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ABSTRACT: Reported herein is the synthesis of a novel chiral dicarboxylic ligand for Mn(II) and the application of the Mn 
complex to the highly enantio- and position-selective epoxidation of C=C under mild conditions, even with poly-olefinic sub-
strates. A stereo-mechanistic basis for asymmetric induction is suggested. 

 

(S)-2,3-Oxidosqualene (1) is the immediate precursor of 
lanosterol (2) (Scheme 1), the predecessor of cholesterol 
and thus the whole steroid family.1 It also gives rise to 
countless naturally occurring polycyclic triterpenes. The 
formation 1 from squalene is mediated by flavin adenosine 
dinucleotide (FAD) epoxidases, as exemplified by the hu-
man SQLE whose structure is now known.2 

Scheme 1. Biosynthesis of Lanosterol from 2,3-(S)-Ox-
idosqualene 

 

    Most of the molecular details of the enzymatic cycliza-
tions involving 1 are fairly clear, e.g. in the biosynthesis of 
lanosterol and cholesterol.3 However, the strictly chemical 
enantioselective epoxidation of squalene to 1 and also the 
one-step conversion of 1 to 2 have long remained as out-
standing unsolved synthetic problems.  Reported herein is 
a solution to the epoxidation challenge by the use of a de-
signed chiral manganese complex as a catalyst.4a,b Previous 
research in our laboratory using the chiral engineered 
“Noe-Lin” catalyst enabled the position- and enantioselec-
tive 2,3-dihydroxylation of geranyl or farnesyl esters.4c,d,e 

    The work described herein on the enantioselective con-
version of squalene to (S)-2,3-oxido squalene (1) was facil-
itated by the recently developed efficient conversion of 1,5-
cyclooctadiene to (±)-2,2-bispyrrolidine 4 (via the cationic 
1,2-oxazetium intermediate 3)5 which by the known resolu-
tion with tartaric acid6 gave the S,S-enantiomer 57 (Scheme 
2), and also the R,R-enantiomer. 

Scheme 2. Synthesis of Manganese Complex 8 from 1,5-
Cyclooctadiene 

 

   We selected the chiral S,S-dicarboxylato ligand 7 (Scheme 
2) for epoxidation studies for a number of reasons. First we 
were mindful of the fact that N,N’-ethylenediamine tetraac-
etate complexes of manganese(II) undergo decarboxylation 
upon oxidation of Mn to higher valence states.8 Second, the 
complex of 2 equiv. of picolinic acid with Mn(II) is an excel-
lent catalyst for the H2O2-promoted epoxidation of olefins.9 



 

Finally, the dicarboxylato ligand 7 could be accessed in two 
simple steps from the chiral bis-pyrrolidine 5, as detailed in 
the Supporting Information (SI) and as follows: (1) reaction 
of 5 with 2.3 equiv. of methyl-o-bromomethylbenzoate and 
2.2 equiv. of potassium carbonate in THF at 23 oC for 12 h to 
give 6 (70%) and (2) saponification of 6 with 4 equiv. of 
LiOH in THF at 50 oC for 2 h to give 7 (90%). 

    The diacid 7 was converted to the Mn(II) complex 8 by 
reaction in CH3CN solution with 1 equiv. of manganese(II) 
triflate and 2 equiv. of NaHCO3 at 23 oC for 16 h followed by 
filtration and removal of solvent. It was obtained as a brown 
powder (which thus far has resisted crystallization). The 
composition was confirmed by high resolution mass spec-
trometry and infrared spectroscopy (carbonyl absorption 
1650 cm-1).10 The chiral Mn(II) complex is a highly effective 
epoxidation catalyst at 3 mol% in CH2Cl2 as solvent using 
one equiv. of either iodosobenzene diacetate (IBA)10 or 
tetra-n-butylammonium bromate10 at −20 oC. These two ox-
idants are equally effective for the epoxidation reactions re-
ported herein. We were gratified that squalene was con-
verted to 1 in 3 h in 88% yield and 99.9:0.1 S/R-enantio-
meric ratio as determined by chiral HPLC analysis using a 
Daicel ChiralPak IB column.10 During the epoxidation the re-
action mixture is dark red brown, the color of the active ox-
idant which we consider is probably a Mn(V)-oxo species. 
The same Mn(V)-oxo species is formed rapidly by the action 
of ozone on a CH2Cl2 solution of 8 at −20 oC or below. After 
removal of any excess ozone this species reacts at −20 oC 
with one equiv. of squalene to form (S)-2,3-oxidosqualene 
(1) in 90% yield and 99.8:0.2 S/R selectivity, implicating it 
as a likely reaction intermediate. So far, we have not been 
able to obtain crystals of this Mn(V)-oxo complex for X-ray 
structural analysis. Methylene chloride was found to be the 
optimum solvent not only for epoxidation of squalene but 
also for the other epoxidation reactions described below. 
The commonly used epoxidation solvent acetonitrile led to 
slower reaction and poorer results. 

Scheme 3. Enantio- and Position Selective Catalytic 
Epoxidation of Squalene and (S)-2,3-oxidosqualene us-
ing the Catalyst 8 and Iodobenzene Diacetate 

 

    Catalytic epoxidation of the chiral epoxide 1 with the chi-
ral Mn complex 8 (3 mol%, −20 oC, in CH2Cl2, 4 h) produced 
the 2,3-S, 22,23-S-diepoxide of squalene (9) with dr of 98:2 
and isolated yield of 86%,10 as shown in Scheme 3. Squalene 
was also directly converted to 9 in a single step just by the 

use of catalyst 8 and 2 equiv. of iodosobenzene diacetate 
(86% yield). The diepoxide 9 is an important natural prod-
uct since it gives rise to the 24,25-(S)-epoxide of lanosterol 
(11) and 24,25-epoxy cholesterol in vivo which activate the 
“oxysterol” pathway for nuclear hormone receptor-medi-
ated degradation of cholesterol and its regulation.11  

     Squalene diepoxide 9 and its cyclization product 24,25- 
epoxy lanosterol have been of special interest not only for 
in vivo cholesterol regulation but  also for anti-fungal and 
anti-cancer studies.2 

    We also have applied the epoxidation catalyst 8 (3 mol%) 
to the diastereoselective epoxidation of lanosterol benzoate 
(10) to the 24,25-(S)-epoxide (11) which after 3 h at −20 oC 
in CH2Cl2 was obtained in 95% yield and >99% ee using 1 
equiv. of iodosobenzene diacetate (see Scheme 4). The ex-
perimental X-ray crystal structure of 11 is shown in Scheme 
4. 

Scheme 4. Diastereoselective Epoxidation of Lanosterol 
Benzoate 

 

    Highly position and enantioselective epoxidation could 
even be demonstrated with all E-nonaprenol triphenylsilyl  

Scheme 5. Position- and Enantioselective Epoxidation 
of a Solanesol Silyl Ether 

 

ether (12) which was oxidized with iodosobenzene diace-
tate (1 equiv.), catalyst 8 (3 mol%) in CH2Cl2 at −20 oC for 5 



 

h to give selectively the (S)-2,3-epoxide 13 with 96% ee in 
75% yield (Scheme 5), a case of remarkable selectivity for 
one of nine similar C=C subunits. 

    Eight additional examples of catalytic enantioselective 
epoxidation, using the chiral manganese complex 8 (3 
mol%) iodosobenzene diacetate (1 equiv.) in CH2Cl2 at −20 
oC for 3-5 h, are summarized in Figure 1. There was no reac-
tion with dimethyl fumarate, in accord with electrophilic ra-
ther than radical character of the oxidant. 

 

Figure 1. Major epoxidation products derived from cat-
alyst 8 using iodosobenzene diacetate at −20 oC in 3-5 h 
(see SI) 

    Synthetic chemistry has also been enriched by several 
contributions of multiple research groups around the world 
which demonstrate the value of  other chiral manganese ox-
idation catalysts.12 

    The results described above for the highly enantio-and 
position selective epoxidation suggest that the Mn(II) com-
plex 8 will be a useful addition to the arsenal synthetic 
chemistry. They also underscore the importance of estab-
lishing the stereo-mechanistic basis for the unusually high 
synthetic selectivity. The fact that the strong oxidizing 
agents iodobenzene diacetate, tetra-n-butylammonium 
bromate and ozone are more efficient than H2O2 favors oxo-
Mn(V) over oxo-Mn(IV) as the effective oxidant. 

    Although further research is required to establish the pre-
cise pathway for the enantioselective epoxidations de-
scribed above, there is one working hypothesis which is es-
pecially interesting because it explains simply and clearly 
the observed absolute stereochemical course of all the en-
antioselective epoxidations described herein. It is based 
upon the cationic Mn(V)-oxo species 22 as the effective  

 

 

Figure 2. Possible structures of the Mn(V)-oxo cationic 
intermediate (22) and of the pre-transition state as-
sembly (23) 

oxidant (see  Figure 2). Complex 22 is essentially a C2-sym-
metric trigonal bipyramide with the electrophilic oxygen re-
siding between the two carboxylate ligands in a cleft formed 
by the two benzenoid rings. Assuming the oxygen attached 
to Mn has oxene-like reactivity and adds concertedly to the 
π-bond, that cleft clearly favours attachment of O at the si 
face of squalene to form the (S)-2,3-oxidosqualene (see 23). 
Obviously, the experimental determination of the 3-D struc-
ture of the oxo Mn species is an essential next step, and  the 
subject of ongoing studies. Predictions arising from this 
conjecture are now being tested. 

    In summary, the research outlined above has resulted in 
the discovery of a highly effective catalyst for the enatiose-
lective epoxidation of a wide range of unsaturated mole-
cules, including the key biomolecule (S)-2,3-oxidosqualene. 
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