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In this paper, the distributed time-varying optimization problem is investigated for networked La-
grangian systems with parametric uncertainties. Usually, in the literature, to address some distributed
control problems for nonlinear systems, a networked virtual system is constructed, and a tracking
algorithm is designed such that the agents’ physical states track the virtual states. It is worth pointing
out that such an idea requires the exchange of the virtual states and hence necessitates communication
among the group. In addition, due to the complexities of the Lagrangian dynamics and the distributed
time-varying optimization problem, there exist significant challenges. This paper proposes distributed
time-varying optimization algorithms that achieve zero optimum-tracking errors for the networked
Lagrangian agents without the communication requirement. The main idea behind the proposed
algorithms is to construct a reference system for each agent to generate a reference velocity using
absolute and relative physical state measurements with no exchange of virtual states needed, and
to design adaptive controllers for Lagrangian systems such that the physical states are able to track
the reference velocities and hence the optimal trajectory. The algorithms introduce mutual feedback
between the reference systems and the local controllers via physical states/measurements and are
amenable to implementation via local onboard sensing in a communication unfriendly environment.
Specifically, first, a base algorithm is proposed to solve the distributed time-varying optimization
problem for networked Lagrangian systems under switching graphs. Then, based on the base algorithm,
a continuous function is introduced to approximate the signum function, forming a continuous
distributed optimization algorithm and hence removing the chattering. Such a continuous algorithm is
convergent with bounded ultimate optimum-tracking errors, which are proportion to approximation
errors. Finally, numerical simulations are provided to illustrate the validity of the proposed algorithms.
© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and
similar technologies.

Keywords:
Distributed time-varying optimization
Lagrangian systems

1. Introduction dynamics described by differential equations, and the objective
is to design control inputs for the agents such that the agents’
physical states reach the optimal solution. In the literature, there
are some distributed continuous-time optimization algorithms
(He et al., 2017; Wang et al., 2015; Zhang et al., 2017; Zou et al,,
2021, 2020), and these results assume time-invariant local cost
functions for the agents. However, in many practical applications,

e.g., the economic dispatch problem (Cherukuri & Cortes, 2016),

In distributed optimization of networked systems, each mem-
ber has a local cost function, and the goal is to cooperatively
minimize the sum of all the local cost functions. This paper
focuses on distributed continuous-time optimization algorithms,
and the results on discrete-time ones can be referred to Yang et al.
(2019) and the references therein. In the distributed continuous-

time optimization problem, the agents are governed by certain
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the local cost functions might be time-varying, which reflects the
fact that the optimal point might be changing over time forming
an optimal trajectory. Hence, it is meaningful to investigate the
distributed time-varying optimization problem.

We are focusing on developing distributed continuous-time
time-varying optimization algorithms, which have various appli-
cations in practice, e.g., the coordination of a team of robots.
For instance, by constructing quadratic objective functions for
the agents, the distributed time-varying optimization algorithms
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can be applied to solve the distributed average tracking of multi-
agent systems. A few distributed time-varying optimization algo-
rithms are established for single integrators (Cherukuri & Cortes,
2016; Ning et al.,, 2017; Sun et al.,, 2023, 2017), double inte-
grators (Rahili & Ren, 2017), and agents with nonlinear dynam-
ics (Huang et al., 2020). In reality, a broad class of robots can be
modeled by nonlinear Lagrangian dynamics, e.g., the planar elbow
manipulator and autonomous vehicles (Spong et al., 2006). The
nonlinear Lagrangian dynamics with parametric uncertainties,
which are the focus of this paper, are more complicated than
single and double integrators, and are different from and cannot
be included as special cases by the model in Huang et al. (2020).
The complexity of the dynamics creates more challenges to solve
the distributed time-varying optimization problem.

Some results addressing distributed coordination problems
(e.g., distributed optimization) for nonlinear agents introduce
distributed observers or virtual systems at a higher level, where
the agents communicate their observer states (virtual states in-
dependent of the agents’ physical states/measurements) with
neighbors such that the observer states or virtual states reach
consensus on the desired optimal point/trajectory. Then control
algorithms are designed for the agents to track the virtual states
(serving as reference trajectories). However, due to the lack of
physical states/feedback (e.g., agent positions) in the observers,
the reference trajectories generated by such an approach do not
explicitly take into account the physical agents’ interaction with
the environment and their capability. Also, such an approach can-
not be implemented based on local measurements via onboard
sensors without communication in a communication unfriendly
environment.

In this paper, we propose communication-free distributed
time-varying optimization algorithms for networked Lagrangian
agents with parametric uncertainties. The main idea of the pro-
posed algorithms is constructing a reference system for each
agent, which is driven by the physical states instead of virtual
states between neighbors and generates a reference velocity, and
then designing adaptive controllers such that the agents’ physical
states track their reference velocities, and hence the optimal
trajectory. The algorithms introduce mutual influence/feedback
between reference systems and local controllers via physical
states/measurements and are amenable to implementation via
local onboard sensing in a communication unfriendly environ-
ment. Due to the coupling and mutual influence of the reference
systems and the agents’ dynamics, there are significant new
challenges in the convergence analysis. In particular, the refer-
ence systems are rewritten as coupled and perturbed networked
second-order systems by taking the tracking errors between
agents’ velocities and their own reference states as disturbances.
Due to the use of the nonlinear functions (e.g., the signum func-
tion) in the construction of the reference systems, the coupled
and perturbed networked systems have disturbances inside and
outside the nonlinear functions, and the general input-to-state
stability analysis might not be directly applicable. This requires
rigorous analysis on the impact of disturbance on the optimum-
tracking performance of the perturbed systems. To this end, this
paper carefully examines the perturbed systems, and obtains the
input-to-state-like stability from the disturbances to optimum-
tracking errors (e.g., Proposition 1). These intermediate results
facilitate the convergence analysis of the proposed algorithms
for the networked Lagrangian agents. To be exact, we first de-
sign a base algorithm for the networked nonlinear Lagrangian
systems to achieve exact optimum tracking under switching
graphs. Built on the base algorithm, we then propose a contin-
uous variant by replacing the signum function in the reference
systems with a smooth nonlinear function to generate continuous
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control torques for the Lagrangian systems and hence remove the
chattering caused by the signum function.

Comparison with Related Works: The works of He et al. (2017),
Wang et al. (2015), Zhao et al. (2017), Zou et al. (2021, 2020) and
Zhang et al. (2017) focus on solving the distributed time-invariant
optimization problem. Due to the complexities of the agents’
dynamics and switching graphs, the distributed time-varying op-
timization algorithms developed for integrator agents (Cherukuri
& Cortes, 2016; Ning et al., 2017; Rahili & Ren, 2017; Sun et al,,
2023, 2017) cannot be directly applied to address the case con-
sidered in the paper. More importantly, the proposed algorithms
in this paper rely purely on physical states without the need for
exchange of virtual states and can be implemented in commu-
nication unfriendly applications. In contrast, the communication
of virtual states between neighbors is necessary in Huang et al.
(2020), Zhang et al. (2017) and Zou et al. (2021, 2020). The struc-
ture of the proposed algorithms is inspired by Wang et al. (2020),
where the consensus and leader-following tracking of networked
Lagrangian systems are addressed. However, the problem consid-
ered in this paper is more complex and challenging, and includes
the consensus and leader-following tracking of networked agents
as special cases.

Some preliminary results of this paper (e.g., Lemma 1) are pre-
sented in Ding et al. (2022). Different from Ding et al. (2022), the
current paper introduces two distributed time-varying optimiza-
tion algorithms under switching graphs, one of which capable of
generating continuous control torques for networked Lagrangian
agents. In addition, this paper contains more detailed proofs and
additional simulation results.

2. Preliminaries
2.1. Notation

Let R and R, denote the sets of all real and positive real num-
bers, respectively. For a set S, |S| denotes the cardinality of S. For
amatrix A € RP*P, let A1(A) < --- < A,(A) denote its eigenvalues.
For a vector x € RP, define sgn(x) = [sgn(x1), . . ., sgn(x,)]" where
sgn(x;) = 1if x; > 0, sgn(x;) = 0 if x;, = 0, and sgn(x;) =
—1if x; < 0. Let 0,, and 1,, denote the m dimensional zero
and all-ones vector, respectively. I, € R™" denotes the identity
matrix. For a time-varying signal x, let the kth time derivative
of x be denoted by x), where k is a non-negative integer, and
in particular, X® = x and x(") = . For a time-varying function
f(q, t), its gradient, denoted by Vf(q,t) € RP with ¢ € RP and
t € Rso, is the partial derivative of f(q, t) with respect to g, and
its Hessian, denoted by H(q, t) € RP*P, is the partial derivative
of the gradient Vf(q, t) with respect to q. Define £%, = {x :
[0,00) — RP|sup;.g IX(t)l, < oo} and £5 = {x : [0,00) —
RP|[ [~ xT(t)x(t)d t]"? < oo}.

2.2. Graph theory

For a multi-agent system consisting of N agents, the inter-
action topology can be modeled by a switching graph G,y =
(V, &s(ty)» which maps from R U {0} to a finite set of undirected
graphs ¢ = {G,k = 1,...,G} with G, = (V, &). For each
undirected graph Gy, an edge, denoted by (i, j) € &, means that
agent i and j can obtain information from each other at time t. The
edges (i,j) and (j, i) are equivalent. It is assumed that (i, i) ¢ &
Vk = 1,...,G. The switching between graphs is modeled by a
switching signal o : R U {0} — {1, ..., G}. Denote by ¢, ty, ...
with t; = 0 an infinite sequence of time instances at which
o switches, and any two consecutive switching time instances
satisfy the standard dwell-time condition that t, — t,_q; > Ts
Vk = 1,2, ... where Ts is some positive constant. The neighbor
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set of node i at time t is denoted by Ni(t) = {j € VI(j, i) € &)}
By arbitrarily assigning an orientation for every edge in G, at
any time t, let B(t) = [b;(t)] € RV*I¥0! denote the incidence
matrix associated with graph G, at time ¢, where b;(t) = —1if
edge s; leaves node i, b;(t) = 1 if it enters node i, and by(t) =
0 otherwise. An undirected path between nodes i; and i is a
sequence of edges of the form (i1, i3), (i2, i3), . . ., (ik_1, ix), Where
i, € V. A connected graph means that there exists an undirected
path between any pair of nodes in V.

Assumption 1. All the graphs in the set ¢ are connected.
2.3. Agents’ dynamics

In this paper, we consider N Lagrangian systems, and the
equations of motion of the ith Lagrangian system can be described
by (Spong et al., 2006)

Mi(q)di + G(qi, 4)ai + gi(qi) = T, (1)

where ¢q; € RP is the generalized position (or configuration),
M;(q;) € RP*P is the inertia matrix, Ci(q;, ;) € RP*P is the
Coriolis and centrifugal matrix, gi(q;) € RP is the gravitational
torque, and t; € RP is the exerted control torque. Three well-
known properties associated with the dynamics (1) are listed as
follows (Ghapani et al., 2016; Spong et al., 2006).

Property 1. The inertial matrix M;(q;) is symmetric and uniformly
positive definite, and there exist positive constants kz and kg such
that |1Gi(qi, gi)ll2 < ke 1Gill, and llgi(gi)ll; < kg, Vi € V.

Property 2. The Coriolis and centrifugal matrix C(q;, ¢;) can be
suitably chosen such that the matrix M;(q;) — 2Ci(q;, ;) is skew-
symmetric.

Property 3. The dynamics (1) depend linearly on an unknown
constant parameter vector ©¥; € R™, that is, for any x,y € RP, it
holds that Mi(qi)x + Ci(qi, i)y + &(qi) = Yi(qi, Gi, ¥, X)P, where
Yi(qi, Gi, ¥, X) is the regressor matrix.

3. Problem statement

In the distributed time-varying optimization problem, each La-
grangian agent aims to cooperatively track the optimal trajectory
determined by the group objective function. Let g*(t) € RP denote
the optimal trajectory, and it is defined as

N
q(t) = arg{(rt?in{Zﬁ[z(t), t]}, (2)

where fi[¢(t), t] : RP x Ry U {0} — R is the local cost function

associated w1th agent i € V. In the rest of the paper, it is assumed

that g* € £5. This assumption is satisfied in most applications in

practice. It is assumed that f;[¢(t), t] is known only to agent i. To

find q*(t) defined in (2) is equivalent to find the optimal solution
arg min

{Zﬁ[ql }
{q1(6).....an ()}

subject to qi(t) = qj(t) Vi # ],

where ¢ (t) = q;-"(t) = q*(t) Vi # j. In this paper, the goal is to
design the control torques t;, i € V, for the agent (1) such that
each agent’s position g;(t) is capable of tracking q;(t) = q*(t).
That is, design t; for each agent i such that lim,_, o [qi(t)—q*(t)] =
0, Vi € V. We make the following assumptions on the cost
functions.

{gi(0), ... qn(6)} =
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Assumption 2. Each cost function fi(q;,t), i € V, is twice
continuously differentiable both in g; € RP and ¢, and strongly
convex in ¢; and uniformly in t. That is, the Hessian matrix
Hi(q;, t) is always positive definite and there exists a positive
constant m such that Aj(Hi(g;,t)) > mVj € {1,...,p},Vie V
holds uniformly in t.

Assumption 3. For any i € V, the gradient of the cost function
fi(qi, t) can be written as Vfi(q;, t) = H(t)q; + gi(t), where H(t)
is a matrix-valued function, and g;(t) is a time-varying function.
In addition, there exist positive constants H and g such that

SUDrepo. o) [HD], < H and supeepo. 8”0, < & VI =
0,1,2,Viev,

In Assumption 2, the uniform strong convexity of the objective
functions guarantees that the optimal trajectory ¢* is unique for
all t > 0, and it also ensures that Hy(q;, t) Vi € V is invertible for
all t. Assumptions 2 and 3 are some similar/equivalent assump-
tions that are used in prior related works (Ding et al., 2024; Huang
et al., 2020; Ning et al., 2017; Rahili & Ren, 2017; Simonetto et al.,
2016). Assumptions 2 and 3 can be satisfied in many situations
in practice, such as energy minimization (Ghapani et al., 2017),
motion coordination (Sun et al., 2023), and distributed average
tracking (Chen et al., 2015; Rahili & Ren, 2017).

Example 1 (Distributed Average Tracking). In a networked sys-
tem, each agent has a local reference signal ri(t) € RP, and
the objective is to design control inputs such that the agents’
physical states track the average of the group reference signals,
Le., im0 [qi(t) — § Z 1 1i(t)] = 0, Vi € V. Distributed average
tracking algorithms have founcl applications in region following
formation control (Chen & Ren, 2017), coordinated path plan-
ning (Svestka & Overmars, 1998), and distributed optimization
problems (Shi et al., 2023). If the cost function are constructed
as fi(gi, t) = |qi(t) — ri(t)||§, the distributed time-varying opti-
mization algorithms can be applied to address the distributed
average tracking of networked agents. Note that Assumption 2
holds trivially from the above construction of fi(g;, t). Also, the
boundedness assumptions of r;, #; and #; are commonly placed
when dealing with the distributed average tracking of networked
agents (Ghapani et al., 2017), and such boundedness assumptions
imply that Assumption 3 holds.

4. Distributed time-varying optimization of networked La-
grangian agents

4.1. The base algorithm

For each agent i € V, construct a reference system as
b=—ag—y Y sgnle(q— )+ 4 —§l+ ¢, (3)
JEN(t)

where « and y are some positive constants to be determined, and
@; is defined by

¢ = —aFi(qi, t) — Fi(ai, t), (4)
0
Fai. ) = (@i 0 52 Vi@ O+ BVSai 0. (5)

with B being a positive constant to be determined. Note that
Assumptions 2 and 3 guarantee the existence of ¢;, i € V. Define

Si = i — . (6)
The adaptive controller for the Lagrangian system (1) is given by
= —Kis; + Yi(qi. G, vi, 0 (7)

l§ = _FY (qlaqla Vi, Ul)sh (8)
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where K; and I} are symmetric positive definite matrices, and
¥; is the estimate of ¢;. In the algorithm, the reference system
(3) generates a desired reference velocity v; for each agent i,
and the adaptive controller (7)-(8) is used to drive each agent’s
velocity ¢; to track its local v;. Then, by the cascaded structure
of the proposed algorithm, one might expect g; to track the
optimal trajectory. In the reference system (3), the term —aq;+¢;
is introduced to minimize the cost functions and the signum
function term is for coordination purpose. Note also that Fi(q;, t)
could be estimated from Fj(g;, t) using a filter.

Remark 1. It is worth emphasizing that the algorithm (3)-(8)
does not rely on exchange of virtual variables between neigh-
bors. Especially, the reference system (3) is driven by agents’
physical state information, ie., gi, ¢, gi — g; and g; — ¢;. Such
design excludes the usage of communication channels, and can
be implemented by onboard sensors. This feature distinguishes
this algorithm from existing results on distributed optimization
of networked Lagrangian systems, e.g., Zhang et al. (2017) and
Zou et al. (2021, 2020), where inter-agent communication is
required. In addition, the algorithm (7)-(8) with v; defined in
(3) addresses the distributed time-varying optimization prob-
lem with zero optimum-tracking error, while the results in Zou
et al. (2021, 2020) are limited to distributed time-invariant op-
timization, and the work of Zhang et al. (2017) only addresses a
special case of time-varying cost functions with nonzero bounded
optimum-tracking errors. It is also worth pointing out that such
design results in the fact that the reference systems and agents’
dynamics are highly coupled. The convergence analysis of such
coupled systems is quite complex and challenging. However, in
the literature, when distributed control problems are addressed
for nonlinear systems, networked virtual systems are constructed
completely independent of the agents’ dynamics, which makes
the analysis much easier and more straightforward compared
with our convergence analysis later.

4.2. Convergence analysis

Before moving on to the convergence analysis, an essential
lemma is presented.

Lemma 1. Lety eRy,z=1[z],....2z}]", ands = [s], ..., skT",
where z; € RP and s; € RP Vi € V. It holds that —yzT[B(t) ®
I)sgn([B"(6)®I,)(z+5)) < —y [[B'()®Ip1z[l1+2y B (6)®Iy]s]|1-

Proof. Define P = {1, ..., p}, and let z;; and s; ; denote the kth
entry in vector z; and s;. It holds that —yz"[B(t) ® I,]sgn([B(t) ®
Lliz +3)) = VZ(”)eg (zi — Zj)ngn(zi —Zi+si—S8) =
—¥ Dokep eeny A where Af; = @ik — Z1)5g0(zik — Zjx +
Sik — Sjk). For any k € P, defme 6"( t) = {(i,j) € &W)lzix —
Zik + Sik — Six = 0}. Note that A" = 0if (i,j) € &kt
It then holds that —yz [B( ) ® Ip]sgn([BT( ) ® lz + 9))
—Y Y ke Z(i,j)eg(t)\gg(r) Af;. For any (i, j) € £(t)\ £)(t), it holds

oAk e (Si.k=Sj.k)(Zi.k—Zj.k+Sik—Sj.k)
that =y Aj; = =y |z Zf’k + Sik = Sikl+y 12i,k =2}, k+Sik—=5j, k]
— Zjk+ Sik —

< —7lzik sikl + vIsik — sikl < —v|lzik — zikl —
|si,k—sj,k|| + vlsik —Sjkl. For any k e P, define Sﬂ‘r(t) =
{(i.j) € &O)lzix— 2zl = lIsik —siul} and €X(t) = {(i,)j) €
EONzik — zZjkl < ISik —Sjkl}. Then, it follows that
k

- Z:(ij)ea(t \ekoy Aij = v Z(ij)egﬁ(r)\gg(r)(vhk = Zikl = 2Isik
—sikl) + v Z (i.j)eek &) lZik —zikl < -y Z(i,j)eg 1Zik — zjk] +
2y D ijeek onek 1Sik = Skl + ¥ Xgipeek 12k =zl + 2y

(ieekn 1Sik = Sixl = ¥ Lijeet) ik — Zikl + 2y
Z(i,j)eé‘(t) |5i,k - Sj,k|- Hence, _VZT[B(t) b2 Ip]Sgn([BT(t) ® Ip](Z +
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$)) = =V Dkep DiijeewlFik—Zikl = 2Isik —sikl) = —y
iesw 12—zl 2y X e Isi—silli = =y 1B (O)@I)z |11+
2V||[BT(t) ®blsl;. =

Using the definition of s; in (6), the reference system (3) can
be rewritten as

4i = vi + i, 9)
Ui = —av; — oS + ¢;
— v Y sgnlo(qi — )+ vi — v+ 5 — 5j1. (10)
JEN(t)

By the system reformulation, the reference system (3) (i.e., (9)-
(10)) can be viewed as a group of networked perturbed double-
integrators with disturbances s;, i € V. The following proposition
shows that the system (9)-(10) is input-to-state-like stable from
the disturbances (i.e., s;, i € V) to the optimum-tracking errors
(ie., qi(t) — g*(t), i € V). That is, optimum-tracking errors are
bounded and convergent to zero if the disturbances are bounded
in a certain sense and convergent to zero.

Proposition 1. Consider a group of N agents, and their interaction
is described by the graph G, ). Each agent’s dynamics are given by
(9)-(10). Suppose that Assumptions 1-3 hold. Let «, B, and y be
chosen such that

o € Ry, B > max{kq, 3}, and y > m, (11)
where
K1=”(2++3”> o (12)
m 20 2m 2
H 1 H 3a
K2:E<2+7+ﬁ>+7, (13)
g H
n=m(ﬂ+1)<a+1+m>(N—1), (14)

and g, H, m are given in Assumptions 2 and 3. Then, the following
two statements hold.

(1) If s; € £% Vi € V, it holds that q; — q* € £P Vi € V.

() If lim;_, o si(t) = 0, Vi € V, it holds that lim;_, oo [q;(t) —
q(t)] =0, Vie V.

Proof. First, the following statements are proved, which then are
used to prove Statements (I) and (II):

()q,— jlq]eﬁmandvl— ]N]vjeﬁoo\v’ievif
s,eﬁp Vi e v, and lim;_, oo [qi(t NZ 1qi(t)] = 0, and
lime o [i(t) — & ;\L] vi(t )]_Op Vie Viflim_osi =0,

Vie v,

(ii) YL, V(g t) € ch and Y1 [ +F(q], N e b if
sie £ Vi € v, and limoo Y, V(g 1) = 0, if
lim;_, o0 5i(t) =0, Vi € V.

Proof of Statement (i). From Assumption 3, it holds that ¢; =
—otﬂql ﬂq1+D1(t)q,+Dz(t)q,+gz( ). where Dy(t) = —aH~'(t)H(t)

YOH(t) + [H™'(H(6)1?, Da(t) = —H’l(t) (t), and gi(t) =

“UOBE(L) + &i(t) + lady, — HOHT'(O][Bei(t) + &(1)]). Let
qg=1Iq,....q50" v = ], ..., s = [s],...,si]", and
Q= [(pl, cees (p,{,]T. Note that the right hand side of the closed-
loop dynamics is discontinuous because of the signum function,
and the solution should be understood in terms of differential
inclusion by using non-smooth analysis (Filippov, 1988). Define
x = M®IL)y = (M®I)v and ¢ = [xT,y"]", where



Y. Ding, H. Wang and W. Ren

M = Iy — +1y1}. Then, it holds that & €** K[f](&), where a.e.
stands for “almost everywhere” and f = [f/, f]" with
HE)=y+M®I)s, (15)
[HE)=—ay—as+ (M)
— 7[B(t) ® Ip1sgn([B'(t) @ Ip)(x +y + 5)). (16)

Define the function V(£) = £T(P ® Inp )&, where

1 2
sz[z"‘/g“” O‘] (17)

2 o 1

Note that the matrix P is positive definite if «8 > 0. It also holds
that A1(P) |€]|3 < V(£) < A2(P) |I€|13. In the following, it is shown
that V(&) is a common ISS-Lyapunov triple for switched system
for £ (Mancilla-Aguilar & Garcia, 2001) by letting Gy(r) = Gi.

The set-valued Lie-derivative is given by Shevitz and Paden
(1994) V. C K[U;] + K[Us] + K[Us], where U; = —a?Bx"x —
BY'y + ax’(Iy ® D1)x + y[alny + Iy ® Daly + x"[a(Iy ® D;) +
(In ® D1) + Inply, Up = X" (aBlnp + In @ D3)s + y' (In @ Dy — Blp)s,
Us = (ax+y) &(6) —y (ax+y) [B()® I, Isgn([BT (1)®1,](ctx+y+5))
withg = [gT,...,8}1", and the fact that M> = M has been used.

Consider Uy. It follows from Assumptions 2 and 3 that ||Iy ®
Dy, = ||D1 l2 < Z(a+ 1+ ), and similarly, it holds that ||Iy ®

Daflz < f. Note that ax'(Iy ® D1)x < o X[, Iy ® D1l lIxll; <
(a+1+ )IIXIlﬁ,

/\

T(Iy ®D2)y < By|3, and x [Ol(IN ®Dq)+

m

(IN ®D1)+Iyly < [F(2e+1+ 51 )+a2](°‘ X113+ 5 llyl3). Then,
it holds that Uy < —(xz[ﬂ (2 + 242 - 5] XI5 — 8 —
B2+ o+ ) = 2113 < —a®(B — k1) IXI3 = (B — 2) lyli3,

where /q and «, are glven in (]2) and (13), respectively.
Consider U,. Note that aBx’s < af ||| sl and x"(Iy ®

Dp)s < plxllzlislly < «/Npg Xl lIslla. 1t follows that U, <

(aB + fH) X111 Islloe + (B + /NP E) Iyl sl < res(lIxlly +
Iyll)lIslle < x3/2Np €l lIsllo, Where k3 = max{ap +
Np&. B+ /Npy)-
Consider Us. Note that lax+yll; < 3% SN et —
X)+yi — Yyl = maxiev{Z}V:L#,- la(xi — %) + yi — yjlli} <
(N = DIBT(t) ® Ll(ax + y)l1, where x; = g; — + Y, g; and

Vi = v — % j’.\’:1 v;. It follows from Assumption 3 that [|g]l,, <

maxiev{lléllm} < l&l2 = 5(B + 1)@ + 1+ ). Note that
(@x+ Y8 < llex+yll 1Ele < £(B+ e+ 1+ 2UN —

1) [17(0) ® b)ex + )], = 7 [B"(6) @ Iy arx + )i, where 7 is
given in (14). From Lemma 1, it follows that —y(ax 4+ y) [B(t) ®
I]sgn([B(t) ® Ll(ax +y +5)) < —yII[B"(t) ® Lpl(ax + Il +
2y IB'(6)®IIsll < =y B ()@ l(ax+y)lli+y N> (N=1)p [I5]l -
It holds that Us < —(y —)[|[B"(t)®I,1(x+Y)ll1+k4 lIsll«, Where
k4 = yN*(N — 1)p.

Since the signum function is measurable and locally essentially
bounded, then the Filippov solutions always exist and are abso-
lutely continuous (Cortes, 2008). Hence, x and y are continuous.
Note that, for any U, € KU1, U; < —a (/3 - /<])||x||2 -
(B — k2) ||y||2 holds. Similar facts hold for any U, € K[Us] and
U3 € K[Us]. By Shevitz and Paden (1994), it holds that vV eV.
Hence, it holds that V < —a?(B — k1) IxI12 — (B — k2) Iyl +
1c33/2Np 1€ 15 1I5lloo + ¢4 I8l oo — (v = 70) || [B(£) ® L) (ax + y) |
—cn €15 + cum 1€ N5 Isllog + &4 lISllo, Where ¢, = min{a?(8 —
k1), B — k2} and cy = k34/2Np. Note that cy [I£ll; lIslle <

2
1NCm IISII§+4f,“:m IslZ, = nem 16115 +s [Isl1Z
. It then follows that V < —(1 — n)cm [IE]I2 + &5 [Is]|%, +

IA

, where n € (0, 1) and

Ks = 417c
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kalIsllce < —r6V + 20(lIsllc), Where ks = U5 and p(r) =
max{xsr?, 47} is a class i function (Khalil, 2002, p. 144). Such in-
equalities hold for any Gy, k = 1, ..., G, and hence, V(&) is indeed
a common ISS-Lyapunov triple. For any t e [to, 00) with ty > 0, it
holds that V[£(£)] < eV [£(to)] + 2 supreiy.) AUIS(T) oo ):
If s; € £5 Vi € V, then sup, g o) P([IS(z )||oo) < oo, thenV e ],
which implies that x € £ and ye€ .

Note that sup, c(s, 1) A(IS(2)ll ) = P(SUP ey 1) 1S(T)llo0)- Given
any o > 0, there is @7 > 0 such that p(wy) < ZE.If
limos = 0, Vi € V, then there exists T; > 0 such that
SUP-¢(T;,00) Is(t)llse < w@i.Lletty > Ty. For t > ty, it follows
that V[£(t)] < e *s(~0V[£(ty)] + Z. There exists T, > to
such that eV [£(ty)] < Z vt z T,. Then, it holds that
V[&(t)] < @ VYt > max{Ty, T»}. This shows that lim;_, o § = Oap,
i.e, lim;_, o x = lim;_, ¥ = Opp. By the definitions of x and y, the
proof of Statement (i) is completed.

Proof of Statement (ii). Define x ZJN 1 Vfi(g;, t) and ¢ =
Z 1[v; + Fi(g;, t)]. One has x = —x + H(t 1//+Z] L H(t)s; and
Vo= —ay — Z 15j- Note that ¥ = —a is a stable linear
time-invariant (LTIS system. Then, from the properties of input-
to-state stability, it holds that v € £% ifs; € £% Vi € V and
limi, oo ¥ = 0p if limi, oo i = 0, Vi € V. Note also that x =
—x is an exponentially stable LTI system. Then, it follows from
Assumption 3 that x € £ if s; € £& Vi € V and lim;_o0 x = 0,
if lim; 00 8i =0Vie V.

Proof of Statement (I). Since Z =] fi(q, t) is strongly convex in g,
it follows thatNNm 13— q*13 < [X), V. r)—sz’:1 Vg, )"
(@—q*) = [2 1=, V(@ O)—x1(@—q")+x — 2=, VAila*, 1" (g—
q*), where q = ]'.VZ] q; Then, it holds that Nm|lg — q*|l, <
[ Z]N:1 V£(G,t) — x ||2 + |lx - Z]N:] Vfi(q*, t)||2. From Assump-
tions 2 and 3 that || Z,N VVA@ D) = xle < YL IVA@. ) -
. N «

Vii(g;, )2 < Zj H ||q] qH_z. Since ijlfj(q ,t) = 0, then
Nm|ig — q*ll2 < |[x], + X, H | ¢ — @], By Statements (i) and
(ii), it holds that q; — g € £5 and x e £% if s; € £5 Vi € V. Then
it follows that ||g — g*|, < oo, and hence q; — q* € % Vi e V.

Proof of Statement (II). Since lim;_, . s; = 0, Vi € V, it follows
from Statement (ii) that lim;_,o x = 0p. Then, from the analysis
in the proof of Statement (I), it holds that lim;_, ., Nm|q(t) —
(Ol < limeoe Y0 Hlgi(t) — g(0)ll2 + limoo || x|, = 0.
which implies that lim;_, o, q(t) = ¢*(t). By Statement (i), one has
lim;_, o qi(t) = q(t), which implies Statement (I[). ®

With Proposition 1 at hand, the convergence of the distributed
optimization algorithm (7)-(8) can be established by the follow-
ing theorem.

Theorem 1. Suppose that Assumptions 1-3 hold, and let «, B,
and y be chosen as in (11). Using the controller (7)—(8) with v; and
v; given by the reference system (3) for the networked Lagrangian
system (1) solves the distributed time-varying optimization problem,
that is, lim¢_, o [qi(t) — q*(t)] = 0.

Proof. Substituting (7) into (1) and using Property 3 and (8) yield

that

Mi(@)si + Cilai, @)si = —Kisi + Yi(di, i, vi, 07)0s, (18)
51‘ = — I (qi, Gi, vi, Vi)si, (19)
where 9; = 9;— ;. For any i € V, define a Lyapunov function can-

didate W; = 3sTMi(gi)s; + %5,71“[151». The derivative of W; along
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the solution of (18)-(19) is given as W = siTMi(qi)éi+%siT1\'/1i(qi)si+
oI = —sTKisi — sIGilai, 4i)si + %S,-TMi(ql')Si = —sTKisi <
—11(K;) ||si||§ < 0, where (18)-(19) and Property 2 have been
used to obtain the second and last equalities, respectively It then
holds that W; € clovievy, which implies that s; € £2oviev,
and that 19, € L7 and hence D e L7 Vi € V. Integrating over
[0, t] on both 51des yields that Aq(K;) fo Isi(T) ||2 dr < Wi(0) —
Wi(t) < oo Vt > 0, which implies that s; € L Vi e v. Hence, it
holds that s; € £, N 28 and B € LM Vie V.

Using (6), we can rewrite (3) as the system (9)-(10). Since
si € £2, NP Vi e v, it follows from Statement (1) of Proposition 1
that q; € L5 Vi € V. It then follows from (5) and Assumption 3
that Fi(q;,t) € £h Vi € V. Recall from Statement (ii) that
Sl + F(g. 0] € &, then Y v e r&. Recall from
Statement (i) that v; — & f’zl v € L% Vi € V. It then holds
that v; € £% Vi € V. From (9), it then holds that §; € £5 Vi € V.
By Assumption 3, it holds that ¢; € £% Vi € V. From (10), it holds
that v; € £2 Vi € V. Then, by using (18) and Property 1, it holds
that ; € £% Vi € V. It can thus be shown that s; Vi € V are
uniformly continuous. Since s; € /:’2’ Vi € V, then using Barbalat’s
lemma (Khalil, 2002, p. 323) yields that lim;_, $;(t) = 0, Vi € V.
The proof is completed by following Statement (II). ®

4.3. Distributed time-varying optimization algorithm removing chat-
tering

Note that the control torques may involve the chattering issue
in practice, since v; in (3) introduces the signum function in the
controller (7). This subsection focuses on the distributed time-
varying optimization algorithm that generates continuous control
inputs, and hence removes the chattering issue while application
in practice. Inspired by Burton and Zinober (1986), we introduce
a differentiable function h(-) to approximate and replace the
signum function, which results in continuous control torques for
the Lagrangian agents and removes the effects of chattering. The
function h(-) is given by

r
h(r) = ——, 20
S T e (20
where r € RP and ¢ is a positive constant. After replacing
the signum function in (3) with the function (20), the reference
system for agent i € V becomes

b=—agi—y Y hla(g—q)+d—gl+ ¢ (21)
JeNi(t)

where g; is defined in (4). As in Section 4.2, a similar preliminary
lemma is presented.

Lemma 2. Let y € Ry, and z,s; € RP, i € V. It holds that
-7 Z(UJGE(t z-2) hzi—z+si=5) < —v Lgpee( |2 — 2], —
2||si — —é).

2

Proof. From the definition of h(-) in (20), it follows that —y
T
Dipeew@ — )l hz — 7 + s — ) = T_V Z(i,j)es(zt)
(si—sj) (zi—zj+sj—sj)—¢
Iz =2+ i =il , 47 s 24 Liieewor Ta—grssl+e
It follows that (s;—s;)" (zi —z;+si —5;) < lIsi —Sjll2l1zi — 2 +5i —Sjl|2-
T
Then, —y 3 i jeer(@ —2) Wzi—z+si—s)) < —y Z(Lj)ee(t) llzi —

e||si—si||,+e2
Zi+si—sjll2+y Z (i.)e&(t) ”sl 5 ”2 14 Z(l])es —

) [|zi=z+si=sj[| +e

¥ Y ijpeeq & Define £.(6) = {(i. ) € &)l |z — z|, = [si — 5] ,}
and £.(t) = {(i.j) € &0)l|za—z]|, < |[si—si|,}. Since
% > 0W(i,j) € &(t), it then holds that — Y ce(
(Zz Zj) h(zl Z]+Sz_5j) =-y Z(i,j)eé‘(t) | “Z,‘ — Zj”2 — ||Si — Sj”Z |+
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-V Z(U JeEL(t) ”Zl - ZJ”Z + 14
=sil, + ¥ Zipeeco
). The statement follows

Y 2ijeew(e + B ”5" - 51'”2) =
Z(l})eé‘+(t) ”5" - 51'”2 = Y Dijes.

|z =z, + ¥ Xapesle + ||51 51||z
from the deﬁmtlon of £_(t).

Theorem 2. Suppose that Assumptions 1-3 hold, and let « and
B be chosen as in (11), and y be chosen such that y > m./p,
where 7 is given in (14). Using the controller (7)-(8) with v;
defined in (21) for the networked Lagrangian system (1) solves
the distributed time-varying optimization problem with bounded
optimum-tracking errors, and the ultimate optimum-tracking errors
satisfy lim . [lgi(t) — g*(0)ll, < (2 + D[ LL=RE] 2 vj v,

1=n)cmA1(P)

where ¢, = min{o( — k1), B — Kz} € (0, 1), and k4, k2, and P
are given in (12), (13), and (17), respectively.

Proof. The same notational symbols are used as in the proofs
of Proposition 1 and Theorem 1. Using Lemma 2 and following
the analysis in the proof of Proposition 1 imply that Statements
(i) and (ii) still hold. In addition, it holds that V < —kgV +
2p(lIslloo) + & where & = 1gyN(N — 1) and p(-) is given in
Ploposmon 1. This 1mp11es that VIE(L)] < e =0V [E(ty)] +
—p(sup,e[t0 qlIs(mlloe) + £ pou for t > tp and tg > 0. Given any

w > 0, there exists T such that V[£(t)] < @ + é vt >

g

T. Then, it follows that lim;_ . V[&(t)] = ol which implies
that £ converges to the set {£|||&]l, < [KGA}([’)]UZ}' That is,

iMoo 1Gi(6) = A0l < [igmy]? where ¢ = 530, g;.
Recall that llmt_mcz Vfi(gi, t) = 0, (since lim;_, $i(t) =

0, Vi € V), and by Proof of Statement (II), one has lim;_,

lgt) —q (O, = nstff@) 2 1t follows that lim, e
lat) = a(©Oll = lime_, o0 [1gi(t) — q(O) I +Hime o0 1G(6) — q* ()l

<(g+ )[,( 21"/, which completes the proof. — m

From Theorem 2, the ultimate optimum-tracking errors are
proportional to the value of &, which controls the approximation
errors of h(-). The optimum-tracking errors can be made arbitrary
small by selecting sufficiently small . Moreover, one can set
& = ee 2" or some positive functions that are convergent
to zero, and then h(-) becomes a time-varying approximation
function, and it can be shown that lim;_, . [qi(t) — ¢q*(t)] = 0,
Vi € V. There are other continuous functions that can be used
to approximate the signum function, such as sat(g) and tanh(g),
where ¢ € R;. The convergence can be proved by following a
similar line of analysis in Lemma 2, Proposition 1, and Theorem 2,
which is omitted. The chattering in control systems is caused
by the discontinuity in the control design. By the approximation
idea, the resulting control torque (7) is continuous, and hence,
the chattering is removed. See the comparison of Figs. 3 and
5 in Section 5 for illustration. In addition, the function h(r) is
approaching to the discontinuous signum function when ¢ is
approaching to zero, which in term indicates that the effect of
removing the chattering is decreased. Therefore, the value of ¢
can be chosen to trade off the requirement of ensuring certain
optimum-tracking performance with that of ensuring continuous
control torques.

Remark 2. The method of approximating the signum func-
tion using (20) has been applied in Rahili and Ren (2017) to
remove the chattering. However, this work considers the dis-
tributed time-varying optimization problem for networked La-
grangian systems, and the proposed algorithms can be imple-
mented by using on-board sensors taking physical state measure-
ments. The Lagrangian dynamics are more complex compared
with single- and double-integrator agents considered in Rahili
and Ren (2017). Moreover, the complexities of the problem of
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;

Fig. 1. Graph 1 (top left); Graph 2 (top right); Graph 3 (bottom left); Graph 4
(bottom right).
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Fig. 2. The position trajectories of Lagrangian agents (1) using the distributed
algorithms in Section 4.1.
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Fig. 3. The control torques of Lagrangian agents (1) using the distributed

algorithms in Section 4.1.

interest and agents’ dynamics pose challenges in the convergence
analysis. For instance, as an intermediate step in the conver-
gence analysis, two statements are established for the networked
system (9)-(10), which can be seen as networked second-order
systems perturbed by disturbances s;, i € V. Hence, they are dif-
ferent from the disturbance-free double-integrator model consid-
ered in Rahili and Ren (2017), and there are significant technical
challenges.

Remark 3. The structure of the proposed distributed algorithms
for networked Lagrangian agents are partially inspired by Wang
et al. (2020), where the consensus and/or leader-following of
networked Lagrangian systems are investigated. In this paper,
the distributed time-varying optimization problem is addressed,
which are more complex and challenging and include the con-
sensus and leader-following as special cases. Moreover, while
dealing with the distributed time-varying optimization for net-
worked Lagrangian agents, the analysis is quite different from
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the work of Wang et al. (2020). The nonlinear functions, such
as the signum function and the one defined in (20), are used to
constructing v;, which forms a perturbed closed-loop networked
double-integrator systems with s; as disturbance in the model and
inside the nonlinear functions (see (9)-(10) for an example). This
paper provide rigorous analysis on the performance of the per-
turbed systems under bounded and convergent disturbances. In
addition, when considering distributed time-varying optimization
problem, additional analysis steps are required, see the optimum-
tracking steps in the proof of Proposition 1 and Theorem 1 for
instance.

Remark 4. As shown in Theorems 1 and 2, the lower bounds
of the design parameters (e.g., v, o, and 8) depend on some
global information, such as the bounds on the cost functions and
the graph. It is worth mentioning that these design parameters
are constants, and can be determined off-line. Once they are
chosen, one can embed them into each agent and implement
the proposed algorithms by using only local information, which
implies that the proposed algorithm can be implemented in a
distributed way. In addition, one can be conservative and select
large enough values for these parameters. Also, one can use some
existing algorithms (Giannini et al., 2016; Varagnolo et al., 2013)
to estimate the bounds about the cost functions and the graph,
and then choose appropriate values for the parameters based on
the estimated bounds.

5. Illustrative examples

In this section, we provide examples to illustrate the results
in this paper. We consider a group of ten planar manipulators
with two revolute joints (Spong et al., 2006, pp. 259-262) (V =
{1, ..., 10}). The interaction among these ten agents is charac-
terized as the graph in Fig. 1. The interaction graph starts from
Graph 1. Then after every 0.25 s, it switches to the next graph
and the process repeats. Each agent i € V has a local cost function
f(€,£) = [&1 — 0.1isin(t)> + [¢, — 0.l cos(t)]? with ¢ = [£1, &7,
and denote by g*(t) = [q(t), qﬁ(t)]T the optimal trajectory that
minimizes Z}Lf,»(;, t). In the following algorithm validations,
the initial values, g;(0) = [q;1(0), g2(0)]”, v;(0), and %(0), are
chosen as follows: for any i € V and any j € {1, 2}, g;;(0) and ¢;;(0)
are generated randomly from the ranges [—0.5, 0.5], and v;(0) =
gi(0) + 0.11;, and ¥;(0) = 0s. We first validate the distributed
time-varying optimization algorithm (7)-(8) with ©0; defined in
(3). In this simulation, we select I7 = 0.09]5 and K; = 14I, for
anyi € V, « = 1.5, and y = 8. The position trajectories and
control torques are presented in Figs. 2 and 3, respectively. From
Fig. 2, it shows that all the agents track the optimal trajectory. It
can be seen from Fig. 3 that there exists chattering. To remove
the chattering, we apply and validate the distributed algorithm
in Section 4.3, and set y = 13 and ¢ = 0.4. The position
trajectories and control torques are presented in Figs. 4 and 5,
respectively. From Fig. 4, it shows that all the agents track the
optimal trajectory with bounded errors. Unlike the discontinuous
and frequently switching control torques in Fig. 3, it can be seen
from Fig. 5 that the control torques are continuous except for the
graph switching time instants.

6. Conclusion

This paper investigated the distributed time-varying optimiza-
tion of networked Lagrangian systems with parametric uncer-
tainties. The proposed algorithms can be implemented by using
only on-board sensors and drive the agents to track the op-
timal trajectory. First, a base algorithm has been designed to
achieve zero optimum-tracking error. Built on the base algorithm,
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Fig. 4. The position trajectories of Lagrangian agents (1) using the distributed
algorithms in Section 4.3.
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Fig. 5. The control torques of Lagrangian agents (1) using the distributed
algorithms in Section 4.3.

a continuous variant has been developed, which is capable of gen-
erating continuous control torques for the networked Lagrangian
systems and hence reducing the chattering. In the end, numerical
examples have been provided to illustrate the obtained results.
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