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a b s t r a c t

In this paper, the distributed time-varying optimization problem is investigated for networked La-
grangian systems with parametric uncertainties. Usually, in the literature, to address some distributed
control problems for nonlinear systems, a networked virtual system is constructed, and a tracking
algorithm is designed such that the agents’ physical states track the virtual states. It is worth pointing
out that such an idea requires the exchange of the virtual states and hence necessitates communication
among the group. In addition, due to the complexities of the Lagrangian dynamics and the distributed
time-varying optimization problem, there exist significant challenges. This paper proposes distributed
time-varying optimization algorithms that achieve zero optimum-tracking errors for the networked
Lagrangian agents without the communication requirement. The main idea behind the proposed
algorithms is to construct a reference system for each agent to generate a reference velocity using
absolute and relative physical state measurements with no exchange of virtual states needed, and
to design adaptive controllers for Lagrangian systems such that the physical states are able to track
the reference velocities and hence the optimal trajectory. The algorithms introduce mutual feedback
between the reference systems and the local controllers via physical states/measurements and are
amenable to implementation via local onboard sensing in a communication unfriendly environment.
Specifically, first, a base algorithm is proposed to solve the distributed time-varying optimization
problem for networked Lagrangian systems under switching graphs. Then, based on the base algorithm,
a continuous function is introduced to approximate the signum function, forming a continuous
distributed optimization algorithm and hence removing the chattering. Such a continuous algorithm is
convergent with bounded ultimate optimum-tracking errors, which are proportion to approximation
errors. Finally, numerical simulations are provided to illustrate the validity of the proposed algorithms.

© 2024 Elsevier Ltd. All rights are reserved, including those for text and datamining, AI training, and
similar technologies.
1. Introduction

In distributed optimization of networked systems, each mem-
er has a local cost function, and the goal is to cooperatively
inimize the sum of all the local cost functions. This paper

ocuses on distributed continuous-time optimization algorithms,
nd the results on discrete-time ones can be referred to Yang et al.
2019) and the references therein. In the distributed continuous-
ime optimization problem, the agents are governed by certain
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dynamics described by differential equations, and the objective
is to design control inputs for the agents such that the agents’
physical states reach the optimal solution. In the literature, there
are some distributed continuous-time optimization algorithms
(He et al., 2017; Wang et al., 2015; Zhang et al., 2017; Zou et al.,
2021, 2020), and these results assume time-invariant local cost
functions for the agents. However, in many practical applications,
e.g., the economic dispatch problem (Cherukuri & Cortes, 2016),
the local cost functions might be time-varying, which reflects the
fact that the optimal point might be changing over time forming
an optimal trajectory. Hence, it is meaningful to investigate the
distributed time-varying optimization problem.

We are focusing on developing distributed continuous-time
time-varying optimization algorithms, which have various appli-
cations in practice, e.g., the coordination of a team of robots.
For instance, by constructing quadratic objective functions for
the agents, the distributed time-varying optimization algorithms
data mining, AI training, and similar technologies.
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an be applied to solve the distributed average tracking of multi-
gent systems. A few distributed time-varying optimization algo-
ithms are established for single integrators (Cherukuri & Cortes,
016; Ning et al., 2017; Sun et al., 2023, 2017), double inte-
rators (Rahili & Ren, 2017), and agents with nonlinear dynam-
cs (Huang et al., 2020). In reality, a broad class of robots can be
odeled by nonlinear Lagrangian dynamics, e.g., the planar elbow
anipulator and autonomous vehicles (Spong et al., 2006). The
onlinear Lagrangian dynamics with parametric uncertainties,
hich are the focus of this paper, are more complicated than
ingle and double integrators, and are different from and cannot
e included as special cases by the model in Huang et al. (2020).
he complexity of the dynamics creates more challenges to solve
he distributed time-varying optimization problem.

Some results addressing distributed coordination problems
e.g., distributed optimization) for nonlinear agents introduce
istributed observers or virtual systems at a higher level, where
he agents communicate their observer states (virtual states in-
ependent of the agents’ physical states/measurements) with
eighbors such that the observer states or virtual states reach
onsensus on the desired optimal point/trajectory. Then control
lgorithms are designed for the agents to track the virtual states
serving as reference trajectories). However, due to the lack of
hysical states/feedback (e.g., agent positions) in the observers,
he reference trajectories generated by such an approach do not
xplicitly take into account the physical agents’ interaction with
he environment and their capability. Also, such an approach can-
ot be implemented based on local measurements via onboard
ensors without communication in a communication unfriendly
nvironment.
In this paper, we propose communication-free distributed

ime-varying optimization algorithms for networked Lagrangian
gents with parametric uncertainties. The main idea of the pro-
osed algorithms is constructing a reference system for each
gent, which is driven by the physical states instead of virtual
tates between neighbors and generates a reference velocity, and
hen designing adaptive controllers such that the agents’ physical
tates track their reference velocities, and hence the optimal
rajectory. The algorithms introduce mutual influence/feedback
etween reference systems and local controllers via physical
tates/measurements and are amenable to implementation via
ocal onboard sensing in a communication unfriendly environ-
ent. Due to the coupling and mutual influence of the reference
ystems and the agents’ dynamics, there are significant new
hallenges in the convergence analysis. In particular, the refer-
nce systems are rewritten as coupled and perturbed networked
econd-order systems by taking the tracking errors between
gents’ velocities and their own reference states as disturbances.
ue to the use of the nonlinear functions (e.g., the signum func-
ion) in the construction of the reference systems, the coupled
nd perturbed networked systems have disturbances inside and
utside the nonlinear functions, and the general input-to-state
tability analysis might not be directly applicable. This requires
igorous analysis on the impact of disturbance on the optimum-
racking performance of the perturbed systems. To this end, this
aper carefully examines the perturbed systems, and obtains the
nput-to-state-like stability from the disturbances to optimum-
racking errors (e.g., Proposition 1). These intermediate results
acilitate the convergence analysis of the proposed algorithms
or the networked Lagrangian agents. To be exact, we first de-
ign a base algorithm for the networked nonlinear Lagrangian
ystems to achieve exact optimum tracking under switching
raphs. Built on the base algorithm, we then propose a contin-
ous variant by replacing the signum function in the reference
ystems with a smooth nonlinear function to generate continuous
2

control torques for the Lagrangian systems and hence remove the
chattering caused by the signum function.

Comparison with Related Works: The works of He et al. (2017),
ang et al. (2015), Zhao et al. (2017), Zou et al. (2021, 2020) and
hang et al. (2017) focus on solving the distributed time-invariant
ptimization problem. Due to the complexities of the agents’
ynamics and switching graphs, the distributed time-varying op-
imization algorithms developed for integrator agents (Cherukuri
Cortes, 2016; Ning et al., 2017; Rahili & Ren, 2017; Sun et al.,
023, 2017) cannot be directly applied to address the case con-
idered in the paper. More importantly, the proposed algorithms
n this paper rely purely on physical states without the need for
xchange of virtual states and can be implemented in commu-
ication unfriendly applications. In contrast, the communication
f virtual states between neighbors is necessary in Huang et al.
2020), Zhang et al. (2017) and Zou et al. (2021, 2020). The struc-
ure of the proposed algorithms is inspired by Wang et al. (2020),
here the consensus and leader-following tracking of networked
agrangian systems are addressed. However, the problem consid-
red in this paper is more complex and challenging, and includes
he consensus and leader-following tracking of networked agents
s special cases.
Some preliminary results of this paper (e.g., Lemma 1) are pre-

ented in Ding et al. (2022). Different from Ding et al. (2022), the
urrent paper introduces two distributed time-varying optimiza-
ion algorithms under switching graphs, one of which capable of
enerating continuous control torques for networked Lagrangian
gents. In addition, this paper contains more detailed proofs and
dditional simulation results.

. Preliminaries

.1. Notation

Let R and R+ denote the sets of all real and positive real num-
ers, respectively. For a set S , |S| denotes the cardinality of S . For
matrix A ∈ Rp×p, let λ1(A) ≤ · · · ≤ λp(A) denote its eigenvalues.
or a vector x ∈ Rp, define sgn(x) = [sgn(x1), . . . , sgn(xp)]T where
gn(xi) = 1 if xi > 0, sgn(xi) = 0 if xi = 0, and sgn(xi) =

1 if xi < 0. Let 0m and 1m denote the m dimensional zero
nd all-ones vector, respectively. In ∈ Rn×n denotes the identity
atrix. For a time-varying signal x, let the kth time derivative
f x be denoted by x(k), where k is a non-negative integer, and
n particular, x(0) = x and x(1) = ẋ. For a time-varying function
(q, t), its gradient, denoted by ∇f (q, t) ∈ Rp with q ∈ Rp and
∈ R≥0, is the partial derivative of f (q, t) with respect to q, and
ts Hessian, denoted by H(q, t) ∈ Rp×p, is the partial derivative
f the gradient ∇f (q, t) with respect to q. Define Lp

∞ = {x :

0,∞) → Rp
| supt≥0 ∥x(t)∥∞ < ∞} and Lp

2 = {x : [0,∞) →
p
|[
∫
∞

0 xT (t)x(t)d t]1/2 <∞}.

.2. Graph theory

For a multi-agent system consisting of N agents, the inter-
ction topology can be modeled by a switching graph Gσ (t) =

V, Eσ (t)), which maps from R+ ∪ {0} to a finite set of undirected
raphs G = {Gk, k = 1, . . . ,G} with Gk = (V, Ek). For each
ndirected graph Gk, an edge, denoted by (i, j) ∈ Ek, means that
gent i and j can obtain information from each other at time t . The
dges (i, j) and (j, i) are equivalent. It is assumed that (i, i) /∈ Ek
k = 1, . . . ,G. The switching between graphs is modeled by a
witching signal σ : R+ ∪ {0} → {1, . . . ,G}. Denote by t0, t1, . . .
ith t0 = 0 an infinite sequence of time instances at which
switches, and any two consecutive switching time instances

atisfy the standard dwell-time condition that tκ − tκ−1 ≥ TS
κ = 1, 2, . . . where T is some positive constant. The neighbor
S
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et of node i at time t is denoted by Ni(t) = {j ∈ V|(j, i) ∈ Eσ (t)}.
y arbitrarily assigning an orientation for every edge in Gσ (t) at
ny time t , let B(t) =

[
bij(t)

]
∈ RN×|Eσ (t)| denote the incidence

atrix associated with graph Gσ (t) at time t , where bij(t) = −1 if
edge sj leaves node i, bij(t) = 1 if it enters node i, and bij(t) =

0 otherwise. An undirected path between nodes i1 and ik is a
sequence of edges of the form (i1, i2), (i2, i3), . . . , (ik−1, ik), where
ik ∈ V . A connected graph means that there exists an undirected
path between any pair of nodes in V .

Assumption 1. All the graphs in the set G are connected.

2.3. Agents’ dynamics

In this paper, we consider N Lagrangian systems, and the
equations of motion of the ith Lagrangian system can be described
by (Spong et al., 2006)

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi, (1)

where qi ∈ Rp is the generalized position (or configuration),
Mi(qi) ∈ Rp×p is the inertia matrix, Ci(qi, q̇i) ∈ Rp×p is the
Coriolis and centrifugal matrix, gi(qi) ∈ Rp is the gravitational
torque, and τi ∈ Rp is the exerted control torque. Three well-
known properties associated with the dynamics (1) are listed as
follows (Ghapani et al., 2016; Spong et al., 2006).

roperty 1. The inertial matrix Mi(qi) is symmetric and uniformly
ositive definite, and there exist positive constants kC̄ and kḡ such
hat ∥Ci(qi, q̇i)∥2 ≤ kC̄ ∥q̇i∥2 and ∥gi(qi)∥2 ≤ kḡ , ∀i ∈ V .

roperty 2. The Coriolis and centrifugal matrix Ci(qi, q̇i) can be
uitably chosen such that the matrix Ṁi(qi) − 2Ci(qi, q̇i) is skew-
ymmetric.

roperty 3. The dynamics (1) depend linearly on an unknown
onstant parameter vector ϑi ∈ Rm, that is, for any x, y ∈ Rp, it
olds that Mi(qi)x + Ci(qi, q̇i)y + gi(qi) = Yi(qi, q̇i, y, x)ϑi, where
i(qi, q̇i, y, x) is the regressor matrix.

. Problem statement

In the distributed time-varying optimization problem, each La-
rangian agent aims to cooperatively track the optimal trajectory
etermined by the group objective function. Let q∗(t) ∈ Rp denote
he optimal trajectory, and it is defined as

∗(t) = argmin
ζ (t)

{ N∑
i=1

fi[ζ (t), t]
}
, (2)

here fi[ζ (t), t] : Rp
× R+ ∪ {0} → R is the local cost function

ssociated with agent i ∈ V . In the rest of the paper, it is assumed
hat q∗ ∈ Lp

∞. This assumption is satisfied in most applications in
ractice. It is assumed that fi[ζ (t), t] is known only to agent i. To
ind q∗(t) defined in (2) is equivalent to find the optimal solution

q∗1(t), . . . , q
∗

N (t)} = argmin
{q1(t),...,qN (t)}

{ N∑
i=1

fi[qi(t), t]
}
,

subject to qi(t) = qj(t) ∀i ̸= j,

here q∗i (t) = q∗j (t) = q∗(t) ∀i ̸= j. In this paper, the goal is to
esign the control torques τi, i ∈ V , for the agent (1) such that
ach agent’s position qi(t) is capable of tracking q∗i (t) = q∗(t).
hat is, design τi for each agent i such that limt→∞[qi(t)−q∗(t)] =
p ∀i ∈ V . We make the following assumptions on the cost

unctions. ϑ

3

Assumption 2. Each cost function fi(qi, t), i ∈ V , is twice
continuously differentiable both in qi ∈ Rp and t , and strongly
convex in qi and uniformly in t . That is, the Hessian matrix
Hi(qi, t) is always positive definite and there exists a positive
constant m such that λj(Hi(qi, t)) ≥ m ∀j ∈ {1, . . . , p}, ∀i ∈ V
holds uniformly in t .

Assumption 3. For any i ∈ V , the gradient of the cost function
fi(qi, t) can be written as ∇fi(qi, t) = H(t)qi + gi(t), where H(t)
is a matrix-valued function, and gi(t) is a time-varying function.
In addition, there exist positive constants H̄ and ḡ such that
supt∈[0,∞)

H (l)(t)

2 ≤ H̄ and supt∈[0,∞)

g (l)
i (t)


2 ≤ ḡ ∀l =

0, 1, 2, ∀i ∈ V ,

In Assumption 2, the uniform strong convexity of the objective
functions guarantees that the optimal trajectory q∗ is unique for
ll t ≥ 0, and it also ensures that Hi(qi, t) ∀i ∈ V is invertible for
ll t . Assumptions 2 and 3 are some similar/equivalent assump-

tions that are used in prior related works (Ding et al., 2024; Huang
et al., 2020; Ning et al., 2017; Rahili & Ren, 2017; Simonetto et al.,
2016). Assumptions 2 and 3 can be satisfied in many situations
n practice, such as energy minimization (Ghapani et al., 2017),
otion coordination (Sun et al., 2023), and distributed average

racking (Chen et al., 2015; Rahili & Ren, 2017).

xample 1 (Distributed Average Tracking). In a networked sys-
em, each agent has a local reference signal ri(t) ∈ Rp, and
he objective is to design control inputs such that the agents’
hysical states track the average of the group reference signals,
.e., limt→∞[qi(t)− 1

N

∑N
j=1 ri(t)] = 0p ∀i ∈ V . Distributed average

racking algorithms have found applications in region following
ormation control (Chen & Ren, 2017), coordinated path plan-
ing (Švestka & Overmars, 1998), and distributed optimization
roblems (Shi et al., 2023). If the cost function are constructed
s fi(qi, t) = ∥qi(t)− ri(t)∥22, the distributed time-varying opti-
ization algorithms can be applied to address the distributed
verage tracking of networked agents. Note that Assumption 2
olds trivially from the above construction of fi(qi, t). Also, the
oundedness assumptions of ri, ṙi and r̈i are commonly placed
hen dealing with the distributed average tracking of networked
gents (Ghapani et al., 2017), and such boundedness assumptions
mply that Assumption 3 holds.

4. Distributed time-varying optimization of networked La-
grangian agents

4.1. The base algorithm

For each agent i ∈ V , construct a reference system as

v̇i = −αq̇i − γ
∑

j∈Ni(t)

sgn[α(qi − qj)+ q̇i − q̇j] + ϕi, (3)

where α and γ are some positive constants to be determined, and
ϕi is defined by

ϕi = −αFi(qi, t)− Ḟi(qi, t), (4)

Fi(qi, t) = H−1
i (qi, t)

[ ∂
∂ t

∇fi(qi, t)+ β∇fi(qi, t)
]
, (5)

with β being a positive constant to be determined. Note that
Assumptions 2 and 3 guarantee the existence of ϕi, i ∈ V . Define

si = q̇i − vi. (6)

The adaptive controller for the Lagrangian system (1) is given by

τi = −Kisi + Yi(qi, q̇i, vi, v̇i)ϑ̂i, (7)
̇̂
= −Γ Y T (q , q̇ , v , v̇ )s , (8)
i i i i i i i i



Y. Ding, H. Wang and W. Ren Automatica 171 (2025) 111882

w
ϑ

(

s
o
d
d
c
t
f
c
t
w

4

l

L
w
I

P
e
I
−

s
z
I
−

t

b

v

B
(
i
s
t
(
b
i

P
i
(
c

α

w

κ

a

P
−

−

−

q

here Ki and Γi are symmetric positive definite matrices, and
ˆ i is the estimate of ϑi. In the algorithm, the reference system
3) generates a desired reference velocity vi for each agent i,
and the adaptive controller (7)–(8) is used to drive each agent’s
velocity q̇i to track its local vi. Then, by the cascaded structure
of the proposed algorithm, one might expect qi to track the
optimal trajectory. In the reference system (3), the term−αq̇i+ϕi
is introduced to minimize the cost functions and the signum
function term is for coordination purpose. Note also that Ḟi(qi, t)
could be estimated from Fi(qi, t) using a filter.

Remark 1. It is worth emphasizing that the algorithm (3)–(8)
does not rely on exchange of virtual variables between neigh-
bors. Especially, the reference system (3) is driven by agents’
physical state information, i.e., qi, q̇i, qi − qj and q̇i − q̇j. Such
design excludes the usage of communication channels, and can
be implemented by onboard sensors. This feature distinguishes
this algorithm from existing results on distributed optimization
of networked Lagrangian systems, e.g., Zhang et al. (2017) and
Zou et al. (2021, 2020), where inter-agent communication is
required. In addition, the algorithm (7)–(8) with v̇i defined in
(3) addresses the distributed time-varying optimization prob-
lem with zero optimum-tracking error, while the results in Zou
et al. (2021, 2020) are limited to distributed time-invariant op-
timization, and the work of Zhang et al. (2017) only addresses a
pecial case of time-varying cost functions with nonzero bounded
ptimum-tracking errors. It is also worth pointing out that such
esign results in the fact that the reference systems and agents’
ynamics are highly coupled. The convergence analysis of such
oupled systems is quite complex and challenging. However, in
he literature, when distributed control problems are addressed
or nonlinear systems, networked virtual systems are constructed
ompletely independent of the agents’ dynamics, which makes
he analysis much easier and more straightforward compared
ith our convergence analysis later.

.2. Convergence analysis

Before moving on to the convergence analysis, an essential
emma is presented.

emma 1. Let γ ∈ R+, z = [zT1 , . . . , z
T
N ]

T , and s = [sT1, . . . , s
T
N ]

T ,
here zi ∈ Rp and si ∈ Rp

∀i ∈ V . It holds that −γ zT [B(t) ⊗
p]sgn([BT (t)⊗Ip](z+s)) ≤ −γ ∥[BT (t)⊗Ip]z∥1+2γ ∥[BT (t)⊗Ip]s∥1.

roof. Define P = {1, . . . , p}, and let zi,k and si,k denote the kth
ntry in vector zi and si. It holds that −γ zT [B(t)⊗ Ip]sgn([BT (t)⊗
p](z + s)) = −γ

∑
(i,j)∈E(t)(zi − zj)T sgn(zi − zj + si − sj) =

γ
∑

k∈P
∑

(i,j)∈E(t)Λ
k
i,j, where Λk

i,j = (zi,k − zj,k)sgn(zi,k − zj,k +
i,k − sj,k). For any k ∈ P , define Ek

0(t) = {(i, j) ∈ E(t)|zi,k −

j,k + si,k − sj,k = 0}. Note that Λk
i,j = 0 if (i, j) ∈ Ek

0(t).
t then holds that −γ zT [B(t) ⊗ Ip]sgn

(
[BT (t) ⊗ Ip](z + s)

)
=

γ
∑

k∈P
∑

(i,j)∈E(t)\Ek
0 (t)
Λk

i,j. For any (i, j) ∈ E(t) \ Ek
0(t), it holds

hat−γΛk
i,j = −γ |zi,k − zj,k + si,k − sj,k|+γ

(si,k−sj,k)(zi,k−zj,k+si,k−sj,k)
|zi,k−zj,k+si,k−sj,k|

≤ −γ |zi,k − zj,k + si,k − sj,k| + γ |si,k − sj,k| ≤ −γ
⏐⏐|zi,k − zj,k| −

|si,k − sj,k|
⏐⏐ + γ |si,k − sj,k|. For any k ∈ P , define Ek

+
(t) =

{(i, j) ∈ E(t)||zi,k − zj,k| ≥ |si,k − sj,k|} and Ek
−
(t) = {(i, j) ∈

E(t)||zi,k − zj,k| < |si,k − sj,k|}. Then, it follows that
−γ

∑
(i,j)∈E(t)\Ek

0 (t)
Λk

i,j ≤ −γ
∑

(i,j)∈Ek
+
(t)\Ek

0 (t)
(|zi,k − zj,k| − 2|si,k

− sj,k|) + γ
∑

(i,j)∈Ek
−
(t) |zi,k − zj,k| ≤ −γ

∑
(i,j)∈E |zi,k − zj,k| +

2γ
∑

(i,j)∈Ek
+
(t)\Ek

0 (t)
|si,k − sj,k| + γ

∑
(i,j)∈Ek

0 (t)
|zi,k − zj,k| + 2γ∑

(i,j)∈Ek
−
(t) |si,k − sj,k| ≤ −γ

∑
(i,j)∈E(t) |zi,k − zj,k| + 2γ∑

|s − s |. Hence, −γ zT [B(t) ⊗ I ]sgn([BT (t) ⊗ I ](z +
(i,j)∈E(t) i,k j,k p p

4

s)) ≤ −γ
∑

k∈P
∑

(i,j)∈E(t)(|zi,k − zj,k| − 2|si,k − sj,k|) = −γ∑
(i,j)∈E(t) ∥zi−zj∥1+2γ

∑
(i,j)∈E(t) ∥si−sj∥1 = −γ ∥[BT (t)⊗Ip]z∥1+

2γ ∥[BT (t)⊗ Ip]s∥1. ■

Using the definition of si in (6), the reference system (3) can
e rewritten as

q̇i = vi + si, (9)
̇ i = −αvi − αsi + ϕi

− γ
∑

j∈Ni(t)

sgn[α(qi − qj)+ vi − vj + si − sj]. (10)

y the system reformulation, the reference system (3) (i.e., (9)–
10)) can be viewed as a group of networked perturbed double-
ntegrators with disturbances si, i ∈ V . The following proposition
hows that the system (9)–(10) is input-to-state-like stable from
he disturbances (i.e., si, i ∈ V) to the optimum-tracking errors
i.e., qi(t) − q∗(t), i ∈ V). That is, optimum-tracking errors are
ounded and convergent to zero if the disturbances are bounded
n a certain sense and convergent to zero.

roposition 1. Consider a group of N agents, and their interaction
s described by the graph Gσ (t). Each agent’s dynamics are given by
9)–(10). Suppose that Assumptions 1–3 hold. Let α, β , and γ be
hosen such that

∈ R+, β > max{κ1, κ2}, and γ > π, (11)

here

1 =
H̄
m

(
2+

3
2α

+
3H̄
2m

)
+
α

2
, (12)

κ2 =
H̄
m

(
2+

1
2α

+
H̄
2m

)
+

3α
2
, (13)

π =
ḡ
m

(β + 1)
(
α + 1+

H̄
m

)
(N − 1), (14)

nd ḡ, H̄, m are given in Assumptions 2 and 3. Then, the following
two statements hold.

(I) If si ∈ Lp
∞ ∀i ∈ V , it holds that qi − q∗ ∈ Lp

∞ ∀i ∈ V .
(II) If limt→∞ si(t) = 0p ∀i ∈ V , it holds that limt→∞[qi(t) −

q∗(t)] = 0p ∀i ∈ V .

Proof. First, the following statements are proved, which then are
used to prove Statements (I) and (II):

(i) qi − 1
N

∑N
j=1 qj ∈ Lp

∞ and vi − 1
N

∑N
j=1 vj ∈ Lp

∞ ∀i ∈ V if
si ∈ Lp

∞ ∀i ∈ V , and limt→∞[qi(t)− 1
N

∑N
j=1 qj(t)] = 0p and

limt→∞[vi(t)− 1
N

∑N
j=1 vj(t)] = 0p ∀i ∈ V if limt→∞ si = 0p

∀i ∈ V;
(ii)

∑N
j=1 ∇fj(qj, t) ∈ Lp

∞ and
∑N

j=1[vj + Fj(qj, t)] ∈ Lp
∞ if

si ∈ Lp
∞ ∀i ∈ V , and limt→∞

∑N
j=1 ∇fj(qj, t) = 0p if

limt→∞ si(t) = 0p ∀i ∈ V .

roof of Statement (i). From Assumption 3, it holds that ϕi =
αβqi−βq̇i+D1(t)qi+D2(t)q̇i+g̃i(t), where D1(t) = −αH−1(t)Ḣ(t)
H−1(t)Ḧ(t) + [H−1(t)Ḣ(t)]2, D2(t) = −H−1(t)Ḣ(t), and g̃i(t) =
H−1(t){β ġi(t) + g̈i(t) + [αIp − Ḣ(t)H−1(t)][βgi(t) + ġi(t)]}. Let
= [qT1, . . . , q

T
N ]

T , v = [vT1 , . . . , v
T
N ]

T , s = [sT1, . . . , s
T
N ]

T , and
ϕ = [ϕT

1 , . . . , ϕ
T
N ]

T . Note that the right hand side of the closed-
loop dynamics is discontinuous because of the signum function,
and the solution should be understood in terms of differential
inclusion by using non-smooth analysis (Filippov, 1988). Define
x = (M ⊗ I )q, y = (M ⊗ I )v, and ξ = [xT , yT ]T , where
p p
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= IN −
1
N 1N1T

N . Then, it holds that ξ̇ ∈
a.e. K[f ](ξ ), where a.e.

stands for ‘‘almost everywhere’’ and f = [f Tx , f
T
y ]

T with

fx(ξ ) = y+ (M ⊗ Ip)s, (15)
fy(ξ ) = −αy− αs+ (M ⊗ Ip)ϕ

− γ [B(t)⊗ Ip]sgn([BT (t)⊗ Ip](αx+ y+ s)). (16)

Define the function V (ξ ) = ξ T (P ⊗ INp)ξ , where

P =
1
2

[
2αβ + α2 α

α 1

]
. (17)

ote that the matrix P is positive definite if αβ > 0. It also holds
hat λ1(P) ∥ξ∥22 ≤ V (ξ ) ≤ λ2(P) ∥ξ∥22. In the following, it is shown
that V (ξ ) is a common ISS-Lyapunov triple for switched system
for ξ (Mancilla-Aguilar & Garcıa, 2001) by letting Gσ (t) = Gk.

The set-valued Lie-derivative is given by Shevitz and Paden
(1994) ̇̃V ⊆ K[U1] + K[U2] + K[U3], where U1 = −α2βxT x −

βyTy + αxT (IN ⊗ D1)x + yT [αINp + IN ⊗ D2]y + xT [α(IN ⊗ D2) +
(IN ⊗D1)+ INp]y, U2 = xT (αβINp + IN ⊗D2)s+ yT (IN ⊗D2 −βINp)s,
3 = (αx+y)T g̃(t)−γ (αx+y)T [B(t)⊗Ip]sgn([BT (t)⊗Ip](αx+y+s))
ith g̃ = [̃gT

1 , . . . , g̃
T
N ]

T , and the fact that M2
= M has been used.

Consider U1. It follows from Assumptions 2 and 3 that ∥IN ⊗

1∥2 = ∥D1∥2 ≤
H̄
m (α + 1+ H̄

m ), and similarly, it holds that ∥IN ⊗

2∥2 ≤
H̄
m . Note that αxT (IN ⊗ D1)x ≤ α ∥x∥2 ∥IN ⊗ D1∥2 ∥x∥2 ≤

H̄
m

(
α+ 1+ H̄

m

)
∥x∥22, y

T (IN ⊗D2)y ≤
H̄
m ∥y∥22, and xT [α(IN ⊗D1)+

IN ⊗D1)+ INp]y ≤ [
H̄
m (2α+1+ H̄

m )+α2
]( α2 ∥x∥

2
2+

1
2α ∥y∥

2
2). Then,

it holds that U1 ≤ −α2
[β −

H̄
m (2 +

3
2α +

3H̄
2αm ) − α

2 ] ∥x∥
2
2 − [β −

H̄
m (2+ 1

2α +
H̄

2αm )− 3α
2 ] ∥y∥

2
2 ≤ −α2(β − κ1) ∥x∥22 − (β − κ2) ∥y∥22,

here κ1 and κ2 are given in (12) and (13), respectively.
Consider U2. Note that αβxT s ≤ αβ ∥x∥1 ∥s∥∞ and xT (IN ⊗

2)s ≤
H̄
m ∥x∥2 ∥s∥2 ≤

√
Np H̄

m ∥x∥1 ∥s∥∞. It follows that U2 ≤(
αβ +

√
Np H̄

m

)
∥x∥1 ∥s∥∞ + (β +

√
Np H̄

m ) ∥y∥1 ∥s∥∞ ≤ κ3(∥x∥1 +
y∥1) ∥s∥∞ ≤ κ3

√
2Np ∥ξ∥2 ∥s∥∞, where κ3 = max{αβ +

Np H̄
m , β +

√
Np H̄

m }.
Consider U3. Note that ∥αx+ y∥1 ≤

1
N

∑N
i=1

∑N
j=1 ∥α(xi −

j) + yi − yj∥1 ≤ maxi∈V{
∑N

j=1,j̸=i ∥α(xi − xj) + yi − yj∥1} ≤

N − 1)∥[BT (t) ⊗ Ip](αx + y)∥1, where xi = qi − 1
N

∑N
j=1 qj and

i = vi −
1
N

∑N
j=1 vj. It follows from Assumption 3 that ∥̃g∥∞ ≤

maxi∈V{∥̃gi∥∞} ≤ ∥̃gi∥2 ≤
ḡ
m (β + 1)(α + 1 +

H̄
m ). Note that

(αx + y)T g̃ ≤ ∥αx+ y∥1 ∥̃g∥∞ ≤
ḡ
m (β + 1)(α + 1 +

H̄
m )(N −

)
[BT (t)⊗ Ip](αx+ y)


1 = π∥[BT (t)⊗ Ip](αx+ y)∥1, where π is

iven in (14). From Lemma 1, it follows that −γ (αx+ y)T [B(t)⊗
p]sgn

(
[BT (t) ⊗ Ip](αx + y + s)

)
≤ −γ ∥[BT (t) ⊗ Ip](αx + y)∥1 +

γ ∥[BT (t)⊗Ip]s∥1 ≤ −γ ∥[BT (t)⊗Ip](αx+y)∥1+γN2(N−1)p ∥s∥∞.
t holds that U3 ≤ −(γ−π )∥[BT (t)⊗Ip](αx+y)∥1+κ4 ∥s∥∞, where
4 = γN2(N − 1)p.
Since the signum function is measurable and locally essentially

ounded, then the Filippov solutions always exist and are abso-
utely continuous (Cortes, 2008). Hence, x and y are continuous.
ote that, for any Ũ1 ∈ K[U1], Ũ1 ≤ −α2(β − κ1) ∥x∥22 −

β − κ2) ∥y∥22 holds. Similar facts hold for any Ũ2 ∈ K[U2] and
˜3 ∈ K[U3]. By Shevitz and Paden (1994), it holds that V̇ ∈

̇̃V .
ence, it holds that V̇ ≤ −α2(β − κ1) ∥x∥22 − (β − κ2) ∥y∥22 +

3
√
2Np ∥ξ∥2 ∥s∥∞+κ4 ∥s∥∞− (γ −π )

[BT (t)⊗ Ip](αx+ y)

1 ≤

−cm ∥ξ∥22 + cM ∥ξ∥2 ∥s∥∞ + κ4 ∥s∥∞, where cm = min
{
α2(β −

1), β − κ2
}

and cM = κ3
√
2Np. Note that cM ∥ξ∥2 ∥s∥∞ ≤

cm ∥ξ∥22+
c2M

4ηcm
∥s∥2

∞
= ηcm ∥ξ∥22+κ5 ∥s∥

2
∞
, where η ∈ (0, 1) and

κ =
c2M . It then follows that V̇ ≤ −(1− η)c ∥ξ∥2 + κ ∥s∥2 +
5 4ηcm m 2 5 ∞

5

κ4 ∥s∥∞ ≤ −κ6V + 2ρ(∥s∥∞), where κ6 =
(1−η)cm
λ2(P)

and ρ(r) =

ax{κ5r2, κ4r} is a class K function (Khalil, 2002, p. 144). Such in-
qualities hold for any Gk, k = 1, . . . ,G, and hence, V (ξ ) is indeed
common ISS-Lyapunov triple. For any t ∈ [t0,∞) with t0 ≥ 0, it
olds that V [ξ (t)] ≤ e−κ6(t−t0)V [ξ (t0)] + 2

κ6
supτ∈[t0,t] ρ(∥s(τ )∥∞).

If si ∈ Lp
∞ ∀i ∈ V , then supτ∈[0,∞) ρ(∥s(τ )∥∞) <∞, then V ∈ L1

∞
,

which implies that x ∈ LNp
∞ and y ∈ LNp

∞ .
Note that supτ∈[t0,t] ρ(∥s(τ )∥∞) = ρ(supτ∈[t0,t] ∥s(τ )∥∞). Given

any ϖ > 0, there is ϖ1 > 0 such that ρ(ϖ1) ≤
ϖκ6
4 . If

limt→∞ si = 0p ∀i ∈ V , then there exists T1 > 0 such that
upτ∈[T1,∞) ∥s(τ )∥∞ ≤ ϖ1. Let t0 ≥ T1. For t ≥ t0, it follows
hat V [ξ (t)] ≤ e−κ6(t−t0)V [ξ (t0)] + ϖ

2 . There exists T2 ≥ t0
such that e−κ6(t−t0)V [ξ (t0)] ≤

ϖ
2 ∀t ≥ T2. Then, it holds that

V [ξ (t)] ≤ ϖ ∀t ≥ max{T1, T2}. This shows that limt→∞ ξ = 02Np,
.e., limt→∞ x = limt→∞ y = 0Np. By the definitions of x and y, the
roof of Statement (i) is completed.

roof of Statement (ii). Define χ =
∑N

j=1 ∇fj(qj, t) and ψ =
N
j=1[vj + Fj(qj, t)]. One has χ̇ = −χ + H(t)ψ +

∑N
j=1 H(t)sj and

̇ = −αψ − α
∑N

j=1 sj. Note that ψ̇ = −αψ is a stable linear
ime-invariant (LTI) system. Then, from the properties of input-
o-state stability, it holds that ψ ∈ Lp

∞ if si ∈ Lp
∞ ∀i ∈ V and

imt→∞ ψ = 0p if limt→∞ si = 0p ∀i ∈ V . Note also that χ̇ =

χ is an exponentially stable LTI system. Then, it follows from
ssumption 3 that χ ∈ Lp

∞ if si ∈ Lp
∞ ∀i ∈ V and limt→∞ χ = 0p

f limt→∞ si = 0 ∀i ∈ V .

roof of Statement (I). Since
∑N

j=1 fj(q, t) is strongly convex in q,
t follows that Nm ∥q̄− q∗∥22 ≤ [

∑N
j=1 ∇fj(q̄, t)−

∑N
j=1 ∇fj(q∗, t)]T

q̄−q∗) = [
∑N

j=1 ∇fj(q̄, t)−χ ]T (q̄−q∗)+[χ−
∑N

j=1 ∇fj(q∗, t)]T (q̄−
∗), where q̄ =

1
N

∑N
j=1 qj Then, it holds that Nm∥q̄ − q∗∥2 ≤∑N

j=1 ∇fj(q̄, t) − χ

2 +

χ −
∑N

j=1 ∇fj(q∗, t)

2. From Assump-

ions 2 and 3 that ∥
∑N

j=1 ∇fj(q̄, t) − χ∥2 ≤
∑N

j=1 ∥∇fj(q̄, t) −
fj(qj, t)∥2 ≤

∑N
j=1 H̄

qj − q̄

2. Since

∑N
j=1 fj(q

∗, t) = 0p, then
m∥q̄− q∗∥2 ≤

χ2 +
∑N

j=1 H̄
qj − q̄


2. By Statements (i) and

(ii), it holds that qi − q̄ ∈ Lp
∞ and χ ∈ Lp

∞ if si ∈ Lp
∞ ∀i ∈ V . Then

it follows that ∥q̄− q∗∥2 <∞, and hence qi − q∗ ∈ Lp
∞ ∀i ∈ V .

Proof of Statement (II). Since limt→∞ si = 0p ∀i ∈ V , it follows
from Statement (ii) that limt→∞ χ = 0p. Then, from the analysis
in the proof of Statement (I), it holds that limt→∞ Nm∥q̄(t) −
q∗(t)∥2 ≤ limt→∞

∑N
j=1 H̄∥qj(t) − q̄(t)∥2 + limt→∞

χ2 = 0,
which implies that limt→∞ q̄(t) = q∗(t). By Statement (i), one has
imt→∞ qi(t) = q̄(t), which implies Statement (II). ■

With Proposition 1 at hand, the convergence of the distributed
ptimization algorithm (7)–(8) can be established by the follow-
ng theorem.

heorem 1. Suppose that Assumptions 1–3 hold, and let α, β ,
nd γ be chosen as in (11). Using the controller (7)–(8) with vi and
̇ i given by the reference system (3) for the networked Lagrangian
ystem (1) solves the distributed time-varying optimization problem,
hat is, limt→∞[qi(t)− q∗(t)] = 0p.

roof. Substituting (7) into (1) and using Property 3 and (8) yield
hat

i(qi)ṡi + Ci(qi, q̇i)si = −Kisi + Yi(qi, q̇i, vi, v̇i)ϑ̃i, (18)
̇
i = −ΓiY T

i (qi, q̇i, vi, v̇i)si, (19)

here ϑ̃i = ϑ̂i−ϑi. For any i ∈ V , define a Lyapunov function can-
didate W =

1 sTM (q )s +
1 ϑ̃TΓ −1ϑ̃ . The derivative of W along
i 2 i i i i 2 i i i i
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he solution of (18)–(19) is given as Ẇi = sTi Mi(qi)ṡi+ 1
2 s

T
i Ṁi(qi)si+

ϑT
i Γ

−1
i

̇̃ϑ i = −sTi Kisi − sTi Ci(qi, q̇i)si + 1
2 s

T
i Ṁi(qi)si = −sTi Kisi ≤

λ1(Ki) ∥si∥22 ≤ 0, where (18)–(19) and Property 2 have been
sed to obtain the second and last equalities, respectively. It then
olds that Wi ∈ L1

∞
∀i ∈ V , which implies that si ∈ Lp

∞ ∀i ∈ V ,
nd that ϑ̃i ∈ Lm

∞
and hence ϑ̂i ∈ Lm

∞
∀i ∈ V . Integrating over

0, t] on both sides yields that λ1(Ki)
∫ t
0 ∥si(τ )∥

2
2 dτ ≤ Wi(0) −

i(t) < ∞ ∀t ≥ 0, which implies that si ∈ Lp
2 ∀i ∈ V . Hence, it

olds that si ∈ Lp
∞ ∩ Lp

2 and ϑ̂i ∈ Lm
∞

∀i ∈ V .
Using (6), we can rewrite (3) as the system (9)–(10). Since

si ∈ Lp
∞∩Lp

2 ∀i ∈ V , it follows from Statement (I) of Proposition 1
that qi ∈ Lp

∞ ∀i ∈ V . It then follows from (5) and Assumption 3
that Fi(qi, t) ∈ Lp

∞ ∀i ∈ V . Recall from Statement (ii) that∑N
j=1[vj + Fj(qj, t)] ∈ Lp

∞, then
∑N

j=1 vj ∈ Lp
∞. Recall from

Statement (i) that vi − 1
N

∑N
j=1 vj ∈ Lp

∞ ∀i ∈ V . It then holds
that vi ∈ Lp

∞ ∀i ∈ V . From (9), it then holds that q̇i ∈ Lp
∞ ∀i ∈ V .

By Assumption 3, it holds that ϕi ∈ Lp
∞ ∀i ∈ V . From (10), it holds

that v̇i ∈ Lp
∞ ∀i ∈ V . Then, by using (18) and Property 1, it holds

that ṡi ∈ Lp
∞ ∀i ∈ V . It can thus be shown that si ∀i ∈ V are

uniformly continuous. Since si ∈ Lp
2 ∀i ∈ V , then using Barbalat’s

lemma (Khalil, 2002, p. 323) yields that limt→∞ si(t) = 0p ∀i ∈ V .
The proof is completed by following Statement (II). ■

4.3. Distributed time-varying optimization algorithm removing chat-
tering

Note that the control torques may involve the chattering issue
in practice, since v̇i in (3) introduces the signum function in the
controller (7). This subsection focuses on the distributed time-
varying optimization algorithm that generates continuous control
inputs, and hence removes the chattering issue while application
in practice. Inspired by Burton and Zinober (1986), we introduce
a differentiable function h(·) to approximate and replace the
signum function, which results in continuous control torques for
the Lagrangian agents and removes the effects of chattering. The
function h(·) is given by

h(r) =
r

∥r∥2 + ε
, (20)

here r ∈ Rp and ε is a positive constant. After replacing
he signum function in (3) with the function (20), the reference
ystem for agent i ∈ V becomes

̇ i = −αq̇i − γ
∑

j∈Ni(t)

h[α(qi − qj)+ q̇i − q̇j] + ϕi, (21)

here ϕi is defined in (4). As in Section 4.2, a similar preliminary
emma is presented.

emma 2. Let γ ∈ R+, and zi, si ∈ Rp, i ∈ V . It holds that
γ
∑

(i,j)∈E(t)(zi−zj)Th(zi−zj+si−sj) ≤ −γ
∑

(i,j)∈E(t)(
zi − zj


2−si − sj


2 − ε).

roof. From the definition of h(·) in (20), it follows that −γ

(i,j)∈E(t)(zi − zj)Th(zi − zj + si − sj) = −γ
∑

(i,j)∈E(t)

zi − zj + si − sj

2+γ

∑
(i,j)∈E(t) ε+γ

∑
(i,j)∈E(t)

(si−sj)T (zi−zj+si−sj)−ε2

∥zi−zj+si−sj∥2+ε
.

t follows that (si−sj)T (zi−zj+si−sj) ≤ ∥si−sj∥2∥zi−zj+si−sj∥2.
Then, −γ

∑
(i,j)∈E(t)(zi−zj)Th(zi−zj+ si− sj) ≤ −γ

∑
(i,j)∈E(t) ∥zi−

zj+si−sj∥2+γ
∑

(i,j)∈E(t)

si − sj

2−γ

∑
(i,j)∈E(t)

ε∥si−sj∥2+ε
2

∥zi−zj+si−sj∥2+ε
+∑

(i,j)∈E(t) ε. Define E+(t) = {(i, j) ∈ E(t)|
zi − zj


2 ≥

si − sj

2}

nd E−(t) = {(i, j) ∈ E(t)|
zi − zj


2 <

si − sj

2}. Since

ε∥si−sj∥2+ε
2

∥zi−zj+si−sj∥2+ε
≥ 0 ∀(i, j) ∈ E(t), it then holds that −γ

∑
(i,j)∈E(t)

(z−z )Th(z−z +s−s ) ≤ −γ
∑

|
z − z

 −
s − s

 |+
i j i j i j (i,j)∈E(t) i j 2 i j 2

6

γ
∑

(i,j)∈E(t)(ε + β
si − sj


2) ≤ −γ

∑
(i,j)∈E+(t)

zi − zj

2 + γ∑

(i,j)∈E+(t)

si − sj

2 − γ

∑
(i,j)∈E−(t)

si − sj

2 + γ

∑
(i,j)∈E−(t)zi − zj


2 + γ

∑
(i,j)∈E(t)(ε +

si − sj

2). The statement follows

from the definition of E−(t). ■

heorem 2. Suppose that Assumptions 1–3 hold, and let α and
be chosen as in (11), and γ be chosen such that γ > π

√
p,

where π is given in (14). Using the controller (7)–(8) with v̇i
defined in (21) for the networked Lagrangian system (1) solves
the distributed time-varying optimization problem with bounded
optimum-tracking errors, and the ultimate optimum-tracking errors
satisfy limt→∞ ∥qi(t)− q∗(t)∥2 ≤ ( H̄m + 1)

[
εpN(N−1)λ2(P)
(1−η)cmλ1(P)

]1/2
∀i ∈ V ,

where cm = min
{
α2(β − κ1), β − κ2

}
, η ∈ (0, 1), and κ1, κ2, and P

re given in (12), (13), and (17), respectively.

roof. The same notational symbols are used as in the proofs
f Proposition 1 and Theorem 1. Using Lemma 2 and following
he analysis in the proof of Proposition 1 imply that Statements
i) and (ii) still hold. In addition, it holds that V̇ ≤ −κ6V +

ρ(∥s∥∞) + ε̄, where ε̄ =
1
2εγN(N − 1) and ρ(·) is given in

roposition 1. This implies that V [ξ (t)] ≤ e−κ6(t−t0)V [ξ (t0)] +
2
κ6
ρ(supτ∈[t0,t] ∥s(τ )∥∞) + ε̄

κ6
for t ≥ t0 and t0 ≥ 0. Given any

ϖ > 0, there exists T such that V [ξ (t)] ≤ ϖ +
ε̄
κ6

∀t ≥

. Then, it follows that limt→∞ V [ξ (t)] =
ε̄
κ6
, which implies

that ξ converges to the set {ξ | ∥ξ∥2 ≤ [
ε̄

κ6λ1(P)
]
1/2

}. That is,
limt→∞ ∥qi(t)− q̄(t)∥∞ ≤ [

ε̄
κ6λ1(P)

]
1/2, where q̄ =

1
N

∑N
j=1 qj.

ecall that limt→∞

∑N
j=1 ∇fi(qi, t) = 0p (since limt→∞ si(t) =

p ∀i ∈ V), and by Proof of Statement (II), one has limt→∞

q̄(t)− q∗(t)∥2 ≤
H̄
m [

ε̄p
κ6λ1(P)

]
1/2. It follows that limt→∞

qi(t)− q∗(t)∥2 ≤ limt→∞ ∥qi(t)− q̄(t)∥2+limt→∞ ∥q̄(t)− q∗(t)∥2
( H̄m + 1)[ ε̄p

κ6λ1(P)
]
1/2, which completes the proof. ■

From Theorem 2, the ultimate optimum-tracking errors are
proportional to the value of ε, which controls the approximation
errors of h(·). The optimum-tracking errors can be made arbitrary
small by selecting sufficiently small ε. Moreover, one can set
ε = ϵ1e−ϵ2t or some positive functions that are convergent
to zero, and then h(·) becomes a time-varying approximation
function, and it can be shown that limt→∞[qi(t) − q∗(t)] = 0p
∀i ∈ V . There are other continuous functions that can be used
to approximate the signum function, such as sat( r

ε
) and tanh( r

ε
),

where ε ∈ R+. The convergence can be proved by following a
similar line of analysis in Lemma 2, Proposition 1, and Theorem 2,
hich is omitted. The chattering in control systems is caused
y the discontinuity in the control design. By the approximation
dea, the resulting control torque (7) is continuous, and hence,
he chattering is removed. See the comparison of Figs. 3 and
in Section 5 for illustration. In addition, the function h(r) is

approaching to the discontinuous signum function when ε is
approaching to zero, which in term indicates that the effect of
removing the chattering is decreased. Therefore, the value of ε
can be chosen to trade off the requirement of ensuring certain
optimum-tracking performance with that of ensuring continuous
control torques.

Remark 2. The method of approximating the signum func-
tion using (20) has been applied in Rahili and Ren (2017) to
remove the chattering. However, this work considers the dis-
tributed time-varying optimization problem for networked La-
grangian systems, and the proposed algorithms can be imple-
mented by using on-board sensors taking physical state measure-
ments. The Lagrangian dynamics are more complex compared
with single- and double-integrator agents considered in Rahili
and Ren (2017). Moreover, the complexities of the problem of
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Fig. 1. Graph 1 (top left); Graph 2 (top right); Graph 3 (bottom left); Graph 4
(bottom right).

Fig. 2. The position trajectories of Lagrangian agents (1) using the distributed
algorithms in Section 4.1.

Fig. 3. The control torques of Lagrangian agents (1) using the distributed
lgorithms in Section 4.1.

nterest and agents’ dynamics pose challenges in the convergence
nalysis. For instance, as an intermediate step in the conver-
ence analysis, two statements are established for the networked
ystem (9)–(10), which can be seen as networked second-order
ystems perturbed by disturbances si, i ∈ V . Hence, they are dif-
erent from the disturbance-free double-integrator model consid-
red in Rahili and Ren (2017), and there are significant technical
hallenges.

emark 3. The structure of the proposed distributed algorithms
or networked Lagrangian agents are partially inspired by Wang
t al. (2020), where the consensus and/or leader-following of
etworked Lagrangian systems are investigated. In this paper,
he distributed time-varying optimization problem is addressed,
hich are more complex and challenging and include the con-
ensus and leader-following as special cases. Moreover, while
ealing with the distributed time-varying optimization for net-
orked Lagrangian agents, the analysis is quite different from
7

he work of Wang et al. (2020). The nonlinear functions, such
s the signum function and the one defined in (20), are used to
onstructing v̇i, which forms a perturbed closed-loop networked
ouble-integrator systems with si as disturbance in the model and
nside the nonlinear functions (see (9)–(10) for an example). This
aper provide rigorous analysis on the performance of the per-
urbed systems under bounded and convergent disturbances. In
ddition, when considering distributed time-varying optimization
roblem, additional analysis steps are required, see the optimum-
racking steps in the proof of Proposition 1 and Theorem 1 for
nstance.

emark 4. As shown in Theorems 1 and 2, the lower bounds
f the design parameters (e.g., γ , α, and β) depend on some
lobal information, such as the bounds on the cost functions and
he graph. It is worth mentioning that these design parameters
re constants, and can be determined off-line. Once they are
hosen, one can embed them into each agent and implement
he proposed algorithms by using only local information, which
mplies that the proposed algorithm can be implemented in a
istributed way. In addition, one can be conservative and select
arge enough values for these parameters. Also, one can use some
xisting algorithms (Giannini et al., 2016; Varagnolo et al., 2013)
o estimate the bounds about the cost functions and the graph,
nd then choose appropriate values for the parameters based on
he estimated bounds.

. Illustrative examples

In this section, we provide examples to illustrate the results
n this paper. We consider a group of ten planar manipulators
ith two revolute joints (Spong et al., 2006, pp. 259–262) (V =

1, . . . , 10}). The interaction among these ten agents is charac-
erized as the graph in Fig. 1. The interaction graph starts from
raph 1. Then after every 0.25 s, it switches to the next graph
nd the process repeats. Each agent i ∈ V has a local cost function
i(ζ , t) = [ζ1−0.1i sin(t)]2+[ζ2−0.1i cos(t)]2 with ζ = [ζ1, ζ2]

T ,
nd denote by q∗(t) = [q∗1(t), q

∗

2(t)]
T the optimal trajectory that

inimizes
∑10

i=1 fi(ζ , t). In the following algorithm validations,
he initial values, qi(0) = [qi1(0), qi2(0)]T , vi(0), and ϑi(0), are
hosen as follows: for any i ∈ V and any j ∈ {1, 2}, qij(0) and q̇ij(0)
re generated randomly from the ranges [−0.5, 0.5], and vi(0) =
̇ i(0) + 0.112, and ϑi(0) = 05. We first validate the distributed
ime-varying optimization algorithm (7)–(8) with v̇i defined in
3). In this simulation, we select Γi = 0.09I5 and Ki = 14I2 for
ny i ∈ V , α = 1.5, and γ = 8. The position trajectories and
ontrol torques are presented in Figs. 2 and 3, respectively. From
ig. 2, it shows that all the agents track the optimal trajectory. It
an be seen from Fig. 3 that there exists chattering. To remove
he chattering, we apply and validate the distributed algorithm
n Section 4.3, and set γ = 13 and ε = 0.4. The position
rajectories and control torques are presented in Figs. 4 and 5,
espectively. From Fig. 4, it shows that all the agents track the
ptimal trajectory with bounded errors. Unlike the discontinuous
nd frequently switching control torques in Fig. 3, it can be seen
rom Fig. 5 that the control torques are continuous except for the
raph switching time instants.

. Conclusion

This paper investigated the distributed time-varying optimiza-
ion of networked Lagrangian systems with parametric uncer-
ainties. The proposed algorithms can be implemented by using
nly on-board sensors and drive the agents to track the op-
imal trajectory. First, a base algorithm has been designed to
chieve zero optimum-tracking error. Built on the base algorithm,
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Fig. 4. The position trajectories of Lagrangian agents (1) using the distributed
algorithms in Section 4.3.

Fig. 5. The control torques of Lagrangian agents (1) using the distributed
lgorithms in Section 4.3.

continuous variant has been developed, which is capable of gen-
rating continuous control torques for the networked Lagrangian
ystems and hence reducing the chattering. In the end, numerical
xamples have been provided to illustrate the obtained results.
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