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To the Editor:

Epidemiologists have qualitatively and quantitatively examined
and provided knowledge that helps understand the influence of
risk or protective factors, ranging from genetic to socio-political
factors, for health and illness outcome variables at the population
level. In the 2020s, modern epidemiologists have witnessed the era
of machine learning, deep learning, and, more broadly, artificial
intelligence (AI), which emulates human intelligence using
computers.! Many epidemiologists have tried applying Al in their
research. However, how epidemiologists can interact with Al
has yet to be summarized or itemized holistically. Therefore, in
the present letter, we brainstorm and discuss seven perspectives.
Although some perspectives have already been hot research
areas,"> many remain on the epidemiologists’ future to-do list.

First, Al-based prediction models can qualitatively indicate how
epidemiologists should theorize the relationship of risk or
protective factors for an outcome variable. For example, suppose
epidemiologists initially theorize and hypothesize two factors
independently cause an outcome (X; - Y « Xj), and a more
flexible Al-based prediction model exhibits a higher predictive
ability than a conventional linear regression model. While the
better prediction does not necessarily suggest its usefulness in
causal modeling, it may encourage them to update their model to
Al-based flexible models (eg, SuperLearner?), accounting for the
role of a non-linear contribution and potential synergy of X; and
X5, which the conventional model might not incorporate initially.
Such contribution can be observed in genetic and multi-omics
epidemiology.’

Second, Al allows epidemiologists to quantify what was not
quantifiable previously. For example, wearable devices have
brought large spatiotemporal data; texts and images in electric
health records can be convertible to analyzable data using natural
language and image processing. Such new data types can help
epidemiologists identify new risk or protective factors and detect
diseases or illnesses earlier. For example, a previous study
applied Al to electrocardiograms to build the prediction model
for chemotherapy-induced cardiotoxicity.* The other example is
the application of deep learning to cardiac magnetic resonance
images to assess the size of the ascending and descending

thoracic aorta.” Researchers then conducted genome-wide asso-
ciation studies and found a genetic basis for variations in the size
of the ascending and descending thoracic aorta, which helps us
better understand the disease processes underlying aneurysms and
dissections.

Third, Al can enhance causal inference. For example, Al has
been widely applied to causal modeling, such as propensity score
matching, g-formula, and doubly robust estimators.” Recently, Al
has also contributed to estimating heterogeneous treatment effects,
accounting for the complex interplay of multiple individual
characteristics.® Such an approach allows researchers to estimate
the treatment effect for each individual based on their observed
characteristics and target individuals who are estimated to have
a large treatment effect (ie, “high-benefit approach™).” Because
conventional subgroup analyses were not able to assess such high-
dimensional interaction, the AI application in this field has the
potential to promote the discussion about personalized medicine
and public health.

Fourth, in addition to conventional association/causation
studies involving independent and dependent variables, epidemi-
ologists also work in systems science, such as infectious disease
modeling and prediction, where more dynamic and non-acyclic
flows of multiple factors are assumed over time.® For example,
reinforcement learning was used to optimize the dynamic treatment
strategies for adult patients with sepsis in the intensive care unit.”

Fifth, it is also important to note that Al can be a risk or
protective factor for health and illnesses. Human-Al interactions,
including using generative Als (eg, ChatGPT and Gemini), may
enhance or impair people’s health. For example, Al-driven care
robots may enhance care recipients’ health by early detection of
injury risks, while they may impair mental health by accelerating
social isolation from other humans. Thus, Al using it, and Al-
human interactions can be social determinants of health.

Sixth, since it is known that Als sometimes produce algorithmic
unfairness (dependency of the model results on variables repre-
senting race, gender, and others),"!* epidemiologists should be
interested in monitoring the unintended negative consequences
of the use of “black-box” Al-based models, especially among
vulnerable populations. For example, Al-based prediction models
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trained by publicly available chest x-ray datasets incorrectly
predict “no finding” for females and Black and Hispanic patients.'!
To mitigate such a bias, bias-mitigated techniques (eg, fairlearn in
Python and aif360 [IBM’s Al Fairness 360] in R) can be used.!”

Finally, Als may help and redefine the work of epidemiologists
in the future. For example, Pcalg is an Al package in R for causal
discovery, which can deliver potential causal structures for
provided data (constraint-based search methods) or assign a
relevance score for causal diagrams (search-based methods).!?
This implies that the theoretical work that epidemiologists have
done—drawing causal diagrams based on their theory and prior
knowledge—can be supported by Als and data. Developing these
Al-based epidemiologic methods is also included in the work of
epidemiologists.
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