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Abstract. Noisy linear algebraic assumptions with respect to random
matrices, in particular Learning with Errors (LWE) and Alekhnovich
Learning Parity with Noise (Alekhnovich LPN), are among the most
investigated assumptions that imply post-quantum public-key encryp-
tion (PKE). They enjoy elegant mathematical structure. Indeed, efforts
to build post-quantum PKE and advanced primitives such as homomor-
phic encryption and indistinguishability obfuscation have increasingly
focused their attention on these two assumptions and their variants.

Unfortunately, this increasing reliance on these two assumptions for
building post-quantum cryptography leaves us vulnerable to potential
quantum (and classical) attacks on Alekhnovich LPN and LWE. Quan-
tum algorithms is a rapidly advancing area, and we must stay prepared
for unexpected cryptanalytic breakthroughs. Just three decades ago, a
short time frame in the development of our field, Shor’s algorithm ren-
dered most then-popular number theoretic and algebraic assumptions
quantumly broken. Furthermore, within the last several years, we have
witnessed major classical and quantum breaks on several assumptions
previously introduced for post-quantum cryptography. Therefore, we ask
the following question:

In a world where both LWE and Alekhnovich LPN are broken, can there
still exist noisy linear assumptions that remain plausibly quantum hard
and imply PKE?

To answer this question positively, we introduce two natural noisy-linear
algebraic assumptions that are both with respect to random matrices,
exactly like LWE and Alekhnovich LPN, but with different error distri-
butions. Our error distribution combines aspects of both small norm and
sparse error distributions. We design a PKE from these assumptions and
give evidence that these assumptions are likely to still be secure even
in a world where both the LWE and Alekhnovich LPN assumptions are
simultaneously broken. We also study basic properties of these assump-
tions, and show that in the parameter settings we employ to build PKE,
neither of them are “lattice” assumptions in the sense that we don’t see
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a way to attack them using a lattice closest vector problem solver, except
via NP-completeness reductions.

1 Introduction

Constructing post-quantum public-key encryption (PKE) is of the utmost con-
cern due to the possibility of practical quantum computing in the near future.
Over the past two decades, there has been growing interest in post-quantum
PKE from noisy linear algebraic assumptions, namely assumptions of the form
(A, As+e) being computationally indistinguishable from (A, u) for polynomial-
time adversaries, where A € F**" is a uniform random expanding matrix
(m > n), s is uniform over Fy, u is uniform over F*, and e € IF}" is “noise” that
satisfies some structural constraint. Two key assumptions in this category are (1)
Learning with Errors (LWE) [29] where the error vector e has small integer entries
from a discrete gaussian distribution centered at zero, and (2) Alekhnovich’s set-
ting for Learning Parity with Noise [1] (Alekhnovich LPN) where e is a sparse
vector with roughly mn=2 many non-zero entries that are uniform over IFy. In
general, LPN is said to be d-dense if the probability of non-zero entries is n =%, and
Alekhnovich’s LPN is the special case of § = % The simple mathematical struc-
ture of these two noisy linear algebraic assumptions, involving only unstructured
noisy linear equations over finite fields is versatile for designing cryptographic
primitives (see, e.g. [3-5,13-16,19,28,35,306]).

How worried should we be about a (quantum) break on assumptions such as
LWE and Alekhnovich LPN? The short history of modern cryptography teaches
us that it is vital to prepare ourselves against unexpected cryptanalytic break-
throughs. Only 30 years ago, a minuscule time-frame in the development of a sci-
entific field, Shor’s algorithm [33] single-handedly quantumly broke the two most
centrally used cryptographic assumptions at the time, the hardness of factoring
and the hardness of discrete logarithm. More surprisingly, there have even been
classical attacks on isogeny [30] and multivariate quadratic [2] based assump-
tions that were initially believed to be quantum safe. Therefore, as things stand,
we have very few well-studied assumptions that are potentially quantum safe,
let alone being suitable for constructing PKE. Moreover, in recent times, there
have been some serious (albeit failed) attempts to break LWE quantumly [8,12]
and quantum speed-ups against certain LPN type assumptions [17,32]. At the
same time, noisy linear algebraic assumptions have proven extremely versatile.
Given that our understanding of quantum algorithms is nascent and that quan-
tum algorithms is a rapidly advancing area of study, it is imperative to explore
new presumably quantum safe noisy linear algebraic assumptions beyond LWE
and LPN. In the context of this discussion, we address the following primary
question in this work:

In a world where both L\WE and Alekhnovich LPN are polynomially broken, are
there noisy linear assumptions that remain plausibly quantum
polynomially-hard and imply PKE?
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In this work, we provide evidence that the answer is yes, indeed for assump-
tions that only assume polynomial hardness. We introduce two noisy linear alge-
braic assumptions that together imply PKE in a parameter regime in which both
assumptions are potentially quantum-secure even if both LWE and Alekhnovich
LPN are (quantum)-broken.

Indeed for our two new assumptions, we give evidence that they are not
subject to complexity-theoretic reductions to lattice assumptions nor to typical
cryptanalytical strategies applicable to lattice assumptions. On the other hand,
we also give evidence that only by decoding random linear codes from sparse
errors that are well beyond the Alekhnovich barrier (§ = 1) in terms of density,
can our new assumptions be plausibly attacked.

Moreover, exactly like LWE and LPN as described above, our assumptions are
also defined with respect to polynomial-time adversaries and truly random and
unstructured matrices A, differing only in the noise model. This is in contrast to
structured variants of LWE and LPN such as sparse [7,10,11], ring [9, 18,21,22,27]
and McEliece’s [23] variants of these assumptions, which have previously lever-

aged their structure, or 2“’(”1/2)—subexponentially strong LPN assumptions [37]
to give PKE constructions beyond the Alekhnovich barrier [1].

Furthermore, our construction of PKE from our new assumptions is natural
and exploits a new kind of asymmetry, as we will describe shortly. We now
describe both of our assumptions:

1. The Learning with Two Errors (LW2E) assumption consists of unstruc-
tured linear equations perturbed by both an LWE error term and an LPN
sparse error term (over ), i.e., it has the form As + e where e = e; + es.
Here e; is the short LWE error and e, is the sparse LPN error. The aggregate
error term is therefore neither sparse nor small. From a complexity-theoretic
viewpoint, we prove that this assumption is at least as hard as both LWE
and Alekhnovich LPN, while intuitively being strictly harder than both. We
concretely support this intuition in Sect. 5, where we provide strong evidence
that hardness would be preserved even in the presence of oracles that could
break both LWE and Alekhnovich LPN.

2. The Denser-than-Alekhnovich Learning with Short and Sparse
Errors assumption (LWSSE) consists of perturbing uniform random lin-
ear equations by a sparse error e that has a small ¢5-norm error but that
is denser than the Alekhnovich regime. We introduce the assumption in the
parameter regime where the matrix A € Fém_")xm is nearly square, that

is with secret dimension (m — n) and sample count m. It is convenient to

think of the density parameter as 0.1 (much denser than the Alekhnovich 0.5

setting); that is, with probability (m —n)~%! an error coordinate is non-zero.

The parameters used to construct our PKE have been chosen particularly to

ensure that they are (1) beyond the Alekhnovich regime and (2) outside of

the regime in which LWSSE reduces to LW2E or LWE.
We also introduce an equivalent dual form of this assumption called the

Inhomogeneous Short and Sparse Integer Solution (ISSIS) which is inspired

from the dual analogue of the LWE problem, namely that Inhomogeneous
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Shortest Integer Solution (ISIS). As a decision problem, ISSIS states that
(A+, e Al) is computationally indistinguishable from (A~ u) for uniform
random u € Fy and At : AAL = 0. Similar to ISIS, this problem also has a
“total” regime where the decision problem is information theoretically hard.
However, as we detail shortly, we will always operate with parameters in the
“planted” regime where the decision problem is only computationally hard.

A more detailed overview on the hardness and complexity-theoretic relations of
these two assumptions will be discussed in Sect.1.2. We now elaborate on how
we combine the two assumptions to construct our PKE.

1.1 PKE from LW2E and LWSSE Beyond LWE and Alekhnovich

The well-known PKE constructions from LWE due to Regev [29] and from LPN
due to Alekhnovich [1] follow a similar template. Typically, these constructions
rely on the special structure of the error vector. In particular, the crucial property
that ensures decryption correctness is the following: (1) In the case of LWE, the
inner product of two vectors with small entries is small compared to the prime
modulus ¢, and (2) In the case of LPN, when you take the inner product of two
sparse vectors, the non-zero entries of one vector are likely to coincide with the
zero entries of the other, if the sparsity parameters are chosen carefully, thereby
resulting in 0. The following is a general blueprint that we follow as well:

— Key Generation: Sample a random A € F**", a random s € Fj and an error
vector e € Fy* as per the distribution defined by a noisy linear assumption.
Set (A,b = As + e) as the public key pk and set s, e as the secret key sk.

— Encryption: To encrypt a 1, sample a uniform random u; € Fy and ug € Fy
and output (uy, ug). To encrypt a 0, sample a another random r from the error
distribution of a noisy linear assumption and output (ct] =r' A, cty =r'b).

— Decryption: Compute cty — ct{ s. If the result is below some pre-determined
threshold, then output 0; otherwise output 1.

Correctness of this construction intuitively works because cty — ct{ s is going
to be uniform random over F, if 1 was encrypted. On the other hand, if 0 was
encrypted, then cty — ct{s = r'e. Now if r and e are either both small or
both sufficiently sparse, then we expect their inner product to be small or zero,
respectively, and we can set an appropriate threshold to detect this gap.

The security proof typically has two phases: First to replace b in the public
key to uniform random, i.e., replace b with a uniform random u € Fy*. At this
point, the view of the adversary is of the form (A, u,r" A,r"u). At a high level,
we then need to argue that we can replace (Au,r’ (Alu)) with (Afu,y"),
where y is a uniform random vector over Fy.

A First Failed Attempt to Set the Stage. Since both of our assumptions have the
same overarching structure as LWE and LPN, we can of course try to instantiate
the above template with either LW2E or ISSIS. Let us begin with the LW2E
assumption. In particular, we can replace e and r in the above template with e+



68 R. Ghosal et al.

ey and ry +ro, respectively, where e, r1 will be from the LWE error distribution
and es, ro will be from the sparse-but-large error distribution. Immediately, we
can see an issue with the decryption correctness. In particular, decryption in
the above construction exploits the fact that the inner product of r with e will
result in some small value. However in the case of LW2E, both e; + ey and
r; + ro are neither small or sparse. Therefore their inner product will likely not
be a small value and we cannot get any appropriate threshold that will guarantee
decryption with overwhelming probability.

Idea 1. Ezploit Asymmetry: r and (e1+e3) Need Not be from the Same Distribu-
tion! What if we choose r from a distribution which is both short and sparse, i.e.,
the indices where r is non-zero are sparse and each non-zero entry is B-bounded
for some B < ¢q. The hope is that decryption correctness will now work because
both r and ey are sparse, as was the case in Alekhnovich, and therefore will
likely cancel out, and therefore rT(el + e3) will be equal to r'e;. Now, it is
easy to see that r'e; will result in a small value as both vectors individually
have small entries. A concern at this point is that we want to do better than
Alekhnovich — but if we are using sparsity to ensure correctness, how will we
surpass the Alekhnovich barrier? As we will see below, asymmetry will save us
again! But before we tackle that, let’s first consider security.

First we can appeal to the hardness of decisional LW2E and replace pk = (A, As+
e;+ey),ct=(r"A;r"(As+e; +ey))) with pk' = (A,u),ct’ = (r"A,r"u)) for
some uniform random u € F".

Now, what about the ciphertext? Since m > n, can we hope to appeal to
the Leftover Hash Lemma as per Regev [29]? If so, we could conclude that
((A]ju),r T (A|u)) is statistically indistinguishable from ((A|u),y ") where y ™
is chosen uniformly. However to achieve correctness and security simultaneously,
there are two crucial properties that need to be satisfied simultaneously:

1. Increasing the sparsity of r increases the number of 0 entries, and therefore
reduces the entropy of r. If we make the sparsity high enough then we cannot
have enough entropy to apply the Leftover Hash Lemma. Thus, we desire r
to be dense enough.

2. On the other hand, increasing the density of r reduces the chances that r " ey =
0. So to ensure decryption correctness, we need the sparsity of r to be more
than a certain threshold.

Unfortunately it turns out that there are no settings of parameters that allow
us to achieve both decryption correctness and use the Leftover Hash Lemma.
Indeed, a similar issue arises in Alekhnovich [1] as well, and this is exactly where
the Alekhnovich n~%® barrier on density comes from.

Idea 2. Let’s Use Computational Hardness via LWSSE/ISSIS Instead! This is
where the LWSSE/ISSIS assumption comes into the picture. Observe that r here
has the same distribution as the secret distribution of ISSIS. Rather than trying
to argue statistical indistinguishability of ((A|ju),r" (A|u)) and ((Au),y ") via
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the Leftover Hash Lemma, we will appeal to the hardness of decisional ISSIS to
assert that the above distributions are computationally indistinguishable, com-
pleting the proof of security!

Idea 3. Beyond the Alekhnovich Barrier via Asymmetry! Now that we have
taken care of security, the immediate question to ask is how can we proceed
beyond the Alekhnovich barrier? It seems like we relied on the sparsity of r, and
certainly if this vector is y-dense for v > 0.5, then we will be again be stuck in
the Alekhnovich regime. In fact, we do show a reduction from LWSSE to LPN
with comparable parameter in Lemma 8, therefore it is crucial that we choose
v < 0.5. But is it possible to do so in our case?

For Alekhnovich LPN-based PKE, one needs to use the LPN assumption
twice, i.e., once to replace the public key with random and then to replace the
ciphertext with random. Say that the density parameter of the LPN error e
used in the public key is §. It was shown in [1] that decryption is possible only
when v+ ¢ > 1, and therefore one cannot hope for anything better than setting
v = 6 = 0.5. In particular, this symmetry in our choice for v and ¢ is the
optimal choice, since both the dual and primal forms of the LPN assumption are
equivalent.

However, in our case the error e; + e, in the LW2E assumption is already
dense due to the presence of the LWE error e, which is not at all sparse. Since
we do not have any evidence of how to use an LPN breaker to attack noisy linear
equations where the noise is very dense, this error distribution seems completely
outside the reach of any LPN-based attacks. Therefore we can actually afford to
have es that is quite sparse, and specifically we can pick § > 0.5. This then gives
us the freedom to pick v < 0.5. In particular there are no other restrictions on
the choice of v and § beyond v+ § > 1, so § = 0.9 and v = 0.1 are perfectly
valid choices that move the LWSSE assumption to a density setting far beyond
Alekhnovich’s LPN. In fact, it is natural to conjecture that any attack that breaks
LWSSE with density parameter 0.1 might have consequences on LPN with density
parameter 0.1 as well.

And what about lattice attacks? In fact, as we argue below, our choice of
parameters will be such that actually there will exist exponentially many vectors
that solve the ISSIS equation that are much smaller than r, but these “decoy”
vectors will be very dense! As a result, even a huge breakthrough in (quantum)
lattice-based attacks would discover these “decoy” vectors instead the actual r
vector needed to break our PKE system'!

To summarize, in this work, we achieve the following theorem:

Theorem 1. (Informal) Assuming the hardness of the (1) Decisional Learning
with Two Errors Problem and (2) Decisional Inhomogeneous Short and Sparse
Solutions assumptions, the Public Key Encryption constructed in Sect. 3 is sta-
tistically correct and semantically secure.

We refer to Sect. 3 for a formal and parameterized theorem statement.

1 A similar situation arises in the context of our LW2E assumption, rendering lattice
attacks ineffective.
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1.2 Parameters and the Hardness of LW2E and LWSSE

Additionally, we also perform a systematic study of the hardness of both assump-
tions and provide evidence that under our parameter setting, LW2E and LWSSE
are potentially hard even in the presence of oracles that can break both LWE and
LPN. We first formally restate the hardness assumptions with all the parameters.

Definition 1 (Decisional Learning With Two Errors Assumption
(LW2E)). For all n € N, m = poly(n), prime ¢ € N, ¢ = poly(n), 6 € (0,1),
the decisional learning with two errors assumption (decisional-LW2E ), formally
parameterized by L\W2E,, n, 4 p, .5, states that the following distributions are
computationally indistinguishable:

1. (A & IE";”X",ASJre(l) +e® (mod q)) where s < Fy, e — Dy, and
e — Silase

2 (ASEp b EFn).

Here,

~ Dy s: Foro e RY, we let Dy.» denote the discrete Gaussian distribution over
the integer lattice Z with mean 0 and scale parameter o > 0.

= Snqs: Forn,qg € N;§ € (0,1), we define Sy, 45 to be the distribution sam-
ples 0 with probability 1 — n=° or a uniformly random element from F, with
probability n=°.

Definition 2 (Decisional Learning With Short and Sparse Errors

Assumption (LWSSE)).

For alln € N, m = poly(n) > n, prime ¢ € N, £ = poly(n), v € (0,1), the
decisional learning with short and sparse errors assumption (decisional-LWSSE),
formally parameterized by LWSSE,, 1, q.¢ ~, states that the following distributions
are computationally indistinguishable:

1. (Al & F" 7™ sTAL +eT (mod q)) where s & Fo " e = &N eq
2. (At EF T S ).

Here, we define Eppneq for mn,& € N, v € (0,1), with m > n, to be the
distribution over Z which samples 0 with probability 1 — (m —n)~7 or a random
element from the distribution Dz ¢ with probability (m —n)~7.

Our Parameter Settings for LW2E and LWSSE, for Building PKE. We will now
describe how we set the parameters for our assumptions, in ways that are suf-
ficient for constructing PKE. While these are not the only possible setting of
parameters that would achieve the security desired from our PKE, this setting
of parameters is easy to understand and achieve all the goals we desire to achieve.
We will think of the dimension n as a security parameter, and we will also make
use of an arbitrarily small constant v € (0, %) Then, we set parameters for LW2E
and LWSSE as follows:
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— Secret dimension of LW2E: n = n.

— ISSIS sparsity parameter: v = .

— Smallness parameter for LW2E noise e;: 0 = n.

— Sparsity parameter for LW2E noise e3: § =1 — 7

— Dimension of ISSIS secret or number of LW2E samples: m = 20n.

— Prime modulus ¢ € [m!%,2m1°].
— ISSIS smallness parameter: & = n0-5+7,

Understanding Our Assumptions More Broadly. In Sect.4 and Sect. 5, we per-
form a careful evaluation of the hardness of our newly introduced assumptions.
We do so via two general approaches: (1) Show reductions to other lattice prob-
lems or LPN with parameters that we do not use in our PKE and (2) Explore
some natural approaches to attack our assumptions using cryptanalysis of LWE
and show why they do not apply to the parameter settings that we do use. We
summarize the reductions in Fig.1 that apply for all settings of parameters,
including those that we use in our PKE.

Decision-ISSIS;, m,q.¢, H Search-1SSIS;, 1 q.¢,
B Theorem 2 qfw}

A A
Lemma 3 Lemma 3

Y Y

Decision-LWSSE, m,q.¢,~ HSearch-LWSS Er }

n' = (m—n) [ Lemma 8

Y

LDecision LPN./ g,y Decision-LWE,,/ 1, 4.0

o=r Lemn/
\

. Corollary 2
Decision-LW2E,,/ 1, ¢.0,5 Search-LW2E,./ 1, 40,6

Fig. 1. Reductions between the assumptions when we are in the setting of parameters
that we use for our PKE. An arrow from assumption A to B implies that an adversary
breaking assumption B can be used to break assumption A, i.e., reduction from A
to B. The new assumptions we introduce in this paper are highlighted with a blue

background.

Up next, in Fig. 2, we provide reductions from LW2E and LWSSE to various
lattice problems that hold only for a very restricted set of parameters. The
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goal then is to construct our PKE relying on the hardness of L\W2E,, ,,,.4,p, , .5
and ISSIS;, 1 g6~ With parameters that do not allow these reductions to go
through.

Decision—LWSSEn,m,q,E,,} o= (n/)*®

I .
m < nleeg

n/m /2 log o
B < (121775)
Lemma 11 n' = (m—n) | Lemma 8 Lemma 6
Y
(Decision-LPanym#q,J (DeciSion-LWEngm’qya

Lemma 13

m > n'loggq 7 =6 | Lemma 12

= ﬂ) Lemma 12
p=0 <q('n,’+1)/1n v

Decision-LW2E,, ., 4.0.5 }

Fig. 2. Reductions between various assumptions that work for restricted parameter set-
tings. An arrow from assumption A to B implies that an adversary breaking assumption
B can be used to break assumption A, i.e., reduction from A to B. The parameters for
which these reductions hold have are mentioned with the arrows. The new assumptions
we introduce in this paper are highlighted with a blue background.

Discussion on the Reductions.

Figurel seems to suggest that there is reduction from decision-LWSSE
to decision-LW2E via decision-LPN with parameters that we use in our
PKE. However, there is a parameter mismatch here. It is true that
LWSSE,, 1m,q,¢,7 reduces to LPNy,_y, 1,4, However the next reduction, i.e.,
from LPNy, —p.m.g.y t0 LW2E gD, , 4 Only works when m < %284 Out-
side these parameters, decision L\W2E,,_y, ;,¢,p, ,,, is information theoreti-
cally secure and search LW2E,,, _, 1 ¢, D, ~ has exponentially many solutions,
and therefore this reduction fails to work. However, there is indeed a reduc-
tion outside of the PKE regime which is consistent with the direct reduction
from LWSSE to LW2E.

Although we do not have a reduction from LWE to search-1SSIS, in Sect. 4 we
give a moral argument about how can one use a search-ISSIS breaker to solve
LWE. Such an argument only works when m = Q(nﬁ) i.e., the total ISSIS
regime. Unfortunately, we cannot afford to pick m to be so big in our PKE
as we will end up losing decryption correctness.
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— With regards to proving a separation between LWE and LW2E, we do not,
as a community, even know how to separate factoring from LWE. Note that
an oracle separation is meaningless here, because neither LWE nor LW2E
are defined with respect to oracles. What we are able to argue is this: LWE
is broken given a /n-CVP oracle, whereas we do not know how to use a
\/n-CVP oracle to break LW2E. We furthermore explore under what circum-
stances a /n-CVP oracle could possibly be used to break LW2E, and we find
that natural approaches would not work unless the sparse error components
are extremely sparse and the field size q is also limited with respect to the
dimension n. Note that if we were able to actually prove that no efficient
algorithm given a /n-CVP oracle can break LW2E, this would imply that no
efficient algorithm that does not use /n-CVP oracle can break LW2E, imply-
ing P # NP. Nevertheless, our work does motivate a further deep exploration
of such separation questions.

Relating Noisy Linear Algebraic Assumptions. If we adopt the perspective of
best-known current attack algorithms, LWE and LW2E share similar tools
and might appear to be “similar assumptions” as a result. On the other
hand, if we adopt the complexity-theoretic/cryptographic perspective, these
two assumptions have clearly different complexity-theoretic standing and cryp-
tographic utility. In this paper, we take the latter perspective of complexity-
theoretic/cryptographic evidence, but we believe both perspectives are impor-
tant. We hope that in studying this question, both perspectives converge in
deeper insight about the landscape of computational assumptions necessary for
PKE. Indeed, our results also further motivate the algorithmic study of “mixed-
error” assumptions.

Preliminaries: Some notation and standard results about lattices, along with
the formal definition of LWE and LPN have can be found in the full version.

2 Dual Form of LWSSE

We also define a “dualized”, equivalent version of LWSSE that looks more like
an SIS-style assumption, as opposed to an LWE-style one.

Definition 3 (The Inhomogeneous Short and Sparse Decision Assump-
tion (ISSIS)).

For alln € N, m = poly(n) > n, prime ¢ € N, £ = poly(n), v € (0,1),
the decisional inhomogeneous short and sparse assumption (decisional-1SSIS),
formally parameterized as 1SSISy, m q.¢.~, States that the following distributions
are computationally indistinguishable:
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1. (A & Frn v T A (mod q)) where v — EM

m,n,&,y"
2 (ASEpor T SRy,

Remark 1 (Statistical Indistinguishability). Note that the sparsity of the secret
in the decisional-ISSIS assumption makes it statistically distinguishable from uni-
form random for certain choice of parameters. By the leftover hash lemma, only

when m = 2 ((n log q)ﬁ), the decisional-ISSIS is information-theoretically

hard. Refer to Sect.4 for details. In fact, in this work, we will only use the
decisional-ISSIS assumption in the computational regime.

Remark 2. We can analogously define the search version of ISSIS where a PPT
adversary is required to output a “short and sparse” secret upon given a sample
from the ISSIS distribution. Refer to Definition 4 for the formal definition.

We prove in Lemma 3 that the decisional (search)-ISSIS hardness assump-
tion is equivalent to the decisional (search)-LWSSE assumption with identical
parameters.

3 Public Key Encryption from LW2E and ISSIS

Suggested Parameters: We suggest the following choices of parameters. Assume
that the security parameter is n:

— Decryption threshold parameter: ( € N.

— Secret dimension of LW2E: n.

— ISSIS sparsity parameter: v < %

— Smallness parameter for LW2E noise e;: ¢ = n.

— Sparsity parameter for LW2E noise e3: 6 =1 — 7.

— Dimension of ISSIS secret or number of LW2E samples: m = 20n.
— Prime modulus ¢ > n'!.

— ISSIS smallness parameter: £ = n%-5%7,

More generally, we want to choose the parameters such that they satisfy the
following constraints simultaneously: Pick any suitable constant € < 7 such that

2(n+1) log q

— Dimension of ISSIS secret or number of LW2E samples: m < STogn

~ Define B =¢'5: B> gmm3te,
— Prime modulus ¢ > (mo!T5£1+5,

For example, the following can be choices of parameters:

v=0.1,0 = 0.9, = 0.0001, 0 = n,m = 20n, prime ¢ > n't, & =n"".
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Parameters: n,m,q,9d,7v,£,0,C.

Error Distributions:

1. Sparse Error for LW2E. Let S,, , ; be a distribution over F, such that
sampling results in 0 with probability 1 — n~° and a uniform random
element from F, with probability n=o.

2. Gaussian Error for LW2E. Let Dz, be a discrete Gaussian with
width o.

3. Small and Sparse Error for ISSIS. Let &, ¢, be a distribution
over F, such that sampling results in 0 with probability 1 — (m — n)™"
and in a random value from Dy ¢ with probability (m —n)~7.
Algorithms:

x (pk, sk) « Gen(1*):
1. Sample a uniform random matrix A € F;**".
2. Sample uniform random s € Fy, sample e; ~ D
Z?q,é'
3. Set pk «— (A, A s+ e +ey). Set sk —s.
4. Output (pk,sk).
* ct « Enc(1*,pk,b € {0,1}):
1. Parse pk as (A,y).
2. Sampler ~ &7 .
3. If b= 0, output (r" A, (r,y)).
4. If b = 1, output (uj,up) for uniform randomly sampled u; € Fy,
and up € F,.
x b« Dec(1?, sk, ct):
1. Parse sk as s, and parse ct as (ct; € Fy,cta € Fy)
2. x « (cta — {(ct1,s)) mod ¢
3. Ifx < L%J, then output b = 0, otherwise output ' = 1.

m
o

sample ey ~
2

Correctness.

Lemma 1. Let A € N be the security parameter. Then there exists a constant

¢ > 0, such that for all n = n(A\) = poly(A) € N, m = O(n), § € (0,1),

y=1-6,0€{0,1}, CeN,(>2, uy,v >0, 0 =0(A) >0, £ =E&(\) >0 prime
=q(A) > (mg!trotte

Pr[(pk, sk) < Gen(1*) A Dec(sk, Enc(pk, b)) = b)] > c.

Proof. We proceed by analyzing the decryption error for the cases of b =1 and
b = 0 separately.

Case 1: If b =1, in Step 2 of the decryption procedure,

x = cty — (cty,s) = us — Z siu1,; mod g.
1€[m]
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Since, each u1; and s; are independent and uniformly sampled from Fy, y is
also distributed uniformly over F,, thus

Pr[x>LZJ] >1- -

Thus,

1
Pr[(pk, sk) < Gen(1*) A Dec(sk, Enc(pk,1)) =1)] =1 — 3
Case 2: If b = 0, then in Step 2 of the decryption procedure,

x = (cta — (sky,cty)) mod q = (rTel + rTeg) mod q.

We first compute the probability that the event r"e; = 0 occurs that relies
on the sparsity of es.

To do so, first observe that the expected number of non-zero entries in r ~
Engn 18 m(m—mn)~"7. By a standard Chernoff bound, with an all but negligible
probability in n over the choice of r, the number of non-zero entries in r is at
most 2m(m —n)~7. Clearly r"ey = 0 if r has 2m(m — n)~" non-zero elements
in the worst case, and all the corresponding entries in e, at these indices are 0.
Therefore, the probability that r’ e, = 0 is upper bounded by the probability
that es has 0 at the 2m(m — n)~7 many non-zero entries of r. The probability
of this is

(1 _ n76)2m(mfn)’"’ _ (1 _ n75)c’n5 _ @(1)
for some constant ¢ € N, m = O(n) and v+ 6 = 1.

Conditioning on the event that r'e; = 0, we have that z = r'e; mod ¢.
For correctness to hold, we need to show that this value of x will be sufficiently
small with high probability. First, we note that the entries of e; will all be
upper bounded by o!™# with overwhelming probability. Let e; ; denote the ith
coordinate of the vector e;. Using standard facts about lattices (see full version),
for a fixed e; ; and small constant ;> 0,

T

2

Pr [elﬂ- > UH“] < 2e T,

Taking a union bound,
Pr(3ie[ml:e,; >c'" ] <2m- e ™"
Similarly applying the same lemma on r gives us

Pr{Jiem]:r > <2m- e

Theref20re it must be that r'e; < mé Yol with probability at least 1 —
2m - e ™" —2m-e ™ . Since we have chosen ¢ > (m& Yotz must be
less than [#].
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Then,
Pr[(pk, sk) < Gen(1*) A Dec(sk, Enc(pk,0)) = 0)] > c.
Combining Case 1 and Case 2 gives us our desired correctness statement. O

Remark 3. While we achieve only constant decryption error in the above lemma,
correctness can be amplified to achieve negligible decryption error by considering
an encryption process that outputs several fresh encryptions for a single bit and
a decryption process that outputs the majority value of their decryptions.

Semantic Security.

Lemma 2 (Semantic Security). Let A be the security parameter. Then for
every n = poly(A), m = poly(X), prime q(A), & = poly(A), v € (0,1), and for
all polynomial-sized adversaries A, assuming the hardness of the Decisional-
LW2E,, 1n.q,06 problem (Assumption 1) and the hardness of the Decisional-
ISSIS,, m.q.¢,v Problem (Assumption 3), there exists a negligible function pu(-) :
N — [0, 1] such that

‘Pr [(pk,sk) < Gen(1*); A(pk, Enc(pk,0)) = 1, ]
— Pr [(pk,sk) < Gen(1%); A(pk, Enc(pk, 1)) = 1] ‘ < u(AN)

where the probability statement is over the coins of Gen, the coins of Enc, and
the coins of A.

The proof follows standard hybrid arguments. Refer to the full version for formal
details.

Remark 4 (Achieving CCA Security). Note that one can achieve CCA security
by combining our CPA secure encryption scheme together with a non-interactive
zero knowledge (NIZK) proof system using the Naor-Yung paradigm [26,31].
Such a NIZK can even be constructed unconditionally in the random oracle
model, implying a CCA secure PKE from our assumptions. We do not explore
the possibility of constructing a direct CCA secure PKE and leave this for future
work.

4 Analysis of the ISSIS Assumption

Convention. As shown in the proof of Lemma 1, we know that when r; &
Emon.g~, the probability that r; > ¢ for some positive constant v is negligible.
Sometimes in this section, for notational convenience, we will use B = £'17. We
will refer to any vector r & &l n ¢, as being B-bounded while ignoring the fact
that it might not be so with a negligible probability. This is solely done for ease
of exposition in this section and does not impact any of the analysis.
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Necessary Condition for Totality. Totality is the regime where for all b € Fy,
there will exist a “short and sparse” r « &, ¢~ such that r' A = b with
overwhelming probability over the choice of A € Fy**". In computing the suf-
ficient asymptotic condition for totality, it suffices to consider the number of
B-bounded, exactly m(m — n)~7-sparse vectors in Fj*. This number is exactly

Bm(m=—n)=" (m(an)*W)' A necessary condition for totality, in other words sur-

jectivity from the domain of B-bounded m(m —n)~"-sparse vectors in ;" to the
codomain of Fy, is that Bm(m=—n)=". (m(an),w) > ¢". A lower bound of the LHS

is given by (B(m —n)")™ ™™™ and therefore (B(m — n)7)™™ ™" 5 g0,
nlogg =
log B

For our PKE construction, we will not be in the ISSIS total regime because
the parameter setting is that v =1—0 € (0,1) for which the correctness of our
PKEF requires m = O(n). A natural question is whether we could avoid the usage
of LWSSE/ISSIS and only obtain PKE from LW2E via the usage of the leftover
hash lemma. This would be possible if there were a parameter setting in which
we were in the ISSIS total regime.

then totality is possible. This happens when m > (

4.1 1ISSIS Search-to-Decision Reduction

Definition 4 (The Search Inhomogeneous Short and Sparse Decision
Assumption (ISSIS)). Let X be the security parameter. The search inhomo-
geneous short and sparse assumption (search-ISSIS), formally parameterized as
search-1SS1S,, m q.¢ . states that for all PPT adversaries A, there exists a negli-
gible function negl(-) such that

Pr [r’TA =r' A and max(r';) < B and hw(r') < 2m(m —n)~7

7

v — A(A,rTA),A S e Eoem

gy | < negl(A).

Here, hw(r') = [i : v} # 0], n < m and Epy n ¢,y is a distribution over Z which
samples 0 with probability 1 — (m —n)~7 or a random element from Dy ¢ with
probability (m —n)™7.

Theorem 2 (Decision ISSIS is at least as hard as search ISSIS). If
there exists a PPT algorithm A that has non-negligible distinguishing advantage
e : N — [0,1] for the decisional 1SSIS,, 1, q.c,4 assumption, then there exists a
PPT algorithm B that inverts the search 1SSIS,, p, g6~ assumption with non-
negligible inversion advantage.

The core idea behind this reduction are the techniques used to achieve
a sample-preserving search-to-decision reduction as done by Micciancio and
Mol [25]. See the full version for details.
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4.2 Equivalence of ISSIS and LWSSE

Here, we show that (decisional) ISSIS and LWSSE are equivalent assumptions.
The same holds for the search versions of the assumptions, but for simplicity we
state the proof for the decisional versions.

Lemma 3 (Primal and Dual Equivalence). For any m > n + w(logn) ,
there are polynomial time reductions in both directions between LWSSE,, , 4.¢ ~
and 1SSIS;, m g.¢.~-

The proof can be found in the full version.

4.3 Reduction Between LWSSE and LW2E

Intuitively, LW2E seems harder than LWSSE because the structure of LWSSE
resembles that of LPN (we will see that LWSSE indeed reduces to LPN with the
same sparsity). Whereas the lack of sparsity or smallness (in the ¢3 norm) of the
LW2E error resembles neither the structure of LPN or LWE.

We are not aware of a reduction from distinguishing LW2E (respectively,
recovering the secret), to the problem of distinguishing LWSSE (resp. recovering
the planted short and sparse solution in LWSSE). In the other direction, how-
ever, we now show a natural reduction idea from LWSSE to LW2E using noise
smudging.

Lemma 4 (Gaussian Smudging Lemma [20]). Letn € N, Vo > w(y/logn),
foranyce Z™,
A(DZTL7U7DZ”,O’.C) S w
’ o

LWSSE to LW2E. Using an algorithm A that distinguishes the decisional-LW2E
assumption LW2E,,, _p m . p,. .5 for ¢ = (m — n)“(M with non-negligible advan-
tage €, we construct an algorithm B that distinguishes the decisional-LWSSE
assumption LWSSE,, ;, 4.¢.4 for £ = m and for any value of v with non-

negligible advantage ¢'.
The algorithm B on input (A € Fg’”‘”)x’”,y € Féxm), where either y =

sA +e for e € Féxm sampled from &, 5, ¢4 or y ~ Unif (]F}IX”L), performs the
following computational steps:

1. Sample a vector efiged — Dj', Where o = (m — n)~W ¢
2. Sample a vector €fiood,sp — Spi—yy 4.6-

3. Output A(A,y + €ficod + €fiood,sp)-

Lemma 5 (Correctness of Reduction to LW2E). If A is a polynomial-
time algorithm that distinguishes \W2E, _p m.q,D, .6 for ¢ = (m — n)*W, for
& = poly(n), and for any § € [0,1] with advantage €, then B is a polynomial-
time algorithm that distinguishes L\WSSE,, p, q.¢,4 for & = (m—z)‘”(l) and for any

~ € 10,1] with advantage at least € — 0

1
m—n)«d)
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Proof. We know that e is B-bounded with all but negligible probability and
therefore ||e|l2 < By/m By Lemma 4, the distribution of e + €04 has statistical

distance bounded above by B‘U/m from the distribution of €figod, i.¢. Dzn . There-

fore e+ efio0d 1 €fl0od,sp Nas statistical distance at most B*‘fm from the distribution

of €fiood + €flood,sp, Which is exactly the error distribution of LW2E,, ,, ¢ p, 5. O

Remark 5 (Non-applicability of the Reduction for the PKE Parameter Setting).
If we are in the information-theoretically hard regime of the L(W2E,, 1, 1m.¢,0, ..
assumption, then this reduction vacuously fails as the assumption that there
exists an efficient algorithm A that distinguishes LW2E is false. In particular, as
we elaborate in Sect. 5, we hit the information-theoretically hard regime when

mo((mn)logq>

logq — logo

log g
log o

which occurs when m > n - ( ) In our PKE scheme, the parameters for the

ISSIS problem, and its corresponding dualized form as a LWSSE problem, fall
into this information-theoretically hard regime of the LW2E assumption.

Remark 6. As we will see later, there is another way to have an “indi-
rect” reduction from LWSSE to LW2E. Lemma 8 says that LWSSE,  q.¢.+
reduces to LPNy,_p m g~ and Lemma 12 says that LPN,,_;, 4, reduces to
LW2E,, _11,m,q,Ds.,,~- Therefore, together we can conclude that LWSSE,, ;,,q.¢.~

reduces to LW2E,,, _y, m,q¢, D, ,~- The catch here is that for most setting of parame-

. 1 .. . .
ters, i.e., m > 5284 IW2E,, _y, m,q,D, , - is information theoretically secure, and

therefore this reduction vacuously fails.

4.4 Reduction Between LWSSE and LWE

The same idea of noise smudging gives a reduction from LWSSE to LWE.
Using an algorithm A that distinguishes the decisional-LWE assumption
LWE (1—n).m.q,0 fr ¢ = (m — n)*(), with non-negligible advantage ¢, we con-
struct an algorithm B that distinguishes the decisional-LWSSE assumption
LWSSE,, g6,y for & = m and for any value of v with non-negligible
advantage € — m The algorithm B on input (A € F((Zm_")xm7 y € Féxm),
where either y = sA +eforee Féxm sampled from Dzm , or y ~ Unif (Féxm),
performs the following computational steps:

1. Sample a vector efiood < Dy, Where o = (m — n)*W - B.
2. Output A(A,y + €fiood)-

Lemma 6 (Correctness of Reduction to LWE). If A is a polynomial-
time algorithm that distinguishes LI\WE () m.q,0 for ¢ = (m — n)*® | for o >
w(vlogm), and for any 6 € [0,1] with advantage €, then B is a polynomial-
time algorithm that distinguishes LWSSE,, 1, q.¢.4 for & = e and for any

v € [0, 1] with advantage at least € — 0

1
m—n)«d) "
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Proof. The proof is immediate by application of Lemma 4. O
Corollary 1 (ISSIS to LWE). If A is a polynomial-time algorithm that dis-

tinguishes L\WE (1, ) m.q,0 for ¢ = (m — n)*M, for € > poly(n), and for any
§ € [0,1] with advantage €, then B is a polynomial-time algorithm that distin-

quishes 1SSIS, p, g.¢. for &= m and for any v € [0,1] with advantage at
least g — m
Proof. This follows from Lemma 3 and Lemma 6. O

Remark 7 (No Known Reduction Inside the Total SIS Regime). In the

LWE,,—p,m,q,c problem, the parameter setting of m = 2 (n fggg) is inside

of the total SIS regime, which can be computed by a direct entropy calcula-
tion: (m — n)logq + mlogo > mloggq. In this parameter setting, there does
not exist any efficient algorithm A that distinguishes (resp. solves) the corre-
sponding decisional-LWE assumption as the decisional-LWE assumption is sta-
tistically hard to distinguish. Vacuously, then, there is no known reduction from
decisional-LWSSE to decisional-LWE. Our PKE parameters have been set to be
in this setting where the above reduction from decisional-LWSSE to decisional-
LWE does not hold. Similarly, while there is a reduction from search-LWSSE
to search-LWE, in the total SIS regime the corresponding search-LWE problem
does not have a unique s, so there’s no guarantee that the search-LWE solver
returns the correct s.

Remark 8 (Gap between Total SIS and Total ISSIS Regime). Remark 7 and the
totality computation for ISSIS show that there is a wide range of parameters
for which we have both the conjectured computational hardness of decisional-
ISSIS and no known reduction from decisional-ISSIS to decisional-LWE. That
range of parameters are any parameters inside of the total SIS regime, namely

when m = 2 (n llggg), and outside of the total ISSIS regime, namely when

m = O((n logq)l/(l_’)’)) where v < 1.

log o

On a Potential Reduction from LWE to ISSIS. We briefly note a potential
reduction from decisional-LWE to search-ISSIS. Namely, a search-ISSIS breaker
should be able to distinguish the LWE problem with suitable parameters. The
same reduction idea from LWE to SIS should work to reduce LWE to search-
ISSIS. The reduction starts with an instance of the form (A, b), uses the search-
ISSIS breaker on A to find a short and sparse solution r € Z™, and computes
(b,r) mod ¢. In the case that b = As+ e, then the above inner product is small
relative to q. Otherwise, if b is uniformly distributed, the above inner product is
O(q). This reduction can only be possible when a short and sparse r exists, i.e.
in the total regime of ISSIS, for which we have computed a necessary condition
above. While we computed a necessary condition for the total regime for ISSIS,
we have not yet computed a sufficient condition for the existence of a short and
sparse vector, which would give us our desired reduction. We can now observe
two crucial points:
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— The parameter regime for our PKE is in the non-total regime for ISSIS, so
this reduction does not work, and we do not know a reduction from decision
LWE to search ISSIS for such parameter settings.

— This does not imply a reduction from decision LWE to decision ISSIS because
in the total ISSIS regime, the decisional ISSIS problem is information theo-
retically secure, hence there is no search-decision reduction.

This also implies that we do not know any relation between (decisional) LWE
and (search) ISSIS in the parameter regime that implies PKE.

Relation Between SIS and ISSIS. Heuristically, there is a parameter regime
for ISSIS in which a SIS oracle is unlikely to return a planted short and sparse
vector. Consider an ISSIS instance of the form (A € Fy* ", r’ A). For our choice
of parameters for our PKE scheme, any SIS oracle that can possibly output r
must select this r from exponentially many short integer solutions. That is,
the expected f5 norm of r is so large that there exists a positive D such that
D™ > ¢" and the ¢ norm of r is concentrated above 2D+/m. Since there are
exponentially many short integer solutions that are shorter than r, an SIS oracle
that can possibly output r must somehow select r out of an exponential sized
set of integer solutions that are shorter. Only the sparseness of r distinguishes
it, which an SIS oracle is blind to.

4.5 Reducing LWSSE to LPN

We begin with a helpful lemma about the mass of discrete Gaussians on 0
(mod q).

Lemma 7. For any q > £ > 2, we have

1
Z(_P,FZ,JZ =0 (modgq)|=6 <€> .
The proof can be found in the full version.

Now we give the reduction from LWSSE to LPN. Note that the additive
difference between v and ' is sub-constant, while we typically consider v and +/
set to be constants in (0,1), so this additive fudge factor is a lower order term
for us. Moreover, the reason there is a difference between v and 4’ is due to the
way we defined the error distributions: if with probability (m — n)~7 we were
guaranteed that the error is non-zero (instead of drawn from a discrete Gaussian
or from the uniform distribution over F,), then ' = ~.

We emphasize that for v < 1/2, this only reduces to LPN in a regime where
~' < 1/2, which is not the Alekhnovich regime for LPN.

Lemma 8. For prime q with 2 < £ < q, there is an efficient reduction from
LWSSEn m.q.6.v 10 LPNim—n m g4/, for

log(1-0© (1% log —L-
v=7- - lgg(m Ej))> B logczfanln)'
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Proof. Let (Al e FY" XM b ¢ F;n) be the LWSSE instance. Sample i.i.d.

values 71, , 7y « Fy \ {0}. Then, let R = diag(ry,--- ,7m) € FJ"*™ be the
diagonal matrix with R;; = r; for all ¢ € [m]. The reduction outputs (the
transposes of)

(A= AR e Fg X (1) = b R € F}')

as the LPN instance.

To see why this is correct, suppose we are in the “null” case where b’ is
uniformly random. Since R is clearly invertible (as ¢ is prime), the distribu-
tion exactly matches the LPN “null” distribution. Now suppose we are in the
“planted” case, where

b'=s"At +e" (mod g),

for s <& Fy—" e &N Then,

m,n,&,y"
M) =b"R=(s"At+e")R=s"A'+e'R=s"A"+ (),

where we define (¢/) T := e R. It suffices to show that the distributions of (e’) "
and A’ are independent and have the correct marginals for a LPN instance. For
(e')T = e"R, observe that multiplying e” by R multiplicatively re-randomizes
all non-zero entries of €' to be uniformly random in F,, since ¢ is prime, while
preserving all 0 values of e”. Let p € [0,1] denote the probability that a given
entry of e is non-zero (i.e., zero with probability 1—p). This reduction produces
(/)T where each entry is 0 with probability 1 — p, and every other element in
F, has probability p/(¢ — 1). Equivalently, this can be phrased as a mixture
distribution of uniform over F,, with probability pg/(¢ — 1), and the singleton
distribution {0}, with probability 1 — pg/(q — 1). We need

(m—n)"" =pq/(q—1). (1)

If this holds, then this reduction maps &, n ¢ t0 Sy—n,q,4/, making the marginal
distribution of e correct. We defer this setting of 7' to later in the proof. For A’,
note that for any fixed, invertible R, the distribution of A’ = ALR is uniformly
random, by the randomness of A+. Therefore, A’ and e are independent, and
the marginal distribution of A’ is correct, as desired.

To set 7/, we now analyze this probability p. A given entry of e is non-zero
with probability

p=(m—n)""- <1 - Z{_Pg“[Z =0 (mod q)]) . (2)

Applying Lemma 7 and plugging the result back into (2), we have

p:(m_n)_7.<1_ Pr [Z=0 (modq)]>:(m—n)—v.<1—@<1)>.

Z+—Dy.¢ 6
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Plugging back into (1), we need

Thus,

a

Comparing with Alekhnovich’s LPN. The above lemma implies that our PKE
scheme is broken in the presence of an LPN oracle. But, that is fine because
we pick the sparsity parameter v to satisfy v < % This means that an adver-
sary that breaks LPN in this parameter regime is stronger than one that breaks
Alekhnovich’s LPN. In particular, in the world where Alekhnovich’s LPN is bro-
ken, i.e., there exists an adversary that solves LPN with ~v > %, our assumption
is still secure as the sparsity parameter is strictly less than % In fact, we do not
have any lower bound on the choice of v and it can as small as one wants, e.g.,

~ = 0.01, which should be beyond the reach of a breaker for Alekhnovich’s LPN.

4.6 Reducing LWSSE to Lattice Problems

In this subsection, we show that for reasonable parameter choices in
ISSIS/LWSSE, there is no (obvious) reduction to a lattice problem. We adopt
a cryptanalytic approach here and attempt to rule out the obvious ways to
interpret ISSIS/LWSSE as a lattice problem. We will assume some knowledge of
the standard notion for the usual lattice parameters and standard bounds on
random lattices, all of which can be found in the full version.

Lemma 9 ([24]). There exists a universal constant 6 € (0,1) such that the

following equations hold for all ¢ > (3 e ) -

L Pr [Mdga) € [svim - /™, vim - q"/™]] > 1= negl(n),
AL p(momxm
Pr [Al(A(IL(AL)) € [ém-ql_"/m, vm - ql_"/m]] > 1 — negl(m — n).

ALiFl(ZWL—n) Xm

Lemma 10 ([24]). There exists a universal constant § € (0,1) such that the
following equation holds for all ¢ > m=m-m :

Pro |p(Ag(AL)) € [5vim- g™, Sy /m - qrim || > 1 - negl(n),
| [ |

8 L —n) Xm
ALFymT™
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The lower bounds on g needed above, which our PKE parameter settings satisfy
since ¢ > m!% and m = 20n, are to rule out trivial shortest vectors of the form
qZ™. Therefore, we can assume i (A4(AL)) = O (y/m - ¢*/™), (A7 (AL)) =
O (vm - g'="/™), and p(A,(AF)) = O (vVm - q"/™).

We now set up notation for LWSSE, ., 4.¢~- In the planted case for
LWSSE,, 1n.q,¢,y, We have

b =s"At +e’ (mod g),

$ m—n m
for s — F'™", e « gm,n,f,'y'

Closest Vector Problem and Bounded Distance Decoding. The natural
way to view this as a lattice problem is to phrase it as an instance of the closest
vector problem (CVP) (or bounded distance decoding (BDD)), where b’ is a
target vector within the lattice A,(A+). The distance from b' to the lattice is
at most e, which has expected squared norm

Elelg) = (& ). 3)

(m—n)7
and this norm concentrates well by standard Chernoff and Gaussian bounds.

We begin by observing that we can have a reduction to the CVPg problem when
€= o(q"™ - (m—n)/?).

Definition 5. The BDD,, problem, parameterized by o € (0,1/2): Given an
instance (A € Qm*™ t € Q™) where A is a basis for a lattice L C Q™ and the
promase that ||£ — tll2 < a- A1(L), find the unique lattice point x € L such that
I — tll2 < a- A (£).

Definition 6. The CVPg (or 3-CVP) problem, parameterized by 3 > 1: Given
an instance (A € QM ™ t € Q™) where A is a basis for a lattice L C Q™,
output any lattice point x € L such that ||x — tlj2 < G- || £ — t||2.

Lemma 11. If¢ = o(q™/™ - (m—n)7/?), then decisional-L\WSSE,, ., .¢ - reduces
to CVPg for 8 > 1 where

qﬂ/m(m _ n)'y/Q

ﬁ =
13
Proof. The reduction B is given as input (A+ € Fgm_”)xm,t)T =sTAt t+e')
where bT = sTAL + e or b' is uniform random. Let AL be a basis for

A (A1), Recall that by Lemma 9, we have A\ (A,(A+)) = O(v/mg™/™) with all
but negligible probability. When & = o(¢™/™ - (m — n)?/?), then the expected
squared error norm satisfies

E [llel3] = ©(m - (m —n)~7 - €%) = o(A1(44(A1))?).
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Observe that [|4,(A+) —bT|l2 < |le"||2 when b' is planted. The reduction B
obtains y T « CVPz(A+,bT), and outputs 1 if y € A,(AL) and |[bT —y |2 <
ﬁ - /mq"™/™. The oracle guarantees that when b' is planted,

bT —yTllz < 8- e[|z = o (A:(44(A1))).

On the other hand, when b is not planted, with high probability, there does
not exist any lattice vector y € Ay(AL) such that b7 —y Tz < 155 - /mg™/™.

This completes the reduction. O

Remark 9. Also, a bounded distance decoding solver can be used to solve search-
LWSSE,, 1m,q,¢,4 With parameter a € (0,1/2) given by

0= ()
g"/m(m—n)/2 )

The statement for the a-bounded distance decoding follows from the last equa-
tion in the above proof for the reduction to CVP, in which we observe that
since 3 - |lel|2 is asymptotically smaller than A\;(4,(A1)), we have |ellz <
%Al(Aq(AJ—)), so solving is possible from using a a-BDD solver for a = w(1/3).

Remark 10 (Discussion on Larger Values of §). Comparing Lemma 9 to Eq. (3),
we see that e is larger than the shortest vector in A,(A1) and more so, the
covering radius of A,(AL) iff

€ q"/™ - (m—n)"/2 (4)

If Eq. (4) holds, then solving CVP or BDD on A,(A1) with target b would not
necessarily yield sT AL or e, as the closest vector to b would very likely not
recover e. In fact, there are likely exponentially many “decoy” values one could
recover instead of e . For example, as in our suggested parameters for our PKE
scheme, when we set m as m = n(1+60(1)), Eq. (4) becomes ¢ > ¢'~®(1).n7/24
feasible parameter setting.

Discussion: The SIS Perspective. Alternatively, one can look at the lattice £ =
Ay (A1), with the idea being that a short (nonzero) vector x € £ can distinguish
LWSSE by computing

b'x=(s"At+e')x=e"x (modyq),

where hopefully |e"x| < ¢. From the calculations above, the smallest non-zero
x € £ we can hope for has ||x||2 = O(v/m - ¢'~™/™). By using independence of
x and e, we roughly have

m

Tx| . gt-/m . [
le x[~¢-q )
For the reduction to be unsuccessful, this would be above g. This holds when

(mfn)’Y'

m

(5)

Comparing Eqgs. (4) and (5), the only difference is a /m factor. Therefore, as
long as Eq. (4) holds, none of these lattice reductions seem to work.
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5 Analysis of the LW2E Assumption

Information- Theoretically Secure Parameter Regime of LW2E. Per standard lat-
tice facts (see full version), with all but negligible probability, every entry of e;
is upper bound by o'*#, for non-negative constant u € (0, 1).

Most of the mass of the distribution of e; + ey for e; ~ Dz, and ey ~

Sm s lies in a set of size T = (, /% )q”fémam(“‘“)(l_"fé). A straightforward

n,q, —om
entropic/combinatorial argument shows that Leftover Hash Lemma applies when
mlogq < nlogq+logT, and therefore, LW2E is information-theoretically hard.
When ¢ = n®1) | then standard algebraic manipulation shows that the above

constraint gets satisfied when m < 8¢
log g—logo

5.1 Search-to-Decision Reduction of LW2E

Similar to ISSIS, we get a search-decision equivalence for LW2E as well. See full
version for details.

Corollary 2 (Decision LW2E is at least as hard as search LW2E). If there
exists a PPT algorithm A that has non-negligible distinguishing advantage € :
N — [0,1] for the decisional L\W2E,, ., ¢, .5 assumption, then there exists a
PPT algorithm B that inverts the search LW2En7m,qﬁpZm5 assumption with non-
negligible inversion advantage.

5.2 Reduction from LPN and LWE

In this section, we prove that the learning with two errors assumption is at
least as hard as both LWE and LPN with comparable parameters. Formally, we
prove that the hardness of LPN,, ., 45 and LWE,, ,,, 4, p, ., can be reduced to the
hardness of LW2E,, ;, 4D, , 5 In other words, LW2E,, . 4 p, , s is at least as hard
as LPNy, 1 4,5 and LWE,, 1, gD, -

Lemma 12. For alln € Nym € N, primeq € N,o > 0,6 € (0,1), if there
exists a polynomial sized breaker for search?-\W2Ey, 1, ¢, s, then there exists
a polynomial sized breaker for search-LPNy, 4.5 and search-L\WE,, , 4 p, , -

At a high level, given a LPN or LWE sample, one can simply add the error from
the other distribution to generate a valid LW2E sample. The reduction is then
straightforward. Refer to full version for formal details.

2 The lemma and its proof works as it is even if we refer to the decisional variant of
the respective assumptions.
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5.3 Hardness of LW2E in the Presence of LWE and LPN Breaking
Oracles

Having shown that LW2E is at least as hard as LWE and LPN, we provide some
evidence that LW2E is a strictly harder problem. In particular, we show that it
is unclear how to make use of an LWE or LPN breaking adversary in any natural
ways to break LW2E.

Congecture 1. L\W2E,, r, 4.p, .5 is secure even in the presence of an LPN,, ,, 4,6-
breaking oracle or an LWE,, ,,, 4 p, ,-breaking oracle.

We believe that all the arguments here apply to both the search and decisional
variant of the respective assumptions. However, to keep things succinct, we only
talk explicitly about the search versions in the following discussion.

We strongly believe that this conjecture is true because of the very nature
of the Learning With Two Errors assumption in which the error is neither small
nor sparse. Recall that an LW2E,, ,,, 4D, s sample is of the form

(A, As+e + e2>

where A & F=n, s & IFZ, e Al Dy, and e & S;”S. Here Dy, is the small
LWE error distribution, and S}, ;5 is the sparse but laré;e LPN error distribution.

Let us assume that there is a LPN,, ,, 4 s-breaking oracle which can solve
search-LPN, , 4 5. Now say that we have received an LW2E,, , 4D, . s sample
(A,b = As + ey +eg). A direct use of the LPN,, ,,, 4 5-breaking oracle to break

LW?2E is as follows:

— Since we know that as an Learning With Two Errors sample b must be of
the form u + e where u is a random vector in the column space of A and e
is some error term. We can simply send (A, b) to the LPN breaking oracle.

— The oracle then sends us a response (s, e).

— We can now output s’ which satisfies As’ + e = b because of the correctness
of LPN-breaking oracle.

However, observe that for the above algorithm to work, the number of non-zero
elements in e must be less than the maximum number of non-zero error terms
an LPN,, ,,, 4.5 breaking oracle can handle, i.e., an expected number of non-zero
entries of no more than .

However, it is easy to see that e; + ey is very far from being sparse. In our
case, e1 can have very few entries which are 0 and ey already has 7% many non-
zero terms. Even with a few terms cancelling out over F,, it is definitely true
that with an overwhelming (i.e., 1 — negl, where negl is a negligible function)
probability, the number of non-zero entries in e i.e., e; + e; will be strictly
greater than 7% in which case there is no hope for a LPN,, ,, 4,5 breaking oracle
to succeed in inverting b.

But what about using a LWE,, ,, 4,p, , oracle instead? Again, let us attempt

to proceed by directly invoking the oracle. Observe that
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— The error term e; is sampled from D7’ . In such a case, as per standard
lattice facts (see full version), for a small constant p > 0,

2

Pr [eu > JH“] < 2e 77
Since e; has m many entries, taking a union bound, we get
2
Pr(die[ml:e,; >c' ] <2m-.e ™ :

This implies that with an overwhelming probability, there will be no entry in
e; which is more than o1t#,
— In the error term ey, the probability that an entry is greater than o'*# and

less than ¢ — o' is
1 q—20tw
nd q '
Therefore the expected number of entries in e, which are greater than o' T+
and less than ¢ — o' T# is
q— 20ttH
. .

Here n < m and § € (0,1) and as per our choice of parameters g > (mBo
which makes the above expression £2(m!~9%).

m
né

14+p

The above two observations indicate that with an overwhelming probability
there will be 2(m!'~%) many indices i € [m] in expectation such that

25 tH <« e1;+e2; <q.

Note that here the addition is over the integers.
On the other hand, clearly a LWE,, ;,, 4, p, ,-breaking oracle will only work if e

2p
TI 7 every entry

is sampled from D7, in which case, with probability 1 —2m e~
of the error term must be less than o' ™. Thus an LW2E,, ,, 4.1, ,,s sample has
errors much larger than what a LWE-breaking oracle can tolerate, indicating no
clear way to use such an oracle to tackle the Learning With Two Errors assump-
tion.

To summarize, a Learning With Two Errors error term is neither small nor
sparse enough for either an LPN-breaking oracle or an LWE-breaking oracle to
be useful. In fact, we conjecture that LW2E is secure even if we simultaneously
had access to both an ISIS-breaking oracle and a LPN-breaking oracle.

5.4 Hardness of LW2E in the Presence of CVPg Oracles

We first show a reduction from LW2E to approximate CVPg, for appropri-
ate approximation factor 8 > 1. While such a reduction exists for all choices
of parameters that yield our PKE, we observe that the approximation factor
required for the reduction is significantly smaller compared to what is sufficient
to break LWE. Formally, we prove the following lemma:
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Lemma 13. There exists a constant x € (0,1) such that for allm € N, m =
poly(n), o = poly(n), ¢ = poly(n) > n®?c'-1, § € (0,1), decisional-LW2E,, 1, 4.0.5

5/2
reduces to CVPg where 3 = 3“& .
q m

Proof. Let A be the adversary that gets as input (A € F**", b € F*). It
sends (A,b) to the CVPs breaker B that then outputs some vector t € F*. If

b — t||2 < ky/mg =", then output 1, else output 0.

To prove the correctness of the reduction, it suffices to show that B outputs
1 with all but negligible probability when b = As+ e + e, where the errors are
from the appropriate LW2E error distribution.

If b is of the form As+ ey +es. Then, ||[4;(A) —b|2 = ||e1 +e2||2. Our goal
is to upper bound this norm first, ||e; + ez]|2 < |le1||2 + [lez2]|2-

By Chernoff, we know that e, will have less than 2mn~% many nonzero posi-
tions with all but negligible probability. Thus with all but negligible probability,
it must be that ||ez||2 < ¢v/2mn~%2. Similarly using the Gaussian tail bound,
we know that every entry of e; will be at most o''! with all but negligible prob-
ability, and therefore its norm will be upper bounded by o!-!y/m. Thus with all
but negligible probability

le1 + ezl < ot tm 4+ qvV2mn %% < 3¢/mn~%/2.

The last inequality holds due to the lower bound on the choice of q.
Therefore, by the correctness of the CVPg breaker, we know that with all but
negligible probability, BB returns t such that

n+1

b —t]l2 < B 3¢v/mn=%2 = ky/mg' =",

and therefore A correctly outputs 1.
To complete the proof, we need to show that if b is uniform random, then
|A4(A) — b||2 will be greater than N
Observe that || 4,(A) — b||2 is exactly equal the A\, of a random lattice gen-
erated by the ((n 4+ 1) x m) dimensional matrix A|/b. k is exactly the value in
+1

Lemma 9 where with all but negligible probability A;(44(A[|b)) > ry/mgq'™
and therefore A must correctly output 0 in this case and we have the proof.

While we already show that our assumptions are unlikely to be broken using
natural LWE and Ale breaking oracles, we would like to make a stronger claim.
In particular we provide evidence that the LW2E assumption is potentially hard
even upon given access to a approximate CVPg for a wide range of parameters.

Remark 11 (In-applicability of the reduction in the PKE parameter regime.).
Note that the above reduction is meaningless for § < 1. If we pick m = 20n as
in our PKE, § = 0.9, and ¢ = m'?, then q% > "% = /m > /n > nd/2,
implying that g < 1.
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Discussion on larger values of (3.

3
Conjecture 2. For all g > w (?ﬁl), LW2E,, .4, D, ,,6 is secure even in the

q m
presence of a CVPg-breaking oracle when ¢ > ol trnd/2 for some constant
w>0.

Observe that the above reduction works crucially because the choice of 3
ensures that (3 - ||e; + ez]|2 never exceeds k+/ mql’%1 with overwhelming prob-
o)

ability. However if we picked 8 > %, then there is no more correctness

q m
guarantee as (- ||e; + ez||a goes past the A; of a random m-dimensional lattice
spanned by an n + 1 dimensional basis.

Remark 12 (LW2E Harder than LWE Relative to a GapCVP Oracle.). A back-
of-the-envelope calculation shows that a CVPg breaking oracle with 8 = nz
will break LWE [6,34]. On the other hand, we have given the above heuristic
evidence that a CVPg breaking oracle with 8 = w(n®/?) does not break the

LW2E assumption. In our setting, we have set § such that % < § < 1, which

means that 3 is strictly o(n%).
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