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Abstract—Payment Channel Networks (PCNs) offer an efficient
off-chain alternative to the blockchain for transactions. Router
nodes in PCNs facilitate transactions between non-adjacent nodes
in exchange for a fee. PCN topology tends to be centralized,
with a select number of routers known as /hubs dominating all
payment services. The fee-setting choices of hubs in order to
maximize their revenue present fertile grounds for the study of
PCN communications and economics. In this paper, we conduct
a comprehensive analysis of the Hub Price-Setting (HPS) game.
In particular, we define approximate Best Response strategies
(e-BR) as well as approximate Nash equilibria (¢-NE). We prove
that for any € > 0, an ¢-BR always exists, and can be computed
in polynomial time. We also prove that for some ¢ > 0, an
e-NE may not exist. We furthermore introduce the notion of
conservative estimate and present a max-min approach to the
HPS game. Extensive evaluation results demonstrate the power
of our proposed approach.

Index Terms—Payment channel network, Lightning network,
game theory, approximate Nash equilibrium, max-min approach.

1. INTRODUCTION

The blockchain offers a platform for secure transactions by way
of decentralized consensus. However, it suffers from lackluster
throughput and high settlement latencies, making for a lack of
scalability [12]. Payment Channel Networks (PCNs) offer a
medium which circumvents this obstacle [6], [8], [9], [11]. A
PCN consists of a network of nodes connected by off-chain
payment channels. A payment channel has a capacity which
denotes the maximum payment it can route between its incident
nodes. Two adjacent nodes may use a payment channel to settle
as many transactions as desired. Two non-adjacent nodes may
rely on a smart contract [11] to construct a payment path. The
payment path’s constituent nodes sans the end nodes—known
as routers—charge a transaction fee to forward a payment [10].
Both of the aforementioned scenarios enable nodes to carry
out transactions while evading the blockchain.

An example of a widely used PCN is the Lightning Network
(LN) [8]. First implemented in 2017, as of February 2023 it
boasts roughly 16,000 online nodes and over 76,000 active
channels [2]. With their favorable throughput, lower settle-
ment latencies, and lower transaction fees compared to the
blockchain, PCNs will likely endure as an efficient platform for
off-chain transactions. A user node in a PCN wishes to make
payments with the lowest fees, while a router node in a PCN
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generates revenue from fees. Proposed fee-setting frameworks
for PCNs include [3], which aims to keep channels balanced,
and [4], which seeks to maximize revenue.

The routers set their fees to maximize their revenue in a
selfish and competitive manner. This goal is particularly elusive
because a router must be strategic with its fee-setting. If a
router sets its fee too high, it loses its economic advantage
over rival routers and on-chain transaction fees, driving away
potential client users. If it sets its fee too low, it enjoys a
reliable clientele, but may earn low revenue.

In [10], the competition between two routers is studied
using a game-theoretic approach. Their two-hub model consists
of two routers (hubs) providing payment services to a set
of nodes. The (sender) nodes intend to send payments to a
recipient node via one of the hubs. Some of the senders share
channels with only one of the two hubs, while other senders
share channels with both hubs. The senders sharing channels
with both hubs possess no inherent loyalty towards a single
hub. The two hubs hence occupy a market in which they must
compete for the attention of the senders they share via fee-
setting. A hub chooses its fee so as to maximize its revenue
based on the senders’ demands.

It has been shown in [10] that pure Nash equilibria as well
as best response strategies may or may not exist. In this paper,
we study the existence of approximate Nash equilibria and
approximate best response strategies. We prove that approx-
imate Nash equilibria may not exist, but approximate best
response strategies always exist. We further propose a max-
min approach to the game and use extensive numerical
results to demonstrate the power of the max-min approach.

The main contributions of this paper are as follows.

o We study the Hub Price-Setting (HPS) game and define
approximate best response strategies as well as approxi-
mate Nash equilibria.

e We prove that for any ¢ > 0, an e-BR always exists,
and can be computed in polynomial time. In contrast, we
prove that for some € > 0, an e-NE may not exist.

e We introduce the notion of conservative estimate and
present a max-min approach to the HPS game.

o We present extensive evaluation results to demonstrate the
power of our proposed approach.

The rest of this paper is organized as follows. In §2, we
present the system model. In §3, we present the HPS game
setting. In §4, we demonstrate the existence and computation
of ¢-BR. We also prove the non-existence of ¢-NE. In §5, we
present our max-min approach. We present evaluation results
in §6, and conclude the paper in §7.



2. SYSTEM MODEL

In this section, we present the system model. We use ¢ to
denote the index of routers, and use k to denote the index of
users. We use —i¢ to denote the logical negation of ¢. In other
words, when ¢ = 1, —¢ denotes 2; when ¢ = 2, — denotes 1.

A. Routers and Users

There are two competing routers, denoted by r; and 2. Router
r; has a balance B; > 0 and a reserved price RE; > 0,
i = 1,2. As in [10], we assume that the reserved price of
the two routers are the same, and denote this common value
by RE, i.e., REhy = RE>; = RE. Router r; can set a price
p; > RE, which is called the toll fee of r;, i =1, 2.

There are K users: ui,us,...,ux. User ui has a cost
upper-bound ¢, > 0 and a demand 6, > 0, k =1,2,..., K.
We assume both routers possess knowledge of all users’ cost
upper-bounds and demands. In practice, the routers can use
historic data to estimate these values. We denote the set of
users by Q, i.e., Q = {ug|l < k < K}. The set 2 is the union
of three disjoint subsets: €21, Q, Q.

Users in 2y are locked-in with 71, i.e., they can be served by
r1, but not by r5. Users in ()5 are locked-in with 75, i.e., they
can be served by ro, but not by r;. Users in €y are flexible,
i.e., they can be served by both r; and r5. We use the term
locked-in user to denote a user in €7 U 9, and use the term
flexible user to denote a user in ).

locked-in \
users

Fig. 1. System model of the HPS game. Links from users to routers are
uplinks. Down-links (from router to recipients) are not shown.

Fig. 1 illustrates the system model. Users in {2, are locked-
in with r1. Users in )5 are locked-in with ro. Users in )
are flexible. Since this paper concentrates on the competition
between r; and ro, down-links are not shown in the ﬁgure

Without loss of generality, we assume that ¢y < ¢y < --- <
ck. We denote min{RE, ¢|1 < k < K} by ¢, and denote
max{ci|l < k < K} by cmax. Hence we have ¢y < ¢ <
ca < --- < Cxg = Cmax. In the rest of this paper, we use R to
denote the set of real numbers. We use P to denote the interval
[RE, ck]. Unless specified otherwise, p; denotes the price of
Tis 1= 1, 2.

B. User Preference to Routers

Before proceeding, we define the following notations.

Si(z)={ux € Ylex >z}, di(x)= Y O, z€R, (1)
ukesl(a:)

Sa(z)={ur € Qe > 2}, da(x)= Y 0k, TER, ()
ukesz(a:)

So(z)={u € Qolex >z}, do(x)= Y 0k, z€R. (3)
ur €So(x)

S1(p1) is the set of users in €2 that can use router 1, and
dy(p1) is aggregated demand of the users in S1(p1). Sa(p2)
is the set of users in {25 that can use router ro, and da(p2) is
aggregated demand of the users in S2(p2). So(p1) is the set of
users in ) that can use router 71, and dy(p;) is aggregated
demand of the users in So(p1). So(p2) is the set of users in
Qo that can use router 7o, and do(p2) is aggregated demand
of the users in Sp(p2). We have the following lemma whose
proof is straightforward, and omitted.

Lemma 1: For ¢ = 0,1,2, d;(x) is monotonically non-
increasing, and .S;(x) is order reversing. In other words, z < y
implies d;(x) > d;(y) and S;(x) O S;(y). Furthermore, the
values of both d;(x) and S;(x) remain constant when z varies
in the interval (cx—1,ck], k=1,2,..., K. a

Given a user ug and a router r;, either wj cannot use r;
(e.g. up € 1 and ¢ = 2, or ¢ < p;) or uy can use ;. When
uy, can use both r; and 73, it prefers the router with a lower
price. In the following, we present a detailed analysis of user
preferences.

a. If ug € Q4, ug cannot use r».

b. If uy € Q9, up cannot use 7.

c. If up € Q and py > cg, ug will not use rq.

d. If up € Q and py > cp, ug will not use rs.

e. If uy € Q1 and py < ¢, uy is willing to use ry.

f. If up € Q9 and py < ¢, uy is willing to use 7s.

g. If up € Qg and p; = p2 < ¢y, ¢ is willing to use either
r1 or ro, with no preference.

h. If uy € Qg and p; < ¢ < pa, ¢k is willing to use 1, but
not ro.

i If up € Qg and py; < p2 < ¢k, ¢ is willing to use either
71 Or T9, but prefers ry to rs.

j. Ifug € Qo and py < ¢ < p1, ¢ is willing to use 79, but
not rq.

k. If up € Qg and po < p1 < ¢, ¢ is willing to use either
1 Or r9, but prefers r9 tO 71.

C. Assignment of User Demand to Routers

Now we are ready to describe the demand-router association.
Since p;1 > RE and p, > RE, user u; will not be served
by either r1 or ro if ¢, < RE (refer to properties ¢ and d
in section 2-B). Without loss of generality, we assume that
cy > RE fork=1,2,... K.

Routers r; and ro are competing against each other. Router
r;’s primary goal is to earn as much as possible. Router 7;’s
secondary goal is reduce its opponent’s earning as much as
possible [7], [10]. For technical rigour, we present detailed
case analysis of the competition in the following.

Case 1: p; = py. Since p1 = po2, we have So(p1) = So(p2)
and do(p1) = do(p2). Given the selfish and competitive nature,
router r; will compete for the demand of users in Sy(p;) =
So(p—i) first, serving the locked-in users in S;(p;) only if there
is left over balance.

Case la: p; = pg and By < %. In this case, r; will serve
B; demand from the users in Sy(p;), and zero demand from
the users in S7(p1). Router 7o will serve min{Bs, ds(p2) +




do(p2) — B1} demand from users in Sz (p2)USo(p2), including
min{ By, dy(p2) — B1} demand from the users in Sy(p2).

Case 1b: p; = p2 and By < %. In this case, ro will serve
By demand from the users in Sp(p2), and zero demand from
the users in S2(p2). Router 7y will serve min{By,d;(p1) +
do(p1) — B2} demand from users in Sy (p1)USo(p1), including
min{ By, dy(p1) — B2} demand from the users in Sy(p1).

. _ : do(p1) :
Case lc: py = p2 and min{ By, Bo} > <=2, In this case,

router r; will serve min{By,d;(p1) + %} demand from

users in Sy (p1) U So(p1), including % demand from users

in So(p1). Router ro will serve min{Bs,ds(p2) + %’T?
0(P2

demand from users in S2(p2) U Sp(pz), including
demand from users in Sy (p2).

Summary of Case 1: When p; = po, router r; will serve
min{ By, d;(p1) + max{dy(p1) — Ba, %}} demand from
users in So(p1)US1 (p1), router ro will serve min{ Ba, d2(p2)+
max{dy(p2) — By, W}} demand from users in Sy(p2) U
S2(p2).

Case 2: p; < py. According to Lemma 1, Sp(p2) C So(p1)
and do(p2) < do(p1). Since p1 < po, each user uy € Sp(p2)
prefers r; to ro because 1 charges less. Due to the competition
nature [7], r will serve min{By,d;(p1) + do(p1)} demand
from users in So(p1) U Si(p1), including min{By,dy(p2)}
demand from users in Sp(p2).

Case 2a: p; < pg and By > do(p2). In this case, router rq
will serve min{ By, d;(p1) + do(p1)} demand from users in
So(pl)Usl (pl), including do(pg) = min{Bl, do(pg)} demand
from users in Sp(p2). Router ro will serve min{Bs, da(p2)}
demand from users in S3(p2), and zero demand from users in
So(p2)-

Case 2b: p; < ps and By < do(p2). In this case, router 71
will serve min{By,d;(p1) + do(p1)} demand from users in
So(p1) U S1(p1), including By = min{B;,do(p2)} demand
from users in Sp(p2). Router ro will serve min{ Bs, da(p2) +
do(p2) — B1} demand from users in Sp(p2)US2(p2), including
min{Bsy,do(p2) — B1} demand from users in Sp(pa2).
Summary of Case 2: When p; < po, router r; will
serve min{By,d;(p1) + do(p1)} demand from users in
So(p1) U S1(p1), including min{B;,do(p2)} demand from
users in Sp(pz2); Router ro will serve min{Bs,da(p2) +
max{0, do(p2) — B1}} demand from users in Sp(p2) U Sa(p2).

Case 3: p; > py. Since p; > po, each user up € Sp(p1)
prefers ry to r; because 7y charges less. According to
Lemma 1, So(p1) € So(p2) and do(p1) < do(p2). Due to
the competition nature [7], ro will serve min{Bs,ds(p2) +
do(p2)} demand from users in So(p2) U S2(p2), including
min{Bs,dp(p1)} demand from users in Sy(p1).

Case 3a: p; > po and By > do(p1). In this case, router 7o
will serve min{Ba, d2(p2) + do(p2)} demand from users in
So(p2)US2(p2), including do(p1) = min{ Bz, do(p1)} demand
from users in Sp(p1). Router 1 will serve min{By,d;(p1)}
demand from users in S1(p1), and zero demand from users in
50(?1)-

Case 3b: p; > ps and By < dg(p1). In this case, router 7o
will serve min{Bs,da(p2) + do(p2)} demand from users in

So(p2) U S2(p2), including By = min{Bs,do(p1)} demand
from users in Sp(p1). Router 1 will serve min{ By, d;(p1) +
do(p1) — B2} demand from users in Sp(p1)U S (p1), including
min{By,dy(p1) — B2} demand from users in Sp(p1).
Summary of Case 3: When p; > po, router 7o will
serve min{ B, d2(p2) + do(p2)} demand from users in
So(p2) U Sa(p2), including min{Bs,dy(p1)} demand from
users in Sp(p1); Router r; will serve min{Ba,d;(p1) +
max{0,dy(p1)— Bz }} demand from users in Sy (p1)US1(p1).

3. THE HPS GAME SETTING

As in [10], we model the hub price-setting problem using a
static game with complete information [5]. We denote this
game by HPS. The two players in HPS are r; and ry. The
strategy of r; is router r;’s price p;, for ¢+ = 1, 2. The strategy
space of 7; is P = [RE, ¢max|, ¢ = 1,2. Let p; be a strategy
of 71, and py be a strategy of ro, we call (p1,p2) a strategy
profile.

A. Demand Association

Let (p1,p2) be a strategy profile. It follows from Section 2-C
that the total demand D (p1, p2) served by ry is

min{B1,d1(p1) + do(p1)},
min{B1, d1(p1) + max{do(p1) — Bz, dO(Qpl)
min{B1,d1(p1) + max{0,do(p1) — B2}},

The total demand Ds(p1,p2) served by ro is
min{ Bz, d2(p2) + max{0, do(p2) — B1}},
min{ Bz, d2(p2) + max{do(p2) — Bu, @}}v
min{ Bz, dz2(p2) + do(p2)},

if p1 <p2 (4a)
1}, ifpr=p2 (4b)
if p1 >p2  (4o)

if pr <p2 (52)
if p1r =p2 (5b)
if pr >p2 (5¢)

B. Utility Functions

The utility of r; corresponding to the strategy profile (p1, p2)
is U1(p1,p2) = p1 X Di(p1,p2). ie.,
pixmin{B1,d1(p1)+do(p1)},
do(p1)

p1><min{Bl,d1(P1)+maX{do(p1)*Bz,T}}, if p1 = p2 (6b)

p1xmin{ By, d1 (p1)+max{0, do(p1)— B2}},
The utility of ro corresponding to the strategy profile (p1,p2)
is U2(p1,p2) = p2 X Di(p1,p2), ie.,

p2xmin{ By, d2(p2) +max{0, do(p2) — B1}},

paxmin{ Ba, da (pa) +max{do(p2) — By, 272y,

2
p2xmin{ Bz, d2(p2)+do(p2)},

if p1 <p2 (62)

if p1 > p2 (60)

if pr <p2 (7a)
if p1 =p2 (7b)

if p1 >p2 (7¢)
C. Best Response Strategy

Let pa € P be given. A price p5¥(p2) € P is said to be a best

response strategy (BR) of ry corresponding to the strategy po
of T2, if

Ur(pF*(p2), p2) > Ui(q1,p2), Va1 € P. )

Let p; € P be given. A price p5¥(p1) > RE is said to be a

best response strategy of ro corresponding to the strategy p;
of rq, if

Us(p1, 157 (p1)) = Us(p1, 42), ¥g2 € P- )



D. Nash Equilibrium

A strategy profile (p1,p2) is called a Nash Equilibrium (NE)
if
Ui(p1,p2) > Ui(q1,p2), Vg1 € P (10)

Ua(p1,p2) > Ua(p1,q2), Vg2 € P (an
In other words, (p1,p2) is an NE if p; is a BR of rg
corresponding to the strategy ps of 7o, and ps is a BR of ro
corresponding to the strategy p; of 7.

4. ANALYSIS OF THE HPS GAME

It has been shown in [10] that best response strategies and pure
NEs may or may not exist in the HPS game. We define the
concept of e-BR and e-NE. We show that an e-BR always exists
for € > 0, yet an e-NE may not always exist.

A. Supremum and Maximum of the Utility Function

We define the supremum and maximum of the utility function
of a router as follows:

U™ (p-i) = sup Ui(pi, p-i), i =1,2. (12)
pi€EP

U™ (p-i) = max Uy(pi, p—i), @ = 1,2 (13)
piEP

Theorem 1: For i € {1,2} and any strategy p—; € P,
U:"P(p-;) can be computed in O(K?) time. O

Proof. Let n be such that ¢,,—1 < p—; < ¢,. Then U;(x,p—;)
is a linear function in each of the open intervals (c;_1,¢) for

k=1,2,....,n—1, (¢n—1,p=i)> (P=i,Cn), and (cx—1,cx) for
k=n+1,2,...,K. Let
X1 =Ui(p-i, p-i)s (14
Xo =max{U;(ck,p-i)|lk =0,1,2,..., K}, (15)

Y1 = max{ lim+Ui(a;,pﬁi), lim Ui(z,p-i)}, (16)
x i~

T—Cp—1 —DP-i
Yo =max{ lim U;(z,p-;), lim U;(z,p-;)}, (17)
T—p_;T T—Cp
Zp =max{ lim U;(z,p-;), Um U;(z,p-;)},
T—cp_1T T—>cp
1<k<K. (18)
sup N —
Then U;"" (p—;) InaX{Xl,XQ,Yl,}/Q,1§k1;l}a,()1(k;énZk}. O

The above proof also shows an algorithm to compute
U:"P(p-i) using O(K) utility evaluations. Since each utility
evaluation can be accomplished in O(K) time, we have
designed an O(K?) time algorithm for computing U;"" (p—;).

B. Non-existence of BR and NE

Lemma 2 and Lemma 3 were proved in [10]. We present them
here to make the current paper self-contained.

Lemma 2: U™**(p_;) does not always exist. Hence BR does
not always exist in HPS. U
Proof. We prove this by an example. In this example, we have
Bl = 80, BQ = 80, RE = 10, K = 3; CcC1 = 2.0,(51 = 40,
Co = 6.0,52 = 1.5, Cy = 6.0,53 = 1.5; QO = {ul}, Ql =
{uz}, Q2 = {us}.

When ry plays po = 2.0, r; does not have a best re-
sponse strategy. Since lim,,_, - U1(p,2.0) = lim,,_,5 ¢~ p X
(4.0 + 1.5) = 11.0, r; can earn a utility arbitrarily close to

U7"P(2.0) = 11.0, by setting p; < 2.0 but very close to 2.0.
However, it will never reach a utility of 11.0. When p; is set
to 2.0, the utility of r1 drops to 2.0 x (2.0 + 1.5) = 7.0. The
largest utility r; can earn by setting p; > 2.0 is 9.0, achieved
by setting p; = 6.0. |

Lemma 3: An NE does not always exist in HPS. ]
This can be viewed as a corollary of Theorem 3, since an NE
is a special case of an approximate NE.

C. Approximate BR and Approximate NE

Lemma 2 shows that a BR does not always exist. We introduce
the concept of approximate best response strategy [1] in the
following.

Definition 1: Let € > 0 be given real number. Let ¢ € {1,2}
and a strategy p—; € P be given. A strategy p$(p-;) € P
is called an e-approximate best response strategy of r; (with
respect to p—;), denoted as e-BR, if

Ui (P (p-i)s p-i) = U™ (p-i) — €. (19)
We use ¢-BR to denote an e-approximate best response strategy,
where ¢ and p_; can be implied from the context.[]

Theorem 2: Let ¢ > 0 be any positive real number. Let
i € {1,2} and a strategy p—; € P be given. An ¢-BR always
exists, and can be computed in polynomial time. (]
Proof. This follows from the definition of U;""(p—;). O

Note that € is a positive real number is Theorem 2. This is
in sharp contrast with Lemma 2 which corresponds to the case
where € is 0.

Definition 2: Let ¢ > 0 be given. A strategy profile (p1, p2)
is called an e-approximate NE, denoted as e-NE, if p; is an
€-BR corresponding to p, and ps is an e-BR corresponding to

p1- |
Theorem 3: For a given € > 0, an e-NE may not exist in
the HPS game. ]

Proof. We use an example to show the non-existence of 0.5-
NE. Such an example shows the non-existence of e-NE for
€ = 0.5. The non-existence of e¢-NE for other values of € can
be proved similarly. We choose to use € = 0.5 for ease of
understanding.

The instance of the two-router game is given by B; = 8.0,
BQ = 80, RE = 10, K = 3; c1 = 2.0,51 = 40, Cy =
6.0,52 = 1.5, Cy = 607(53 = 1.5; Qo = {ul}, Ql = {UQ},
0y = {us}. Assume that (p1,p2) be a 0.5-NE. We will derive
a contradiction. We first establish some facts.

(al) The maximum possible utility for ry is 11.0.
This is achieved when r; plays strategy p; = 2.0 and
ro plays strategy po > 2.0. 7 is serving all demand in
Qo U Q. If p; > 2.0, r; will not serve any demand in
Qo.

(a2) When ry plays strategy p1 = 6.0, vy has a utility of 9.0,
regardless of what strategy ro plays.

(@3) p1 € [37,2] U [, 6].
Since (p1,p2) is a 0.5-NE, Uy (p1,P2) > 9 — 0.5 = 8.5.
When p1 < 3, Uy (p1,p2) < 17 x (441.5) < 8.5,Vps €
P. Hence p; > 1.
When p; > 6, Ui (p1,p2) = 0,Vp2 € P. Hence p; < 6.



When p; > 2, Uy (p1,p2) = p1 X 1.5,Vpa € P. Hence
p1 > 2 and Uy (p1,P2) > 8.5 implies py > $2 = 1T
Similarly, we have
(bl) The maximum possible utility for ro is 11.0.
(b2) When ry plays strategy pa = 6.0, o has a utility of 9.0,
regardless of what strategy r1 plays.
(b3) p2 € [51, 2] U [ 6].
Next, we have the following.
(ad) If pp = &, we must have py € [1I,6].
When p2 < 11, Ug(ll,pg) p2 X (4+1.5) < 8.5. Hence
P2 > 1
Since Us (3L, 11) = (2+1.5) < 8.5, Pa
When pg € (%1 2], Uz(ll,pg) = pe X 1.5 < 8.5. Hence
P & (3£, 2]. It follows from (b3) that po € [£7, 6].
@5) If py € ( 17 2], we must have py € [37,p1) U |
When po = Py, we have Us (p1, p2) = p2 X (2+
Hence po # 131
When py < 3, Us(p1, p2)
P2 > 17
When ps > p1, we have Us(P1,p2) = p2 x 1.5. Since
Ug(pl,pg) > 8.5, po > pp implies ps € [ ,06).
(a6) If py € [ ,6], we must have po € [11,2]
When p; € [ ,6], the maximum possible utility of 7 is
11.0, by playlng strategy p2 = 2.0. Since Us(p1,p2) >
10.5, we must have P < 2. Since Us(p1,p2) > 11.0 —

0.5 = 10.5, we must have p, > 22 = 2

17
*3,]
1.5) < 8.5.

=po X (4+1.5) < 8.5. Hence

1

Similarly, we can have the following.
(bd) If ps = —, we must have py € [L,6].
(b5) If po € ( T 2], we must have py € [, py) U [T, 6].
(b6) If P2 € [, 6], we must have py € [}
Now we are ready to establish a contradiction.
Case 1: p; = 7 . We must have py € [1—37,6] by (a4). By
(b6), we must have p1 € [11, 2]. This contradicts p; = 1
Case 2: p1 € (17,2]. We must have ps € [17,p1) U [+, 6]
by (a3).
Case 2a: py € [%7,

11°

6). We derive p1 € [21,2] using (b6).
Since Us(p1,29) = 10, we conclude that p, & [1,6]
because Us(P1,p2) = p2 X 1.5 < 9,Vps € [13—7,6]. This is
a contradiction.

Case 2b: ps € [11,p1). By (b5), we must have p €
[1F,p2) U [4,6]. Since p1 € (17,2], we have py € [11,p2).
Now we have py < p1 < P2, a contradiction.

Case 3: p; 6 [17 6]. By (a6), we have p, € [2},2]. Since
Ur(22, p2) = 22 x(441.5) = 10, we conclude that py ¢ [3, 6]
because Ul(pl,pg) =p x1.5<9,Vp; € [17 6]. This is a
contradiction.

In summary, we have proved that (pq,p2) is not a 0.5-NE.
This contradiction completes the proof. d

5. THE MAX-MIN APPROACH TO HPS

Theorem 2 shows that for any given ¢ > 0 and a strategy
p—; of r—;, we can compute a €-BR of r; in polynomial time.
This gives us hope that an e-BR dynamic process [1] can be
used to compute an e-NE. However, Theorem 3 casts doubts

in the aforementioned e-BR dynamics, as an e-NE may not
always exist. In this section, we present an Max-min approach
to tackle the HPS game.

A. Conservative Estimate for the Utility of r;

For p; € P, we define the conservative estimate for r; by

U™ (p1) = min{U1 (p1,p2)|p2 € P} (20)
For py € P, we define the conservative estimate for ro by

Ui (py) = min{Us(p1, p2)|p1 € P}. 21)

Theorem 4: U™%(p;) = Ui(p1, RE). UP®(py) =
Us(RE, p2). In other words, the minimum utility for router
r; playing strategy p; is achieved when router r_; is playing
strategy p-; = RE. Furthermore, the conservative estimates
Umin(p;) and U" (py) can be computed in O(K) time. [J
Proof. When r_; plays strategy p—;, router serves the minimum
user demand. This proves the theorem. (]

B. The Max-min Strategy of r;

The optimal conservative strategy for router r; is

PPt =arg max(UM™ (p;)), i=1,2. (22)
pi€EP
Theorem 5: Both p{** and p5°*

polynomial time. Furthermore, we have

Ul( opt’p(z)pt) > Umm( opt)7 (23)

UQ( Opt’pgpt) > Urmn( Opt) (24)
In other words, when both routers play their optimal conser-
vative strategies, router r;’s actual utility is at least as good as
UIIIIII( OPt)' 0
Proof. Inequalities (23) and (24) are direct consequences of
the definition. We prove that p;™* can be computed in O(K?)
time. The time complexity for computing pgpt can be proved
similarly.

We note that py® is either RE or greater than RE.
UPin(RE) can be evaluated in O(K) time. For p; > RE,
Umin(p,) is computed using Eq. (6¢). For k = 1,2,..., K,
both dy(z) and do(z) are constants when = € (cg_1,crl.
Therefore for each k = 1,2, ..., K, the maximum of U™"(p, )
when ci_1 < p1 < ¢ is achieved with p; = ci. Since we are
evaluating O(K) utility values, the time complexity is O(K?).
This proves the theorem. ]

t .
can be computed in

6. EVALUATION

We use randomly generated test cases to evaluate the per-
formance of the proposed max-min approach to HPS. In
this section, we present our evaluation setting, the evaluation
results, and our observations.

A. Evaluation Setting

We study the performance of our proposed max-min approach
in 10 scenarios, where the number of users varies from 100
to 1000 (i.e. K = 100, 200,...,1000). Each scenario has the
following parameters: K, RE > 0, By > 0, By > 0, Chuin
and Chax such that Chax > Chin > RE, Anin and Apax
such that A > Apin > 0.



A test case for a given scenario is generated by set-
ting RE, By, By to the specified parameters, and randomly
generating K users where c; is a random number in the
interval [Ciin, Cmax), Ok is @ random number in the interval
[Amin, Amax] and user uy is randomly assigned to one of the
three sets: 1, Qs, Q.

For each scenario, we generate 100 test cases, compute the
values poP*, UM (pPY), Uy (pP', poP*), i = 1,2. We compute
the maximum, mean, and minimum of the ratios

7= U1 (p(l)pt7p(2)pt)/U{nin (pipt),
o = Uz (™", p5™) /U™ (p5™°).

B. Results and Observations

(25)
(26)

We present the evaluation results using the generated test cases.

(a) Max, mean, min values of 1

(b) Max, mean, min values of 72

Fig. 2. Stats of 1 and ~2 in different K sizes (scaling router capacity).

Fig. 2 shows the result where By = By = K (scaling
router capacity). We observe that v; is always greater than
or equal to 1.0. This is consistent with equations (23) and
(24) in Theorem 5, which says that the actual utility of router
r; is always greater than or equal to its conservative estimate
Uimin(p;)Pt)'

We observe that the minimum of ~;, regardless of K, is
exactly 1.0. We attribute this observation to the fact that if v,
is 1.0 in one of the 100 test cases, then the minimum of v,
will be 1.0. We observe that the mean of ~; is around 1.38, and
maximum is above the 2.0 mark. This shows that U (pS")
is a very conservative estimate. Our results show that the max-
min strategy achieves on average about 38% more utility when
compared to the conservative estimate.

The max-min approach works well for both r; and ry. As
Fig. 2 indicates, the value of ~; is comparable to that of 7.
Other than slight turbulence caused by the randomness of the
data, the overall results are similar in both graphs.

25 25

——Min 2 ——Min

— == Max === Max

200 400 600 800 1000 200 400 600 800 1000
K K

(a) Max, mean, min values of 1 (b) Max, mean, min values of 72

Fig. 3. Stats of 1 and ~2 in different K sizes (fixed router capacity).

Fig. 3 shows the result where By = By = 200 (fixed router
capacity). For K = 100 and 200, we observe a similar pattern
as in the scaling router capacity scenario. However the ratios
decrease towards 1.0 as K increases, eventually stabilize at
1.0.

This can be explained by the saturation of both routers with
increased user demand at larger K values. As K increases,
the demand of locked-in user set £2; and €2 also increases,
eventually causing both routers to run at their capacities. This
results in decreases in y; as both routers do not have to compete
as hard for customer.

7. CONCLUSIONS

In this paper, we have studied the hub fee-setting behavior in
payment channel networks. Since pure NE and best response
strategies do not always exist, we define approximate best
response strategies as well as approximate Nash equilibria. On
the negative side, we prove that for some € > 0, an e-NE may
not exist. On the positive side, we prove that for any € > 0, an
€-BR always exists, and can be computed in polynomial time.
Furthermore, we introduce the notion of conservative estimate
and present a novel max-min approach to HPS. Our evaluation
results demonstrate the power of the max-min approach.

An interesting future research direction is to study the per-
formance of the proposed max-min approach on real payment
channel network topologies, such as the ones used in [10],
[12]. It is also interesting to investigate the case where the
routers only know the distributions of the user demands and
cost upper-bounds.
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