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Abstract—Payment Channel Networks (PCNs) offer an efficient
off-chain alternative to the blockchain for transactions. Router
nodes in PCNs facilitate transactions between non-adjacent nodes
in exchange for a fee. PCN topology tends to be centralized,
with a select number of routers known as hubs dominating all
payment services. The fee-setting choices of hubs in order to
maximize their revenue present fertile grounds for the study of
PCN communications and economics. In this paper, we conduct
a comprehensive analysis of the Hub Price-Setting (HPS) game.
In particular, we define approximate Best Response strategies
(ϵ-BR) as well as approximate Nash equilibria (ϵ-NE). We prove
that for any ϵ > 0, an ϵ-BR always exists, and can be computed
in polynomial time. We also prove that for some ϵ > 0, an
ϵ-NE may not exist. We furthermore introduce the notion of
conservative estimate and present a max-min approach to the
HPS game. Extensive evaluation results demonstrate the power
of our proposed approach.

Index Terms—Payment channel network, Lightning network,
game theory, approximate Nash equilibrium, max-min approach.

1. INTRODUCTION

The blockchain offers a platform for secure transactions by way
of decentralized consensus. However, it suffers from lackluster
throughput and high settlement latencies, making for a lack of
scalability [12]. Payment Channel Networks (PCNs) offer a
medium which circumvents this obstacle [6], [8], [9], [11]. A
PCN consists of a network of nodes connected by off-chain
payment channels. A payment channel has a capacity which
denotes the maximum payment it can route between its incident
nodes. Two adjacent nodes may use a payment channel to settle
as many transactions as desired. Two non-adjacent nodes may
rely on a smart contract [11] to construct a payment path. The
payment path’s constituent nodes sans the end nodes–known
as routers–charge a transaction fee to forward a payment [10].
Both of the aforementioned scenarios enable nodes to carry
out transactions while evading the blockchain.

An example of a widely used PCN is the Lightning Network
(LN) [8]. First implemented in 2017, as of February 2023 it
boasts roughly 16,000 online nodes and over 76,000 active
channels [2]. With their favorable throughput, lower settle-
ment latencies, and lower transaction fees compared to the
blockchain, PCNs will likely endure as an efficient platform for
off-chain transactions. A user node in a PCN wishes to make
payments with the lowest fees, while a router node in a PCN
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generates revenue from fees. Proposed fee-setting frameworks
for PCNs include [3], which aims to keep channels balanced,
and [4], which seeks to maximize revenue.

The routers set their fees to maximize their revenue in a
selfish and competitive manner. This goal is particularly elusive
because a router must be strategic with its fee-setting. If a
router sets its fee too high, it loses its economic advantage
over rival routers and on-chain transaction fees, driving away
potential client users. If it sets its fee too low, it enjoys a
reliable clientele, but may earn low revenue.

In [10], the competition between two routers is studied
using a game-theoretic approach. Their two-hub model consists
of two routers (hubs) providing payment services to a set
of nodes. The (sender) nodes intend to send payments to a
recipient node via one of the hubs. Some of the senders share
channels with only one of the two hubs, while other senders
share channels with both hubs. The senders sharing channels
with both hubs possess no inherent loyalty towards a single
hub. The two hubs hence occupy a market in which they must
compete for the attention of the senders they share via fee-
setting. A hub chooses its fee so as to maximize its revenue
based on the senders’ demands.

It has been shown in [10] that pure Nash equilibria as well
as best response strategies may or may not exist. In this paper,
we study the existence of approximate Nash equilibria and
approximate best response strategies. We prove that approx-
imate Nash equilibria may not exist, but approximate best
response strategies always exist. We further propose a max-
min approach to the game and use extensive numerical
results to demonstrate the power of the max-min approach.

The main contributions of this paper are as follows.

• We study the Hub Price-Setting (HPS) game and define
approximate best response strategies as well as approxi-
mate Nash equilibria.

• We prove that for any ϵ > 0, an ϵ-BR always exists,
and can be computed in polynomial time. In contrast, we
prove that for some ϵ > 0, an ϵ-NE may not exist.

• We introduce the notion of conservative estimate and
present a max-min approach to the HPS game.

• We present extensive evaluation results to demonstrate the
power of our proposed approach.

The rest of this paper is organized as follows. In §2, we
present the system model. In §3, we present the HPS game
setting. In §4, we demonstrate the existence and computation
of ϵ-BR. We also prove the non-existence of ϵ-NE. In §5, we
present our max-min approach. We present evaluation results
in §6, and conclude the paper in §7.



2. SYSTEM MODEL

In this section, we present the system model. We use i to
denote the index of routers, and use k to denote the index of
users. We use ¬i to denote the logical negation of i. In other
words, when i = 1, ¬i denotes 2; when i = 2, ¬i denotes 1.

A. Routers and Users

There are two competing routers, denoted by r1 and r2. Router
ri has a balance Bi > 0 and a reserved price REi ≥ 0,
i = 1, 2. As in [10], we assume that the reserved price of
the two routers are the same, and denote this common value
by RE, i.e., RE1 = RE2 = RE. Router ri can set a price
pi ≥ RE, which is called the toll fee of ri, i = 1, 2.

There are K users: u1, u2, . . . , uK . User uk has a cost
upper-bound ck > 0 and a demand δk > 0, k = 1, 2, . . . ,K .
We assume both routers possess knowledge of all users’ cost
upper-bounds and demands. In practice, the routers can use
historic data to estimate these values. We denote the set of
users by Ω, i.e., Ω = {uk|1 ≤ k ≤ K}. The set Ω is the union
of three disjoint subsets: Ω1, Ω2, Ω0.

Users in Ω1 are locked-in with r1, i.e., they can be served by
r1, but not by r2. Users in Ω2 are locked-in with r2, i.e., they
can be served by r2, but not by r1. Users in Ω0 are flexible,
i.e., they can be served by both r1 and r2. We use the term
locked-in user to denote a user in Ω1 ∪ Ω2, and use the term
flexible user to denote a user in Ω0.

router r1 router r2

 Ω1:   
locked-in 

users 

  Ω2: 
locked-in 

users

Ω0: flexible users

Fig. 1. System model of the HPS game. Links from users to routers are
uplinks. Down-links (from router to recipients) are not shown.

Fig. 1 illustrates the system model. Users in Ω1 are locked-
in with r1. Users in Ω2 are locked-in with r2. Users in Ω0

are flexible. Since this paper concentrates on the competition
between r1 and r2, down-links are not shown in the figure.

Without loss of generality, we assume that c1 ≤ c2 ≤ · · · ≤
cK . We denote min{RE, ck|1 ≤ k ≤ K} by c0, and denote
max{ck|1 ≤ k ≤ K} by cmax. Hence we have c0 ≤ c1 ≤
c2 ≤ · · · ≤ cK = cmax. In the rest of this paper, we use R to
denote the set of real numbers. We use P to denote the interval
[RE, cK ]. Unless specified otherwise, pi denotes the price of
ri, i = 1, 2.

B. User Preference to Routers

Before proceeding, we define the following notations.
S1(x)={uk ∈ Ω1|ck ≥ x}, d1(x)=

∑
uk∈S1(x)

δk, x ∈ R, (1)

S2(x)={uk ∈ Ω2|ck ≥ x}, d2(x)=
∑

uk∈S2(x)

δk, x ∈ R, (2)

S0(x)={uk ∈ Ω0|ck ≥ x}, d0(x)=
∑

uk∈S0(x)

δk, x ∈ R. (3)

S1(p1) is the set of users in Ω1 that can use router r1, and
d1(p1) is aggregated demand of the users in S1(p1). S2(p2)
is the set of users in Ω2 that can use router r2, and d2(p2) is
aggregated demand of the users in S2(p2). S0(p1) is the set of
users in Ω0 that can use router r1, and d0(p1) is aggregated
demand of the users in S0(p1). S0(p2) is the set of users in
Ω0 that can use router r2, and d0(p2) is aggregated demand
of the users in S0(p2). We have the following lemma whose
proof is straightforward, and omitted.

Lemma 1: For i = 0, 1, 2, di(x) is monotonically non-
increasing, and Si(x) is order reversing. In other words, x < y
implies di(x) ≥ di(y) and Si(x) ⊇ Si(y). Furthermore, the
values of both di(x) and Si(x) remain constant when x varies
in the interval (ck−1, ck], k = 1, 2, . . . ,K . □

Given a user uk and a router ri, either uk cannot use ri
(e.g. uk ∈ Ω1 and i = 2, or ck < pi) or uk can use ri. When
uk can use both r1 and r2, it prefers the router with a lower
price. In the following, we present a detailed analysis of user
preferences.

a. If uk ∈ Ω1, uk cannot use r2.
b. If uk ∈ Ω2, uk cannot use r1.
c. If uk ∈ Ω and p1 > ck, uk will not use r1.
d. If uk ∈ Ω and p2 > ck, uk will not use r2.
e. If uk ∈ Ω1 and p1 ≤ ck, uk is willing to use r1.
f. If uk ∈ Ω2 and p2 ≤ ck, uk is willing to use r2.
g. If uk ∈ Ω0 and p1 = p2 ≤ ck, ck is willing to use either

r1 or r2, with no preference.
h. If uk ∈ Ω0 and p1 ≤ ck < p2, ck is willing to use r1, but

not r2.
i. If uk ∈ Ω0 and p1 < p2 ≤ ck, ck is willing to use either

r1 or r2, but prefers r1 to r2.
j. If uk ∈ Ω0 and p2 ≤ ck < p1, ck is willing to use r2, but

not r1.
k. If uk ∈ Ω0 and p2 < p1 ≤ ck, ck is willing to use either

r1 or r2, but prefers r2 to r1.

C. Assignment of User Demand to Routers

Now we are ready to describe the demand-router association.
Since p1 ≥ RE and p2 ≥ RE, user uk will not be served
by either r1 or r2 if ck < RE (refer to properties c and d
in section 2-B). Without loss of generality, we assume that
ck ≥ RE for k = 1, 2, . . . ,K .

Routers r1 and r2 are competing against each other. Router
ri’s primary goal is to earn as much as possible. Router ri’s
secondary goal is reduce its opponent’s earning as much as
possible [7], [10]. For technical rigour, we present detailed
case analysis of the competition in the following.

Case 1: p1 = p2. Since p1 = p2, we have S0(p1) = S0(p2)
and d0(p1) = d0(p2). Given the selfish and competitive nature,
router ri will compete for the demand of users in S0(pi) =
S0(p¬i) first, serving the locked-in users in Si(pi) only if there
is left over balance.
Case 1a: p1 = p2 and B1 < d0(p1)

2 . In this case, r1 will serve
B1 demand from the users in S0(p1), and zero demand from
the users in S1(p1). Router r2 will serve min{B2, d2(p2) +



d0(p2)−B1} demand from users in S2(p2)∪S0(p2), including
min{B2, d0(p2)−B1} demand from the users in S0(p2).
Case 1b: p1 = p2 and B2 < d0(p2)

2 . In this case, r2 will serve
B2 demand from the users in S0(p2), and zero demand from
the users in S2(p2). Router r1 will serve min{B1, d1(p1) +
d0(p1)−B2} demand from users in S1(p1)∪S0(p1), including
min{B1, d0(p1)−B2} demand from the users in S0(p1).
Case 1c: p1 = p2 and min{B1, B2} ≥ d0(p1)

2 . In this case,

router r1 will serve min{B1, d1(p1) +
d0(p1)

2 } demand from
users in S1(p1)∪S0(p1), including d0(p1)

2 demand from users
in S0(p1). Router r2 will serve min{B2, d2(p2) + d0(p2)

2 }
demand from users in S2(p2) ∪ S0(p2), including d0(p2)

2
demand from users in S0(p2).
Summary of Case 1: When p1 = p2, router r1 will serve
min{B1, d1(p1) + max{d0(p1) − B2,

d0(p1)
2 }} demand from

users in S0(p1)∪S1(p1), router r2 will serve min{B2, d2(p2)+

max{d0(p2) − B1,
d0(p2)

2 }} demand from users in S0(p2) ∪
S2(p2).

Case 2: p1 < p2. According to Lemma 1, S0(p2) ⊆ S0(p1)
and d0(p2) ≤ d0(p1). Since p1 < p2, each user uk ∈ S0(p2)
prefers r1 to r2 because r1 charges less. Due to the competition
nature [7], r1 will serve min{B1, d1(p1) + d0(p1)} demand
from users in S0(p1) ∪ S1(p1), including min{B1, d0(p2)}
demand from users in S0(p2).
Case 2a: p1 < p2 and B1 ≥ d0(p2). In this case, router r1
will serve min{B1, d1(p1) + d0(p1)} demand from users in
S0(p1)∪S1(p1), including d0(p2) = min{B1, d0(p2)} demand
from users in S0(p2). Router r2 will serve min{B2, d2(p2)}
demand from users in S2(p2), and zero demand from users in
S0(p2).
Case 2b: p1 < p2 and B1 < d0(p2). In this case, router r1
will serve min{B1, d1(p1) + d0(p1)} demand from users in
S0(p1) ∪ S1(p1), including B1 = min{B1, d0(p2)} demand
from users in S0(p2). Router r2 will serve min{B2, d2(p2) +
d0(p2)−B1} demand from users in S0(p2)∪S2(p2), including
min{B2, d0(p2)−B1} demand from users in S0(p2).
Summary of Case 2: When p1 < p2, router r1 will
serve min{B1, d1(p1) + d0(p1)} demand from users in
S0(p1) ∪ S1(p1), including min{B1, d0(p2)} demand from
users in S0(p2); Router r2 will serve min{B2, d2(p2) +
max{0, d0(p2)−B1}} demand from users in S0(p2)∪S2(p2).

Case 3: p1 > p2. Since p1 > p2, each user uk ∈ S0(p1)
prefers r2 to r1 because r2 charges less. According to
Lemma 1, S0(p1) ⊆ S0(p2) and d0(p1) ≤ d0(p2). Due to
the competition nature [7], r2 will serve min{B2, d2(p2) +
d0(p2)} demand from users in S0(p2) ∪ S2(p2), including
min{B2, d0(p1)} demand from users in S0(p1).
Case 3a: p1 > p2 and B2 ≥ d0(p1). In this case, router r2
will serve min{B2, d2(p2) + d0(p2)} demand from users in
S0(p2)∪S2(p2), including d0(p1) = min{B2, d0(p1)} demand
from users in S0(p1). Router r1 will serve min{B1, d1(p1)}
demand from users in S1(p1), and zero demand from users in
S0(p1).
Case 3b: p1 > p2 and B2 < d0(p1). In this case, router r2
will serve min{B2, d2(p2) + d0(p2)} demand from users in

S0(p2) ∪ S2(p2), including B2 = min{B2, d0(p1)} demand
from users in S0(p1). Router r1 will serve min{B1, d1(p1) +
d0(p1)−B2} demand from users in S0(p1)∪S1(p1), including
min{B1, d0(p1)−B2} demand from users in S0(p1).
Summary of Case 3: When p1 > p2, router r2 will
serve min{B2, d2(p2) + d0(p2)} demand from users in
S0(p2) ∪ S2(p2), including min{B2, d0(p1)} demand from
users in S0(p1); Router r1 will serve min{B2, d1(p1) +
max{0, d0(p1)−B2}} demand from users in S0(p1)∪S1(p1).

3. THE HPS GAME SETTING

As in [10], we model the hub price-setting problem using a
static game with complete information [5]. We denote this
game by HPS. The two players in HPS are r1 and r2. The
strategy of ri is router ri’s price pi, for i = 1, 2. The strategy
space of ri is P = [RE, cmax], i = 1, 2. Let p1 be a strategy
of r1, and p2 be a strategy of r2, we call (p1, p2) a strategy
profile.

A. Demand Association
Let (p1, p2) be a strategy profile. It follows from Section 2-C
that the total demand D1(p1, p2) served by r1 is

min{B1, d1(p1) + d0(p1)}, if p1 < p2 (4a)

min{B1, d1(p1) + max{d0(p1)−B2,
d0(p1)

2
}}, if p1 = p2 (4b)

min{B1, d1(p1) + max{0, d0(p1)−B2}}, if p1 > p2 (4c)

The total demand D2(p1, p2) served by r2 is
min{B2, d2(p2) + max{0, d0(p2)−B1}}, if p1 < p2 (5a)

min{B2, d2(p2) + max{d0(p2)−B1,
d0(p2)

2
}}, if p1 = p2 (5b)

min{B2, d2(p2) + d0(p2)}, if p1 > p2 (5c)

B. Utility Functions
The utility of r1 corresponding to the strategy profile (p1, p2)
is U1(p1, p2) = p1 ×D1(p1, p2), i.e.,

p1×min{B1, d1(p1)+d0(p1)}, if p1 < p2 (6a)

p1×min{B1, d1(p1)+max{d0(p1)−B2,
d0(p1)

2
}}, if p1 = p2 (6b)

p1×min{B1, d1(p1)+max{0, d0(p1)−B2}}, if p1 > p2 (6c)

The utility of r2 corresponding to the strategy profile (p1, p2)
is U2(p1, p2) = p2 ×D1(p1, p2), i.e.,

p2×min{B2, d2(p2)+max{0, d0(p2)−B1}}, if p1 < p2 (7a)

p2×min{B2, d2(p2)+max{d0(p2)−B1,
d0(p2)

2
}}, if p1 = p2 (7b)

p2×min{B2, d2(p2)+d0(p2)}, if p1 > p2 (7c)

C. Best Response Strategy

Let p2 ∈ P be given. A price pBR1 (p2) ∈ P is said to be a best
response strategy (BR) of r1 corresponding to the strategy p2
of r2, if

U1(p
BR
1 (p2), p2) ≥ U1(q1, p2), ∀q1 ∈ P . (8)

Let p1 ∈ P be given. A price pBR2 (p1) ≥ RE is said to be a
best response strategy of r2 corresponding to the strategy p1
of r1, if

U2(p1, p
BR
2 (p1)) ≥ U2(p1, q2), ∀q2 ∈ P. (9)



D. Nash Equilibrium

A strategy profile (p1, p2) is called a Nash Equilibrium (NE)
if

U1(p1, p2) ≥ U1(q1, p2), ∀q1 ∈ P (10)
U2(p1, p2) ≥ U2(p1, q2), ∀q2 ∈ P (11)

In other words, (p1, p2) is an NE if p1 is a BR of r1
corresponding to the strategy p2 of r2, and p2 is a BR of r2
corresponding to the strategy p1 of r1.

4. ANALYSIS OF THE HPS GAME

It has been shown in [10] that best response strategies and pure
NEs may or may not exist in the HPS game. We define the
concept of ϵ-BR and ϵ-NE. We show that an ϵ-BR always exists
for ϵ > 0, yet an ϵ-NE may not always exist.

A. Supremum and Maximum of the Utility Function

We define the supremum and maximum of the utility function
of a router as follows:

U sup
i (p¬i) = sup

pi∈P
Ui(pi, p¬i), i = 1, 2. (12)

Umax
i (p¬i) = max

pi∈P
Ui(pi, p¬i), i = 1, 2. (13)

Theorem 1: For i ∈ {1, 2} and any strategy p¬i ∈ P ,
U sup
i (p¬i) can be computed in O(K2) time. □

Proof. Let n be such that cn−1 ≤ p¬i < cn. Then Ui(x, p¬i)
is a linear function in each of the open intervals (ck−1, ck) for
k = 1, 2, . . . , n − 1, (cn−1, p¬i), (p¬i, cn), and (ck−1, ck) for
k = n+ 1, 2, . . . ,K . Let

X1 =Ui(p¬i, p¬i), (14)
X2 =max{Ui(ck, p¬i)|k = 0, 1, 2, . . . ,K}, (15)
Y1 =max{ lim

x→cn−1
+
Ui(x, p¬i), lim

x→p¬i
−
Ui(x, p¬i)}, (16)

Y2 =max{ lim
x→p¬i

+
Ui(x, p¬i), lim

x→cn−
Ui(x, p¬i)}, (17)

Zk =max{ lim
x→ck−1

+
Ui(x, p¬i), lim

x→ck−
Ui(x, p¬i)},

1 ≤ k ≤ K. (18)
Then U sup

i (p¬i) = max{X1, X2, Y1, Y2, max
1≤k≤K,k ̸=n

Zk}. □

The above proof also shows an algorithm to compute
U sup
i (p¬i) using O(K) utility evaluations. Since each utility

evaluation can be accomplished in O(K) time, we have
designed an O(K2) time algorithm for computing U sup

i (p¬i).

B. Non-existence of BR and NE

Lemma 2 and Lemma 3 were proved in [10]. We present them
here to make the current paper self-contained.

Lemma 2: Umax
i (p¬i) does not always exist. Hence BR does

not always exist in HPS. □
Proof. We prove this by an example. In this example, we have
B1 = 8.0, B2 = 8.0, RE = 1.0; K = 3; c1 = 2.0, δ1 = 4.0,
c2 = 6.0, δ2 = 1.5, c2 = 6.0, δ3 = 1.5; Ω0 = {u1}, Ω1 =
{u2}, Ω2 = {u3}.

When r2 plays p2 = 2.0, r1 does not have a best re-
sponse strategy. Since limp→2.0− U1(p, 2.0) = limp→2.0− p ×
(4.0 + 1.5) = 11.0, r1 can earn a utility arbitrarily close to

U sup
1 (2.0) = 11.0, by setting p1 < 2.0 but very close to 2.0.

However, it will never reach a utility of 11.0. When p1 is set
to 2.0, the utility of r1 drops to 2.0× (2.0 + 1.5) = 7.0. The
largest utility r1 can earn by setting p1 > 2.0 is 9.0, achieved
by setting p1 = 6.0. □

Lemma 3: An NE does not always exist in HPS. □
This can be viewed as a corollary of Theorem 3, since an NE
is a special case of an approximate NE.

C. Approximate BR and Approximate NE

Lemma 2 shows that a BR does not always exist. We introduce
the concept of approximate best response strategy [1] in the
following.

Definition 1: Let ϵ ≥ 0 be given real number. Let i ∈ {1, 2}
and a strategy p¬i ∈ P be given. A strategy pϵi(p¬i) ∈ P
is called an ϵ-approximate best response strategy of ri (with
respect to p¬i), denoted as ϵ-BR, if

Ui(p
ϵ
i(p¬i), p¬i) ≥ U sup

i (p¬i)− ϵ. (19)
We use ϵ-BR to denote an ϵ-approximate best response strategy,
where i and p¬i can be implied from the context.□

Theorem 2: Let ϵ > 0 be any positive real number. Let
i ∈ {1, 2} and a strategy p¬i ∈ P be given. An ϵ-BR always
exists, and can be computed in polynomial time. □
Proof. This follows from the definition of U sup

i (p¬i). □
Note that ϵ is a positive real number is Theorem 2. This is

in sharp contrast with Lemma 2 which corresponds to the case
where ϵ is 0.

Definition 2: Let ϵ ≥ 0 be given. A strategy profile (p1, p2)
is called an ϵ-approximate NE, denoted as ϵ-NE, if p1 is an
ϵ-BR corresponding to p2 and p2 is an ϵ-BR corresponding to
p1. □

Theorem 3: For a given ϵ > 0, an ϵ-NE may not exist in
the HPS game. □
Proof. We use an example to show the non-existence of 0.5-
NE. Such an example shows the non-existence of ϵ-NE for
ϵ = 0.5. The non-existence of ϵ-NE for other values of ϵ can
be proved similarly. We choose to use ϵ = 0.5 for ease of
understanding.

The instance of the two-router game is given by B1 = 8.0,
B2 = 8.0, RE = 1.0; K = 3; c1 = 2.0, δ1 = 4.0, c2 =
6.0, δ2 = 1.5, c2 = 6.0, δ3 = 1.5; Ω0 = {u1}, Ω1 = {u2},
Ω2 = {u3}. Assume that (p̄1, p̄2) be a 0.5-NE. We will derive
a contradiction. We first establish some facts.
(a1) The maximum possible utility for r1 is 11.0.

This is achieved when r1 plays strategy p1 = 2.0 and
r2 plays strategy p2 > 2.0. r1 is serving all demand in
Ω0 ∪ Ω1. If p1 > 2.0, r1 will not serve any demand in
Ω0.

(a2) When r1 plays strategy p1 = 6.0, r1 has a utility of 9.0,
regardless of what strategy r2 plays.

(a3) p̄1 ∈ [ 1711 , 2] ∪ [ 173 , 6].
Since (p̄1, p̄2) is a 0.5-NE, U1(p̄1, p̄2) ≥ 9− 0.5 = 8.5.
When p1 < 17

11 , U1(p1, p2) <
17
11 ×(4+1.5) < 8.5, ∀p2 ∈

P . Hence p̄1 ≥ 17
11 .

When p1 > 6, U1(p1, p2) = 0, ∀p2 ∈ P . Hence p̄1 ≤ 6.



When p1 > 2, U1(p1, p2) = p1 × 1.5, ∀p2 ∈ P . Hence
p̄1 > 2 and U1(p̄1, p̄2) ≥ 8.5 implies p̄1 ≥ 8.5

1.5 = 17
3 .

Similarly, we have
(b1) The maximum possible utility for r2 is 11.0.
(b2) When r2 plays strategy p2 = 6.0, r2 has a utility of 9.0,

regardless of what strategy r1 plays.
(b3) p̄2 ∈ [ 1711 , 2] ∪ [ 173 , 6].

Next, we have the following.
(a4) If p̄1 = 17

11 , we must have p̄2 ∈ [ 173 , 6].
When p2 < 17

11 , U2(
17
11 , p2) = p2×(4+1.5) < 8.5. Hence

p̄2 ≥ 17
11 .

Since U2(
17
11 ,

17
11 ) =

17
11 × (2 + 1.5) < 8.5, p̄2 ̸= 17

11 .
When p2 ∈ ( 1711 , 2], U2(

17
11 , p2) = p2 × 1.5 < 8.5. Hence

p̄2 ̸∈ ( 1711 , 2]. It follows from (b3) that p̄2 ∈ [ 173 , 6].
(a5) If p̄1 ∈ ( 1711 , 2], we must have p̄2 ∈ [ 1711 , p̄1) ∪ [ 173 , 6].

When p2 = p̄1, we have U2(p̄1, p2) = p2×(2+1.5) < 8.5.
Hence p̄2 ̸= p̄1.
When p2 < 17

11 , U2(p̄1, p2) = p2×(4+1.5) < 8.5. Hence
p̄2 ≥ 17

11 .
When p2 > p̄1, we have U2(p̄1, p2) = p2 × 1.5. Since
U2(p̄1, p̄2) ≥ 8.5, p̄2 ≥ p̄1 implies p̄2 ∈ [ 173 , 6].

(a6) If p̄1 ∈ [ 173 , 6], we must have p̄2 ∈ [ 2111 , 2].
When p̄1 ∈ [ 173 , 6], the maximum possible utility of r2 is
11.0, by playing strategy p2 = 2.0. Since U2(p̄1, p̄2) ≥
10.5, we must have p̄2 ≤ 2. Since U2(p̄1, p̄2) ≥ 11.0 −
0.5 = 10.5, we must have p̄2 ≥ 10.5

5.5 = 21
11 .

Similarly, we can have the following.
(b4) If p̄2 = 17

11 , we must have p̄1 ∈ [ 173 , 6].
(b5) If p̄2 ∈ ( 1711 , 2], we must have p̄1 ∈ [ 1711 , p̄2) ∪ [ 173 , 6].
(b6) If p̄2 ∈ [ 173 , 6], we must have p̄1 ∈ [ 2111 , 2].

Now we are ready to establish a contradiction.
Case 1: p̄1 = 17

11 . We must have p̄2 ∈ [ 173 , 6] by (a4). By
(b6), we must have p̄1 ∈ [ 2111 , 2]. This contradicts p̄1 = 17

11 .
Case 2: p̄1 ∈ ( 1711 , 2]. We must have p̄2 ∈ [ 1711 , p̄1) ∪ [ 173 , 6]

by (a5).
Case 2a: p̄2 ∈ [ 173 , 6]. We derive p̄1 ∈ [ 2111 , 2] using (b6).

Since U2(p̄1,
20
11 ) = 10, we conclude that p̄2 ̸∈ [ 173 , 6]

because U2(p̄1, p2) = p2 × 1.5 ≤ 9, ∀p2 ∈ [ 173 , 6]. This is
a contradiction.

Case 2b: p̄2 ∈ [ 1711 , p̄1). By (b5), we must have p̄1 ∈
[ 1711 , p̄2) ∪ [ 173 , 6]. Since p̄1 ∈ ( 1711 , 2], we have p̄1 ∈ [ 1711 , p̄2).
Now we have p̄2 < p̄1 < p̄2, a contradiction.

Case 3: p̄1 ∈ [ 173 , 6]. By (a6), we have p̄2 ∈ [ 2111 , 2]. Since
U1(

20
11 , p̄2) =

20
11×(4+1.5) = 10, we conclude that p̄1 ̸∈ [ 173 , 6]

because U1(p̄1, p2) = p1 × 1.5 ≤ 9, ∀p1 ∈ [ 173 , 6]. This is a
contradiction.

In summary, we have proved that (p̄1, p̄2) is not a 0.5-NE.
This contradiction completes the proof. □

5. THE MAX-MIN APPROACH TO HPS

Theorem 2 shows that for any given ϵ > 0 and a strategy
p¬i of r¬i, we can compute a ϵ-BR of ri in polynomial time.
This gives us hope that an ϵ-BR dynamic process [1] can be
used to compute an ϵ-NE. However, Theorem 3 casts doubts

in the aforementioned ϵ-BR dynamics, as an ϵ-NE may not
always exist. In this section, we present an Max-min approach
to tackle the HPS game.

A. Conservative Estimate for the Utility of ri
For p1 ∈ P , we define the conservative estimate for r1 by

Umin
1 (p1) = min{U1(p1, p2)|p2 ∈ P}. (20)

For p2 ∈ P , we define the conservative estimate for r2 by
Umin
2 (p2) = min{U2(p1, p2)|p1 ∈ P}. (21)

Theorem 4: Umin
1 (p1) = U1(p1, RE). Umin

2 (p2) =
U2(RE, p2). In other words, the minimum utility for router
ri playing strategy pi is achieved when router r¬i is playing
strategy p¬i = RE. Furthermore, the conservative estimates
Umin
1 (p1) and Umin

2 (p2) can be computed in O(K) time. □
Proof. When r¬i plays strategy p¬i, router serves the minimum
user demand. This proves the theorem. □

B. The Max-min Strategy of ri
The optimal conservative strategy for router ri is

popti =argmax
pi∈P

(Umin
i (pi)), i = 1, 2. (22)

Theorem 5: Both popt1 and popt2 can be computed in
polynomial time. Furthermore, we have

U1(p
opt
1 , popt2 ) ≥ Umin

1 (popt1 ), (23)

U2(p
opt
1 , popt2 ) ≥ Umin

2 (popt2 ). (24)
In other words, when both routers play their optimal conser-
vative strategies, router ri’s actual utility is at least as good as
Umin
i (popti ). □

Proof. Inequalities (23) and (24) are direct consequences of
the definition. We prove that popt1 can be computed in O(K2)
time. The time complexity for computing popt2 can be proved
similarly.

We note that popt2 is either RE or greater than RE.
Umin
1 (RE) can be evaluated in O(K) time. For p1 > RE,

Umin
1 (p1) is computed using Eq. (6c). For k = 1, 2, . . . ,K ,

both d1(x) and d0(x) are constants when x ∈ (ck−1, ck].
Therefore for each k = 1, 2, . . . ,K , the maximum of Umin

1 (p1)
when ck−1 < p1 ≤ ck is achieved with p1 = ck. Since we are
evaluating O(K) utility values, the time complexity is O(K2).
This proves the theorem. □

6. EVALUATION

We use randomly generated test cases to evaluate the per-
formance of the proposed max-min approach to HPS. In
this section, we present our evaluation setting, the evaluation
results, and our observations.

A. Evaluation Setting

We study the performance of our proposed max-min approach
in 10 scenarios, where the number of users varies from 100
to 1000 (i.e. K = 100, 200, . . . , 1000). Each scenario has the
following parameters: K, RE > 0, B1 > 0, B2 > 0, Cmin

and Cmax such that Cmax > Cmin ≥ RE, ∆min and ∆max

such that ∆max > ∆min > 0.



A test case for a given scenario is generated by set-
ting RE,B1, B2 to the specified parameters, and randomly
generating K users where ck is a random number in the
interval [Cmin, Cmax], δk is a random number in the interval
[∆min,∆max] and user uk is randomly assigned to one of the
three sets: Ω1,Ω2,Ω0.

For each scenario, we generate 100 test cases, compute the
values popti , Umin

i (popti ), Ui(p
opt
1 , popt2 ), i = 1, 2. We compute

the maximum, mean, and minimum of the ratios
γ1 = U1(p

opt
1 , popt2 )/Umin

1 (popt1 ), (25)

γ2 = U2(p
opt
1 , popt2 )/Umin

2 (popt2 ). (26)

B. Results and Observations

We present the evaluation results using the generated test cases.
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Fig. 2. Stats of γ1 and γ2 in different K sizes (scaling router capacity).

Fig. 2 shows the result where B1 = B2 = K (scaling
router capacity). We observe that γi is always greater than
or equal to 1.0. This is consistent with equations (23) and
(24) in Theorem 5, which says that the actual utility of router
ri is always greater than or equal to its conservative estimate
Umin
i (popti ).
We observe that the minimum of γi, regardless of K, is

exactly 1.0. We attribute this observation to the fact that if γ1
is 1.0 in one of the 100 test cases, then the minimum of γ1
will be 1.0. We observe that the mean of γi is around 1.38, and
maximum is above the 2.0 mark. This shows that Umin

i (popti )
is a very conservative estimate. Our results show that the max-
min strategy achieves on average about 38% more utility when
compared to the conservative estimate.

The max-min approach works well for both r1 and r2. As
Fig. 2 indicates, the value of γ1 is comparable to that of γ2.
Other than slight turbulence caused by the randomness of the
data, the overall results are similar in both graphs.
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Fig. 3. Stats of γ1 and γ2 in different K sizes (fixed router capacity).

Fig. 3 shows the result where B1 = B2 = 200 (fixed router
capacity). For K = 100 and 200, we observe a similar pattern
as in the scaling router capacity scenario. However the ratios
decrease towards 1.0 as K increases, eventually stabilize at
1.0.

This can be explained by the saturation of both routers with
increased user demand at larger K values. As K increases,
the demand of locked-in user set Ω1 and Ω2 also increases,
eventually causing both routers to run at their capacities. This
results in decreases in γi as both routers do not have to compete
as hard for customer.

7. CONCLUSIONS

In this paper, we have studied the hub fee-setting behavior in
payment channel networks. Since pure NE and best response
strategies do not always exist, we define approximate best
response strategies as well as approximate Nash equilibria. On
the negative side, we prove that for some ϵ > 0, an ϵ-NE may
not exist. On the positive side, we prove that for any ϵ > 0, an
ϵ-BR always exists, and can be computed in polynomial time.
Furthermore, we introduce the notion of conservative estimate
and present a novel max-min approach to HPS. Our evaluation
results demonstrate the power of the max-min approach.

An interesting future research direction is to study the per-
formance of the proposed max-min approach on real payment
channel network topologies, such as the ones used in [10],
[12]. It is also interesting to investigate the case where the
routers only know the distributions of the user demands and
cost upper-bounds.
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