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Abstract: As the opioid crisis continues to wreak havoc on a global scale, it is increasingly critical
to develop methodologies to detect the most dangerous drugs such as fentanyl and its derivatives,
which have orders of magnitude higher potency than morphine. The scientific challenge for chemical
detection of fentanyl and its derivatives is complicated by both the constantly increasing synthetic
variations of the drug as well as the expanded use of adulterants. One tragically consequential
example is the nocuous street drug known as “Tranq”, which combines fentanyl or a fentanyl deriva-
tive with the veterinary sedative Rompun®, chemically identified as xylazine (XYL). This pervasive
street cocktail is exacerbating the already staggering number of fentanyl-related deaths as its acute
toxicity poses a danger to medical first-responders and complicates their initial assessment and
treatment options for overdose victims. Given the widespread use of XYL as an adulterant, an
electrochemical XYL sensor capable of on-site operation by non-experts as a fast-screening tool is a
notable goal. This work presents a voltammetry-based sensor featuring carbon electrodes modified
with carboxylic-acid functionalized multi-walled carbon nanotubes layered with cyclodextrin and
polyurethane membranes for sensitivity and selectivity enhancements. The sensor has critical and
robust fouling resistance while providing sensitivity at 950 pA/ mM-cm?, a low limit of detection
(~5 ppm), and the ability to detect XYL in the presence of fentanyl and/or other non-fentanyl
stimulants like cocaine. The demonstrated sensor can be applied to promote public health with
its ability to detect and indicate XYL in the presence of opioids, serving to protect drug-users,
first responders, medical examiners, and on-site forensic investigators from exposure to these
dangerous mixtures.
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1. Introduction/Background

The world-wide opioid crisis caused by growing access to narcotics presents a devast-
ing societal burden, with high fatality rates and serious chronic medical issues that deliver
catastrophic economic costs. The COVID-19 pandemic exacerbated the already disastrous
effects of opioids, resulting in large increases in use, abuse, and overdoses [1,2]. In addition
to the massive rise of opioid-related deaths and the accompanying interpersonal family
devastation that follows, the effects of the opioid epidemic also include victims having
to manage withdrawal symptoms, lack of health-care coverage leading to spiraling debt,
and corresponding implications of those factors on workforce numbers and availability [3].
In recent years, the drug fentanyl (Figure 1a) has dominated the illegal opiate market,
resulting in easy access to highly dangerous, unregulated substances.

Fentanyl is often attributed to an increase in fatality rates of the overall opioid epi-
demic [3,4] as it has a fast-acting mechanism and is more potent than other opioid options
such as morphine and heroin, resulting in an exponentially growing mortality rate [5].
Furthermore, derivatives of the parent compound fentanyl can be easily synthesized (i.e.,
synthetic manipulation/functionalization of R1, R2, and R3 in Figure 1a) [6] to act faster or
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While traditional laboratory-based techniques for qualitative analysis of dangerous
opioids remain effective, with new methodologies under constant development, the toxicity
of these chemicals pose a risk to first-responders and forensic crime scene investigators,
suggesting that it would be beneficial to develop point-of-use, preliminary or presumptive
screening tests for the fast, on-site identification of dangerous substances [23-25]. The
analytical methods that lend themselves to testing that is fast, inexpensive to mass produce,
and usable by non-experts often involve electrochemical and/or colorimetric sensing
schemes that can be miniaturized for on-site usage [8,26]. In many of these cases, a common
strategy employed by researchers is to incorporate various nanomaterials (NMs) into
sensing schemes for the purpose of signal enhancement [27-29].

Overshadowed by research focus on fentanyl and its many synthetic analogs (i.e.,
fentalogues), the electroactive drug XYL being present in most street fentanyl-based drugs
like “Tranq” or “Zombie” represents an opportunity that has received significantly less
attention in the literature until recently. In 2019, Mendes et al. published seminal work on
XYL electrochemistry that produced several important findings [30]. The study showed
the most sensitive electrochemical activity for XYL at clean glassy carbon electrodes (GCE),
though they eventually became significantly fouled during voltametric scanning. The study
successfully demonstrated the use of differential pulse voltammetry (DPV) for quantifying
XYL in pharmaceuticals and urine but required the unfortunate step of polishing the GCEs
prior to every scan, thereby limiting its on-site application. As with most sensing targets, re-
searchers have also employed various NMs within XYL sensing schemes. Notable examples
of this approach include the work of El-Shal using cyclic voltammetry (CV) at electrodes
modified with an ionic liquid composite film containing multi-walled carbon nanotubes
(MWCNTs) [31]. Saisahas et al. published two papers on portable electrochemical XYL
sensors [32,33]. First, graphene nanoplatelets on screen printed carbon electrodes were used
with DPV to detect XYL in beverages with precent recoveries ranging from 80 to 108% [33].
The second report performed DPV with nanocoral-modified graphene paper electrodes
for XYL detection with similar precent recoveries [32]. Both reports showed calibration
curves with two linear ranges having a higher sensitivity at low XYL concentrations and
a more depressed sensitivity at higher XYL concentrations, trends again attributed to the
inherent electrode fouling during XYL electrolysis. Interestingly, while these reports seem
to focus on XYL oxidation at the electrode, there is no consensus on the exact electrochemi-
cal mechanism [30-33]. One of the more common mechanisms found in the literature is
shown in the Supplementary Data (Scheme S1). Notably, these reports all focus on the
direct detection of XYL in samples rather than its detection as a street drug adulterant (i.e.,
in presence of fentanyl).

This study presents a versatile and fouling-resistant sensing scheme for electrochem-
ical detection of XYL that meets the criteria for an effective, point-of-use, preliminary
screening method for the identified applications. The scheme builds off prior work from
our group that demonstrated that film-modified electrodes showed significantly enhanced
sensitivity with the incorporation of MWCNTs and improved selectivity from harnessing
host-guest chemical interactions using cyclodextrins in conjunction with semi-permeable
membranes [34,35]. Most importantly, these fouling-resistant sensors are demonstrated to
be effective in XYL detection in the presence of fentanyl and other opioids as an adulterant,
making it a promising tool to protect first responders, innocent bystanders, and addicts by
quickly identifying these increasingly prevalent and highly dangerous street drug mixtures.

2. Experimental Details
2.1. Materials and Instrumentation

Chemicals were purchased from reputable chemical vendors in high purity and used
as received whenever possible. Chemical solutions were all made using ultra-purified
water (18.2 M(Q)-cm). Polyurethanes of hydrothane (HPU, AL25-80A) and Tecoflex (TPU,
SC-80A) were obtained from AdvanSource Biomaterials (Wilmington, MA, USA) and
Lubrizol (Cleveland, OH, USA), respectively. Carboxylic-acid derivatized multi-walled
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carbon nanotubes (COOH-MWCNT) and 3-cyclodextrin (3-CD) molecules were purchased
from Nano Lab Inc. (Waltham, MA, USA) and Ambeed, Inc. (Arlington Heights, IL, USA).
A Branson sonicator (Model 2510; 40 kHz; 130W) was used for pretreatment of the COOH-
MWCNTs. For electrochemical experiments, glassy carbon electrodes (GCE), Ag/AgCl
reference electrodes from CH Instruments (Bee Cave, TX, USA) with platinum coiled wire
counter electrodes (Millipore-Sigma, St. Louis, MO, USA) were used with 8-channel model
1000B or 1030C potentiates from CH Instruments. Xylazine (XYL) was obtained from
Chem-Impex International (Wood Dale, IL, USA) through VWR International, LLC and
freshly prepared prior to use (50 mM standard solutions). Fentanyl and cocaine were
both purchased from Cerilliant (Round Rock, TX, USA). Popular name-brand beverages
were purchased locally at supermarkets and Virginia ABC stores with potential interferent
chemicals ordered through traditional vendors: aspartame, phenylalanine, Acesulfame,
caffeine, citric acid, sucrose, and glucose (Millipore-Sigma/Supleco).

2.2. Sensor Fabrication

The general procedure for sensor fabrication mimicked that of prior work in the
lab [35]. Briefly, GCEs that had been polished using successively smaller alumina powder
(1.0, 0.3, and 0.05 pm) in ultra-pure water suspensions on cloth plates (Buehler, Lake
Bluff, IL, USA) affixed to a polishing wheel were subsequently rinsed thoroughly and
dried with a N; gas stream prior to modification. In preparation for sensor fabrication,
two solution mixtures were prepared: a mixture of COOH-MWCNTs (2 mg) and 3-CD
(2 mg) was created in 1 mL of ethanol (200 proof) and sonicated (30 min) and a polyurethane
(PU) blended solution comprised of HPU (75 mg) and TPU (25 mg) in ethanol:THF (1:1,
5 mL) which was stirred vigorously overnight. For the optimized sensor composition,
freshy polished GCE electrodes were modified via micropipette depositions of COOH-
MWCNT with 3-CD (7 uL) followed by the PU blend solution (10 pL) with a drying time of
10 min for each layering. Modified electrodes were soaked in 150 mM potassium phosphate
buffer (PBS, pH 7) solution (15 min) prior to being transferred to fresh PBS (25 mL) for
electrochemical testing. Notably, prior to incorporating it into the sensing scheme, the
host-guest binding chemistry of XYL with 3-CD was confirmed by comparing differential
pulse voltammetry (DPV) scans of these modified electrodes in solutions of XYL with the
presence and absence of di(2-ethylhexyl) phthalate (DEHP), a known strong binder to 3-CD
cavities (Supplementary Data, Figure S1) [36,37].

2.3. Sensor Testing and Preparation—Beverages and Opioids

DPV was the primary electrochemical technique applied to the modified electrodes,
with the following standard parameters employed in select potential windows: potential
increment (0.004 V), amplitude (0.07 V), pulse width (0.05 s), sample width (0.0167 s), and
a pulse period (0.5 s). For calibration curves, XYL injections were followed by 3 min of
stirring and at least 3 min of quiet time (i.e., quiescent solution) prior to DPV measurements.
For the analysis of beverages, test solutions were prepared by first opening the product
and, if necessary (e.g., sodas) removing carbonation with agitation or leaving the bottle
uncapped overnight. Because XYL oxidation is known to be pH dependent, addition
of 2.5 M NaOH dropwise was used to neutralize the soda samples to pH ~7. Alcoholic
beverages were diluted 1:1 with the 150 mM PBS to simulate a mixed cocktail (e.g., 12.5 mL
each). Fentanyl and cocaine laced solutions were prepared from solids obtained from dried
contents of ampules of methanol and acetonitrile solutions (1 mg/mL), respectively.

3. Results and Discussion

The design and development of any voltammetry-based sensor typically begins with
establishing the electrochemical behavior of the targeted analyte at an electrode interface.
Prior work in the literature showed that XYL electrochemistry was most readily observed
at GCEs versus traditional metallic electrodes like gold and platinum [30]. Figure 2A shows
typical cyclic voltammetry (CV) for XYL at a bare GCE with irreversible peaks representing
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incorporating pre-sonicated MWCNT into sensing schemes involving direct redox activity
of a targeted analyte [31,34,35]. Notably, electrochemical signal enhancement via the use
of NMs within modified electrodes is often accompanied by an increase in capacitive or
charging current (i.e., noise) [39,40]. DPV and its inherent ability to discriminate against
charging current, thereby improving signal-to-noise, has been shown to be an effective
voltammetry technique for modified electrodes of this nature [31,32,41]. As such, for the
current study, DPV is the primary electrochemical technique employed.
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the CV shows that incorporating the COOH-MWCNTs does induce an electrocatalytic
effect, shifting the XYL oxidation potential more negative compared to systems without
the NMs. Given this information, a smaller potential window for CV, focused on a limited
number of peaks produced using the fully modified electrode and that includes the initial
XYL oxidation (Figure 3A), was analyzed for scan rate dependence as in other literature
reports of XYL electrochemistry [30,31,33]. Results of the study show the XYL oxidation
peak at approximately +0.95 V and subsequent XYL-related reduction peak at +0.25 V
as well as the anodic peak at +0.35 V, attributed to the COOH-MWCNTs, were analyzed
(potentials estimated for 10 mV /s scan, Figure 3A). The scan rate dependence, shown in
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attributed to the MWCNTs; (B) DPV oxidative scans at GCEs modified with PU only (top scans) and
fully modified GCEs (bottom scans) in PBS without XYL (a,c) vs. in 1 mM XYL solutions (b,d).

Figure 3B shows the DPV oxidative scans of XYL at a fully modified electrode that
reiterate the CV findings where the oxidative peak at +0.85 V is attributed to XYL oxidation
and is both concentration dependent and present with or without the MWCNTs, while the
earlier oxidative peak at approximately +0.0 V is present in the absence of XYL. Notably, the
fully modified electrode featuring MWCNTs exhibits expected increases in charging current
but also a significant XYL oxidation signal even with the presence of the PU capping
layer (Figure 3B, bottom scans). Comparatively, the XYL oxidation signal is drastically
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smaller (Figure 3B, fop scans), with only a PU-modified GCE. Given this signal enhancement
from MWCNTs and coupled with the semi-permeable selectivity of the PU layer, the
fully modified electrode sensor design (Scheme 1) seeks to target XYL oxidation while
minimizing the subsequent electrode fouling.

3.2. Modified Electrodes vs. Bare Electrodes—Fouling Resistance

As previously mentioned, the requirement of frequent cleaning/polishing of an elec-
trode can limit the overall utility of a sensing scheme [30]. When DPV scans are repeated at
a bare electrode versus the modified electrode developed in this study, the fouling-resistant
nature of the system is evident. As seen in Figure 4, at the bare GCE, peak current of XYL
oxidation is drastically attenuated with each scan as the fouling passivates the electrode.
While not as obvious during these initial scans, the peak potential (Ep5) of XYL at the bare
electrode is also observed to shift toward more positive potentials. Alternatively, the modi-
fied electrode maintains a well-defined peak, minimally diminished current (Figure 4A,
inset), and a significantly more stable Ep, , from XYL oxidation over the same timeframe.
The strength of the fouling-resistance of the modified electrode is most significant when
DPV results over longer times and at higher XYL concentrations. Figure 4B displays DPV
of XYL at both a bare GCE and the modified electrode after exposure to numerous scans at
increasing XYL concentration. In this comparison, one can discern the difference in perfor-
mance as the XYL peak has undergone a significant potential shift and peak broadening
with diminished size/current. Tracking both the anodic peak current (I o) and Ep 4 for both
electrode systems during XYL exposure (Figure 4B, insets) shows the modified electrode
is able to maintain a linear relationship with current as a function of XYL concentration
and minimal shift in Ep, 5. In contrast, the bare GCE exhibits a shift in potential at low XYL
concentration exposure and, while the current is linear with concentration at low concentra-
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Using DPV XYL standard calibration curves were able to'be generated with the fully

modified electrodes, an example of which is shown in Figure 5. The performance of the
sensor includes an average sensitivity of 67.5 uA/mM that, when normalized to the geo-
metric area of the electrode, is calculated at 950 uA/mM:-cm?2. The sensitivity projects
across a linear range from about 15 to 255 um and a reliable limit of detection (LOD) at
under 5 ppm XYL. After calibration, the sensor response time to deliver a quantitative
measurement of XYL is equivalent to a DPV scan across a limited potential window (<2
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3.3. Analytical Performance of Xylazine Sensor

Using DPV, XYL standard calibration curves were able to be generated with the fully
modified electrodes, an example of which is shown in Figure 5. The performance of
the sensor includes an average sensitivity of 67.5 pA/mM that, when normalized to the
geometric area of the electrode, is calculated at 950 A /mM-cm?. The sensitivity projects
across a linear range from about 15 to 255 pm and a reliable limit of detection (LOD) at
under 5 ppm XYL. After calibration, the sensor response time to deliver a quantitative
measurement of XYL is equivalent to a DPV scan across a limited potential window
(<2 min). The analytical performance of the sensor, while comparable to other literature
reports [30-33], has the additional advantages of being simple, cost-effective, robustly
fabricated with readily available materials, and featuring an inherent resistance to fouling.
For comparison purposes, analogous DPV in similar XYL concentrations at a bare GCE
versus the modified electrode are provided in the Supplemental Data (Figures S7 and S8).
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potentials, however, a modified electrode must effectively exclude the fentanyl-associated
redox chemistry. Figure 6 illustrates the performance of the modified electrode versus a
bare GCE electrode in the presence of these compounds. At the bare GCE electrode, fen-
tanyl is clearly oxidized at a similar potential to XYL while the mixture of fentanyl and
XYL at bare GCEs shows a large peak that is the combination of the oxidation current from
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testing beverages is their potentially complex matrices and the evaluation of key interferent
species that may obscure or conflict with the XYL oxidation peak used for quantification. A
systematic approach was followed in that specific compounds common to a sample such as
cola (e.g., caffeine, sucrose, glucose) or a diet cola (e.g., phenylalanine, aspartame, citric
acid, acesulfame) were individually tested for electrochemical oxidation at a bare GCE that
may interfere with the XYL signal. These results, presented in the Supplementary Data
(Figure S11), revealed no major electroactivity from potential interferents in the +0.8 to
+1.0 V potential window where XYL oxidation is observed. Similar preliminary testing with
analogous findings was performed with vodka and tequila samples as well (Supplemental
Data, Figure 512). Even with these preliminary results, however, we included quantitative
analysis of simulated cola and diet cola doped with XYL in addition to applying the
sensors to actual beverage samples. Details of sample preparation and beverage testing
are supplied in the Experimental Details while the calibration curves generated in each
matrix are provided in the Supplemental Data (Figures S13-516). Table 1 summarizes
the results of using our sensor to detect a spike of 125 uM XYL in different beverages
compared to its established detection in PBS. As can be seen in the results, the sensors
perform admirably in most of the beverages, where percent recovery was between 95 and
104%. The results suggest the most complicated matrix is the regular cola, which exhibited
a significant loss of sensitivity. In some cases, when soda samples were first diluted (PBS),
sensitivity and percent recovery increased. The exact reason for the complications in cola
soda are unknown. If a specific interferent can be identified, the additional semi-permeable
layers have been successfully employed to discriminate against individual compounds
such as ascorbic acid [49]. Alternatively, soda cola samples may be approached with the
electrodes via standard addition methodology, which has shown to improve detection of
XYL in complex matrices [30,31].

Table 1. Xylazine Sensor Performance in Various Beverages.

Sensitivity Avg. Percent

System/Matrix (LA/mM) 2 n th;:;‘;iry
PBS/Standard —67.5 (+42) 3 102.1 (6.4
Simulated Cola —41.5 (446) 8 95.7 (+10.7)
Simulated Diet Cola —36.3 (+3.1) 4 97.0 (+82)
Cola ~7.7 (+09) 4 59.2 (476)

Diet Cola =154 (12) 7 95.6 (+12.4)
Diluted Cola ? —69.4 (144 4 84.5 (163)
Diluted Vodka P —42.2 (150) 4 103.5 (1123
Diluted Tequila —23.5 (134 4 76.50 (1111

Notes: @ Uncertainty () represents relative standard error; ® Samples were diluted (1:1) with PBS; ¢ Based on a
125 uM target concentration of XYL spike.

4. Conclusions

With the recognition that fentanyl derivatization represents a significant complication
to drug sensor development for first responders, medical personnel, police, and forensic
investigators, the dangerous and pervasive adulteration of fentanyl-based street drugs
with XYL, while lethal, provides an opportunity for more effective preliminary screening
methods [3,50]. The widespread use of XYL as an adulterant in fentanyl and fentanyl
derivatives provides an opportunity to design a sensor that circumvents the need to
target so many structurally different but equally potent forms of fentanyl drugs. The
oxidation of XYL additives represents a signal that can be used for fast identification of
the compound and the indirect indication of co-existence of fentanyl or one of its many
synthetic derivatives [6].This type of screening test would be a valuable tool to not only
protect first responders but to also help inform their assessments and first treatments (e.g.,
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administration of naloxone, an opioid antagonist, or tolazine to reverse effects of XYL).
The sensor developed in this study is resistant to the notorious XYL fouling of electrodes
during oxidation [30,32,33] and can detect XYL even in the presence of fentanyl and other
opioids (e.g., cocaine). In addition to the fouling resistance of the presented sensor, it also
benefits from simple construction of well-established and easily obtained materials while
utilizing a relatively simple electrochemical method that can be readily miniaturized as a
portable device [51].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics12110791/s1, Scheme S1: proposed example of XYL oxi-
dation; Figure S1: XYL DPV with DEHP; Figures S2 and S3: CV analysis of each modifying layer;
Figure S4: DVP oxidative scans at different XYL concentrations; Figure S5: Scan rate analysis of
XYL voltammetry; Table S1: CV scan rate analysis results; Figure S6: XYL DPV repeated scans with
fouling effect; Figures S7 and S8: DPVs used for XYL calibration curves at modified and unmodi-
fied electrodes; Figures S9 and S10: DPV scans in different mixtures of cocaine, XYL, and fentanyl;
Figures S11 and S12: interferent analysis; Figures S13-516: DPV generated calibration curves for cola,
diet cola, vodka, and tequila solutions.
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