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Rooting for function: community-level fine-root traits relate to
many ecosystem functions
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Summary

e Humans are driving biodiversity change, which also alters community functional traits.
However, how changes in the functional traits of the community alter ecosystem functions—
especially belowground—remains an important gap in our understanding of the conse-
quences of biodiversity change.

e We test hypotheses for how the root traits of the root economics space (composed of the
collaboration and conservation gradients) are associated with proxies for ecosystem function-
ing across grassland and forest ecosystems in both observational and experimental datasets
from 810 plant communities. First, we assessed whether community-weighted means of the
root economics space traits adhered to the same trade-offs as species-level root traits. Then,
we examined the relationships between community-weighted mean root traits and above-
ground biomass production, root standing biomass, soil fauna biomass, soil microbial biomass,
decomposition of standard and plot-specific material, ammonification, nitrification, phospha-
tase activity, and drought resistance.

¢ We found evidence for a community collaboration gradient but not for a community con-
servation gradient. Yet, links between community root traits and ecosystem functions were
more common than we expected, especially for aboveground biomass, microbial biomass,
and decomposition.

¢ These findings suggest that changes in species composition, which alter root trait means,
will in turn affect critical ecosystem functions.
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Introduction

Global change is driving biodiversity change at unprecedented
rates (Portner et al, 2021; Lee et al, 2023). This biodiversity
change is composed not only of species loss at the global scale but
also of changes in local-scale species composition (Blowes
et al., 2019). Plant diversity, one crucial piece of this changing
diversity, supports many ecosystem properties, pools, and pro-
cesses (hereafter, ecosystem functions, see Box 1) that are proxies
for ecosystem functioning, from biomass production to carbon
storage (Tilman ez al, 2014; Isbell er al, 2015; Vogel
et al., 2019; Miedema Brown & Anand, 2022). Changes in plant
diversity are therefore likely to impact ecosystem functions (Til-
man, 1999; Brauman et /., 2020).

One key way in which changes in plant community diversity
may manifest is through changes to the relative proportion of
functional traits represented in the community (Diaz &
Cabido, 2001). These shifts in functional community composi-
tion may occur when biodiversity change is driven non-randomly
(Leps, 2004; Wardle et al, 2011). For example, increased N
deposition leads to increased N availability, favoring species with
traits typically associated with fast growth rates (Ellenberg, 1985;
Endara & Coley, 2011).

Changes in the functional composition of plant communities
will likely have direct and indirect effects on ecosystem func-
tions (Chapin III ez 4/, 2000). Yet, studies that aimed to under-
stand ecosystem functions from a trait perspective have yielded
mixed results. For example, van der Plas ez 2/ (2020) found
only weak relationships between traits and functioning across 41
plant functional traits and 42 functions collected over 15 years
in a biodiversity experiment. However, studies that focus on
specific trait—functioning relationships linked to well-defined
mechanisms better explain ecosystem functions (reviewed in
Streit & Bellwood, 2023). For example, several studies show
that specific leaf area and leaf nitrogen content can explain func-
tions like aboveground primary productivity (Reich er al,
2012), turnover of soil organic carbon (Henneron ez al., 2020a),
and soil nitrogen cycling (Laughlin, 2011; Henneron ez al,
2020b).

Many traic—functioning studies, however, tend to be con-
strained by three factors. First, the majority of studies on global
trait patterns focus on data at the species level rather than at the
community level (Diaz ez al., 2016; Bergmann ez al., 2020; Wei-
gelt ez al., 2021). However, this focus on species-level data overes-
timates the importance of traits of rare species. Within a
community, variation in abiotic and biotic conditions largely
determines the relative abundance of different species in both
space and time, ultimately determining how relevant a species is
for ecosystem functions in a given environment (Diaz
et al., 2007). Second, many papers focus only on data from biodi-
versity experiments which manipulate the species pool and delib-
erately minimize environmental variation at the local level
(Schmid & Hector, 2004; Vogel er al, 2019; Jochum
et al., 2020). Limiting environmental variation may also limit the
covariation between traits and ecosystem functions because abio-
tic heterogeneity is a major driver of both community-trait and

New Phytologist (2025) 248: 3221-3239

www.newphytologist.com

New
Phytologist

Box 1. Ecosystem functions in our dataset

Our definition of an ecosystem function — Ecosystem properties, pools
and processes, that are potentially influenced by plant communities
and can be measured at or over a specific point in time in a plant com-
munity. These properties and processes are proxies for one or more
facets of ecosystem functions. We acknowledge that the terminology
of ecosystem functions has been used inconsistently in the literature
(e.g. De Groot et al., 2002; Hoffland et al., 2020; Garland et al., 2021)
and that the individual measures used in our study are not equally clo-
sely related to the functioning of the ecosystem. A detailed table of the
original ecosystem function measures is presented in Supporting Infor-
mation Table S2.

Aboveground biomass production— A proxy for vegetation net pri-
mary production, quantified as aboveground biomass production and
measured as basal area increment over a given timeframe in forests
and as the annually produced biomass in harvested clip plots in grass-
lands, standardized by site.

Root standing biomass — A proxy for root activity and influence in soil,
includes quantification of root standing biomass in soil pits or in soil cores
at different depths, at different times of the year, standardized by site.

Soil fauna biomass — A proxy for the biomass production of higher
trophic level hetero/saprotrophs and predators of saprotrophic fauna,
here the biomass of earthworms, standardized by site.

Soil microbial biomass — A proxy for soil microbial activity at a given
site, includes measurements of microbial biomass quantified via phos-
pholipid fatty acids and soil respiration, standardized for a given site.
(Note that these measurements do not equally cover bacteria and
fungi, as well as specific fungal guilds, such as mycorrhizal fungi).

Decomposition —standard— A proxy for the potential rate that
material can be decomposed by the resident microbial community in
the soil at a given site, includes the rate at which the microbial commu-
nity at a given plot decomposed a standard material ranging from
wood to tea bags, standardized by site.

Decomposition —specific— A proxy for carbon cycling rate at a
given site, and may include the decomposition rate of leaf or root
material from a given plot and site, allowed to decompose in the soil at
that site taking potential effects of home-field advantage into account,
standardized by site.

Ammonification— A proxy for ecosystem nitrogen cycling, mea-
sured as net ammonification (sometimes also termed net nitrogen
mineralization) or gross ammonification, in the laboratory or as buried
soil cores (partly with root exclusion) in the field, standardized by site.

Nitrification — A proxy for ecosystem nitrogen cycling (or the abun-
dance of nitrifying bacteria), measured as net nitrification, gross nitrifi-
cation, or potential nitrification, in the laboratory or as buried soil cores
in the field, standardized by site.

Soil phosphatase activity—A proxy for ecosystem phosphorus
cycling, measured by the transformation of organic phosphorus com-
pounds to orthophosphate, from sieved or unsieved soil (i.e. without
live roots), standardized by site.

Drought resistance of the plant community — A proxy for stress resis-
tance of the plant community, includes differences in delta '3C between
wet and dry years, and calculations of the average ecosystem productiv-
ity in non-drought years divided by the absolute value of the difference
between ecosystem productivity during a drought event and the average
ecosystem productivity in non-drought years, standardized by site.

ecosystem-function variation (Laughlin ¢ 4/, 2021). Therefore,
the extent to which traits and functions can be related in experi-
mental systems may be limited. Third, the majority of research
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on the links between functional traits and ecosystem functions
focuses on aboveground traits (reviewed by Miedema Brown &
Anand, 2022). Yet, many important components of ecosystem
functions, including aspects of carbon, nitrogen, and water
cycling, occur predominantly belowground and are dependent
on plant roots and the soil microbial community (Keller
et al., 2021; Freschet et al., 2021b). Further, recent evidence sug-
gests that fine-root traits may be better predictors of aboveground
carbon storage and woody biomass productivity than leaf traits
(Da ez al., 2023). The focus on aboveground traits may bias our
understanding of the general link between traits and ecosystem
functions, particularly in ecosystems where the majority of plant
biomass is located belowground and where aboveground pro-
cesses are not a good proxy of belowground processes (Poorter
et al., 2012). Thus, a better integration of root traits into trait—
functioning relationships has the potential to significantly
advance our understanding of ecosystem functions.

Recent progress in both our theoretical understanding of
fine-root traits (Bergmann et al, 2020; Weigelt er al, 2021;
Freschet et al, 2021b) and practical access to root trait data
(Iversen et al., 2017; Guerrero-Ramirez et al., 2021; Freschet
et al., 2021a) allows us to better assess relationships among root
traits and ecosystem functions. In particular, the recent develop-
ment of the root economics space (RES, Bergmann ez al., 2020;
Matthus et al., 2025) enables us to develop general hypotheses
for how gradients in root trait space may be associated with eco-
system functions. Unlike the leaf economics spectrum, the RES
has two orthogonal axes — the fungal collaboration gradient and
the conservation gradient. The fungal collaboration gradient
(hereafter the ‘collaboration’ gradient) ranges from species that
invest in building thin but long roots with a high specific root
length (SRL) on one side of the gradient and plants that invest
in large diameter (MRD) roots on the other side of the gradi-
ent. The high SRL species are more likely to acquire resources
themselves, while the larger-diameter species are more likely to
rely on mycorrhizal colonization (do-it-yourself vs outsourcing
strategies). The conservation gradient is functionally similar to
the traditional leaf economic spectrum (Wright et al, 2004;
Weigelt et al., 2021). The conservation gradient ranges from
plant species that invest in high root tissue density (RTD) on
one side of the gradient to plant species that invest in a high
root N content (RNC) on the other side of the gradient (Berg-
mann ez al., 2020). High RTD species tend to invest in longer
root lifespans, while high RNC species tend to have a higher
root metabolism, growth rate, and turnover (Reich ez al., 2008;
Hou er al, 2024). This conceptual understanding of which
fine-root traits are predictors for plant functions and how they
relate to each other allows us to construct mechanistic hypoth-
eses for how these gradients relate to specific ecosystem
functions.

For ecosystem functions, however, species-level patterns may
be less important than local community-level patterns that
depend on community composition and environmental condi-
tions. Despite the extensive use of the conceptual RES in recent
literature, it is unclear whether the two-dimensional species-level
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RES remains consistent at the community level (i.e. when
weighting species traits by their relative abundances). Whereas
species-level trait patterns largely arise from interspecific
eco-evolutionary trade-offs, community-level trait patterns are
mainly the result of community assembly processes (Ander-
egg, 2023). For the leaf economics spectrum, the pattern is inde-
pendent of ecological scale; that is, it is both a species-level and a
community-level pattern (e.g. Anderegg et al, 2018). Below-
ground, however, the RES has so far been most commonly
assessed at the species level (Matthus ez al., 2025). Some recent
studies have partially confirmed the two root-trait gradients for
community-level trait data (Da er al, 2023; Ma er al., 2024;
Hennecke et al., 2025). Other studies, however, could not clearly
demonstrate the conservation gradient at the community level
(Prieto et al., 2015; Erktan et al, 2018; Lachaise et al., 2022).
Alternatively, literature examining the individual traits that com-
prise the RES gradients provides initial support for strong trait—
functioning relationships, suggesting that the community-level
RES may be relevant for ecosystem functioning. For example,
recent evidence suggests that aboveground productivity in woody
species is significantly higher in tree communities with ‘fast’ root
traits (high RNC, Da ez al., 2023).

Here, we examined the emergence of a community-level RES
and tested 40 individual hypotheses for community-trait—func-
tion relationships (Table 1). The specific hypotheses were com-
piled based on the literature surrounding how the core traits of
the RES (SRL, D, RTD, and RNC) relate to ten ecosystem func-
tions (broadly related to carbon cycling and productivity, nutri-
ent cycling, and stress resistance; see Table 1, also for references).
We hypothesized that traits of the collaboration gradient would
be associated with only three ecosystem functions (soil microbial
biomass, specific decomposition, and nitrification; Box 1). Alter-
natively, we hypothesized that conservation gradient traits relate
to eight ecosystem functions (aboveground biomass, soil fauna
biomass, soil microbial biomass, decomposition of standard and
specific material, ammonification, nitrification, and plant com-
munity drought resistance; Box 1). Overall, based on the litera-
ture, we were able to develop a larger number of specific
hypotheses for the conservation axis than for the collaboration
axis trait—functioning relationships; we therefore also expected
that collaboration traits would explain fewer functions than con-
servation traits.

Materials and Methods

Literature review and hypothesis formulation

Before formalizing our analysis, we compiled a list of proxies for
ecosystem functions commonly used in analyses of ecosystem
functioning. These proxies cover major ecosystem functions such
as plant productivity, carbon sequestration, nitrogen and phos-
phorus cycling, and soil microbial activity, which will hereafter
be referred to as ‘ecosystem functions’ (Box 1). We developed
a priori hypotheses for how these functions related to the four
traits of the RES: specific root length (SRL), mean root diameter
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(MRD), root tissue density (RTD), and root nitrogen content
(RNC). From this list, we selected 10 ecosystem functions that
were commonly studied across systems. The final list of 10 func-
tions included aboveground biomass production, root standing
biomass, soil fauna biomass, soil microbial biomass, decomposi-
tion of standard material (e.g. filter paper), decomposition of lit-
ter composed of the species in the plot, ammonification rate,
nitrification rate, soil phosphatase activity, and drought resistance
(Box 1). For these functions, a preliminary literature search indi-
cated a high likelihood of sufficient data across systems ranging
from grasslands to forests.

Based on our preliminary literature review, we formalized our
hypotheses for the four resource economics space traits in relation
to each of the 10 functions. While we selected these functions
because the literature suggested there would be sufficient publicly
available data, there was not necessarily sufficient evidence in the
literature to make hypotheses for the direction and/or strength of
relationships for all 40 trait—function combinations. Because
these hypotheses were based on existing literature that in some
cases preceded the root economic space, where a hypothesis was
made for one trait of an axis, we did not automatically apply the
opposite to the other trait of the axis. For example, if we hypothe-
sized that a function was positively correlated with RTD, we did
not automatically assume it would be negatively correlated with
RNC just because the traits themselves are often negatively corre-
lated. We therefore distinguished between ecological gradients
like the collaboration and conservation gradients with their
antagonistic functional strategies at both ends, and the traits that
serve as proxies for these gradients. The gradients present the
more integral ecological strategies of a species/community, while
the single traits represent individual hypotheses for trait—
functioning relationships (Table 1).

Ecosystem function data selection

Once we selected the functions of interest, our goal was to find
datasets where as many of the 10 selected ecosystem functions
were collected at the same site as possible to maximize compar-
ability among functions (see Supporting Information Table S1
for all data sources and Table S2 for the full list of measures for
each project). To minimize potential system bias by having
unequal datasets across biomes, we deliberately selected experi-
mental and observational studies in both forest and grassland eco-
systems. The resulting set of studies included measurements of
multiple functions as well as the assessment of species composi-
tion but was largely located in the temperate zone with some
individual sites in boreal forests, tropical seasonal forests, or
savannas. Studies that had multiple locations were coded as the
same ‘project’ (e.g. Biodiversity Exploratories, and NEON), and
individual locations were coded as different ‘sites’ within the pro-
ject (e.g. the three ‘sites’ of the Biodiversity Exploratories across
Germany, Fischer ez 2/, 2010). When a project only comprised a
single site (e.g. Jena Experiment), the project and site were
labeled identically. Individual spatial units within a site where
functions and species composition were measured were coded as
‘plots’.

© 2025 The Author(s).
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Ecosystem function standardization

To help us focus on root trait effects on ecosystem functions
within sites, we accounted for macro-environmental differences
by centering and scaling all function data to unit variance within
each ecosystem and project site. This standardization removed
the variation in ecosystem functions among sites, for example,
due to underlying differences in the abiotic conditions of each
individual site. By standardizing in this way, we removed
large-scale differences in ecosystem functions that may underlie
large observational gradients and are therefore not easily assigned
to changes in the plant community or are more likely associated
with climate and edaphic conditions. This standardization also
allowed us to compare functions with multiple measurement
methods (e.g. aboveground biomass production measured as an
increase in basal area in trees vs by vegetation clipping in a grass-
land) that would not be comparable otherwise.

Trait data compilation, standardization, and plot selection

To maximize the potential match between traits and ecosystem
functions, we used plot-level aboveground species composition
data from the year in which the highest number of functions were
measured at a site. We standardized species names using the
Taxonomic Name Resolution Service, accessed through the
‘TNRS’ R package (Boyle e¢r al, 2013). Plant species were
matched at the species level with the extended root trait database
of Weigelt er al. (2021), based on GRooT (Guerrero-Ramirez
et al., 2021). From this database, we collected data for SRL,
MRD, RTD, and RNC. Once the full dataset was assembled, we
removed plots from our analysis where < 80% of the plant com-
munity in a plot (see details below on species abundance data)
had data for all four RES traits (Pakeman & Quested, 2007).
The complete list of plot numbers included per site and function
is found in Tables S3 and S4. All data manipulation and analyses
were done in R v.4.3.2 (R Core Team, 2023).

Data analysis

We calculated community-weighted mean (CWM) traits from
the species-level traits, weighted by a metric of aboveground spe-
cies abundance. Depending on data availability across studies, the
relative abundance of a species was calculated using either above-
ground biomass, aboveground cover, or species-specific tree dia-
meter at breast height (Table S2). These different measurements
reflect the conventions that are most practical, and therefore most
commonly used, in different systems. We then standardized these
community-weighted means at the level of the study and site to
reduce the likelihood that using different measures for the com-
munity composition would alter our results. We examined the
presence of a species-level (based on unstandardized species traits)
and community-level (based on CWM traits standardized at the
site level) RES in our data with a principal component analysis
(PCA) based on a correlation matrix using the ‘princomp’ com-
mand in the R base ‘STATS package. For the species-level PCA,
we centered and scaled trait data across the whole dataset. For the
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community-level PCA, we centered and scaled trait data to unit
variance within an ecosystem and site to enable better compari-
son across traits and ecosystems. A community-level PCA with-
out the 80% cutoff for trait data availability can be found in
Fig. S1. For comparability, we did not use phylogenetic correc-
tion for the species-level PCA, as this would not be possible at
the community level (Lachaise et al., 2022; Da et al., 2023; Hen-
necke et al., 2025).

To test our individual hypotheses for trait—functioning rela-
tionships while avoiding multicollinearity, we used separate mod-
els for each trait—function combination, resulting in a total of 40
separate models. We fitted a series of linear Bayesian hierarchical
models using the ‘BRMS’ package (Biirkner, 2017). For each
trait—function combination, models included a fixed effect of
the trait and a hierarchical term for site-specific variation
(ecosystem function ~ trait + (0 + trait | site)). Due to the
z-transformation of the function and trait data at the site level,
the intercepts were all equal to or close to zero, and we therefore
did not include random intercepts. We fitted the model using the
Student-t likelihood distribution to accommodate potential out-
liers and with a weakly informative normal distribution prior for
both the fixed effects and the SD of the hierarchical effect. Poster-
ior distributions were sampled using four chains of 4000 itera-
tions each (1000 warm-up), with adapt_delta=0.99. Model
convergence was verified via Rhat values and posterior predictive
checks (Fig. S2). All Rhat values were < 1.01 with sufficiently
large bulk and tail effective sample sizes (Vehtari er al, 2021;
Table 2). To evaluate the effect size and direction, we extracted
the posterior mean of the population-level slope, along with 89%
credible intervals. We then used the posterior probability of
direction (PD), defined as the proportion of posterior samples on
the same side of zero, as an evidence metric for directional effects
(Makowski ez al., 2019). We categorized evidence strength as
moderate (PD > 0.9), strong (PD >0.95), or wery strong
(PD > 0.975). Posterior distributions are shown in Fig. S3. Pre-
dictions were generated for both global and site-specific models
over the observed trait range.

Results

The RES at the species and the community level

At the species level (317 species), we found that the coordination
of SRL, MRD, RTD, and RNC was largely aligned with the RES
sensu Bergmann et al. (2020) (Fig. 1a). SRL loaded more on PC1
(—0.680) than on PC2 (—0.192). MRD loaded more on
PC1 (0.513) than PC2 (0.460), though by a smaller margin.
RNC loaded more on PC2 (0.706) than on PC1 (—0.164), while
RTD loaded similarly on PC1 (0.498) and PC2 (—0.504). PC1
accounted for 37.9% of the variance in our species data, while
PC2 accounted for 29.3% of the variance for a cumulative
67.2% (PC3: 20.7%).

At the community level (810 communities), the RES differed
considerably from the species level, with RNCcywy loading
together with MRDcwy rather than RTDewy (Fig. 1b).
SRLewm and MRDew showed a similar pattern to the species

New Phytologist (2025) 248: 3221-3239

www.newphytologist.com

New
Phytologist

level, loading more on PCI (—0.569 and 0.598, respectively)
than on PC2 (—0.214 and 0.356, respectively), and RTDcwm
loaded more on PC2 (0.902) than on PC1 (—0.308). However,
RNCcwwm did not follow the species-level organization but rather
loaded more strongly on PC1 (0.474) than PC2 (—0.120).
Further, RNCcywy loaded even more strongly on PC3
(—0.827), though PC3 was not needed to account for sufficient
variance in the model. At the community level, PC1 explained
50.8% of the variance in our data, while PC2 accounted for
23.1%, for a cumulative 73.9% of the variance.

Root trait — Ecosystem function relationships

Because the community-level PCA did not fully reflect the
species-level root economics space, with RNCcyy more closely
related to MRDwa than RTD vy, we chose to focus on indi-
vidual root trait—ecosystem function relationships rather than
using the PCs as an independent variable. We found that four of
the 10 functions were related to SRLcw with at least moderate
evidence for the effect (PD > 0.9), five with MRD v, five with
RTDcwm, and five with RNCewy (Table 2, Fig. 2), respec-
tively. For traits representing the conservation gradient
(RTDcwnm — RNCeww), we had a priori hypotheses for 14 out
of the 20 trait—function relationships. For the collaboration gra-
dient (SRLcwym — MRDewwm), the literature allowed us to
develop a priori hypotheses for only seven out of the 20 trait—
function relationships. Contrary to our expectations, however,
conservation and collaboration traits both appeared to be simi-
larly important for trait—function relationships. We found similar
numbers of relevant relationships across traits related to both the
collaboration and the conservation axes, with nine relationships
with traits of the collaboration gradient and ten with traits of the
conservation gradient with at least moderate evidence for a direc-
tion of effect. However, our hypothesized direction was more
often correct for traits of the conservation gradient (six correct
hypotheses out of ten relevant relationships) than for traits of the
collaboration gradient (one out of nine). For traits of the conser-
vation gradient, we found two (out of ten) relationships were in
the opposite direction than what we hypothesized (RTDcyw-
DST, RNCcwm-DST, Fig. 2), while for traits of the collabora-
tion gradient, one out of the nine relationships with evidence for
a directional effect were hypothesized in the wrong direction
(MRDcywim-SMB). Overall, root traits explained relatively small
amounts of variation in the single models (R [0.008-0.200],
Table 2).

Specifically, communities with higher SRLcwy had lower
aboveground biomass production (standardized estimate, esti-
mate hereafter = —0.316), standard material was decomposed
more quickly (estimate = 0.107), and soils tended to have lower
nitrification rates (estimate = —0.089) and lower phosphatase
activity (estimate = —0.110). Communities with high MRDcwm
had higher aboveground biomass production (estimate = 0.245),
tended to have higher soil microbial biomass (estimate = 0.104),
standard material was decomposed more slowly (estimate =
—0.116), and soils tended to show higher rates of ammonifica-
tion (estimate =0.148) and had higher nitrification rates
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Table 2 Posterior mean estimates for the effect of the root trait on the ecosystem function, convergence diagnostics, and evidence strength.

ESS ESS Evidence
Ecosystem function Trait  Estimate SD 89% CI R? Nobs Ncroup Rhat  (bulk) (tail) PD level
Aboveground biomass production SRL —-0.316 0.075 [-0.429-0.193] 0.166 718 18 1.001 4291 5528 1.000 Very strong
Aboveground biomass production MRD 0.245 0.093 [0.1000.391] 0.144 718 18 1.002 2448 4550 0.994 Very strong
Aboveground biomass production RTD -0.353 0.095 [-0.506-0.204] 0.200 718 18 1.000 2606 4024 1.000 Very strong
Aboveground biomass production RNC 0.166  0.107 [0.001 0.340] 0.122 718 18 1.001 2549 4249 0.946 Moderate
Root standing biomass SRL —0.009 0.056 [-0.0960.080] 0.012 463 19 1.000 7257 6965 0.570 No effect
Root standing biomass MRD  0.038 0.085 [-0.0950.173] 0.054 463 19 1.001 4413 6088 0.682  No effect
Root standing biomass RTD 0.054 0.069 [-0.0570.157]1 0.024 463 19 1.000 5385 4911 0.804 No effect
Root standing biomass RNC 0.019 0.079 [-0.0980.151] 0.038 463 19 1.001 3740 4818 0.582  No effect
Soil fauna biomass SRL 0.118 0.107 [-0.0460.285] 0.078 353 11 1.001 3082 4363 0.885 No effect
Soil fauna biomass MRD  0.025 0.089 [-0.1190.161] 0.037 353 11 1.001 4785 5477 0.625 No effect
Soil fauna biomass RTD 0.072 0.068 [-0.0370.176] 0.026 353 11 1.001 5573 4833 0.872  No effect
Soil fauna biomass RNC 0.291  0.077 [0.1700.411] 0.124 353 11 1.000 4755 5332 0.999 Very strong
Soil microbial biomass SRL  -0.063 0.059 [-0.1530.032] 0.022 524 21 1.000 8080 7641 0.862 No effect
Soil microbial biomass MRD  0.104 0.072 [-0.0120.216] 0.050 524 21 1.001 5945 7266 0.926 Moderate
Soil microbial biomass RTD -0.139 0.080 [-0.269-0.013] 0.072 524 21 1.000 6230 7749 0.960 Strong
Soil microbial biomass RNC 0.059 0.053 [-0.0240.142] 0.013 524 21 1.000 11120 8928 0.875 No effect
Decomposition — standard material SRL 0.107 0.045 [0.0360.180] 0.017 587 16 1.000 15027 8839 0.991 Very strong
Decomposition — standard material MRD -0.116 0.055 [-0.203-0.033] 0.024 587 16 1.001 7727 6181 0.984 Very strong
Decomposition — standard material RTD 0.123  0.047 [0.0500.197] 0.023 587 16 1.000 8684 7315 0.994 Very strong
Decomposition — standard material RNC -0.112 0.058 [-0.204-0.020] 0.031 587 16 1.001 6530 6997 0.973 Strong
Decomposition — plot-specific material ~ SRL 0.046 0.078 [-0.0690.171] 0.021 406 12 1.000 7055 5693 0.726  No effect
Decomposition — plot-specific material  MRD 0.115 0.118 [-0.0750.300] 0.102 406 12 1.001 3865 5499 0.846 No effect
Decomposition — plot-specific material  RTD ~ —0.083  0.109 [-0.2520.092] 0.075 406 12 1.000 3881 5388 0.797 No effect
Decomposition — plot-specific material  RNC 0.292 0.092 [0.146 0.433] 0.132 406 12 1.000 4231 4803 0.995 Very strong
Ammonification SRL  -0.071 0.097 [-0.2160.081] 0.020 183 11 1.001 7161 5659 0.795 No effect
Ammonification MRD  0.148 0.113 [-0.0130.330] 0.037 183 11 1.000 5366 4671 0.932  Moderate
Ammonification RTD -0.117 0.115 [-0.2870.065] 0.043 183 11 1.000 5905 5890 0.860 No effect
Ammonification RNC 0.153  0.110 [-0.0210.312] 0.047 183 11 1.000 6847 5258 0.928 Moderate
Nitrification SRL  -0.089 0.070 [-0.2000.020] 0.019 278 14 1.000 9890 7540 0.906 Moderate
Nitrification MRD 0.161 0.092 [0.0220.310] 0.049 278 14 1.001 5106 5167 0.967 Strong
Nitrification RTD -0.132 0.096 [-0.2760.019] 0.047 278 14 1.000 6008 5382 0.925 Moderate
Nitrification RNC 0.074 0.087 [-0.0570.211]1 0.027 278 14 1.001 7037 5684 0.820 No effect
Phosphatase activity SRL  -0.110 0.077 [-0.2310.010] 0.026 238 10 1.001 6032 5648 0.931  Moderate
Phosphatase activity MRD  0.027 0.074 [-0.0880.142] 0.015 238 10 1.000 7109 6080 0.654 No effect
Phosphatase activity RTD —-0.189 0.066 [-0.295-0.087] 0.042 238 10 1.001 8881 7264 0.997 Very strong
Phosphatase activity RNC -0.040 0.086 [-0.1730.093] 0.024 238 10 1.002 5372 5245 0.694 No effect
Drought resistance of the plant SRL 0.046 0.081 [-0.0660.182] 0.014 398 10 1.000 3566 3395 0.734  No effect
community
Drought resistance of the plant MRD —0.041 0.056 [-0.1240.047] 0.008 398 10 1.000 6247 5044 0.801 No effect
community
Drought resistance of the plant RTD -0.073 0.089 [-0.2240.051] 0.020 398 10 1.001 3531 3831 0.823  No effect
community
Drought resistance of the plant RNC -0.062 0.068 [-0.1480.053] 0.013 398 10 1.001 4058 2957 0.860 No effect
community

Cl, credible interval; CWM, community-weighted mean; ESS, effective sample size; MRD, mean root diameter; PD, probability of direction; R?, Bayesian
R?; Rhat, parameter of model convergence; RTD, root tissue density; RNC, root nitrogen content; SD, posterior SD; SRL, specific root length.

Traits and ecosystem functions were z-transformed for each study site to account for differences in biotic (e.g. differences across ecosystems) and abiotic
variation. Individual Bayesian hierarchical models for each combination of root traits and ecosystem function were fitted. Each model included a fixed effect
of the trait and a random slope for site-specific variation. The level of evidence was assigned based on PD < 0.9 = no evidence of effect;

0.9 < PD < 0.95 = moderate evidence; 0.95 < PD < 0.975 = strong evidence; PD > 0.975 = very strong evidence.

(estimate = 0.161). Communities with higher RTDcywy had
lower aboveground biomass production (estimate = —0.353)
and lower soil microbial biomass (estimate = —0.139). They
further had higher decomposition rates of standard material
(estimate = 0.123) and soils tended to have lower nitrification
rates (estimate = —0.132) as well as lower phosphatase activity
(estimate = —0.189). with  higher
RNCcwnm tended to produce more aboveground biomass
(estimate = 0.166), had higher soil fauna biomass (estimate =
0.291),

communities

Finally,

standard material was decomposed more slowly
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(estimate = —0.112) but plot-specific material was decomposed
more quickly (estimate = 0.292), and soils tended to have higher
ammonification rates (estimate = 0.1534). Root biomass (see
Box 2) and drought resistance of the plant community were not
related to any community-weighted root trait.

Discussion
We used a meta-dataset to unearth community-level root trait—

ecosystem function relationships. We found that community-
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Fig. 1 Community-weighted mean trait values do not follow the same organization as at the species level. (a) Species-level principal component analysis
(PCA)- at the species level (317 species), we found that both principal components (PC 1 and PC 2) closely resembled the root economics space of
Bergmann et al. (2020) with specific root length (SRL) and mean root diameter (MRD) representing the collaboration gradient, and root tissue density
(RTD) and root nitrogen concentration (RNC) representing an orthogonal conservation gradient. (b) Community-level PCA (810 plant communities). Note
that all points are semi-transparent to better visualize the overlap but appear darker when there are multiple overlapping points.

weighted mean fine-root trait values, in particular RNC
(RNCcwm), did not conform with our previous findings asso-
ciated with the RES established at the species level. We found evi-
dence for the collaboration gradient (SRLcwn and MRD cyw)
at the community level but not the conservation gradient
(RTDcwm and RNCeww). In spite of the lack of a RES at the
community level, we found that the community-weighted mean
traits related to the conservation gradient were linked with 10
ecosystem functions, especially those related to carbon cycling.
Similarly, traits of the collaboration gradient were related to nine
ecosystem functions. Of the 10 ecosystem functions we exam-
ined, only root biomass (Box 2) and drought resistance were not
correlated with any of the root traits.

The RES at the community level

When including the 317 species with complete trait data, the
PCA of the root traits resembled the RES of Bergmann
et al. (2020) with orthogonal coordination of the collaboration
gradient, formed by SRL and MRD, and the conservation gradi-
ent, formed by RTD and RNC (Fig. 1a). However, at the com-
munity level, we found strong evidence for a collaboration
gradient but not a conservation gradient. RNCcwy loaded on
both the first and third components rather than on the second,
with a positive bivariate correlation between RNCcwy and
MRDcwy that is not present at the species level (Table S5).
Community-level patterns like those observed here may occur in
systems with a high relative abundance of legumes, which tend to
have high RNC due to the presence of nitrogen-fixing rhizobia,
regardless of their other traits. A divergent role of RNCeyy is
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common in the literature (Sweeney ez al., 2021; Xia er al., 2021;
Lachaise ez al, 2022), and our RES partially aligns with the
community-level analysis of Lachaise ez al (2022), who also
found that RNCcyy shifted almost entirely to PC1 at the com-
munity level.

In the 810 communities we examined, there could be several
reasons why the community-level RES differed from our expecta-
tions, which were based on our previous observations at the spe-
cies level. First, species with specific traits (e.g. association with
nitrogen-fixing rhizobia as described above) may be more or less
abundant in a community because of the abiotic and biotic con-
ditions of a given ecosystem and climate, as well as the soil condi-
tions of a plot location (Anderegg, 2023). That is, one of the
characteristics of communities is that they are not subject to
the same limitations as species traits and may not have to
adhere to the same trade-offs. Second, we calculated our
community-weighted means using aboveground community
composition and abundance, which may not accurately reflect
either belowground community composition or the associated
abundance of fine roots of a given species. This mismatch may
decrease our capacity to accurately reflect the community trait
space belowground and may especially affect our results when
belowground and aboveground dynamics are not matched (Hiie-
salu et al., 2012; Barry et al., 2019; Martin-Guay ez al., 2020;
Ottaviani ez al., 2020). Third, we use data on species-level traits
and then calculate community-weighted means. This approach
ignores intraspecific trait variation reflecting adaptations to local
conditions, including the presence of other species. Measuring
this plasticity requires 77 situ trait measurements and may reveal
community-level trait coordination that is more similar to the
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Fig. 2 Results of Bayesian models examining the relationships between each ecosystem function and standardized community-weighted mean root traits:
specific root length (SRLcwam) and mean root diameter (MRDcwm) representing the collaboration gradient, and root tissue density (RTDcwm) and root
nitrogen concentration (RNCcwm) representing the conservation gradient of the root economics space. Background colors indicate the hypothesized
direction of effect based on our initial hypotheses (see Table 1), with color saturation reflecting the confidence in the expected direction. Black lines show
the overall model slope, with line types representing the strength of evidence for an effect according to the probability of direction (PD), with

PD < 0.9 = no evidence of effect; 0.9 < PD < 0.95 = moderate evidence; 0.95 < PD < 0.975 = strong evidence; PD > 0.975 = very strong evidence. The
shaded area depicts the 0.89 credible interval. Solid gray lines indicate the site-specific slopes. Abbreviations of ecosystem functions: ABP, aboveground
biomass production; AM, ammonification rate; DR, plant community drought resistance; D-ST, decomposition of standard material; D-SP, decomposition
of plot-specific litter; NT, nitrification rate; PH, soil phosphatase activity; RSB, root standing biomass; SFB, soil fauna biomass; SMB, soil microbial biomass.

species-based RES. Fourth, biases in the availability of trait data
may decrease the likelihood that a community-level RES is pre-
sent. We eliminated plots from our analysis where complete trait
data were available for a subset of species representing < 80% of
the community relative abundance (c. 58.7% of plots). Rare spe-
cies are less likely to have complete trait data available, and there-
fore sites with high species richness were often excluded in our
analysis. By contrast, sites whose communities contain a small
actual or effective number of species may not demonstrate a
community-level RES because when we have fewer species in
a community or when many communities are dominated by the
same species, these are more likely to represent extremes of
the trait space or alter trait coordination toward their dominant
traits. In our dataset, sites like the Kreinitz Biodiversity Experi-
ment, where the community-level PCA did not represent the
RES (Fig. S4), had only six species maximum.

Root trait — Ecosystem function relationships

Based on our initial literature search (Table 1), we expected traits
that fall on the conservation gradient (i.e. RTDcwm and

© 2025 The Author(s).
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RNCcwm) to be more closely related to ecosystem functions
than those that fall on the collaboration gradient (i.e. SRLowm
and MRDcwy). This expectation relied on our capacity to
develop hypotheses for trait-ecosystem function relationships
from the literature. These differences in our capacity and confi-
dence in expected relationships between traits and functions on
the conservation gradient vs the collaboration gradient may
reflect a bias in the literature surrounding trait—function relation-
ships. The conservation gradient is well studied aboveground
(Wright er al., 2004; Reich, 2014; Diaz ez al., 2016) and has been
expanded to include belowground plant traits since at least 2013
(Chen ez al., 2013; Kong et al., 2014). This density of informa-
tion made it easier to develop hypotheses for the conservation
gradient belowground but also to extrapolate from aboveground
dynamics across this gradient. The collaboration gradient, how-
ever, has only been formalized in the literature more recently
(2020). This relative novelty may limit our capacity to anticipate
how these belowground traits alter function, at least based on his-
torical literature.

All but two of the functions investigated (root standing bio-
mass and drought resistance) were related to at least one fine-root
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Box 2. Conceptual thinking on root biomass

In our analysis, we include root standing biomass as a best available
proxy for root productivity, a key function contributing to overall eco-
system productivity. However, it is of critical importance to recognize
that root biomass itself may also be an important driver of other eco-
system functions (Lange et al., 2015) and as a scaler of the effects that
individual root traits (MRD, SRL, RNC, RTD) have on other ecosystem
functions. For example, when thinking about the decomposition of
standard material (therefore unconfounded by the traits of the mate-
rial), our hypotheses are based on the microbial community that assem-
bles in the surroundings of the roots due to the root traits. While we
expect that root biomass can alter the trait-functioning link, as higher
plant biomass itself is associated with higher microbial biomass, root
biomass could even act as a scaler for root traits, for example when
root biomass disproportionately increases effects of litter quality. We
currently do not specifically include these interactive effects of root bio-
mass and traits but want to highlight that more work is needed to dis-
entangle the context-dependency of trait-functioning relationships in
regard to root biomass.

trait of the RES (moderate evidence for an effect in 19 out of 40
individual relationships; Table 2; Figs 2, S5). While this plethora
of relationships indicates that trait-ecosystem function relation-
ships may be common, most of these individual relationships
explained a relatively low proportion of variance (Table 2). The
magnitude of explanatory power is comparable to similar analyses
when they are found (van der Plas er 4/, 2020). Functions that
were more strongly correlated may rely more on resource acquisi-
tion by fine roots, which is reflected by the RES. For example,
aboveground biomass production is directly related to resource
use and uptake, which is determined largely by the fine roots
characterized by the RES. Drought resistance, however, may be
more related to hydraulic traits or the capacity of the roots to
reach deeper water resources than to the resource acquisition
traits incorporated in the RES (Laughlin ez al, 2023). Some
functions (e.g. root biomass and drought resistance) are also more
derived proxies for actual ecosystem functions than many of our
other proxies used in this study, which may explain their weak
link with root functional traits (see Box 2 for discussion of root
biomass in particular). This variation may also reflect our use of
community
community-weighted mean root traits. Many of these composi-

aboveground composition to calculate our
tion measures are strongly correlated with, for example, above-
ground biomass.

Functions related to carbon cycling, including aboveground
biomass production, soil fauna biomass, soil microbial biomass,
as well as decomposition of standard and plot-specific litter, were
largely correlated with traits of the conservation gradient. This is
in line with previous studies (Wardle ez al., 2004; Da ez al., 2023;
Jimoh et al., 2024) and matches our mechanistic understanding
of the conservation gradient as a trade-off in resource use
(Reich, 2014). The role of traits of the collaboration gradient in
carbon dynamics is much less investigated, and as a result, we
had less evidence with which to build our hypotheses. However,
we found correlations of collaboration gradient traits with
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functions related to carbon cycling, comparable in strength and
frequency to those of conservation gradient traits (Table 2;
Fig. 2). This link may be due to the differences in root anatomy
and mycorrhizal colonization that give the collaboration gradient
its name. For example, we unexpectedly found moderate evi-
dence for a positive relationship between MRDcy and soil
microbial biomass (Fig. 2). Recent evidence suggests that thicker
roots are associated with higher rhizodeposition (Folacher
et al., 2024) and exudation (Williams ez 2/, 2022), which is then
paired with higher mycorrhizal colonization, potentially resulting
in higher soil microbial biomass.

A priori, we had fewer hypotheses for ecosystem functions
related to nutrient cycling than for carbon cycling since specific
soil microbial processes have been rarely studied in the context of
interspecific variation in root traits and because factors other than
plants exert strong controls over soil nutrient cycling, including
edaphic conditions such as soil texture, moisture, and oxygen
content, as well as microbial community composition and activ-
ity, though we controlled for some of this variation in our statisti-
cal framework. We found that ammonification and nitrification
rates were associated with traits of both the collaboration and
conservation gradient. For example, on the collaboration gradi-
ent, nitrification increased in communitdes with higher
MRD i and decreased, though by a small amount, in commu-
nities with higher SRLew. Both of these patterns may be linked
to the higher soil microbial biomass in higher MRDcwy com-
munities (Fig. 2). Since this applied to nitrification — but not to
ammonification — greater oxygen availability in soil resulting
from larger pores induced by thick roots might also explain
increased nitrification (Bollmann & Conrad, 1998; Bodner
et al., 2014). On the conservation gradient, communities with
high RTD¢wwm had low nitrification rates, which may be less due
to the roots than to the general relationship between RTDcwm
and nutrient availability. High RTDcw communities tend to
occur on low nitrogen sites, leading to less overall N available for
nitrification and low nitrifier abundance (Table 1; Legay
et al., 2014).

In general, our community-level results differ from previous
studies which looked at broad ranges of traic—function relation-
ships. For example, van der Plas ez 4l (2020) examined trait—
functioning relationships for two of our four traits and seven of
our 10 ecosystem functions for one experimental grassland site.
Of the possible 14 overlapping significant relationships, only one
was the same in our analysis. This disparity may be due to our
inclusion of observational systems in our dataset in addition to
experimental manipulations. Biodiversity experiments often try
to minimize environmental variation (Hooper ez al., 2005; Til-
man et al., 2014; Jochum ez al., 2020). Yet environmental varia-
tion drives changes in functional traits themselves, the relative
abundance of species with certain functional traits, and ecosystem
functions simultaneously. This major difference between our
results and others highlights some potential limitations for using
biodiversity experiments to explore trait—function relationships.
Unmanipulated community assembly may increase the likelihood
that traits and functions are related to each other, although at the
same time it makes conclusions about causality more challenging.
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Conclusion

This study highlights three important lessons in matching
community-weighted plant functional traits to ecosystem func-
tions. First, our capacity to understand the universality of trait—
function relationships may be limited by general biases in the
publicly available root trait databases. Observational systems,
where trait—function relationships may be most likely, are often
excluded from analyses because of their higher diversity, includ-
ing rare species, for which we may not have adequate trait mea-
surements. This bias is likely to be especially prominent outside
of North America and western Europe, where there are even
fewer trait measurements in common databases (Kattge
et al., 2020). Second, our analysis highlights a need to think criti-
cally about when we may expect communities to conform to ideal
trait distributions. Communities with small species pools and
high dominance of individual species did not appear to conform
to patterns we previously observed in species-level trait spectra.
These relatively common patterns (low species number and high
dominance) may limit the capacity of species-level trait spectra to
explain ecosystem functions. However, at the community level,
the collaboration gradient of the root economics space may be
more consistent than the conservation gradient across systems.
Further, one strength of communities is that they are not subject
to the same trade-offs as species and therefore may not be
expected to adhere to species-level patterns. Finally, our analysis
is unable to examine the consequences of changes in trait expres-
sion in communities because we use species-level traits to calcu-
late community-weighted means rather than traits measured in
the communities themselves.

In our study, each individual functional trait could only explain
a small amount of variance in ecosystem functions. However, as
suggested by Freschet ez al. (2021b) and Streit & Bellwood (2023),
matching multdple traits to functions with clear direct conceptual
links increased our capacity to understand links. We showed that
fine-root traits of both the conservation (RTDcwy and
RNCcwwm) and the collaboration (SRLcwy and MRD ) axes
correlated with key ecosystem functions across a range of experi-
mental and observational sites in grasslands and forests. Further,
the majority of the functions that we examined were related to
multiple independent traits. Our findings indicate that shifts in the
relative abundance of commonly measured traits can alter impor-
tant ecosystem functions such as carbon cycling. The interrelated-
ness of these trait—function relationships suggests that changes in
the communities’ traits are likely to have complex and interacting
effects on ecosystem functions. This interrelatedness highlights a
need for experiments that directly manipulate the traits of the com-
munity, for example, by designing experimental plant commu-
nities with species combinations that form two orthogonal
gradients in collaboration and conservation traits.
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