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Abstract
We present SLIDE, a pipeline that enables transient discovery in data from the Vera C. Rubin Observatory’s
Legacy Survey of Space and Time (LSST), using archival images from the Dark Energy Camera as templates for
difference imaging. We apply this pipeline to the recently released Data Preview 1 (DP1; the "rst public release of
Rubin commissioning data) and search for transients in the resulting difference images. The image subtraction,
photometry extraction, and transient detection are all performed on the Rubin Science Platform. We demonstrate
that SLIDE effectively extracts clean photometry by circumventing poor or missing LSST templates. We
identi"ed 29 previously unreported transients, 12 of which would not have been detected based on the DP1
DiaObject catalog. SLIDE will be especially useful for transient analysis in the early years of LSST, when
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template coverage will be largely incomplete or when templates may be contaminated by transients present at the
time of acquisition. We present multiband light curves for a sample of known transients, along with new transient
candidates identi"ed through our search. Finally, we discuss the prospects of applying this pipeline during the
main LSST survey. Our pipeline is broadly applicable and will support studies of all transients with slowly
evolving phases.

Uni!ed Astronomy Thesaurus concepts: Core-collapse supernovae (304); Supernovae (1668); Transient
detection (1957)
Materials only available in the online version of record: data behind !gures

1. Introduction

The wide "eld of view and exceptional depth of the Vera C.
Rubin Observatory will usher in a new era for time-domain
astronomy (LSST Science Collaboration et al. 2009). Expected
to begin full operations in late 2025, the Rubin Observatory’s
decade-long Legacy Survey of Space and Time (LSST;
Ž. Ivezić et al. 2019) will stream up to 10 million transient
alerts nightly. Data taken between 2023 November 4 and
2024 December 10 with the LSST Commissioning Camera
(“LSSTComCam”), which uses the same hardware as the
LSST Camera but with a reduced "eld of view (SLAC
National Accelerator Laboratory & NSF-DOE Vera C. Rubin
Observatory 2025), were released as Data Preview 1 (DP1;34
SLAC National Accelerator Laboratory & NSF-DOE
Vera C. Rubin Observatory 2024; NSF-DOE Vera C. Rubin
Observatory 2025a, 2025b).

LSST’s nightly alerts rely on difference imaging, which
compares new observations to deep reference templates to
identify brightness #uctuations from variable and transient
sources. Template collection is expected to continue through
the "rst year of regular survey operations (L. P. Guy et al.
2023, 2025). Transients observed during this early period may
contaminate templates, making it dif"cult to accurately
distinguish their #ux from contaminating background light
(e.g., from the host galaxy). Such contamination may not
signi"cantly affect the transient detections for rapidly evolving
transients or supernovae (SNe) that change brightness on
relatively short timescales. Despite inaccurate reported photo-
metry, these transients can still be detected by the LSST alert
stream even if partially imprinted in the templates.

In contrast, long-duration transients that do not exhibit
strong luminosity evolution will be dif"cult to identify in
real time if they are present in the LSST templates. This
includes long-lived precursors to core-collapse SNe (CCSNe;
A. Pastorello et al. 2007; N. L. Strotjohann et al. 2021;
D. Tsuna et al. 2023, 2024a; S. J. Brennan et al. 2025) such as
those detected in SN 2020tlf (W. V. Jacobson-Galán et al.
2022), SN 2023fyq (S. J. Brennan et al. 2024; Y. Dong et al.
2024), SN 2023zkd (A. Gagliano et al. 2025), as well as long-
duration superluminous SNe (e.g., S. Gomez et al. 2024) and
luminous red novae (LRNe; J. C. Mauerhan et al. 2015;
N. Smith et al. 2016; N. Blagorodnova et al. 2017). Even if
such transients are detected, obtaining clean photometry will
require waiting until they have faded, at which point templates
can be constructed. This delay could hinder timely follow-up
and downstream analysis during the early phases of the LSST
survey.

The release of Rubin DP1 provides a valuable dataset for
developing and testing infrastructure that can be applied to real

LSST data. In this Letter, we present the SLIDE package for
performing LSST image subtraction using images taken by the
Dark Energy Camera (DECam; K. Honscheid & D. L. DePoy
2008; B. Flaugher et al. 2015). This provides an alternative to
LSST-derived templates and will bene"t the broader transient
community in the initial years of the LSST survey.
We have released our SLIDE package on GitHub.35 SLIDE

is intended to be run directly on the Rubin Science Platform
(G. Dubois-Felsmann et al. 2019; W. O’Mullane et al. 2024).
We use SLIDE to search for DP1 transients within two of the
extragalactic "elds observed by LSSTComCam: the Extended
Chandra Deep Field South (ECDFS) and the Euclid Deep
Field South (EDFS). We "nd that all transients reported to the
Transient Name Server (TNS; A. Gal-Yam 2021) within our
selected search area are successfully recovered, provided they
had not already faded by the time the images were taken. In
addition, we identify 29 previously unreported transients, 18 of
which are likely nuclear transients, and 12 of which are either
not present or have fewer than two detections in DP1’s
DiaObject catalog (NSF-DOE Vera C. Rubin Observatory
2025c).
In Section 2, we provide an overview of SLIDE and test it

on a Rubin LSSTComCam transient with template contamina-
tion. In Section 3, we describe our search for transient
candidates in the EDFS and ECDFS "elds using our corrected
difference images. We summarize our "ndings and outline
future prospects with the full LSST data stream in Section 4.

2. LSST Image Subtraction with SLIDE
SLIDE can be easily installed on the Rubin Science

Platform36,37 (W. O’Mullane et al. 2024). We include an
example notebook to demonstrate its usage.38 Here, we outline
its major components.
DECam is a wide-"eld charge-coupled device (CCD)

imager mounted on the 4 m Blanco telescope at Cerro Tololo
Inter-American Observatory (CTIO) in northern Chile. Initi-
ally designed for the Dark Energy Survey (DES; Dark Energy
Survey Collaboration et al. 2016), DECam consists of 62
science CCDs with a pixel scale of 0.263 pixel−1 and a "eld of
view of approximately 3 deg2. The DES survey was conducted
from 2013 August 15 to 2019 January 9 and covered 5000
deg2 in grizY bands.
SLIDE automatically retrieves deep coadded images from

the DES Data Release 2 (DR2; T. M. C. Abbott et al. 2021)
that overlap a position of interest. The "nal coadds reach a
median 5σ depth of g = 25.4, r = 25.1, i = 24.5, z = 23.8, and

34 https://rtn-095.lsst.io

35 https://github.com/yizedong/SLIDE
36 https://ldm-542.lsst.io
37 https://lse-319.lsst.io
38 https://github.com/yizedong/SLIDE/blob/main/example.ipynb
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Y = 22.4, which are deeper than single-visit depths expected
from LSST and deeper than images released as part of
DP1 (F. B. Bianco et al. 2022; NSF-DOE Vera C. Rubin
Observatory 2025b). This makes DES DR2 images suitable as
templates for LSST image subtraction. All the difference
images used in this Letter are made using the DES DR2
templates.

Alternatively, SLIDE can retrieve coadded DECam images
from the Dark Energy Camera Legacy Survey (DECaLS;
R. D. Blum et al. 2016; A. Dey et al. 2019) for use as
templates. These images have similar or slightly greater depth
than single exposures in DP1, making them a useful alternative
when DES templates are not available. Users may also supply
custom DECam templates.

DES DR2 (or DECaLS) images are retrieved using the
Simple Image Access service provided by the Astro Data Lab
(M. J. Fitzpatrick et al. 2014; R. Nikutta et al. 2020). DECam
images are aligned and rescaled to match the LSST images
using the reproject package,39 which uses an adaptive,
antialiased resampling algorithm (C. E. DeForest 2004). The
point-spread function (PSF) of the DECam images is modeled
using Photutils with stars selected from the Gaia DR3
catalog (Gaia Collaboration et al. 2016, 2021; M. Riello
et al. 2021).

For DP1 images, we obtain the calibrated exposure images
(visit_image) from the Rubin Science Platform using the
Butler (T. Jenness et al. 2022). These images have been
processed by the LSST Science Pipelines (Rubin Observatory
Science Pipelines Developers 2025) and are ready for scienti"c
use. LSSTComCam consists of nine CCDs; SLIDE can
operate on either full CCD images or cutout regions. The
LSSTComCam image PSFs provided can vary slightly over
the "eld of view. Therefore, we use the median PSF of the
detector for image subtraction. Alternatively, our package
offers options to recalculate the PSF and re"ne the World
Coordinate System of images using stars from Gaia DR3.

The image subtraction is performed using a Python
implementation of the Zackay–Ofek–Gal-Yam (ZOGY;
B. Zackay et al. 2016; D. Guevel & G. Hosseinzadeh 2017)
algorithm,40 which provides mathematically optimal statistics
for image subtraction and does not require that the reference
image has a sharper PSF than the science image. The runtime
for PSF construction and image subtraction depends on image
size: for a full LSST CCD image (4000× 4000 pixels), it takes
approximately 1.5 minutes, while for a 1500× 1500 pixel
cutout, it takes about 15 s.

Finally, PSF photometry is performed on the difference
images at speci"ed positions (R.A. and decl.) using the
Photutils package from astropy (Astropy Collaboration
et al. 2022).

We test SLIDE on a known transient, AT 2024ahzi, which
was reported to TNS on 2025 March 13 (I. Andreoni et al.
2025; C. T. Murphey et al. 2025). Flux from AT 2024ahzi is
present in the LSSTComCam templates used by DP1, making
the reported difference-imaged forced photometry unreliable
(K. de Soto 2025, in preparation). We process all available
DES images overlapping the transient position and "nd that
the resulting photometry is consistent with that obtained
by the Young Supernova Experiment (D. O. Jones et al. 2021;

P. D. Aleo et al. 2023) using DECam within ∼1σ (see detailed
photometric comparison in K. de Soto 2025, in preparation). In
Figure 1, we show examples of image subtraction at the
position of AT 2024ahzi using the DES templates as a
demonstration of the subtraction quality. The subtractions are
generally clean, and the transient is clearly detected in the
center when present.

3. Candidate Transients Search

3.1. Field Selection

Rubin DP1 contains ugrizy images from seven "elds, taken
with LSSTComCam between 2024 November and December.
We select the ECDFS and the EDFS "elds to perform an
experimental transient search, as these are the most well-
observed "elds in DP1, are far from the Galactic plane, and
have suf"ciently overlapping coverage by DES. For each "eld,
we select a subset of r-band exposures that maximizes overall
spatial overlap across visits while also ensuring even temporal
coverage. We restrict the transient search to a single "lter to
reduce the computational workload; we prefer the r band as it
has the highest cadence in both "elds. This selection yields 37
visits of ECDFS and 18 visits of EDFS. For each visit, image
subtraction is performed on each CCD’s image independently.

3.2. Transient Detection

Transient detection is performed on the difference images
using SEP (K. Barbary 2016), a Python implementation of
Source Extractor (E. Bertin & S. Arnouts 1996).
Stars brighter than approximately 16 mag saturate

LSSTComCam’s 30 s exposures. Although these bright stars
are masked out in the difference images, we "nd that they
often produce prominent spike-like artifacts in the surrounding
area, which can be misidenti"ed as transient detections. To
mitigate contamination, we exclude any candidates located
within 20″ of such stars. Additionally, we "nd that stars with
proper motion may be misaligned between the template and
science images. Such misalignment can create residual
artifacts in the difference images, and we therefore exclude
candidates located within one full width at half-maximum of
sources classi"ed as stars in the DES DR2 catalog
(T. M. C. Abbott et al. 2021).
To identify transients of interest from the remaining 15,785

targets, we require that each candidate has at least three
detections, which removes contamination from cosmic rays
and other artifacts. We also require that the peak-to-peak #ux
variation exceed 3 times the mean #ux uncertainty, that the
standard deviation of the #ux exceed the mean #ux
uncertainty, and that the peak-to-peak magnitude variation be
greater than 0.3 mag. Sources that do not meet all of these
criteria are excluded from further analysis.
We associate the remaining 1224 candidates with likely host

galaxies using Pröst41 (A. Gagliano et al. 2025). Pröst
calculates the posterior probability that each galaxy in a given
search region is the true host galaxy using the fractional offset,
redshift, and brightness of the host/transient. We use a search
radius of 60” and consider galaxies in the Galaxy List for
Advanced Detector Era catalog (GLADE; G. Dálya et al.
2022), Panoramic Survey Telescope and Rapid Response
System (Pan-STARRS; K. C. Chambers et al. 2016) Data

39 https://github.com/astropy/reproject
40 https://github.com/dguevel/PyZOGY 41 https://github.com/alexandergagliano/Prost
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Release 2 (DR2; H. A. Flewelling et al. 2020), and the
DeCaLS Data Release 10. We also #ag nuclear transients
using iinuclear42 (S. Gomez 2024), which determines
whether the location of the transient coincides with the center
of its host galaxy with suf"cient probability. In our "nal
candidate selection, we perform human vetting to select the
most promising candidates and retain only transients, both
nuclear and non-nuclear, with con"dent host associations.

Our criteria yield 39 transient candidates: 22 in ECDFS and
17 in EDFS. The detections for these candidates are separated
by at least 20 days, which effectively excludes moving objects.
These candidates are listed in Tables 1 and 2, respectively.

3.3. A Sample of Transient Light Curves in DP1

3.3.1. Known Transients

I. Andreoni et al. (2025) reported three newly identi"ed
extragalactic transient candidates and eight previously reported
transients as visible in the DP1 images. These transients were
required to have con"dent host galaxy associations and not to
be colocated with star-like objects or galactic nuclei.
Among the seven reported transients in the ECDFS/EDFS

"elds, AT 2024aigg (J. Freeburn et al. 2025e), AT 2024ahzc
(C. T. Murphey et al. 2025), AT 2024ahyy (C. T. Murphey
et al. 2025), and AT 2024aigk (A. Anumarlapudi et al. 2025)
are successfully identi"ed by our search algorithm. AT
2024ahzi (C. T. Murphey et al. 2025), AT 2024aigl
(A. Anumarlapudi et al. 2025), and AT 2024ahwk
(C. T. Murphey et al. 2025) are not identi"ed because they
were not covered by the selected visits used in the transient
search. Had they been observed during the visits we selected,
our algorithm would have robustly identi"ed them.
We cross-match the remaining candidates with TNS, and we

identify eight additional reported transients: six in the ECDFS
"eld and two in the EDFS "eld. These transients are AT
2024aigs (J. Freeburn et al. 2025a), AT 2024aigh (J. Freeburn
et al. 2025f), AT 2024aigt (J. Freeburn et al. 2025b), AT
2024aigw (J. Freeburn et al. 2025c), and AT 2024aigj
(J. Freeburn et al. 2025g). We also note that AT 2024aigv
(J. Freeburn et al. 2025c), AT 2024ahyq (C. T. Murphey et al.
2025), and AT 2024ahsx (C. T. Murphey et al. 2025) lie within
the "eld we selected but are not detected, as they have fewer
than three detections in our selected visits. We note that the
photometric classi"cations of these TNS transients have been
discussed in J. Freeburn et al. (2025d), and refer the reader to
that work for further details.

Figure 1. Upper: image subtraction using DECam templates for visit 2024120200090, detector 8, taken on 2024 December 2 in the r band. The image is oriented
with north at the top and east to the left. AT 2024ahzi is visible on the image and marked by the red circle. The left and middle panels show the LSST image and the
coadded DECam image, respectively, while the right panel shows the difference image. The displayed cutouts are 400 × 400 pixels in size, centered on the transient
position. The white patches are bad pixels and are masked out prior to subtraction. PSF photometry is performed at the location of AT 2024ahzi on the difference
image (center), and the results are annotated on the panel. Lower: image subtraction for visit 2024111700344, detector 2, taken on 2024 November 17 in the r band.
AT 2024ahzi is not visible on the difference image, and an upper limit is derived.

42 https://github.com/gmzsebastian/iinuclear
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We perform PSF photometry using SLIDE at the positions
of AT 2024ahyy, AT 2024ahzc, AT 2024aigs, AT 2024aigg,
AT 2024aigl, AT 2024aigj, AT 2024aigk, AT 2024aigh, AT
2024aigw, AT 2024ahwk, AT 2024aigt, AT 2024ahsx, AT
2024ahyq, and AT 2024aigv. We refer the reader to K. de Soto
(2025, in preparation) for photometric analysis of AT
2024ahzi. Our transient search uses a subset of r-band images,
which may not always optimally cover individual objects. To
obtain multiband and better temporal coverage for speci"c

objects, we search all DP1 images that overlap with each
object’s position and select up to two images per night per
"lter (to reduce computational cost). We then generated
difference images and extracted photometry from 1500× 1500
pixel cutouts centered on each object using SLIDE across all
"lters. Since there are no u-band observations in DES and few
y-band observations in DP1, we performed image subtraction
only on the griz-band images. The light curves and host
properties of these objects are shown in Figure 2.

Figure 2. Light curves and host properties of transients previously reported to TNS. Note that plotted errors represent statistical uncertainty. Host properties include
redshift (z), stellar mass ( ( )/M Mlog ), stellar metallicity ( ( )/Z Zlog ), star formation rate (SFR; (M⊙, yr−1)), and mass-weighted stellar population age
(Age; (Gyr)).
(The data used to create this "gure are available in the online article.)
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3.3.2. Unreported Transients

We cross-match the remaining 29 candidates with the
DiaObject table on the Rubin Science Platform, considering
only DiaObjects with at least two detections. A total of 17
transients have a corresponding DiaObject within 1″. The
remaining 12 transients are either missing or have less than
two detections in the DP1 DIA catalog, because transient #ux
is contaminating the templates and pushing the difference #ux
variation below the detection threshold. This highlights the
importance of robust templates in transient identi"cation. We
show examples of transients with and without DiaObject
object associations in Figure 3.

3.4. Host Properties of Transient Candidates

In this Letter, we do not perform detailed light-curve
analysis on our identi"ed candidates; however, as a demon-
stration of the future work#ow in the LSST era, we derive the
host properties of each transient using FrankenBlast
(A. E. Nugent et al. 2025), a customized version of Blast
(D. O. Jones et al. 2024). FrankenBlast collects all
available images of the host galaxies within the Galaxy
Evolution Explorer (A. Y. K. Bouquin et al. 2018), Pan-
STARRS1, DECaLS Data Release 9, Two Micron All-Sky

Survey (M. F. Skrutskie et al. 2006), and Wide-"eld Infrared
Survey Explorer (E. L. Wright et al. 2010). It then performs
aperture photometry using elliptical apertures constructed for
each image, using the astropy.photutils Python
package (L. Bradley et al. 2025). If the host is not detected
in a given "lter, FrankenBlast adjusts the aperture size
using a neighboring "lter. Additional technical details are
provided in the Appendix. Host properties of the transient
candidates are presented in Tables 1 and 2, as well as in
Figure 2. Host properties, especially photometric redshifts, can
signi"cantly improve the accuracy of photometric classi"ers,
particularly at early times (K. Boone 2019; D. Muthukrishna
et al. 2019; S. Gomez et al. 2020; P. Sánchez-Sáez et al. 2021;
A. Gagliano et al. 2023; M. Kisley et al. 2023; K. M. de Soto
et al. 2024; X. Sheng et al. 2024; V. A. Villar et al. 2024;
A. Boesky et al. 2025; R. Gupta et al. 2025).

4. Discussion and Conclusions

We present the SLIDE package, which performs LSST
image subtraction using DECam templates. To demonstrate
the anticipated work#ow for the LSST survey, we conduct an
experimental transient search via the Rubin Science Platform
using DP1 difference images produced by this package. We

Figure 2. (Continued.)

6

The Astrophysical Journal Letters, 994:L8 (12pp), 2025 November 20 Dong et al.



present multiband photometry and host galaxy properties for
the most promising transients.

This Letter demonstrates the potential of SLIDE to uncover
extended preexplosion or long-duration transient activity within
LSST. In recent years, it has been found that many CCSNe, such
as normal SNe II, SNe IIn, and SNe Ibn, interact with dense
circumstellar material (CSM) around their progenitors
(D. C. Leonard et al. 2000; N. Smith et al. 2015; D. Khazov
et al. 2016; O. Yaron et al. 2017; A. Gangopadhyay et al.
2020, 2025; V. Morozova et al. 2020; S.-Q. Wang & L. Li 2020;
R. J. Bruch et al. 2021, 2023; X. Wang et al. 2021; C. Pellegrino
et al. 2022; G. Terreran et al. 2022; T. Ben-Ami et al. 2023;
K. A. Bostroem et al. 2023a, 2023b; G. Hosseinzadeh et al. 2023;
J. Pearson et al. 2023; J. E. Andrews et al. 2024, 2025; Y. Dong
et al. 2024; W. V. Jacobson-Galán et al. 2024; N. Meza-Retamal
et al. 2024; M. Shrestha et al. 2024a, 2024b; S. J. Brennan et al.
2025; Z. Y. Wang et al. 2025), likely produced months to years
before their "nal explosions. The origin of this CSM, its
geometry, and its implications for CCSN progenitor systems
remain hotly debated (R. A. Chevalier 2012; E. Quataert &
J. Shiode 2012; N. Soker 2013; J. H. Shiode & E. Quataert 2014;
N. Smith & W. D. Arnett 2014; J. Fuller 2017; V. Morozova
et al. 2020; L. Dessart et al. 2022; B. D. Metzger 2022; S. C. Wu
& J. Fuller 2022; D. Tsuna et al. 2024a, 2024b).

Improved characterization of precursor emission provides
critical insights into the "nal stages of stellar evolution, and
may serve as an early warning signal for imminent CCSNe
(D. Tsuna et al. 2023). To date, precursor activity has been
most commonly observed in SNe IIn (N. L. Strotjohann et al.
2021; D. Farias et al. 2024; S. J. Brennan et al. 2025;
A. Gagliano et al. 2025; A. Pastorello et al. 2025). In contrast,
only three SNe Ibn (A. Pastorello et al. 2007; N. L. Strotjohann
et al. 2021; S. J. Brennan et al. 2024; Y. Dong et al. 2024) and
a single SN II (W. V. Jacobson-Galán et al. 2022) have shown
evidence for precursor emission, potentially due to their fainter

intrinsic luminosities. Moreover, precursor spectroscopy,
critical for probing progenitor systems, has only been
published for a few events (A. Pastorello et al. 2013;
S. J. Brennan et al. 2024). Building a larger sample of SNe
with detected precursor emission and precursor spectra is
essential for constraining their occurrence rates and under-
standing their underlying physical mechanisms.
Furthermore, LSST is expected to drastically increase the

number of photometrically identi"ed, long-duration precursor
events. With a single LSST visit, precursors from normal SNe
II and SNe IIn can be detected to approximately 100 and
300Mpc, respectively (W. V. Jacobson-Galán et al. 2022;
A. Gagliano et al. 2025), while precursors of SNe Ibn can be
detected to approximately 150 Mpc (e.g., Y. Dong et al. 2024).
Therefore, precursor searches can be constrained to nearby,
bright, low-extinction galaxies to reduce computational load
and enable rapid identi"cation and follow-up of promising
candidates. Host association (e.g., with algorithms such as
Pröst as we described in Section 3.2) is essential for targeted
searches to further decrease the computational load on the
Rubin Science Platform. Host galaxy properties can be derived
using Blast and FrankenBlast, further enabling prior-
itization and classi"cation. We expect SLIDE, paired with the
approach outlined in this Letter, to be particularly effective in
discovering these long-duration precursors.
Our package will support the study of all transients with

slowly evolving phases. LRNe (J. C. Mauerhan et al. 2015;
N. Smith et al. 2016; N. Blagorodnova et al. 2017), for
example, are generally understood to be the product of
common envelope episodes and, potentially, mergers (e.g.,
N. Soker & R. Tylenda 2003; R. Tylenda et al. 2011;
B. D. Metzger & O. Pejcha 2017; N. Soker 2024). LRNe often
undergo gradual brightening that lasts for years prior to the
main outburst. Multiband photometric and spectroscopic
observations during the preoutburst brightening phase can

Figure 3. Multiband light curves of a subset of the transient candidates identi"ed by our pipeline. More information about these transients can be found in Tables 1
and 2.
(The data used to create this "gure are available in the online article.)
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Table 1
ECDFS Transient Candidates

ID R.A. Decl. Nuc. Flag zhost DIA Object ID ( )/Z Zlog ( )/*M Mlog Age SFR
(hh:mm:ss) (dd:mm:ss) (Gyr) (M⊙/yr)

Transients Reported to TNS

2024ahsx 03:33:28.07 −28:12:54.36 1 0.261(0.011) 611253629533291776 +0.26 0.32
0.26 +10.87 0.25

0.62 +0.59 0.57
5.98 +825.08 600.86

493.09

2024ahwk 03:29:50.944 −28:13:04.73 0 0.270(0.013) 611253973130674268 ⋯ ⋯ ⋯ ⋯
2024ahyq 03:31:37.65 −28:20:01.31 1 0.294(0.040) 609782139377943168 +0.50 0.53

0.30 +10.75 0.10
0.10 +5.54 2.08

1.54 +3.00 2.11
6.84

2024ahyy 03:31:34.22 −28:24:45.37 0 0.438(0.105) 609781520902651904 +0.80 0.86
0.54 +9.67 0.65

0.28 +3.54 3.31
1.57 +8.24 4.64

7.07

2024ahzc 03:31:21.18 −28:16:47.64 0 0.290(0.042) 609782208097419264 +0.75 0.72
0.61 +10.38 0.13

0.12 +6.85 0.92
2.73 +1.77 1.27

6.31

2024aigg 03:32:29.94 −27:44:23.33 0 0.069(0.015) 611255759837069440 +0.73 0.43
0.32 +10.26 0.09

0.11 +3.94 1.86
1.57 +1.49 0.76

1.52

2024aigj 03:32:51.02 −27:40:52.60 0 0.251(0.047) 611256447031836800 ⋯ ⋯ ⋯ ⋯
2024aigt 03:33:41.37 −28:13:24.81 0 0.296(0.053) 611253629533290624 ⋯ ⋯ ⋯ ⋯
2024aigw 03:30:55.57 −27:51:58.87 0 0.323(0.011) 611255210081255575 +0.28 0.35

0.24 +11.31 0.12
0.10 +5.00 1.72

1.12 +12.05 9.40
22.85

2024aigv 03:32:13.81 −28:28:14.40 0 0.375(0.055) 609788942606139423 +0.20 0.23
0.18 +11.17 0.05

0.05 +5.54 0.64
0.63 +9.74 4.03

6.06

Unreported Transients

13 03:31:37.69 −28:04:10.16 0 0.132(0.020) ⋯ +0.91 0.47
0.55 10.10+0.11

0.09 5.87+1.66
1.11 1.51+0.80

2.16

14 03:31:35.11 −28:07:14.42 0 0.127(0.030) 611254522886494620 +1.20 0.45
0.58 9.83+0.21

0.15 4.79+4.10
1.64 1.60+0.98

3.01

21 03:31:41.65 −28:05:10.74 1 0.205(0.056) 611254454167011721 +0.70 0.74
0.75 9.63+0.68

0.26 5.55+5.29
1.86 3.46+2.61

8.91

100 03:31:34.14 −27:49:59.61 0 0.464(0.125) ⋯ −1.06+0.610.72 10.21+0.77
0.21 3.35+3.29

1.45 34.04+20.92
37.63

706 03:33:32.49 −27:48:32.00 1 0.333(0.108) ⋯ −0.76+0.880.66 9.64+0.72
0.36 3.99+3.87

1.82 7.05+4.86
9.50

1071 03:31:41.92 −28:04:22.22 0 0.149(0.033) ⋯ −0.69+0.790.63 9.41+0.65
0.22 4.82+4.79

2.42 3.54+2.98
11.21

1314 03:33:07.70 −27:53:31.81 1 0.121(0.036) ⋯ −0.85+0.650.71 9.21+0.20
0.13 6.27+2.76

1.42 0.32+0.19
1.26

1350 03:32:49.30 −27:37:57.07 1 0.131(0.066) 611256447031837444 ⋯ ⋯ ⋯ ⋯
1367 03:33:21.09 −27:39:12.07 1 0.597(0.298) 611256378312359976 ⋯ ⋯ ⋯ ⋯
1547 03:32:46.03 −28:22:32.21 1 0.621(0.216) 609788873886662802 −0.47+0.530.44 10.59+0.63

0.25 3.74+3.65
1.08 82.07+45.82

91.77

1690 03:31:20.77 −27:56:49.26 1 0.834(0.118) 611255210081255450 −0.37+0.810.35 10.39+0.25
0.16 3.07+1.48

0.70 14.58+5.80
8.55

1897 03:33:09.50 −27:44:06.89 1 0.117(0.032) 611255691117594961 ⋯ ⋯ ⋯ ⋯
1965 03:31:24.22 −27:53:42.27 1 0.110(0.055) 611255210081255504 ⋯ ⋯ ⋯ ⋯
2764 03:31:47.87 −28:17:00.77 1 1.130(0.231) ⋯ −0.16+0.340.22 11.62+0.10

0.10 3.08+1.19
0.48 6.19+4.86

18.46

2798 03:33:46.01 −28:20:07.43 1 0.170(0.038) ⋯ −0.75+0.690.53 9.41+0.32
0.19 4.97+3.83

1.61 1.16+0.77
2.44

Note: Galaxy properties are not derived for hosts with insuf"cient photometric data.
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Table 2
EDFS Transient Candidates

ID R.A. Decl. Nuc. Flag zhost DIA Object ID ( )/Z Zlog ( )/*M Mlog Age SFR
(hh:mm:ss) (dd:mm:ss) (Gyr) (M⊙/yr)

Transients Reported to TNS

2024aigh 03:57:17.80 −48:22:08.30 0 0.06(0.04) 592915218690999552 +0.45 0.21
0.25 +10.66 1.28

0.51 +7.75 0.77
1.63 +0.03 0.03

0.12

2024aigk 03:55:31.82 −48:27:43.71 1 0.168(0.030) 592915356129952000 +0.17 0.64
0.27 +10.16 0.50

0.27 +1.83 1.62
3.76 +3.03 2.91

13.04

2024aigl 03:59:24.16 −48:46:50.53 0 0.225(0.021) 592913706862510093 -0.75+0.45
0.46 10.49+0.12

0.09 5.26+2.45
1.09 4.44+2.54

5.94

2024aigs 03:56:53.23 −49:06:18.06 0 0.393(0.147) 591819074317582336 +0.74 0.68
0.75 +10.03 0.27

0.13 +4.89 2.12
0.89 +5.59 2.94

7.39

Unreported Transients

102 03:57:09.25 −48:47:02.21 1 0.987(0.105) 592913844301464254 −0.02+0.250.15 10.96+0.51
0.40 1.17+1.09

1.67 416.87+207.38
291.91

124 03:56:23.21 −48:21:48.14 1 0.637(0.076) 592915287410475027 −0.25+0.290.24 11.12+0.54
0.31 3.68+3.62

1.32 281.54+183.53
329.42

199 03:56:48.54 −48:19:13.44 1 0.148(0.017) 592915974605242521 ⋯ ⋯ ⋯ ⋯
206 03:57:28.37 −48:27:49.38 0 0.156(0.040) 592915218690998834 −0.29+0.350.24 10.85+0.07

0.06 6.41+0.98
0.86 2.51+1.31

2.75

347 03:54:35.18 −48:43:37.65 0 0.367(0.141) 592914050459894637 −0.45+0.850.40 10.53+0.29
0.20 5.17+4.16

1.51 7.61+5.86
20.32

357 03:54:15.75 −48:35:30.15 0 1.112(0.202) 592914737654661956 0.07+0.20
0.09 10.73+0.14

0.26 0.04+0.03
1.68 842.01+244.37

317.67

392 03:57:16.36 −48:51:04.92 1 0.829(0.240) 592913157106705461 −1.24+0.340.45 11.29+0.27
0.14 0.51+0.25

0.64 133.94+75.63
204.08

490 03:55:53.49 −48:22:19.23 1 0.574(0.205) 592915356129953233 ⋯ ⋯ ⋯ ⋯
569 03:57:27.61 −48:28:38.66 0 0.406(0.159) ⋯ ⋯ ⋯ ⋯ ⋯
668 03:56:41.15 −48:16:57.78 0 0.171(0.056) ⋯ −0.84+0.720.63 10.34+0.31

0.19 5.17+3.18
1.61 2.13+1.58

4.01

1236 03:58:16.51 −48:27:33.57 1 0.399(0.166) ⋯ −0.61+1.070.45 9.68+0.30
0.20 5.16+1.45

0.89 2.56+1.05
1.61

2507 03:56:00.29 −48:45:22.26 0 0.119(0.059) ⋯ −0.67+0.860.60 8.99+0.31
0.22 5.65+4.96

2.05 0.14+0.12
0.51

4777 03:55:53.52 −49:07:29.71 1 0.147(0.025) 591819143037059212 ⋯ ⋯ ⋯ ⋯
5575 03:54:41.14 −48:34:11.92 0 0.187(0.037) ⋯ −0.68+0.670.44 9.84+0.31

0.18 5.18+3.80
1.57 4.96+3.17

9.11
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offer valuable information about their progenitor systems and
mass transfer mechanisms preceding the transient (H. Addison
et al. 2022). LSST is expected to observe ∼400–800 LRNe
annually (G. Howitt et al. 2020), drastically increasing the
current sample of such events.

Similarly, some extremely energetic transients often evolve
slowly. Superluminous SNe, in particular, are a class of
massive stellar explosions with luminosities signi"cantly
higher than those of normal SNe, requiring additional power
sources beyond radioactive decay (A. Gal-Yam et al. 2009;
L. Chomiuk et al. 2011; R. M. Quimby et al. 2011; A. Gal-Yam
2012; D. A. Howell et al. 2013; D. A. Howell 2017; T. J. Moriya
et al. 2018; S. Gomez et al. 2024). LSST is expected to discover
∼10,000 hydrogen-poor superluminous events annually, with
most at high redshift (z > 1; V. A. Villar et al. 2018). Similarly,
ambiguous nuclear transients are energetic transients that are
found in the nuclei of their host galaxies (P. J. Pessi et al. 2025;
P. Wiseman et al. 2025). These are seemingly distinct from typical
active galactic nuclei (AGN) and notably more extreme than
“normal” tidal disruption events, although their origin is still an
open question. In both cases, the extended duration of these
events, especially at high redshift, implies that they are likely to be
implanted in the initial LSST templates.

Early identi"cation of transient events is essential for
spectroscopic follow-up across their evolution. SLIDE enables
both early detection and reliable photometry, even when the
transients are embedded in their LSST template images.
Because the aforementioned transient classes are rare, the early
years of LSST offer an opportunity to build statistically
meaningful samples of such events that will guide strategies
for follow-up in the future.
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Appendix
FrankenBlast Stellar Population Modeling

FrankenBlast constrains host galaxy stellar population
properties using SBI++, a simulation-based inference techni-
que that learns posterior density distributions of stellar
population properties from simulated galaxy photometry
(B. Wang et al. 2023). FrankenBlast trains its model on
2 million simulated galaxies from Prospector (J. Leja
et al. 2019; B. D. Johnson et al. 2021), a stellar population
modeling inference code, which uses FSPS and python-
FSPS (C. Conroy et al. 2009; C. Conroy & J. E. Gunn 2010) to
create mock photometry from a given set of stellar population
properties. The mock photometry is noised up to match the
SNR of the observed sources within the aforementioned
surveys used for photometry. FrankenBlast employs the
G. Chabrier (2003) initial mass function, the M. Kriek &
C. Conroy (2013) dust attenuation model and B. T. Draine &
A. Li (2007) IR dust extinction model, a nebular emission
model (N. Byler et al. 2017), and an AGN mid-IR model
within its Prospector model. It tracks the star formation
history (SFH) of the hosts through a seven-bin nonparametric
model. This SFH model assumes a constant star formation rate
(SFR) in a single age bin: the "rst two age bins are linearly
spaced from 0 to 30 Myr and 30–100 Myr, and the "nal "ve
are log-spaced until the age of the Universe at the host’s
redshift (or sampled redshift, if it is not known). We report
present-day SFR as the SFR in the "rst two age bins. For
accurate constraints on stellar metallicity, FrankenBlast
includes the A. Gallazzi et al. (2005) mass–metallicity relation.
When "tting the observed host galaxy data, we have the option
to set the host’s redshift at a speci"c value (spec-z model), or
sample redshift as a "t parameter (photo-z model; assumes 0�
z� 1.5). If a spectroscopic or photometric redshift estimate of
the host galaxy is given from the Pröst host association (see
Section 3.1), we use that redshift as the redshift of the host and
"t with the spec-z model. Otherwise, redshift is determined
through the photo-z model.
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