed using the Statistical Parametric Mapping 
(SPM) tool. SPM12, a comprehensive MRI research software, offers built-in toolboxes 
for noise reduction, preprocessing, registration, batch processing, and statistical analysis 
[11]. In this study, preprocessing was performed with T1-weighted imaging using the 
Computational Anatomy Toolbox (CAT) within SPM, selecting the Eastern Asian tem-
plate to account for the anatomical characteristics of Japanese population. The Eastern 
Asian template, designed for populations with a higher cranial vault accommodating 
a larger brain, ensures greater accuracy in image analysis. The CAT toolbox leverages 
deep learning algorithms for automatic segmentation, effectively identifying anatom-
ical structures such as brain ventricles, white matter (WM), gray matter (GM), and 
skull. Figure 1 illustrates the spatial distribution and composition of brain tissues before 
and after segmentation, which was performed using a probabilistic atlas and a Gaussian 
Mixture Model (GMM) approach. This approach enabled the conversion of MRI images 
into T1- and T2-weighted formats while effectively removing skull artifacts. In the right 
panel below, the red regions represent white matter, while the blue regions correspond 
to the skull, as segmented by CAT. Time-SLIP MRI makes it possible to visualize CSF 
dynamics. In this study, key parameters for our images include: 1.2-mm slice thickness, 
0.6-mm spacing between slices, 96 encoding steps, 123.2-Hz imaging frequency, and 
196 echo train length. 

2.2 Geometric Construction of CSF Anatomy 

3D Slicer was employed to process SPM-generated NIfTI files and accurately construct 
3D models from the processed T1-weighted images. Preprocessing DICOM images in 
SPM12 before importing them into 3D Slicer for anatomy provides several key advan-
tages: (1) Spatial Normalization: Aligns images to a standard template and enables 
group analyses and the use of standard atlases in 3D Slicer. (2) Segmentation: Separates 
tissue types for targeted CSF analysis within 3D Slicer. (3) Bias Field Correction: Miti-
gates intensity inhomogeneities caused by scanner imperfections and ensures consistent 
image quality. (4) Realignment: Addresses motion artifacts in longitudinal or multi-slice 
scans, which may not be as effectively handled by 3D Slicer. (5) Co-registration: Ensures 
precise alignment of multi-modal datasets (e.g., T1-weighted, T2-weighted, or f MRI)
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Fig. 1. Color-coded representation of brain structures before (left) and after (right) segmentation 

before importing them into 3D Slicer for further processing, such as segmentation or 
surgical planning. 

3D Slicer [15], an open-source medical segmentation tool, facilitates the segmenta-
tion of raw images and the construction of 3D models using manual and semi-automatic 
methods. To create and evaluate the accuracy of a 3D ventricle model, two approaches 
were compared: manual frame-by-frame modeling and semi-automatic seed modeling. 
In the manual method, MRI images were analyzed frame by frame using the “level 
tracing” function to outline the approximate CSF contours in each plane, followed by 
refinements with the “painting” tool. Finally, the model was smoothed using the “Me-
dian Smoothing” method with a 1.60-mm kernel size to enhance precision. Figure 2 
illustrates the green-highlighted ventricle structure across different levels. 

Fig. 2. The level-tracing and painting procedure for the construction of the ventricular CSF space 

By repeating this process, a complete and accurate model was constructed. n the 
semi-automatic bubble approach, the “seed” function was employed to define both the 
starting point and the boundary. This function in 3D Slicer operates based on the Grow-
Cut Algorithm, which uses an iterative labeling process. User-defined “seed” pixels 
propagate to neighboring pixels according to local transition rules. These rules rely on
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image features such as intensity differences and neighborhood relationships to deter-
mine propagation. Propagation is influenced by the similarity between a pixel and its 
neighbors, where more similar pixels exert a stronger influence. Each pixel updates its 
label and confidence level by evaluating the influence of its neighboring pixels, prioritiz-
ing the strongest label influence. The process iteratively updates labels and confidence 
values until no further changes occur, ensuring stable and accurate segmentation [16]. 
This approach balances local competition and global coherence, allowing user-defined 
seeds to guide the segmentation effectively. 

In Fig. 3, green labeling marks led to the green-highlighted ventricle structure, while 
yellow labeling marks yielded its boundary. The automatically generated model was 
trimmed and then refined using the “Joint Smoothing” method with a 50% smoothing fac-
tor. To ensure accuracy, the model was compared to the original MRI scans, verifying that 
it accurately reflected the anatomical structure. In 3D Slicer, 3D objects can be smoothed 
globally using two methods: median smoothing, which removes small extrusions and 
fills gaps while preserving smooth contours, and joint smoothing, which smooths mul-
tiple segments simultaneously while maintaining watertight interfaces between them. 
Based on our experience, joint smoothing is preferred when using the semi-automatic 
bubble approach. 

Fig. 3. The seeding-and-bubbling procedure for the construction of the ventricular CSF space 

2.3 Fluid Motion and Velocity Estimation 

In this study, each subject’s comprehensive scan generated three sets of images: one 
brain-anatomy set, another set capturing CSF flow movement on the mid-sagittal and 
mid-axial planes under stationary head conditions, and a third set capturing CSF flow 
movement on the mid-sagittal plane during instructed head motion. To study CSF flow 
and the effects of factors such as head motion, arterial pulsations, and respiratory cycles, 
the Time-SLIP (i.e., non-anatomy) images in 140-ms intervals were compiled into video 
clips to track flow paths in regions like the third ventricle and estimate velocity dis-
tribution. Each video was analyzed using the optical flow method from the OpenCV 
library, which calculates motion by tracking pixel movement. This method assumes 
constant brightness over short intervals and similar motion patterns among adjacent pix-
els, generating optical flow vectors that represent velocity and direction. The Farneback 
algorithm, used for this analysis, models local image regions with quadratic polynomials
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and tracks changes between consecutive frames to estimate motion. In the Farneback 
algorithm, the motion of each pixel between two adjacent frames is modeled using an 
expanded Taylor series [17]. Known for its efficiency and precision, this dense opti-
cal flow method effectively captures subtle motion variations, making it well-suited for 
analyzing CSF flow in the third and fourth ventricles. 

Before analyzing CSF flow with the Farneback optical flow algorithm, the images 
were preprocessed using a Gaussian filter for smoothing and a multi-scale pyramid for 
scalability. Smoothing reduced noise while preserving image quality by fine-tuning the 
filter strength. The image pyramid, created by progressively down-sampling the image 
(typically halving its dimensions at each level), allowed the algorithm to detect large-
scale movements at lower resolutions and refine small-scale details at higher resolutions. 
Figure 4 illustrates how velocity was determined at six specific points across MRI images 
taken at different times. While a dense grid could estimate velocity at all points, only 
regions near the magnetization inversion (marked by three zones in each image) produced 
reliable results. Thus, as shown in Fig. 4, velocity was estimated only at discrete points: 
four in the third ventricle, one at the aqueduct’s upper end, and one in the fourth ventricle, 
focusing on the flow area of interest. Note that the three bright vertical stripes in Fig. 4 
represent the areas where proton magnetization was inverted in Time-SLIP imaging. 

Fig. 4. Velocity estimation for six probe points at five instants of time 

2.4 Extraction of Head-Motion Schedules 

The 3D geometry of the ventricular CSF space was imported to a CFD software package 
[13] to simulate the unsteady CSF flow field and study its flow dynamics. This work had 
two primary objectives. First, vortex formation was observed in the third ventricle from 
Time-SLIP MRI and should be validated by CFD. Second, CFD simulations assist in 
examining how head movements affect the CSF flow by simulating movements beyond 
those prescribed by clinicians. To validate the simulation setup, CSF flow predictions, 
including velocity at various probe points, were compared with OpenCV analysis of 
Time-SLIP images. Motion schedules extracted from Time-SLIP images recorded during 
guided head movements were used as inputs for the moving-head simulation. 

To extract the head-motion schedules, the re-align function in SPM was utilized. The 
first DICOM image served as the reference to compare skull positions across subsequent 
images in the same scan sequence. Temporal head movements were initially expressed as 
translational and rotational displacements, which were then converted into instantaneous
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centers of rotation and rotational speeds for CFD simulations. The accuracy of the 
alignment was confirmed by applying the calculated displacements to revert each skull 
position back to the original reference image. Figure 5 illustrates the confirmation process 
across five time points, with each column representing a specific moment. The bottom 
row displays the reference image, while the top two rows show pre-alignment and post-
alignment images, respectively. The alignment’s accuracy is validated by the coincidence 
of the skull position in the post-alignment images (middle row) with the original position 
in the reference images (bottom row). 

Fig. 5. Images at five different instants (in columns), before (top row) and after (middle row) the 
realignment based on the reference image (bottom row) 

3 Validation and Results 

Our image processing workflow began with SPM12, which handled skull removal, gen-
erated segmentation outputs (e.g., CSF volume), and produced T1-weighted images for 
further refinement in 3D Slicer. For example, one subject’s CSF volume was calcu-
lated as 446 cm3, accounting for 29.4% of the brain. These results were validated using 
SolidWorks, a CAD modeling software [18]. In SPM12, the determination of the margin 
at the skull base subarachnoid space during brain MRI preprocessing relies on tissue 
probability maps (TPMs), bias correction, and spatial regularization. (1) TPMs for gray 
matter, white matter, CSF, and non-brain tissues, aligned with a standard anatomical 
template (e.g., MNI space), guide the segmentation process, with the CSF TPM specifi-
cally covering the subarachnoid space and ventricles. (2) Bias field correction mitigates
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intensity inhomogeneities, particularly at the skull base, ensuring consistent voxel inten-
sities for accurate CSF space classification. The segmentation algorithm combines voxel 
intensities, probabilistic priors from the TPMs, and spatial constraints to delineate tis-
sue boundaries, including the skull base subarachnoid space. (3) Spatial regularization 
smooths the segmentation to avoid abrupt changes in tissue classification, while normal-
ization to standard space aligns the subject’s anatomy with template priors. However, 
the accuracy of margin delineation depends on MRI resolution, contrast between tissues, 
and alignment with the TPMs. In cases of pathology or anatomical variation, manual 
adjustments or high-resolution scans may be necessary for precise delineation. 

SPM12-generated NIfTI files were processed in 3D Slicer using either a manual or 
semi-automatic method to construct accurate 3D models from the T1-weighted images. 
Figure 6 illustrates the 3D ventricle model of a subject with hydrocephalus, with the 
dark background highlighting the segmentation process. The CSF ventricular geometry 
(rendered in gold) was further analyzed with SolidWorks and compared, slice by slice, 
with the original MRI images, confirming its conformity to the actual anatomy. 

Fig. 6. A ventricle model obtained through 3D Slicer segmentation 

Subsequently, the 3D ventricle model was imported into the CFD solver to simulate 
the CSF flow under both stationary-head and moving-head conditions. To compare the 
CFD simulations with image processing results, Time-SLIP images recorded both under 
stationary-head conditions and during guided head movements were processed with 
OpenCV to obtain the corresponding CSF flow field. Figure 7 demonstrates the CSF 
flow computational model of a subject rendered in CFD simulations and discretized 
into computational mesh cells. The meshes are shown on the mid-sagittal section and 
the CSF surface. For each subject’s large eddy simulation (LES) of CSF flow, a mesh 
sensitivity study was performed to ensure a balance between simulation accuracy and 
convergence. The key parameters in the simulation set-up included a 0.16-mm base size, 
8 prism layers, and a volume growth rate of 1.1. This configuration resulted in a cell 
count of approximately 6–8 million, depending on the size of the subject’s ventricles.
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(b)(a) (c) 
Fig. 7. (a) Ventricle geometry of a subject imported for CFD simulation, (b) CFD volume meshes 
shown on the mid-sagittal section, (c) CFD surface meshes shown on the surface of the ventricle 
geometry 

The simulation used the implicit SIMPLE solver with 30 inner iterations per time 
step of 0.1 ms. Three cylindrical pipes, each with an inner diameter of 6 mm, were 
connected to the bottom and sides of the fourth ventricle to serve as input and output, 
respectively. For the input boundary, a mass flow rate was specified with a 1 Hz oscilla-
tion corresponding to the cardiac frequency (60 bpm resting heart rate) and additional 
disturbances represented by higher harmonics at 2 Hz and 11.85 Hz. In the moving-
head simulation, head motion was not activated until 4 s, allowing the CSF flow to fully 
develop across the computational domain and giving simulation sufficient time to reach 
statistically steady state. Typically, during a Time-SLIP MRI sequence, the head motion 
lasted for 9.66 s, corresponding to the 4–13.66 s interval in the simulation, which gener-
ally concluded at 30 s. Figure 8a illustrates the head motion schedule for one case, where 
a positive rotation angle indicates nose-down motion. An FFT (Fast Fourier Transform) 
analysis of the rotational speed produced a single-sided amplitude spectrum (Fig. 8b), 
revealing that the doctor-guided head motion occurred at an approximate frequency of 
2 Hz in this case. 

Fig. 8. (a) Temporal rotational angle determined from a set of Time-SLIP images, (b) FFT 
spectrum for the corresponding rotational speed
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4 Discussion and Conclusions 

Sophisticated imaging techniques are essential for CSF dynamics research, providing 
detailed insights into CSF movement in response to physiological processes like the 
cardiac cycle and respiratory motion. Time-SLIP dynamically visualizes CSF flow by 
applying an RF pulse to invert proton magnetization in a selected region, e.g., the three 
vertical zones in Fig. 4 and the horizontal zone in Fig. 9a. After a controlled delay, during 
which the labeled fluid moves, images are acquired to track its flow through associated 
structures over time. This process is repeated with varying delays to create a detailed 
visualization of fluid dynamics. Using OpenCV, we analyzed Time-SLIP images to track 
pixel changes between consecutive frames and estimate motion at specific locations. 
The process relies on the Farneback algorithm, which generates optical flow vectors 
representing velocity and direction. 

As illustrated in Fig. 9a, six representative points within each subject’s CSF ventricles 
were selected to measure velocity: four in the third ventricle—anterior (pt. #1), superior 
(pt. #2), posterior (pt. #3), and inferior (pt. #4)—one (pt. #5) at the aqueduct’s upper end, 
and one (pt. #6) in the fourth ventricle. Note that the results in Fig. 9 belong to a different 
subject from Figs. 4 and 5. The right panel in Fig. 9a shows the corresponding locations 
in the CFD simulation setup. Figure 9b depicts the running-average velocity profiles at 
these points during a moving-head scan. Ideally, the initial velocity should be zero since 
no reference image is available for comparison. However, a finite value is used because 
of the running average operation. From the stabilized portion of the velocity profiles, 
shown in Fig. 9b to begin around 3 s, the average velocities at the six locations were 
estimated as 13.6 mm/s, 25.6 mm/s, 32.5 mm/s, 22.1 mm/s, 51.9 mm/s, and 72.9 mm/s, 
respectively. 

FFT analysis was conducted on the fluctuating velocity for each case to identify 
the frequency content in the velocity signals. Overall, the frequency contents of the six 
velocities showed good agreement. Nonetheless, pts. #3 and #5 provided more reliable 
results because of their closer proximity to the magnetization labeling zone in Time-
SLIP imaging and the direct influence of CSF influx from the aqueduct. Thus, Fig. 9c 
focuses on the single-sided amplitude spectra for these two locations, including their 
CFD counterparts for comparison. All spectra have been normalized to their respective 
max values. As expected, the solid lines in Fig. 9c reveal two predominant harmonics: 
the subject’s resting heart rate (1–1.6 Hz) during the MRI scan and the doctor’s motion 
guidance frequency (~2 Hz, as shown in Fig. 8). Other modes correspond to peak fre-
quencies associated with critical CSF geometries, such as the sharp tapering from the 
fourth ventricle to the aqueduct neck and the shape and size of the massa intermedia. 
Higher harmonics likely result from interactions between these lower harmonics. 

Each CFD simulation of CSF flow consisted of a 4-s stationary phase, a 9.66-s 
motion phase, and a final 16-s stationary phase, with FFT analysis performed on the 
resulting fluctuating velocity data. Figure 10 was generated using the CSF geometry 
from Figs. 7 and 9a and the motion schedule from Fig. 8. It aligns with Fig. 9 by focusing 
exclusively on the 9.66-s motion phase results. Figures 9b and 10 indicate that both the 
CFD-predicted velocity profiles and MRI velocity estimates fall within the range of 10– 
110 mm/s, with points #1 and #4 exhibiting the closest agreement in magnitude. From
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Fig. 9. (a) Locations of the six representative probe points in the ventricular CSF space, (b) 
MRI-deduced velocities at the six representative probe points, (c) FFT spectra at two probe points
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the CFD velocity predictions, the average velocities at the six locations were estimated as 
13.7 mm/s, 14.6 mm/s, 15.6 mm/s, 17.3 mm/s, 79.1 mm/s, and 29.9 mm/s, respectively.

Fig. 10. CFD-deduced velocities at the same six probe points as in Fig. 9 

As expected, discrepancies exist between the CFD-predicted and OpenCV-estimated 
velocity profiles, likely due to several contributing factors. First, OpenCV’s assump-
tions—such as constant brightness over short intervals and consistent motion patterns 
between adjacent pixels—are not always valid in the MRI image sequence that was used 
for this study. Although achieving high spatial and temporal resolution simultaneously 
can be challenging, the acquisition time (i.e., 0.14-s interval between frames) may be too 
long to accurately estimate velocity vectors. Second, the subject’s head motion likely 
deviated from the mid-sagittal plane, meaning the motion schedule extracted from MRI 
images and used as input for CFD simulations may be inaccurate. Lastly, some reference 
points, such as point #6, might have shifted out of the Time-SLIP MRI scan plane or 
field of view, leading to uncertain velocity estimates. 

Figure 9c presents the CFD-derived FFT spectra (dotted lines) for pts. #3 (high-
lighted in green) and #5 (purple). As expected, the CFD results capture a 1-Hz harmonic 
corresponding to the prescribed 60-bpm cardiac frequency, as well as a 2-Hz harmonic 
associated with the frequency of the subject’s head motion. The FFT spectra also reveal 
that the CSF flow velocity fluctuations contain fluctuation modes of other frequencies. 
Notably, the CFD spectra extend to higher frequencies due to their better temporal resolu-
tion (0.01-s intervals in CFD compared to Time-SLIP’s 0.14-s intervals). This highlights 
the need for improved temporal resolution in Time-SLIP MRI imaging. 

Locations such as points #1, #2, and #4—farther from the proton magnetization 
inversion in Time-SLIP imaging or the direct influence of CSF influx from the aque-
duct—tend to yield less reliable flow-speed results compared to closer locations. This 
underscores the advantages of using multiple Time-SLIP labeling zones, as shown in 
scans of another subject (Fig. 5), and expanding the proton magnetization inversion 
area for studying CSF flow. However, Time-SLIP MRI imaging is zonal and cannot
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encompass the entire CSF region. Therefore, CFD simulations are essential for com-
plementing Time-SLIP imaging, as they provide otherwise unavailable flow-field data, 
including velocities and pressures, in regions beyond the reach of Time-SLIP labeling. 
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