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Abstract: AmeriFlux is a network of hundreds of sites across the contiguous United
States providing tower-based ecosystem-scale carbon dioxide flux measurements at 30 min
temporal resolution. While geographically wide-ranging, over its existence the network has
suffered from multiple issues including towers regularly ceasing operation for extended
periods and a lack of standardization of measurements between sites. In this study, we use
machine learning algorithms to predict CO2 flux measurements at NEON sites (a subset
of Ameriflux sites), creating a model to gap-fill measurements when sites are down or
replace measurements when they are incorrect. Machine learning algorithms also have
the ability to generalize to new sites, potentially even those without a flux tower. We
compared the performance of seven machine learning algorithms using 35 environmental
drivers and site-specific variables as predictors. We found that Extreme Gradient Boosting
(XGBoost) consistently produced the most accurate predictions (Root Mean Squared Error
of 1.81 µmolm−2s−1, R2 of 0.86). The model showed excellent performance testing on
sites that are ecologically similar to other sites (the Mid Atlantic, New England, and the
Rocky Mountains), but poorer performance at sites with fewer ecological similarities to
other sites in the data (Pacific Northwest, Florida, and Puerto Rico). The results show
strong potential for machine learning-based models to make more skillful predictions
than state-of-the-art process-based models, being able to estimate the multi-year mean
carbon balance to within an error ±50 gCm−2y−1 for 29 of our 44 test sites. These results
have significant implications for being able to accurately predict the carbon flux or gap-fill
an extended outage at any AmeriFlux site, and for being able to quantify carbon flux in
support of natural climate solutions.

Keywords: carbon dioxide flux; nature-based climate solutions; machine learning; XGBoost;
National Ecological Observatory Network; AmeriFlux; phenocam

1. Introduction
Tower-based, ecosystem-scale CO2 flux measurements quantify the exchange of tur-

bulence flux of CO2 (FCO2, measured in µmolm−2s−1) between the land surface and the
atmosphere. Plainly, FCO2 measures how much CO2 is moving into or out of an ecosystem,
per unit area and per unit time. During daytime hours, most ecosystems are a strong sink for
CO2 (negative FCO2, following the micrometeorological sign convention) as they remove
CO2 from the atmosphere through the process of photosynthesis. By comparison, dur-
ing the night, ecosystems are generally a moderate source of CO2 (positive FCO2), as they
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release CO2 back into the atmosphere through the process of respiration. FCO2 is measured
using a method known as eddy covariance (EC) [1]. Eddy covariance measurements are
continuous in time (24 h a day, 7 days a week, 365 days a year) and are generally reported
at an hourly or half-hourly temporal resolution. Global networks of eddy covariance flux
towers collect in situ carbon flux measurements, providing information on photosynthesis
dynamics across different ecosystems and under various environmental conditions.

Currently, FCO2 is measured at hundreds of research sites across the United States,
with 385 of these sites being members of the AmeriFlux network [2,3]. While these mea-
surements run continuously at high frequency (e.g., at 5 Hz), practical limitations such as
technical failures, instrument malfunction, and the necessity for filtering out data with low
turbulent conditions have led to extended gaps in the collected data. Moreover, there has
been little success resulting from attempts to standardize the measurements across sites
within the AmeriFlux network, meaning that when measurements are available, they may
be more or less reliable than another site. Together, these compromise the validity of the
fluxes that are measured and reported without issue.

These are the issues we tackle in this paper: to develop a consistent, robust, and ex-
plainable method for quantifying FCO2. To perform this, we experimented with seven
machine learning algorithms and 37 explanatory variables (environmental ‘drivers’) to
make predictions about the half-hourly, daily, and annual FCO2 in 19 different ecosystems
across the continental United States.

Machine learning algorithms are modern, computationally intensive statistical mod-
eling techniques that learn from data to discover generalizable predictive patterns. The
term includes many families of algorithms, including neural networks, tree-based models,
and generalized linear models; however, the no free lunch theorem dictates that no model
will outperform another in all applications [4]. Machine learning has found application in a
large number of fields, including environmental monitoring; for an overview, see [5].

The primary contributions of this paper can be summarized as follows:

1. A wide-ranging comparison of many common machine learning methods for predict-
ing tower-based FCO2;

2. The discovery of a generalizable machine learning-based model that can predict FCO2

to within 1.81 µmolm−2s−1 of tower-based measurements;
3. An open-source gap-filled FCO2 dataset covering 44 unique sites for free use by other

researchers in the climate science community;
4. An open-source code repository for reproducibility and wider implementation.

The remainder of this paper is organized as follows: Section 2 describes the back-
ground and purpose of the AmeriFlux network and provides the reader with an explanation
on the importance of quantifying carbon fluxes to the theory of Natural Climate Solutions;
Section 3 discusses the state of existing work using machine learning for modeling CO2

and other flux measurements; Section 4 details the data, algorithms, and structure of our
experiments, while the results are presented in Section 5 and they are analyzed further in
Section 6; finally, we draw conclusions, discuss limitations, and suggest future directions in
Section 7.

2. Background Information
2.1. The AmeriFlux Network

The driving motivation for the establishment of AmeriFlux almost three decades ago
was to measure the carbon balance of different ecosystems, and more specifically, to better
understand the distribution of CO2 sinks and sources across the continent [6]. While this is
an ambitious goal, from this perspective, the sampling provided by AmeriFlux is woefully
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inadequate—assuming that all 385 AmeriFlux sites are currently active (which they often
are not), this coverage equates to approximately 1 flux measurement site every 25,000 km2.

Therefore, extrapolation and upscaling from individual sites to fine resolutions and
regional and continental scales must be carried out using either process-based or statistical-
based models. The former approach is attractive because these simulation models are based
on state-of-the-art understanding of how the carbon cycle works. However, parameteriza-
tion and initial conditions remain outstanding challenges, and past model validation efforts
have highlighted serious model errors. By comparison, the latter approach is unattractive
because many of these statistical approaches are essentially black boxes from which it is
impossible to verify process-level representation. Standardization of inputs for statistical
models is also a challenge, and, to the best of our knowledge, the validation of model
predictions has generally not been conducted against independent datasets.

An extensive model–data comparison project of over 20 ecosystem models conducted
under the North American Carbon Program found that process-based models generally
performed poorly in representing site-level carbon flux dynamics across sites with varying
land cover. Specifically, substantial model errors in representing FCO2 were found at
annual, seasonal, and diurnal time scales [7,8]; models misrepresented the inter-annual
variability in observed CO2 uptake [9]; models did not properly represent phenological
transitions in spring or fall [10]; and models could not predict photosynthetic uptake within
the uncertainty of observations [11]. These results lead to valid questions about the viability
of using process-based models to evaluate natural climate solution strategies (discussed
later in Section 6).

Statistical-based upscaling of FCO2 began about two decades ago with the pioneering
work of Papale et al. [12]. They used an artificial neural network, trained with CO2 flux
data from 16 measurement sites in Europe to calibrate a simulation model to predict CO2

fluxes of European forests at 1 km resolution. Several years later, Xiao et al. [13] calibrated
a modified regression tree model to FCO2 measurements across the AmeriFlux network,
using satellite observed greenness indicators, such as vegetation indices, leaf area index,
and fraction of observed photosynthetically active radiation [14]. The sophistication of
these kinds of upscaling efforts has matured over the last 15 years. The current state of the
art is probably defined by the FLUXCOM project [15], which uses satellite remote sensing
and gridded meteorological products to calibrate a model trained on FCO2 measurements
from sites around the world.

However, a challenge with past efforts to upscale site-level measurements is the
lack of standardization in measurement protocols across sites. For example, across the
AmeriFlux network, the choice of instrument setup and configuration, and even the details
of flux data processing and corrections (which are critically important), may be different
for each site. Furthermore, key instrumentation principles (e.g., open vs. closed path
gas analyzer or sonic anemometer geometry), installation protocols (e.g., depth profiles
of soil temperature and moisture measurements), measured and calibrated quantities
(gravimetric vs. volumetric soil water content vs. soil water potential), and even units (hPa
vs. kPa for vapor pressure deficit—easily converted, but also easily incorrectly reported
or interpreted) are not consistent across sites. In particular, this lack of consistency of
site variables across sites is a major barrier for any predictive modeling methods that use
machine learning techniques.

The aforementioned inconsistency and variation in the AmeriFlux network’s data
largely stem from its design as a “coalition of the willing”, where sites are set up and moni-
tored by a large number of researchers (and consequently, research interests). Fortunately,
FCO2 data from the 47 long-term research sites operated within the National Ecological
Observatory Network (NEON) are also contributed to the AmeriFlux data archive. NEON
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was specifically established to “collect long-term open access ecological data to better
understand how U.S. ecosystems are changing” [16], and implicit in this mission statement
is the need for standardization of measurement protocols and techniques across sites. This
standardization opens up the possibility to use a machine learning algorithm to predict
site-level FCO2 without relying on gridded or reanalysis products as is necessary when
using sites from AmeriFlux as a whole. Thus, the network of NEON sites represents an
opportunity to train models on observational data across numerous sites which might be
viewed as analogous to a model emulator [17]. The key difference is that this model is
trained on real observations rather than the output of a simulation model.

NEON sites are strategically located, following a clustering algorithm to identify
and group distinct regions of vegetation, landforms, and ecosystem dynamics into 20 dif-
ferent domains, as shown in Figure 1. Within each domain, at one or more monitoring
sites, standardized measurements of environmental drivers (weather, solar radiation, etc.)
are conducted along with ecosystem-level measurements of FCO2 and other quantities
measured by eddy covariance (e.g., sensible and latent heat fluxes).

Figure 1. A map of the NEON core terrestrial sites and their locations within the 19 ecological
domains.

As discussed in Section 4, our experiments leverage the reliability, consistency,
and high quality of the data collected at NEON-based AmeriFlux sites to train machine
learning models.

2.2. Natural Climate Solutions

Accurately quantifying the terrestrial–atmospheric exchange of carbon is vital to
assessing the impact of environmental management projects and policies at all scales.
Hemes et al. [18] argue that ecosystem-scale CO2 flux measurements can play an important
role in developing and evaluating climate mitigation strategies at the global level, while
Hollinger et al. [19] noted the value of CO2 flux measurements for quantifying the mag-
nitude of carbon storage, on an annual basis, by a single evergreen forest. Both of these
articles also highlight the value of accurate CO2 flux measurements in the context of a
theory known as Natural Climate Solutions (NCS).

NCS is a framework for adapting existing theory and knowledge of ecosystem science
to mitigate the impact of anthropogenic climate change. It focuses on deliberate actions to
manage, restore, and otherwise conserve ecosystems to increase the quantity of CO2 that
they remove from the atmosphere and store in slow-turnover carbon reservoirs, such as
soil or woody biomass. While the role of terrestrial ecosystems in the global carbon cycle
has been relatively well understood for decades [20,21], the theory of NCS was first defined
in 2017 in a presentation by a group of scientists and practitioners at the Proceedings of the
National Academy of Sciences [22]. Since this time, support for natural climate solutions
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has gradually gained momentum [23,24] (potentially because efforts to reduce fossil fuel
emissions have not yet been successful).

A recent work [25] defined the five foundational principles of NCS, with Principle
4 reading: ‘There are multiple potential NCS actions that can occur in a given landscape
and quantifying the overall magnitude of opportunity can help to focus efforts on the
actions that can offer the largest mitigation returns. However, appropriate accounting is
required to ensure that NCS potential is consistently and clearly quantified’. The authors
argue that accurate carbon dioxide flux estimation is essential to the implementation and
adoption of NCS, as it will help optimize the actions taken by governments and other land
managers. The machine learning-based predictive modeling conducted in this paper aims
to contribute to this important need.

3. Literature Review
The prediction of CO2 is an important task in environmental sciences as rising levels

of atmospheric CO2 are the primary cause of climate change [26]. However, it is also a
difficult predictive modeling problem, and relatively few studies have been conducted in
this space, and even fewer using modern machine learning methods.

The majority of existing work using machine learning to predict CO2 is focussed on
estimating the atmospheric CO2 concentration at various geographical scales (as opposed
to our focus of predicting CO2 flux). Alomar et al. [27] used extreme learning machines
(a variation of feed-forward neural networks) to accurately predict CO2 concentration
based on a single site in Hawaii, while Hou et al. [28] used XGBoost to predict emissions
in geographical regions in China. Conversely, Fang et al. [29] uses Gaussian processes,
and Mardani et al. [30] uses a multi-stage neural network technique to predict national-level
carbon emissions. A policy-based need for this modeling is evident in Zhang et al. [31],
where a genetic algorithm was used to assess the impact of China’s ecological zones on its
CO2 emissions. Finally, Baareh et al. [32] took a time series forecasting approach to model
CO2 emissions with a neural network.

Model choice, hyperparameter tuning, and variable choice are always difficult in
machine learning-based work, which is why Hamrani et al. [33] compared nine different
machine learning algorithms to predict CO2 for their specific agricultural sites, and Dur-
manov et al. [34] looked at the key enablers of greenhouse gases.

When considering the prediction of eddy covariance carbon dioxide flux with machine
learning, the existing research either produced a low accuracy model, or a model that
cannot generalize beyond the experimental site(s). For example, Tramontana et al. [35]
predicted carbon dioxide and energy fluxes across global FLUXNET sites with four different
algorithms, but the R2 for net ecosystem exchange of CO2 was less than 0.5. Alternatively,
multiple works [36–39] all demonstrate high accuracy results using machine learning
models to predict carbon dioxide on a single or a few experimental sites.

While most gap-filling techniques are process-based, Zhou et al. [40] used a variation
of a random forest model to gap-fill extra long periods of missing values in carbon, heat,
and energy fluxes. For further reading, a survey on using machine learning to predict
various air pollutants, including CO2, is presented in [41].

4. Methods
Our experiments compared the performance of seven machine learning algorithms

to predict half-hourly FCO2 measurements collected between 1 January 2016 and 30 June
2022 (Data were first accessed 1 June 2023). The experimental details are all provided in the
following section and the code for the experiments is available at: https://github.com/jsl3
39/AmeriFlux.

https://github.com/jsl339/AmeriFlux
https://github.com/jsl339/AmeriFlux
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4.1. Data

There are 47 NEON core terrestrial sites located across the U.S. and Puerto Rico,
which strategically represent a range of vegetation, climate, and ecosystems divided into
20 different ecological domains as shown in Figure 1. Our experiments used data collected
at 44 sites, as three sites—Marvin Klemme Range Research Station (OAES), Mountain
Lake Biological Station (MLBS), and Puu Makaala Natural Area Reserve (PUUM)—were
removed from the analysis due to inconsistencies in predictor variables, missing flux
measurements, and errors arising during preprocessing. With these sites removed, our
44 sites represented 19 out of the 20 ecological domains (see [42] for general information
about the data product).

We preprocessed the data using the R package REddyproc, as is the standard approach
for gap-filling and u* filtering of carbon flux values. We used the U50 threshold to filter our
u* values.

Table 1 shows a general explanation and summary statistics for the environmental
drivers that we used as feature variables to learn our models. The data were sourced from
3 locations: AmeriFlux, the Phenocam Network, and MODIS satellite imagery [6,43,44].

Table 1. Environmental drivers (feature variables) used as input to our machine learning models to
predict carbon dioxide flux.

Variable Description (Units) Source

DOY Day of Year (as percentage of a year) AmeriFlux/NEON
HOUR Hour Of Day (as percentage of a day) AmeriFlux/NEON
TS_1_1_1 Soil Temperature Depth 1 (degrees C) AmeriFlux/NEON
TS_1_2_1 Soil Temperature Depth 2 (degrees C) AmeriFlux/NEON
PPFD Photosynthetic Photon Flux Density (µmolPhoton m−2 s−1) AmeriFlux/NEON
TAIR Air Temperature (degrees C) AmeriFlux/NEON
VPD Vapor Pressure Deficit (hPa) AmeriFlux/NEON
SWC_1_1_1 Soil Water Content (as percentage of volume) AmeriFlux/NEON
PPFD_OUT Photosynthetic Photon Flux Density, Outgoing (µmolPhoton m−2 s−1) AmeriFlux/NEON
PPFD_BC_IN_1_1_1 Photosynthetic Photon Flux Density, Below Canopy Incoming (µmolPhoton m−2 s−1) AmeriFlux/NEON
RH Relative Humidity (percentage) AmeriFlux/NEON
NETRAD Net Radiation (W m−2) AmeriFlux/NEON
USTAR Friction velocity (ms−1) AmeriFlux/NEON
GCC_50 Green Chromatic Coordinate, median (dimensionless) Phenocam
RCC_50 Red Chromatic Coordinate, median (dimensionless) Phenocam
MAT_DAYMET Mean Annual Temperature (degree C) DAYMET
MAP_DAYMET Mean Annual Precipitation (mm) DAYMET
PVEG Primary Vegetation Type (categorical) Phenocam
SVEG Secondary Vegetation Type (categorical) Phenocam
LW_OUT Longwave Radiation, Outgoing (W m−2) AmeriFlux/NEON
DAILY PRECIPITATION Daily Precipitation (mm) AmeriFlux/NEON
PRCP1WEEK Cummulative Precipitation 1 Week (mm) AmeriFlux/NEON
PRCP2WEEK Cumulative Precipitation 2 Week (mm) AmeriFlux/NEON
NDVI Normalized Difference Vegetation Index (dimensionless) MODIS
EVI Enhanced Vegetation Index (dimensionless) MODIS
LAT Latitude (decimal degrees) Phenocam
LON Longitude (decimal degrees) Phenocam
ELEV Elevation (meters) Phenocam
DOMAIN NEON Field Site Domain (categorical) Phenocam
organic_C Total Organic Carbon Stock in Soil Profile (g C m−2) AmeriFlux/NEON
total_N Total Nitrogen Stock in Soil Profile (g C m−2) AmeriFlux/NEON
O_thickness Total Thickness of Organic Horizon (cm) AmeriFlux/NEON
A_pH pH of A Horizon (dimensionless) AmeriFlux/NEON
A_sand Texture of A Horizon (% Sand) AmeriFlux/NEON
A_silt Texture of A Horizon (% Silt) AmeriFlux/NEON
A_clay Texture of A Horizon (% Clay) AmeriFlux/NEON
A_BD Bulk Density of A Horizon (g cm−3) AmeriFlux/NEON

Each site was assigned both a primary and secondary vegetation type from the follow-
ing categories:

1. Agricultural (AG);
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2. Deciduous Broadleaf (DB);
3. Evergreen Broadleaf (EB);
4. Evergreen Needleleaf (EN);
5. Grassland (GR);
6. Shrub (SH);
7. Tundra (TN).

After preprocessing, our final dataset consisted of 961,340 observations unevenly
divided among the 44 NEON sites.

4.2. Experimental Design

We compared the predictive performance of seven machine learning algorithms (ex-
plained in Section 4.3 below) in two experimental scenarios. The experiments employ
cross-validation, a common tool in machine learning experiments to ensure generalizability
of the results. It performs this by ‘holding out’ some data (called a ‘fold’), training the
model without it, and testing on the held-out data. This gives an unbiased estimate of
how the model would have performed on unseen data. This process is then repeated and
averaged for robustness. When the data are split at random into k folds, this is referred to
as k-fold cross-validation.

In the first experimental scenario, we performed 10-fold cross-validation on the data.
This means that the data were randomly divided into 10 folds, with each containing
approximately 10% of the data. The models were then trained using 9 folds (90% of the
available data) and tested on the remaining fold. This process was repeated so that each
fold was used in the training set 9 times and appeared as the test set once (see Figure 2a for
an illustrated explanation). The performance of each algorithm was reported as the average
across the 10 different runs. We note that the data were divided into the same 10 folds for
each predictive algorithm.

K-fold cross-validation is a common technique in the testing and comparison of
machine learning algorithms as it removes selection bias (whether deliberate or not),
and demonstrates the ability of the models to generalize to unseen data [45].

In the second experimental scenario, which we will refer to as leave-one-site-out cross-
validation (L1SO CV), we began by partitioning the data by site, resulting in 44 uneven
groups of data. We then employed a similar process to scenario one, where the models were
trained on the all-but-one group and tested on the remaining group (an example is shown in
Figure 2b). This was repeated so that each site was used as the test data once, and therefore,
the stated performance metrics are the average of the 44 models fitted and tested.

The L1SO CV experiments present an inherently more difficult problem than the prior
scenario as a predictive model significantly benefits from learning from data belonging
to the test site. These experiments were included to replicate a situation where a site has
no prior carbon flux recordings, i.e., it could be a new site or the instrumentation might
not be functioning correctly. In addition, this experimental setup also tests whether we
might be able to make a minimal set of measurements at a site with lower standardization
in measurement protocols in order to predict the FCO2. This would be helpful for carbon
accounting purposes and nature-based carbon solutions, and also to enable a benchmark
for land surface model simulations and checking existing datasets.
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Test Training

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Fold 6

Fold 7

Fold 8

Fold 9

Fold 10

(a) The 10-fold Cross-Validation

PR-xGU

PR-xLA

US-xAB

Test Training

Fold 1

Fold 2

US-xAB

Fold 3

Fold 4 US-xBA

US-xAB US-xBAFold 5

(b) L1SO Cross-Validation

Figure 2. A visual explanation of the cross-validation techniques used in our experiments. (a) The
data split into 10 random ‘folds’ with the model being trained on 9 folds and the tenth held out for
testing. This process is repeated 10 times and the results are averaged. (b) The data stratified by
site; in this case, the model is trained on an all-but-one site, and this is held out for testing. This is
repeated until each site has been held out as the test site exactly once.

The performance of each model was assessed using 2 evaluation metrics—Root
Mean Squared Error (RMSE) and the Coefficient of Determination (R2). The RMSE is
the square root of the average of the squared prediction errors over all of the data in the
test set. Specifically,

RMSE(ŷ, y) =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2

where y is the measured (true) value and ŷ is the predicted value for a test set of size N.
Due to the squared component of the metric, the RMSE is sensitive to large errors in any of
the individual predictions.

The R2 evaluation metric is a measure of the goodness-of-fit of the linear model found
by regressing the predicted values against the true values. It is calculated as

R2(ŷ, y) = 1 − ∑N
i=1(yi − ŷi)

∑N
i=1(yi − ȳ)

In contrast to RMSE, R2 is not sensitive to large errors in any of the individual predictions
as it measures the amount of total variance accounted for by the predictions. When used
together, these metrics complement each other and provide a more comprehensive picture
of the performance of the algorithms. Each metric can then be analyzed on half-hourly,
daily, and annual time scales. Ensuring accurate model predictions on an annual scale is
important for reliable carbon accounting. However, it is also critical to evaluate model
performance at finer temporal resolutions, such as half-hourly and daily scales, to ensure
that our models produce accurate annual predictions for scientifically sound reasons.
In order to produce meaningful predictions of annual sums of FCO2 for each test site, we
must first use models optimized in the 10-fold experimental setting to fill in missing FCO2

values for each site before making predictions per site in the L1SO experimental setting.
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4.3. Machine Learning Models

We compared the performance of 6 different machine learning models on predicting
carbon dioxide flux, as follows:

1. Linear Regression (all predictors): This is a linear model including all of the variables
using the maximum likelihood estimates for the coefficients. Linear regression as-
sumes a linear relationship between the predictors and the response variable, which
is unlikely in complex modeling problems, but does provide a baseline for the com-
parison of the performance of other models.

2. Stepwise Linear Regression: This model began by testing for the most significant single
variable in a linear regression model, and then iteratively added variables and tested
for greatest improvement. A threshold number of selection variables was set to 15 for
this forward selection technique. In this way, we simplify the basic linear regression
model to find feature variables with greater importance for linear prediction.

3. Decision Tree: A decision tree is a model based on recursively splitting the data on
values of variables to maximize the difference between observations. Decision trees
are most effective on problems where there is a non-linear relationship between the
predictors and response variable [46,47]. The optimal tree depth was found to be
10, which was found through cross-validation.

4. Random Forest: A random forest model [48] is a bagged ensemble of decision trees.
The algorithm creates an uncorrelated forest of decision trees by using random subsets
of features in each tree. When predicting a regression variable with a random forest
model, the overall prediction is the average of the results of each of its constituent trees.

5. Extreme Gradient Boosting (XGBoost): The XGBoost model [49] is a boosted ensemble
of n underfit decision tree models. In practice, a decision tree is fit the to data and
the errors in prediction are measured. Next, a second decision tree is used to fit the
errors of the first tree. Then, a third decision tree is fit to the errors of the second tree,
and we continue until we have n trees in our ensemble. The optimal number of trees
in our ensemble was found to be 2000. We also set the number of rounds for early
stopping to be 50, and we used a learning rate of 0.05, a max depth of 10, a subsample
ratio of 0.5, and a subsample ratio of columns for each node of 0.45. Finally, we
used the histogram-optimized approximate greedy algorithm for tree construction to
optimize our XGBoost model. All hyperparameters were optimized through 10-fold
cross-validation using an exhaustive grid search.

6. Neural Network (single layer): A neural network is the sum of weighted non-linear
functions of the predictor variables. This model is a single-layer neural network,
with 256 neurons in the hidden layer, and uses a feed-forward architecture with
ReLU activation. Early stopping was implemented to prevent model over-fitting,
and training was performed with a data loader with a batch size of 128. The learning
rate was set to 0.0003, and the best performance was achieved with no weight decay
using the Adam optimizer. For more information on the mathematics of neural
networks, see [50,51].

7. Deep Neural Network: The model uses the same mathematical structure as the single-
layer neural network, but increases the number of hidden layers to 3, each consisting
of 256 neurons. Compared to the single-layer neural network, the increased depth of
the model increases the number of parameters to learn, meaning the model is capable
of modeling more complex relationships, but also takes longer to learn from the data.
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5. Results
5.1. Results of 10-Fold Cross-Validation

The results for fitting each model and testing on each fold of the 10-fold cross-
validation experiments are shown in Table 2 (RMSE). The XGBoost model and deep neural
network were the only two models with an RMSE less than 2 µmolm−2s−1. The strength
of these models suggests that there are non-linearities in the the relationships between
the environmental drivers and FCO2. It is important to note that the XGBoost model
outperformed our deep neural network at each stage throughout model development,
and in addition, the XGboost model requires significantly less training time than either
neural network.

Table 2. Comparison of the RMSE and R2 in predicting FCO2 using seven machine learning mod-
els in a 10-fold cross-validation experimental setting (values shown are the average values across the
10 validation folds).

Linear Reg Stepwise Decision Tree Random Forest XGB NN 1-Layer NN Deeper

RMSE 3.49 3.58 2.39 2.26 1.81 2.06 1.91
R2 0.48 0.46 0.76 0.77 0.86 0.82 0.85

After determining the optimal algorithm, we used the trained XGBoost model to
gap-fill all of the missing values for each of the 44 sites. The resulting dataset, consisting of
4,068,459 observations, is freely available at https://zenodo.org/records/10719776 for use
by other researchers in the climate science community.

5.2. L1SO Cross-Validation Results

The results for fitting each model and testing on each site of the leave-one-site-out cross-
validation experiments are shown in Table 3 (RMSE) and Table 4 (R2). Again, the XGBoost
model was superior to all others with a mean prediction RMSE of 2.45 µmolm−2s−1. This is
35% greater than the RMSE of the same model in the 10-fold cross-validation experiments,
demonstrating the substantial information the model gains from seeing data from the test
site in the training set (as is the case in the 10-fold experiments).

The results also varied greatly between test sites—from an RMSE of 0.66 µmolm−2s−1

up to 6.22 µmolm−2s−1. The model performed best on Toolik (TOOL), as well as other
sites with Tundra as the primary vegetation—Barrow Environmental Observatory (BARR),
Healy (HEAL), and Niwot Ridge Mountain Research Station (NIWO)—suggesting that the
environmental drivers for these sites are highly similar. Another justification for a lower
model RMSE across sites with Tundra primary vegetation is that these sites in general
experience smaller magnitude fluxes. Random errors scale with flux magnitude, so it
is almost inevitable that sites with higher magnitude fluxes will have somewhat larger
model–data mismatch.

The model performed worst on Lajas Experimental Station (LAJA), which is one of two
sites in Puerto Rico, and together these two represent the only two sites with an evergreen
broadleaf primary vegetation type. While we cannot separate the domain and primary
vegetation effects here, we can say that our training data, which are mostly from mainland
United States, does not generalize well when predicting FCO2 in vastly different climates
and ecosystems.

A map of the average RMSE per domain is shown in Figure 3.

https://zenodo.org/records/10719776
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Table 3. A comparison of the RMSE (µmolm−2s−1) in predicting FCO2 using seven machine learning models in a stratified leave-one-site-out cross-validation
experimental setting.

Test Set Site Code Site Name Primary Veg Type Linear Reg Stepwise Decision Tree Random Forest XGB NN 1-Layer NN Deeper

1 PR-xGU Guanica Forest (GUAN) EB 4.83 4.47 5.83 5.32 3.49 5.95 6.48
2 PR-xLA Lajas Experimental Station (LAJA) EB 7.52 6.99 7.60 6.68 6.22 6.02 6.60
3 US-xAB Abby Road (ABBY) EN 7.25 4.45 4.72 3.86 3.43 3.55 3.66
4 US-xBA Barrow Environmental Observatory (BARR) TN 135.35 1.30 1.51 1.49 0.86 2.91 0.89
5 US-xBL Blandy Experimental Farm (BLAN) DB 4.10 3.96 2.77 2.69 2.62 2.89 2.98
6 US-xBN Caribou Creek—Poker Flats Watershed (BONA) EN 14.61 2.41 2.12 2.01 1.93 2.70 1.92
7 US-xBR Bartlett Experimental Forest (BART) DB 5.21 4.41 3.33 3.06 2.77 3.13 3.06
8 US-xCL LBJ National Grassland (CLBJ) DB 5.19 4.17 4.38 4.16 3.88 4.11 3.31
9 US-xCP Central Plains Experimental Range (CPER) GR 4.24 2.47 1.38 1.29 1.22 1.60 1.48
10 US-xDC Dakota Coteau Field School (DCFS) GR 20.35 2.70 1.79 1.70 1.61 1.64 1.74
11 US-xDJ Delta Junction (DEJU) EN 5.52 2.28 2.05 1.64 1.44 1.56 1.44
12 US-xDL Dead Lake (DELA) DB 9.86 5.29 4.36 4.21 3.84 4.23 4.26
13 US-xDS Disney Wilderness Preserve (DSNY) GR 10.21 3.03 3.64 3.25 3.33 2.67 3.35
14 US-xGR Great Smoky Mountains National Park, Twin Creeks (GRSM) DB 6.51 6.06 4.21 3.99 3.87 4.12 3.94
15 US-xHA Harvard Forest (HARV) DB 5.24 4.50 3.05 2.91 2.60 2.73 2.92
16 US-xHE Healy (HEAL) TN 5.03 1.72 2.00 1.65 1.15 1.77 1.17
17 US-xJE Jones Ecological Research Center (JERC) DB 6.07 4.37 3.75 3.46 3.19 3.43 3.41
18 US-xJR Jornada LTER (JORN) GR 2.56 1.79 1.25 1.23 1.17 1.76 1.26
19 US-xKA Konza Prairie Biological Station - Relocatable (KONA) AG 6.57 3.64 3.02 2.95 2.61 3.05 3.56
20 US-xKZ Konza Prairie Biological Station (KONZ) GR 6.88 3.57 2.60 2.23 2.21 2.06 2.16
21 US-xLE Lenoir Landing (LENO) DB 6.83 5.27 4.92 4.53 4.32 4.25 4.19
22 US-xMB Moab (MOAB) GR 8.63 1.86 0.73 0.71 0.68 1.54 0.68
23 US-xNG Northern Great Plains Research Laboratory (NOGP) GR 5.07 2.29 1.67 1.59 1.46 1.55 1.96
24 US-xNQ Onaqui-Ault (ONAQ) SH 4.01 1.73 1.17 1.11 1.05 1.90 1.21
25 US-xNW Niwot Ridge Mountain Research Station (NIWO) TN 9.63 1.46 0.85 0.80 0.74 1.86 1.76
26 US-xRM Rocky Mountain National Park, CASTNET (RMNP) EN 8.49 3.18 2.70 2.31 1.92 2.45 1.94
27 US-xRN Oak Ridge National Lab (ORNL) DB 5.75 5.11 4.43 4.22 3.68 3.92 3.61
28 US-xSB Ordway-Swisher Biological Station (OSBS) EN 7.77 3.40 3.06 2.78 2.63 3.17 3.08
29 US-xSC Smithsonian Conservation Biology Institute (SCBI) DB 4.53 4.11 3.36 3.00 2.86 3.12 2.98
30 US-xSE Smithsonian Environmental Research Center (SERC) DB 6.79 4.62 3.40 3.21 3.08 3.35 3.32
31 US-xSJ San Joaquin Experimental Range (SJER) EN 5.13 4.23 3.23 3.11 3.02 3.23 3.81
32 US-xSL North Sterling, CO (STER) AG 6.10 2.40 2.00 1.93 1.83 1.90 2.08
33 US-xSP Soaproot Saddle (SOAP) EN 3.57 3.58 4.16 3.86 2.50 2.78 2.67
34 US-xSR Santa Rita Experimental Range (SRER) SH 3.22 2.19 4.23 3.63 1.18 2.42 1.12
35 US-xST Steigerwaldt Land Services (STEI) DB 3.96 4.06 2.44 2.10 1.91 2.34 1.78
36 US-xTA Talladega National Forest (TALL) EN 5.36 5.16 4.53 4.33 3.34 3.77 3.98
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Table 3. Cont.

Test Set Site Code Site Name Primary Veg Type Linear Reg Stepwise Decision Tree Random Forest XGB NN 1-Layer NN Deeper

37 US-xTE Lower Teakettle (TEAK) EN 6.11 3.07 2.99 2.93 2.53 2.48 2.95
38 US-xTL Toolik (TOOL) TN 134.54 1.44 1.24 0.79 0.66 2.12 0.96
39 US-xTR Treehaven (TREE) DB 5.13 3.89 2.41 2.35 2.12 2.61 2.21
40 US-xUK The University of Kansas Field Station (UKFS) DB 5.16 4.12 3.20 3.06 2.92 3.56 2.92

41 US-xUN
University of Notre Dame Environmental Research Center
(UNDE) DB 3.79 3.81 2.51 2.47 2.11 2.53 1.92

42 US-xWD Woodworth (WOOD) GR 5.16 2.21 1.77 1.61 1.49 1.52 1.70
43 US-xWR Wind River Experimental Forest (WREF) EN 7.53 5.31 5.89 5.82 4.67 4.92 4.68
44 US-xYE Yellowstone Northern Range (Frog Rock) (YELL) EN 5.05 2.49 2.10 2.05 1.61 1.71 1.74

AVERAGE 12.28 3.51 3.05 2.82 2.45 2.88 2.70

Table 4. A comparison of the R2 in predicting FCO2 using seven machine learning models in a stratified leave-one-site-out cross-validation experimental setting.

Test Set Site Code Site Name Primary Veg Type Linear Reg Stepwise Decision Tree Random Forest XGBoost NN (1-Layer) NN (Deep)

1 PR-xGU Guanica Forest (GUAN) EB 0.07 0.21 −0.35 −0.12 0.52 −0.40 −0.67
2 PR-xLA Lajas Experimental Station (LAJA) EB 0.31 0.40 0.29 0.45 0.53 0.56 0.47
3 US-xAB Abby Road (ABBY) EN −0.37 0.48 0.42 0.61 0.69 0.67 0.65
4 US-xBA Barrow Environmental Observatory (BARR) TN −16,320.00 −0.51 −1.03 −0.97 0.34 −6.54 0.29
5 US-xBL Blandy Experimental Farm (BLAN) DB 0.54 0.57 0.79 0.80 0.81 0.77 0.76
6 US-xBN Caribou Creek—Poker Flats Watershed (BONA) EN −33.28 0.07 0.28 0.35 0.40 −0.17 0.41
7 US-xBR Bartlett Experimental Forest (BART) DB 0.34 0.53 0.73 0.77 0.81 0.76 0.77
8 US-xCL LBJ National Grassland (CLBJ) DB 0.35 0.58 0.54 0.58 0.64 0.59 0.74
9 US-xCP Central Plains Experimental Range (CPER) GR −4.44 −0.85 0.42 0.50 0.55 0.22 0.33
10 US-xDC Dakota Coteau Field School (DCFS) GR −28.15 0.49 0.78 0.80 0.82 0.81 0.79
11 US-xDJ Delta Junction (DEJU) EN −3.89 0.17 0.32 0.57 0.67 0.61 0.67
12 US-xDL Dead Lake (DELA) DB −0.89 0.46 0.63 0.66 0.71 0.65 0.65
13 US-xDS Disney Wilderness Preserve (DSNY) GR −3.07 0.64 0.48 0.59 0.57 0.72 0.56
14 US-xGR Great Smoky Mountains National Park, Twin Creeks (GRSM) DB 0.39 0.48 0.75 0.77 0.79 0.76 0.78
15 US-xHA Harvard Forest (HARV) DB 0.31 0.49 0.77 0.79 0.83 0.81 0.79
16 US-xHE Healy (HEAL) TN −4.45 0.36 0.14 0.41 0.72 0.33 0.71
17 US-xJE Jones Ecological Research Center (JERC) DB 0.19 0.58 0.69 0.74 0.78 0.74 0.75
18 US-xJR Jornada LTER (JORN) GR −2.75 −0.85 0.11 0.13 0.21 −0.77 0.09
19 US-xKA Konza Prairie Biological Station - Relocatable (KONA) AG −1.33 0.28 0.51 0.53 0.63 0.50 0.31
20 US-xKZ Konza Prairie Biological Station (KONZ) GR −0.85 0.50 0.74 0.81 0.81 0.83 0.82
21 US-xLE Lenoir Landing (LENO) DB 0.19 0.52 0.58 0.64 0.67 0.69 0.69
22 US-xMB Moab (MOAB) GR −145.46 −5.79 −0.05 0.01 0.09 −3.66 0.09
23 US-xNG Northern Great Plains Research Laboratory (NOGP) GR −2.17 0.36 0.66 0.69 0.74 0.71 0.52
24 US-xNQ Onaqui-Ault (ONAQ) SH −7.30 −0.54 0.29 0.37 0.43 −0.87 0.25
25 US-xNW Niwot Ridge Mountain Research Station (NIWO) TN −120.13 −1.77 0.05 0.17 0.28 −3.53 −3.04
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Table 4. Cont.

Test Set Site Code Site Name Primary Veg Type Linear Reg Stepwise Decision Tree Random Forest XGBoost NN (1-Layer) NN (Deep)

26 US-xRM Rocky Mountain National Park, CASTNET (RMNP) EN −5.45 0.09 0.35 0.52 0.67 0.46 0.66
27 US-xRN Oak Ridge National Lab (ORNL) DB 0.25 0.41 0.56 0.60 0.69 0.65 0.71
28 US-xSB Ordway-Swisher Biological Station (OSBS) EN −1.39 0.54 0.63 0.69 0.73 0.60 0.62
29 US-xSC Smithsonian Conservation Biology Institute (SCBI) DB 0.42 0.52 0.68 0.74 0.77 0.72 0.75
30 US-xSE Smithsonian Environmental Research Center (SERC) DB −0.01 0.53 0.75 0.77 0.79 0.75 0.76
31 US-xSJ San Joaquin Experimental Range (SJER) EN −0.51 −0.03 0.40 0.44 0.47 0.40 0.17
32 US-xSL North Sterling, CO (STER) AG −4.83 0.10 0.38 0.42 0.47 0.44 0.32
33 US-xSP Soaproot Saddle (SOAP) EN −0.98 −0.98 −1.68 −1.31 0.03 −0.19 −0.10
34 US-xSR Santa Rita Experimental Range (SRER) SH −7.73 −3.04 −14.04 −10.11 −0.18 −3.93 −0.06
35 US-xST Steigerwaldt Land Services (STEI) DB 0.53 0.50 0.82 0.87 0.89 0.83 0.90
36 US-xTA Talladega National Forest (TALL) EN 0.39 0.44 0.57 0.60 0.76 0.70 0.66
37 US-xTE Lower Teakettle (TEAK) EN −2.27 0.17 0.22 0.25 0.44 0.46 0.24
38 US-xTL Toolik (TOOL) TN −12181.30 −0.40 −0.03 0.58 0.71 −2.01 0.38
39 US-xTR Treehaven (TREE) DB 0.24 0.57 0.83 0.84 0.87 0.80 0.86
40 US-xUK The University of Kansas Field Station (UKFS) DB 0.24 0.52 0.71 0.73 0.76 0.64 0.76

41 US-xUN University of Notre Dame Environmental Research Center
(UNDE) DB 0.56 0.55 0.81 0.81 0.86 0.80 0.89

42 US-xWD Woodworth (WOOD) GR −2.01 0.45 0.65 0.71 0.75 0.74 0.67
43 US-xWR Wind River Experimental Forest (WREF) EN −0.65 0.18 −0.01 0.02 0.37 0.30 0.36
44 US-xYE Yellowstone Northern Range (Frog Rock) (YELL) EN −2.28 0.20 0.43 0.46 0.67 0.62 0.61

AVERAGE −656.42 −0.02 0.06 0.23 0.60 −0.01 0.44
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Figure 3. The average RMSE (µmolm−2s−1) per domain for the leave-one-site-out experiments.

5.3. XGBoost Feature Importance

The XGBoost algorithm has a built-in method for calculating the importance of each
feature to the model’s performance. For our regression problem, we can quantify the
increase in accuracy due to the split using the reduction in sum of squared errors resulting
from that node, weight this value by the number of observations being split, and then
attribute that value to the feature being split on. We then sum the values across the tree
by iterating through all nodes that are not leaf nodes. Finally, we average the values over
each feature over all of the trees in the model. Consequently, a greater value of importance
tells us that a feature variable is better at splitting the data and therefore more useful to our
model’s predictive ability. A plot of the twenty most important features for prediction is
shown in Figure 4.

Figure 4. The twenty most important features of our XGBoost model.

There are two input features that are noticeably more important to the model than
others: EVI and net radiation. This is interesting as these are not measurements taken
through site-level instrumentation, which suggests that we can learn a lot about the FCO2
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of a site just by knowing the vegetation greenness and the radiation environment of a
site. Furthermore, six of the ten most important variables are continuous measurement
variables, as opposed to the domain or vegetation categorical variables, meaning the model
should generalize easier to any new sites of interest.

6. Discussion
6.1. Comparison of 10-Fold and L1SO Experimental Results

By making predictions on each site in both 10-fold and L1SO contexts, we are able
to gain a greater understanding of model performance across the 44 NEON sites. We
partitioned our model’s 10-fold RMSE by site, and treated a site’s average RMSE value
as the irreducible error, that is, error that can be attributed to variability in the dataset,
measurement errors, and the error inherent in using a model to predict a biological process.
From there, we compare this irreducible error to the average RMSE values for each site
obtained through L1SO CV experiments and therefore obtain an estimate of the amount
of error attributable to testing on an ‘unseen’ sight, which we call the L1SO remainder.
A visualization of the baseline error and its corresponding L1SO remainder for each site,
ordered by ecological domain, is shown in Figure 5.

Figure 5. Visualization of XGBoost L1SO RMSE remainder organized by domain number (shown as
a prefix to the site code).

The L1SO remainder gives us a reasonable way to identify sites that are difficult to
predict without having that site’s data available in the training set. We identified five NEON
terrestrial sites that had an L1SO remainder greater than 0.85. These sites are Guanica
Forest (GUAN), Lajas Experimental Station (LAJA), LBJ National Grassland (CLBJ), Disney
Wilderness Preserve (DSNY), and Wind River Experimental Forest (WREF). There are
several reasons that can justify why these sites in particular may be difficult for a model in
an L1SO scenario. Firstly, Guanica Forest and Lajas Experimental Station are the only two
sites in Puerto Rico and in ecological domain 4. In addition, these two sites are the only
two whose primary vegetation type is evergreen broadleaf (EB).
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Wind River Experimental Forest is a site in Washington state, located in an old growth
forest with very tall trees with a real summer dry-down that restricts FCO2. Overall, Wind
River Experimental Forest is a very unusual site in comparison with the other NEON
terrestrial sites.

For each of these five sites, we created a time series of predicted FCO2 values and
actual FCO2 values reported both in half-hourly increments, and aggregated as an average
for each day of the year, as well as a scatter plot of predicted FCO2 vs. actual FCO2 for
analysis. We then compared these results to sites with the same primary vegetation types
for which our model had superior performance. In the case of Guanica Forest and Lajas
Experimental Station, since there were no other sites with the same primary vegetation
type, both sites are included in Figure 6.

Steigerwaldt Land Services (STEI), Dakota Coteau Field School (DCFS), and Delta
Junction (DEJU) were used as comparison for our other three sites representing primary veg-
etation types of DB, GR, and EN, respectively. These comparisons are found in Figures 7–9.

Figure 6. Time series and scatter plots of FCO2 prediction error for sites with EB primary vegeta-
tion type.
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Figure 7. Comparison of FCO2 prediction error for sites with DB primary vegetation type. Site with
poor model performance (CLBJ) is on the left and site with better model performance (STEI) on
the right.

Note that in most cases, we observed large systematic errors in model performance
for our five sites with the greatest L1SO remainder values. For example, when considering
scatter plots of predicted vs. observed FCO2 for LAJA and WREF, the slope of predicted
vs. observed FCO2 is less than 1. At CLBJ, the magnitude of summertime uptake is
under-predicted. At DSNY, the seasonality is represented well but there is a consistent
offset of several µmolm−2s−1, with predicted values higher than the measured values.
By comparison, at STEI, DCFS, and DEJU, the magnitude and timing of predicted FCO2 is
much better.

What is interesting from this analysis is that even on sites with relatively high L1SO
remainder, our model seems to perform well on average predicting patterns and dips in
daily average FCO2. It appears that most of the errors associated with sites with large L1SO
remainder can be attributed to the model being too conservative in its predictions, that is,
it predicts values closer to zero than the true measured flux values. As seen by the right
column of plots in Figures 7–9, sites of the same primary vegetation type where our model
had stronger performance seem to generally have less large positive and negative flux
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values. This makes sense, since our model learns to minimize prediction error, and since
each error ends up being squared, predicting very large positive or negative values in
general would be more heavily penalized. A good example of this fact can be seen in the
half-hourly time series for Lajas Experimental Station in Figure 6. This site has a mix of
large positive and negative observed flux values, and our model rarely made large positive
or negative predictions. Compare this to a site like Delta Junction in Figure 8. Here, there
are a number of large negative observed flux values, but not as many large positive values.
Spikes in the negative direction are less erratic, and model predictions, as a result, more
closely represent measured flux values. When looking at scatter plots of predicted flux
vs. observed flux, one can see that the results for sites in the right-hand column are more
tightly clustered around the 1:1 line, resulting in higher R2 scores.

Figure 8. Comparison of FCO2 prediction error for sites with GR primary vegetation type. Site with
poor model performance (DSNY) is on the left and site with better model performance (DCFS) on
the right.
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Figure 9. Comparison of sites with EN primary vegetation type. Site with poor model performance
(WREF) is on the left and site with better model performance (DEJU) on the right.

6.2. Relevance of L1SO Predictions for Unseen Sites

Historically, process-based models have been considered the “gold standard” for
predicting ecosystem CO2 fluxes. However, past model–data evaluation studies have
shown that although process-based models can often predict daily or sub-daily fluxes
that agree reasonably well with measured values, model performance on longer time
scales (seasonal, annual, and inter-annual) is often quite poor [7,9,52]. Models that cannot
accurately predict ecosystem carbon budgets on annual and inter-annual time scales are
not likely to be useful for carbon accounting purposes or for developing strategies for
nature-based climate solutions. This suggests that alternatives to process-based models
are needed. While machine learning-based models have been used for flux upscaling
for almost two decades [12,13,15], these analyses have generally attempted to extrapolate
from individual sites to regions and continents using only remotely sensed variables as
drivers. While this strategy is intuitively appealing, it is unable to leverage the site-level
characteristics that are undoubtedly relevant for making fine-scale predictions. Indeed,
basic ecosystem theory suggests that without accounting for these site-level characteristics
such as disturbance and land use history, it is impossible to predict ecosystem carbon
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balance. Notably, we found that site characteristics related to vegetation type, as well
as to soils, were identified as among the most important features for predicting FCO2.
However, remotely sensed variables from MODIS such as EVI and NDVI were found
to be more important than site-level vegetation indices (e.g., GCC, RCC) derived from
PhenoCam imagery. We can hypothesize that while PhenoCam imagery can provide
phenological information at a fine spatial and temporal scale, it may be subject to issues
related to the mismatch of footprints with eddy covariance flux measurements. In the case
of heterogeneous landscapes, MODIS vegetation indices with larger spatial coverage may
actually be more representative of seasonal variations in vegetation dynamics within the
flux tower footprint.

Finally, we note that although site-level meteorological and environmental drivers
(e.g., air temperature, relative humidity or VPD, soil temperature, soil moisture, and pre-
cipitation) were not ranked highly in terms of feature importance, this is not to say that
these variables do not matter. Rather, it is likely that in the context of variation in FCO2

from the Arctic to the Tropics, from winter to summer, and from day to night, that the
additional information contributed by these variables explains only a small amount of the
half-hourly variation in FCO2, although it may contribute greatly to improved estimates of
annual FCO2.

A persistent challenge in estimating site-level carbon balance via FCO2 measurements
has always been that small but selectively systematic measurement errors in 30 min data
can accumulate to large errors in annual integrals [10]. In our machine learning approach,
selectively systematic prediction errors could occur if important meteorological or environ-
mental variables were not accounted for as covariates. Omission of these variables might
do little to impact the R2 calculated on 30 min values but could seriously impact annual
flux integrals. Adoption of model optimization criteria that place more weight on reducing
selectively systematic bias (which might not even show up when bias is calculated over a
multi-year dataset) and improving predictive power on annual and multi-year time scales
could be important for further improving the application of machine learning methods to
carbon accounting and nature-based climate solutions.

6.3. Leveraging Site-Level Data When Standardized Model Inputs Are Not Available

Our feature importance plot (Figure 4) shows that, in spite of our assertion that
site-level data are critical for correctly predicting ecosystem carbon balance, much of
the information needed to predict half-hourly FCO2 actually comes from variables that
are already available from gridded land cover maps (i.e., vegetation type classifications),
satellite data products that characterize phenology (i.e., EVI, NDVI), and basic energy
balance data that are also widely available as satellite data products (e.g., net radiation).
This suggests that there is the potential for leveraging the much greater abundance of
AmeriFlux towers (for which site-level measurements are not standardized, but still useful),
together with key remotely sensed data products to generate an initial map of ecosystem
carbon balance. This initial map, when fused with elements of the analysis presented here,
could lead to a hybrid data product that leverages the sampling intensity of AmeriFlux and
the standardized sampling of NEON. The development of a data fusion platform such as
that which is described here is beyond the scope of the present analysis, but it is potentially
an exciting direction to be pursued in future research.

6.4. Annual Carbon Sums

For most sites, we managed to obtain low RMSE and high R2 for predicting the
measured half-hourly FCO2, even in the L1SO analysis (Tables 3 and 4). However, in the
context of carbon accounting and nature-based climate solutions, it is more important to
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know the overall carbon balance on an annual time scale. That is, we want to answer the
question of how much carbon (if any) the ecosystem is removing from the atmosphere
and putting into biomass and soil carbon on an annual basis. This carbon balance reflects
the balance between plant photosynthesis (carbon uptake or negative flux) and ecosystem
respiration (carbon release or positive flux). It is a challenge for models, either process-based
or data-driven, to correctly determine the overall carbon balance because of the opposing
nature of these processes on different time scales. For example, in most ecosystems, there is
a strong seasonal pattern of carbon uptake during the growing season and release during
the dormant season. During the growing season, there is also a diurnal pattern of carbon
uptake during the day and release during the night. Annually, the difference between
photosynthesis and respiration is much smaller (0–30%) than the flux associated with either
of these two key processes.

A model that predicts the annual carbon balance for an unknown site would be ex-
tremely valuable if it successfully estimated the multi-year mean carbon balance. The model
would be even more useful if it successfully represented the inter-annual variability in
carbon balance. State-of-the-art process-based models have generally failed to meet either
of these targets [9]. Our results show that across all vegetation types, annual sums pre-
dicted in the L1SO analysis performed surprisingly well at achieving the first target (see
Table 5). For 29 out of 44 sites (66%), the L1SO-predicted multi-year mean carbon balance
was within ±50 gCm−2y−1 of the “true” value estimated by gap-filling missing values in
the CV analysis. This is quite remarkable given that the total uncertainty on the annual
carbon balance, derived from gap-filled FCO2 measurements, is typically estimated to be
about ±50 gCm−2y−1 [53]. However, for 7 of 44 sites (16%), the deviation between the
L1SO-predicted multi-year mean and the “true” value was greater than 150 gCm−2y−1.
Three of these were deciduous broadleaf forest sites, one was an evergreen needleleaf forest
site, and one was a grassland site. We expect that there may be land use history, disturbance,
or similar factors that might explain these deviations, but were not included in our model.

Table 5. Table of mean bias and correlation coefficient (r) using L1SO-predicted annual carbon sums
and 10-fold projections of annual carbon sums.

Primary
Vegetation Site Mean Bias R

AG US-xSL −15.80 0.58
US-xKA 4.73 0.22

AVERAGE −5.53 ± 10.27 0.40 ± 0.18

DB US-xSC −60.82
US-xLE 134.12
US-xJE 76.42 0.68

US-xHA −46.71 0.32
US-xGR 20.46 0.05
US-xRN −67.14 0.82
US-xDL 55.57 −0.56
US-xST 21.37 0.75
US-xSE 17.43 −0.36
US-xCL 170.94 −0.78
US-xBR 114.38 0.85
US-xTR −3.15 0.96
US-xBL 135.44 0.019
US-xUK 1.47 0.98
US-xUN 4.95 −0.44

AVERAGE 38.32 ± 71.72 0.25 ± 0.64
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Table 5. Cont.

Primary
Vegetation Site Mean Bias R

EB PR-xLA 140.70
PR-xGU 31.93

AVERAGE 86.32 ± 54.38

EN US-xSB 121.02 −0.20
US-xSP −44.92 0.48
US-xTA −68.90 0.32
US-xTE 47.40 −0.35
US-xSJ −15.44 −0.65

US-xRM −48.55 −0.67
US-xYE 4.31 0.57
US-xDJ 20.68 0.24

US-xWR −10.31 −0.92
US-xAB 52.29 0.09
US-xBN −18.25 0.55

AVERAGE 3.57 ± 51.99 −0.05 ± 0.51

GR US-xWD −5.97 0.62
US-xCP −9.58 0.52
US-xDC 21.99 0.88
US-xMB 17.88 0.98
US-xDS 230.26 −0.90
US-xJR 28.82 0.63
US-xKZ 19.34 −0.62
US-xNG 34.74 0.85

AVERAGE 42.18 ± 72.57 0.37 ± 0.67

SH US-xSR −61.37 0.99
US-xNQ 63.5 0.99

AVERAGE 1.07 ± 62.44 0.99 ± 0.01

TN US-xNW −28.12 0.95
US-xHE −12.39 0.76
US-xTL −22.12 0.54
US-xBA −29.72 0.81

AVERAGE −23.09 ± 6.80 0.77 ± 0.15

Annual sums predicted in the L1SO analysis also performed reasonably well in repre-
senting the “true” inter-annual variability estimated from gap-filled time series. At more
than a quarter of sites (12 of 44, 27%), the correlation of L1SO-predicted annual sums and
the gap-filled annual sums was greater than 0.75, while for almost half of the sites (21 of 44,
47%), the correlation was greater than 0.50. While these results are based on at most 5 years
of data per site, they point to the enormous potential of machine learning to predict not
only the long-term carbon balance of an unknown site, but even the inter-annual variation
in that carbon balance. By comparison, it has been known for more than a decade that
even the most sophisticated process-based models are unable to capture this inter-annual
variability [54–56], despite accurately capturing the dynamics of “fast” processes operating
on time scales of hours to days.

7. Conclusions
In this paper, we showed the ability of machine learning-based models to make skillful

predictions of tower-based CO2 flux measurements. Specifically, we found that an XGBoost
model trained on 37 environmental drivers, from 44 AmeriFlux sites, can predict FCO2

at an unseen site to within an average error of 2.45 µmolm−2s−1. Furthermore, this error
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reduces significantly—down to as little as 0.66 µmolm−2s−1—when a site in the training
data has similar ecological characteristics to the unseen sites. This suggests that, with strate-
gic placement of instrumentation to record future data, there is potential to predict most
locations of interest with high accuracy. Our research underscores the importance of inte-
grating advanced modeling techniques into carbon accounting frameworks, enabling more
accurate quantification of carbon sequestration potential and guiding the implementation
of effective natural climate mitigation strategies.

While our results are a significant step forward for quantifying carbon fluxes, we note
that this work, like all machine learning-based modeling, is limited by the quality and
quantity of training data—in this case, the tower-based flux measurements. The predictive
performance of our model is generally lower for unique ecosystems, such as in Washington
and Puerto Rico. Further work would be required to fine-tune to the model if predicting
one of these sites with high accuracy is of specific interest (such as using domain adaptation
techniques [57,58] or increasing the data quantity in these regions).

NEON flux measurements, and those from AmeriFlux more generally, have substantial
uncertainties [53], but for the most part, it is believed by the CO2 flux measurement
community that theoretically based corrections largely eliminate the systematic biases
in measurements, and that the random errors then average out over long time scales.
Unfortunately, validating the accuracy of these measurements is a challenge because of the
numerous possible pathways by which CO2 can be removed from, stored, and returned to
the atmosphere. Despite the lack of complete standardization across AmeriFlux sites, it is
widely believed that tower-based measurements of FCO2 provide the most accurate and
informative estimates of ecosystem carbon uptake and storage. Importantly, interpretation
of annual FCO2 is also possible in a cross-site context, whereas it is not so straightforward to
compare biometric forest inventory measurements with estimates of grassland productivity
based on biomass clipping, or estimates of agricultural productivity based on crop yield.
For this reason, the ability of our ML-based model to successfully predict across-site
variation in annual FCO2 integrals, and within-site inter-annual variation in annual FCO2

integrals, represents an important step forward in coast-to-coast mapping of ecosystem
carbon balances, at fine spatial resolution, and in the application of these carbon balance
estimates in implementing natural climate solutions.

Finally, we note that our model is currently designed for site-level analysis, and that
there are many broader sources of CO2 emissions and sinks (including power generation,
transportation, and land use land cover change [59–61]). Each year an ensemble of dynamic
global vegetation models embedded in Earth system models are synthesized to estimate
the overall ‘land sink’ [62,63]. We anticipate that this is a challenge that can be met in future
years with more data and better ML techniques.
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