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Abstract
T-cell  Receptors (TCRs)  play a pivotal  role in antigen recognition and binding,  and their  sequence similarity  significantly impacts the breadth of  antigen

recognition. Network analysis is employed to explore TCR sequence similarity and investigate the architecture of the TCR repertoire.  Network properties

hence could be utilized to quantify the structure of the TCR network. However, the heterogeneous nature of TCR network properties poses challenges in

performing  statistical  learning  across  subjects  directly,  particularly  when  assessing  their  relationship  with  disease  states,  clinical  outcomes,  or  patient

characteristics.  To  overcome  this  challenge,  a  powerful  method  is  developed,  TCR-NP  (TCR  Network  properties  Prioritization),  that  aggregates  the  raw

heterogeneous  network  properties  and  conducts  grouped  feature  selection  using  a  pseudo-variables-assisted  penalized  group  Lasso  model.  Unlike  the

traditional parameter-tuning using cross-validation, a novel tuning strategy is introduced by incorporating permutation and pseudo-variables to improve

the selection performance.  The effectiveness of the proposed method is  demonstrated through comprehensive evaluation,  including simulation studies

and  real  data  analysis.  By  comparing  the  performance  of  the  different  approaches,  the  advantages  of  the  proposed  methodology  in  capturing  the

underlying relationships between TCR network properties and clinical outcomes or patient characteristics are highlighted.
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Introduction

T-cells  are  one  of  the  key  components  of  the  adaptive  immune
system[1].  T-cell  Receptors  (TCRs)[1,2] are  a  group  of  protein
complexes  on  the  surface  of  T-cells.  TCRs  recognize  and  bind  to
specific  antigen  peptides[3] found  on  abnormal  cells  or  potentially
harmful  pathogens.  Once  the  TCRs  bind  to  the  pathogens,  the  T-
cells  attack these cells  and help the body fight infection,  cancer,  or
other  diseases.  TCR  repertoires,  which  are  continually  shaped
throughout  the lifetime of  an individual  in  response to  pathogenic
exposure,  can  serve  as  a  fingerprint  of  an  individual's  current
immunological profile. The protein structures of TCRs determine the
binding  between  TCRs  and  antigen  peptides[4].  Thus,  the  similarity
among  TCR  sequences  directly  influences  the  antigen  peptide
recognition breadth. Network analysis,  where TCR clones are repre-
sented by vertices and connected if similar in sequences (distance is
less  than  a  particular  number)  by  using  some  sequence  similarity
measures (e.g., Hamming distance, Levenshtein distance[5], etc.), was
used as a novel perspective to study TCR clusters and their binding
to antigen peptides.  As the binding patterns will  eventually impact
the  high-level  responses,  the  aim  is  to  use  network  structure  as  a
special layer of information to investigate its potential connection to
clinical  outcome  or  disease  status,  as  evidenced  in  existing  litera-
ture[6].  For example,  it  was observed that lung cancer patients with
focused TCR repertoires and complex network connections attained
significantly longer overall survival (OS) than those with smaller clus-
ters[7]. Therefore, quantitative analysis of the TCR repertoire network
properties  has  the  potential  to  provide  a  better  understanding  of
the immune landscape involving T cell responses. However, network
properties  are  highly  heterogeneous,  as  they  can  be  measured  at
node and cluster levels, and networks differ in the number of nodes

and clusters. Thus, it is challenging to perform statistical inference or
machine  learning  directly  on  the  TCR  network  properties  to  study
their relationship with clinical outcomes.

A  flexible  and  efficient  approach  was  proposed  to  prioritize  TCR
Network Properties  (TCR-NP)  by leveraging extracted features from
the  heterogeneous  network  properties  to  assess  their  relationship
with  the  outcome  of  interest,  while  incorporating  the  group  struc-
ture based on the nature of the features. As an initial investigation,
we  propose  extracting  simple  summary  statistics  (e.g.,  min,  Q1,
mean,  median,  Q3,  max)  from  the  network  property  values  since
they can be easily calculated and carry the key signatures of a distri-
bution.  Since  the  extracted  features  are  naturally  grouped  by  net-
work property, TCR-NP is constructed on the Group Lasso model[8], a
classical statistical method that offers several advantages in feature
selection  and  prioritization.  Specifically,  it  promotes  group-level
selection  and  addresses  multicollinearity  issues  by  selecting  or
excluding  the  entire  groups  (network  properties),  which  is  particu-
larly beneficial when dealing with highly correlated variables (often
found  within  the  same  network  property).  Moreover,  it  can  handle
the high-dimensional data (small sample, a large number of features
commonly  seen  in  TCR  network  data)  efficiently  (via  L1  regulariza-
tion[9]),  resulting  in  a  sparse  solution  that  will  facilitate  the  subse-
quent  interpretations.  Additionally,  it  can  be  applied  to  different
response  types  (e.g.,  categorial,  quantitative,  and  time-to-event),
which will fulfill the needs of different application scenarios.

Instead of using the commonly used cross-validation (CV)[10] tech-
nique, it was proposed to utilize pseudo-variables to assist the selec-
tion in the Group Lasso model, inspired by Yang et al.[11]. Traditional
CV  tuning  typically  minimizes  prediction  errors,  which  are  indirect
measures  of  selection  performance.  In  contrast,  pseudo-variables,
generated  through  permutation  as  artificial  unrelated  features,
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serve  as  'known  negatives'.  The  goal  is  to  select  features  with
stronger  association  signals  than  the  pseudo-variables,  which  is  a
more  direct  approach  to  improve  selection  performance.  Such  a
strategy enhances precision by minimizing false positives, resulting
in a condensed set of strongly associated features. Moreover, acting
as  a  filter,  pseudo-variables  contribute  to  a  more  robust  model,
capable  of  handling  variations  and  maintaining  performance  in
noisy datasets.

In this paper, extensive simulation studies under different scenar-
ios  were  conducted  to  demonstrate  the  efficacy  of  TCR-NP.  Perfor-
mance  measures,  including  F-1  score,  False  Discovery  Rate  (FDR),
sensitivity, and stability were calculated for each of the four follow-
ing  methods:  permutation-assisted  Group  Lasso  (P-Group  Lasso),
cross-validation  tunned  Lasso  (CV-Lasso),  cross-validation  tunned
Group  Lasso  (CV-Group  Lasso),  and  permutation-assisted  Lasso  (P-
Lasso).  The  proposed  methods  were  also  applied  to  a  lung  cancer
TCR data for illustration. 

Materials and methods
 

Network analysis and network properties
A matrix of pairwise distance of amino acid sequences was calcu-

lated for each sample based on Levenshtein distance[5]. Then, a TCR
network can be generated by connecting the amino acid sequences
(nodes) with a distance less than or equal to 1 (allowing a maximum
of 1 amino acid difference among sequences). A cluster of a network
represents a group of clones that are similar in sequence, and here,
clusters are only considered with at least two clones (nodes). Based
on  the  network  generated,  several  quantitative  properties,  such  as
the  number  of  clusters,  diameter,  assortativity,  etc,  are  calculated
(Table  1).  Network  analysis  was  performed  using  the  R  package
NAIR[12].  As  mentioned  earlier,  within  each  TCR  repertoire  for  each
sample, there are different numbers of clusters, each corresponding
to its  properties.  Therefore,  for  each property,  the  property  dimen-
sion  varies  amongst  samples.  To  tackle  those  issues,  descriptive
summary  statistics  for  all  the  TCR  repertoire  network  properties
were  derived  and  considered  them  as network  property  features
(Fig. 1, top) for each patient. These summary statistics contain mini-
mum,  1st quartile  (Q1),  median,  mean,  3rd quartile  (Q3),  and  maxi-
mum  values.  This  approach  helps  obtain  the  TCR network  property
features for each patient (Table 2). Those results are independent of
the  number  of  collected  TCRs  for  each  patient  and  the  number  of
clusters  for  each  network,  making  the  input  structure  the  same

across  patients  and suitable  for  making statistical  inferences  at  the
patients' level. 

Group Lasso model

xi = (xTi,1, · · · , xTi,G)
T

xi,g ∈ Rvg∑G
g=1 vg = P

yi ∈ {0,1}

Assume a total of G network properties are considered, where the
g-th  property  generated vg network  property  features by  using
summary  statistics  of  the  network  property, g =  1,  ..., G.  Define

as the network property features generated from

i-th  patient's  TCR  repertoires,  where  the  represents  the
features  from g-th  property,  with ,  i  =  1,  ...,  n.  Let y =
(y1,  ..., yn)  be a binary response of  interest,  i.e., ,  i  = 1,  ...,  n.
The binary response could be disease status, response to treatment,
prolonged  survival,  etc.  We  assume  the  relationship  between  the
response  variable  and  network  property  features  follows  a  logistic
regression model:

Pr(yi = 1|xi) =
exp(ηβ(xi))

1+ exp(ηβ(xi))

where,

ηβ (xi) = β0+βT1 xi,1+ · · ·+βTGxi,G

β = (β0,βT1 , · · · ,βTG)
T

βg ∈ Rνg

The  above  equation  represents  a  linear  combination  of  network
property features.  is the logistic regression coef-
ficient  where  is  the  coefficient  vector  for vg network
features generated by g-th property, g = 1, ..., G. The goal is to iden-
tify  the  network  properties  that  are  associated  with  the  response
variable,  i.e.,  identify  the  property  feature  groups  with βg ≠ 0.  The
Group Lasso method (Fig. 1, bottom right) is well-fitted to the prob-
lem  due  to  the  group  structure  among  variables  and  the  need  for
shrinkage.  It  can efficiently  shrink the coefficients  of  less  important
groups  to  exactly  zero  for  high-dimensional  data,  while  the  group
with  nonzero  coefficients  could  stand  out  and  are  considered  the
most  important  properties  associated  with  the  response  variable.
The  solution  of  the  logistic  group  Lasso  model  corresponds  to  an
optimization problem by minimizing the objective function:

Lλ (β) = −
n∑
i=1

[
yiηβ (xi)− log

(
1+ exp

(
ηβ (xi)

))]
+λ

G∑
g=1

s
(
vg
)
∥βg∥2

g
√vg
∥βg∥2

where, s(vg)  is  the penalty for th set and by default is  set to  for
group  Lasso  model  (i.e.,  the  larger  penalty  for  the  larger  set), 
represents the L2 norm of the vector βg, and λ ≥ 0 is a tuning parameter
controlling  the  amount  of  shrinkage.  A  large λ promotes  heavier
shrinkage, i.e., more coefficient vectors βg shrink to zero. In the extreme
case, when λ = 0, the solution of the optimization problem is the same

 

Table 1.    Parameters used for feature selection methods.

Network properties Description Function

Count at baseline Summation of the TCR counts of a given membership at baseline. sum(input_data[input_datamembership ==
membership_id, Count_baseline])

Count post treatment Summation of the TCR counts of a given membership post
treatment.

sum(input_data [input_data$membership ==
membership_id, Count_post_treatment])

Cluster size The number of node in a given membership. table(input_data $membership)
Diameter length The length of the longest geodesic. get_diameter(net, directed = F)
Assortativity The assortativity coefficient which is positive if similar vertices (based

on some external property) tend to connect to each, or negative
otherwise.

assortativity_degree(net, directed = F)

Transitivity The probability that the adjacent vertices of a vertex are connected. transitivity(net, type = "global")
Density The ratio of the number of edges and the number of possible edges. edge_density(net, loops = F)
Degree centrality Graph centralization based on the degrees of vertices. centr_degree(net, mode = "in", normalized = T)

$centralization
Closeness centrality Graph centralization based on the closeness of vertices. centr_clo(net, mode = "all", normalized = T) $centralization
Eigenvector centrality Graph centralization based on the eigenvector centralities of

positions v within it.
eigen_centrality(net, directed = F, weights = NA) $value

Central Eigenvector Graph centralization based on the Eigenvector centrality of vertices. centr_eigen(net, directed = F, normalized = T)
$centralization
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(βT1 , · · · ,βTG) = 0

β̂ (λ)

as the logistic regression coefficient, while λ = ∞ gives ,
i.e., shrinking all coefficients vectors to zero. For a given λ an estimate
of  can be obtained by solving the optimization.
 

A novel approach for group feature selection
Selecting the right tuning parameter λ is crucial for improving the

performance and robustness of  a  model.  Shrinkage techniques like
Lasso and Group Lasso typically use K-fold cross-validation to iden-
tify  the  optimal  value  of  the  tuning  parameter λ from  a  range  of
different λ values. In this method, the dataset is divided into K equal
folds.  For  each  candidate λ value,  the  model  is  trained  using K−1
folds and validated on the remaining fold.  This  process is  repeated
for  each λ value  and  the  optimal λ is  chosen  based  on  minimizing
the  average  loss,  such  as  mean  square  error  for  Gaussian  response
or  deviance  for  a  binary  response,  across  all  validation  folds.
However,  the average loss  that  guides  the selection,  is  not  a  direct
measure of the selection performance. In the past decade, pseudo-
variables  have  been  used  to  improve  the  performance  of  variable
selection[13,14].  Inspired  by  Yang  et  al.[11],  where  pseudo-variables
were utilized to assist the variable selection in the Lasso model and
applied  to  genome-wide  association  studies,  the  pseudo-variable

assisted  tuning  procedure  was  developed  on  the  proposed  Group
Lasso model  (Fig.  1,  bottom left)  to identify  the important  network
properties associated with the clinical outcome.

G
xπi = (x

T
i,(G+1), · · · , xTi,2G)

T π

xAi
xi xπi

First,  the  groups  of  pseudo-features  are  introduced

,  which is  generated by a permutation  (i.e.

randomly  shuffling  the  rows  of  the  original  matrix).  Hence  the
augmented features  include both the original grouped variables

 and the pseudo-grouped variables .

xAi = (x
T
i,1, · · · , xTi,G, xTi,(G+1), · · · , xTi,(2G))T .

The updated logistic regression model becomes:

Pr
(
yi = 1|xAi

)
=

exp(ηβA (x
A
i ))

1+ exp(ηβA (xAi ))

where,

ηβA
(
xAi
)
= β0+β

T
1 xi,1+ · · ·+βT2Gxi,2G

β̂Aλ

represents a linear combination of augmented features. The logis-

tic  Group  Lasso  estimator  for  this  augmented  design  matrix  is
derived by minimizing the below objective function.

Lλ
(
βA
)
= −

n∑
i=1

[
yiηβA

(
xAi
)
− log

(
1+ exp

(
ηβA
(
xAi
)))]
+λ

2G∑
g=1

s
(
vg
)
∥βg∥2

Since  the  pseudo-variables  are  generated  by  permutations,
their group sizes are the same as the original ones, i.e. vG+g = vg, g =
1,  ..., G.  In  the above equation,  the tuning parameter λ ≥ 0  controls
the  amount  of  penalization  (i.e.,  how  many  groups  have  non-zero
coefficient vectors). More explicitly, 2G groups have non-zero coeffi-
cient  vectors  when λ =  0.  As λ increase,  more  groups  are  excluded
(i.e.,  coefficient  vectors  are  shrunk  to  zeros)  from  the  model  until
every group is excluded when λ is large enough, following the fash-
ion  that  more  important  ones  stay  in  the  model  longer  when λ
increases.  Therefore,  the magnitude of λ reflects  the importance of
the variable: if a group still has a nonzero coefficient when λ is rela-
tively  large,  this  group is  considered more important,  compared to
the  ones  that  have  been  shrunk  to  zeros.  Along  with  this  idea,  we
define an importance metric for the g-th variable group.
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Fig.  1    Proposed  pipeline.  Top:  Derivation  of  the  network  properties  to  network  property  features;  Bottom  left:  Cross-Validation  (CV)  tuning  and
permutation-assisted tuning; Bottom right: Summary of the feature selection models (Lasso and Group Lasso).

 

Table 2.    TCR network properties and derived network property features.

Network properties Network property features

Node count Min, Q1, Median, Mean, Q3, Max
*Count pre infusion Min, Q1, Median, Mean, Q3, Max
Count dose 2 Min, Q1, Median, Mean, Q3, Max
*Diameter length Min, Q1, Median, Mean, Q3, Max
Assortativity prob(NA), Min, Q1, Median, Mean, Q3, Max
Transitivity prob(NA), Min, Q1, Median, Mean, Q3, Max
Density Min, Q1, Median, Mean, Q3, Max
Degree centrality Min, Q1, Median, Mean, Q3, Max
Closeness centrality prob(NA), Min, Q1, Median, Mean, Q3, Max
*Eigenvector centrality Min, Q1, Median, Mean, Q3, Max
*Central Eigen prob(NA), Min, Q1, Median, Mean, Q3, Max

*  Properties/property  features  in  bold  font  are  considered  as  the  causal
properties/features in simulation studies.
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Wg = sup
{
λ : β̂Ag (λ) , 0

}
;g = 1, · · · ,2G

Cπ = max(G+1)⩽g⩽2G(Wg)
π

π

The  group-variable  selection  procedure  given  below  assumes
that  true  active  grouped  variables  are  more  likely  to  stay  in  the
model than the pseudo-grouped variables (known noises) when the
penalty λ increases. Define  for the permuta-
tion  copy ,  i.e.,  the  largest  importance  score  among  the  pseudo
groups.  This  can  serve  as  a  benchmark  to  separate  the  true  active
group variables from the pseudo group variables. We want to select
the  true  groups  that  are  more  important  than  the  strongest  signal
among  the  pseudo  groups.  Specifically,  the  selection  of  groups
under a particular permutation  is defined as:

Ŝ π =
{
g :Wg >Cπ,g = 1, · · · ,G

}
.

τ.

The  selection  process  involves  iteratively  creating K different
permutation copies (e.g. K = 50) to evaluate the frequency of selec-
tion for each of the G groups across these K permutations. A group
will  be  selected  if  its  selection  frequencies  out  of  the K permuta-
tions are greater than a threshold  

Lung cancer data
The TCR repertoire sequencing data of 65 patients enrolled in the

Phase I trial NCT01693562, 14 September, 2012) of durvalumab was
included for  this  analysis.  Patients  with OS ≥ 20.3  months are cate-
gorized into the longer overall survival group and patients with OS <
20.3 months are categorized into the shorter overall survival group,
where  the  median  overall  survival  was  20.3  months.  The  bulk  TCR
beta  chain  sequencing  was  done  for  each  blood  sample  (two
samples  per  patient  including  baseline  and  post-treatment)  by  the
Invitrogen  Qubit  dsDNA  HS  assay  (Thermo  Fisher  Scientific).  The
median number of unique clonotypes was 4,994 (ranging from 403
to  17,876).  The  clinical  characteristics  of  the  patients  and  sequenc-
ing information are as reported in the study by Naidus et al.[7]. 

Simulation strategy
To demonstrate the performance of the proposed method on TCR

data,  an efficient simulation approach is  proposed to generate TCR
network  properties  based  on  real  data  (Supplementary  Figure  S1).
Firstly,  the  values  of  the network  properties  were  computed based
on  the  observed  data.  The  correlation  structure  of  the  properties
was  also  estimated  using  the  observed  data.  Secondly,  the  empiri-
cal  distributions  for  cluster  size  were  approximated  (using  log-
normal  distribution  with  estimated  parameters).  Thirdly,  based  on
the  estimated  distributions  and  correlation  structure  the  artificial

data  was  simulated  to  mimic  the  real  data.  This  process  was
repeated to generate network properties for a sample of n patients.
Finally,  the  summary  statistics  were  extracted  for  each  of  the  11
properties and aggregated these summary statistics to generate 70
network  features  as  listed  in Table  2.  Besides  the  70  network
features,  additional  variables  were  simulated  using  Uniform(0,1)
distribution to mimic appliable variables from other sources, result-
ing in a total of P features.

To  simulate  the  response  variable,  it  is  assumed  there  are  four
non-observed causal variables {Z1,  Z2,  Z3,  Z4},  corresponding to four
different  network  properties,  where  each  causal  variable  is  a  linear
combination of percentiles from the distribution of the correspond-
ing  property  (Supplementary  Fig.  S2).  The  four  causal  properties
generate  25  observed  network  property  features  (shown  in  bold
font in Table 2), which are considered as (indirect) causal variables in
the  simulation  studies.  The  rest  of  the P-25 network  features  are
then considered as non-casual variables. The aim is to evaluate how
well  the  proposed  method  could  determine  those  25  causal  vari-
ables.  The  response  variable  is  generated  using  the  logistic  regres-
sion model:

Pr(yi = 1) =
exp{ηα (Zi)}

1+ exp {ηα (Zi)}
ηα (Zi)

ηα (Zi)

where,  is  a  function of  the four  causal  variables,  which can be
either a linear or nonlinear function. Then yi is generated via a random
sample  from  Bernoulli  distribution  with  Pr(yi =  1)  for  i  =  1,  ...,  n.  The
simulation  is  repeated  N  =  100  times  under  each  of  the  12  different
scenarios  (Table  3)  with  various  sample  size n,  various  dimension
parameter P, balanced  or  unbalanced  response,  and  a  linear  or
nonlinear relationship in . 

Performance evaluation criteria
Performance measures, including sensitivity, False Discovery Rate

(FDR),  F-1  score,  and  stability,  are  used  to  evaluate  the  various
feature selection models.  Sensitivity is  defined as the proportion of
correctly identifying causal variables among the total 25 causal vari-
ables  in  a  single  iteration and higher  sensitivity  is  preferred.  FDR is
defined  as  the  frequency  of  false-positive  findings  among  all  vari-
ables  selected  and  a  lower  value  is  preferred.  F-1  score  is  the
harmonic  mean  of  the  sensitivity  and  precision  (1-FDR),  i.e.  2  ×
(Precision  ×  Sensitivity)/(Precision  +  Sensitivity).  It  is  a  balanced
measure  between  sensitivity  and  precision  of  the  model  and  a
higher  value  is  preferred.  The  average  sensitivity,  FDR,  and  F-1
among  the  N  =  100  simulation  replicates  were  calculated  and

 

Table 3.    Simulation scenarios.

Scenario # *n
**P

***Balanced data ****Linear/non-linear
Causal Non-causal Additional

n200_p270_baln_lin 200 25 45 200 Balanced Linear
n200_p270_baln_nonlin 200 25 45 200 Balanced Non-linear
n200_p70_baln_lin 200 25 45 NA Balanced Linear
n200_p70_baln_nonlin 200 25 45 NA Balanced Non-linear
n300_p270_baln_lin 300 25 45 200 Balanced Linear
n300_p270_baln_nonlin 300 25 45 200 Balanced Non-linear
n300_p270_unbaln_lin 300 25 45 200 Imbalanced Linear
n300_p270_unbaln_nonlin 300 25 45 200 Imbalanced Non-linear
n300_p70_baln_lin 300 25 45 NA Balanced Linear
n300_p70_baln_nonlin 300 25 45 NA Balanced Non-linear
n300_p70_unbaln_lin 300 25 45 NA Imbalanced Linear
n300_p70_unbaln_nonlin 300 25 45 NA Imbalanced Non-linear

* n: # of simulated patients. ** P: # of simulated signals (causal TCR network property features, non-causal TCR n/w property features, additional correlated multivariate
noise  signals).  ***  Balanced  data:  denotes  the  simulated  dataset  has  balanced  proportion  of  shorter  and  longer  survival  groups.  ****  Linear:  denotes  the  simulated
response variable Y consist of a linear combination of the causal variables. Non-linear: denotes the simulated variable Y consists of linear and interaction terms generated
using the causal variables.
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reported.  To estimate the stability  of  a  variable selection model,  all
pairwise combinations of the N = 100 selected variable lists from all
iterations are considered. For each pair, the stability of the two lists
of  selected  variables  is  determined  using  the  Jaccard's  index  given

as  ,  where Ai, Aj (i ≠ j; i, j {1,2,...,N}  are  the  list

of  variables  selected  in  the i-th  and jth  iteration  respectively,
 denotes  the  cardinality  of  the  set.  Jaccard's  index  takes  values

between 0 and 1,  where a zero value indicates the two lists  do not
overlap, and a one Jaccard index means the two lists contain exactly
the same variables (i.e.,  very stable). The average of all pairs is used
as the stability value for that method. 

Results
 

Real data analysis results
TCR  repertoire  network  analysis  was  conducted  for  each  of  65

lung cancer patients[7]. Figure 2a and b illustrate the network for two
representative patients. The number of TCR clusters in each patient
ranged  from  15  to  883  per  patient  with  a  median  of  271.  Eleven
network  properties  for  each  TCR  cluster  were  evaluated  (Table  1)
and 70 network  property  features derived (Supplementary  Table  S2)
by obtaining summary statistics  of  each network property  for  each
patient (Fig. 1 & Table 2).  The summary statistics consist of descrip-
tive  information  like  minimum,  1st quartile,  median,  mean,  3rd

quartile,  and maximum values and the proportion of NA if  it  exists.
The existence of NA values is due to not being able to evaluate for a
particular  cluster  structure.  For  example,  assortativity,  transitivity,
central  Eigen,  and  central  closeness  are  all  NA  when  there  are  two
nodes in one cluster (Supplementary Fig. S1).  All  extracted features
are  then  standardized,  following  common  practice.  CV-Lasso,  P-
Lasso,  CV-Group  Lasso,  and  P-Group  Lasso  models  were  then
applied with the corresponding parameters listed in Supplementary
Table S1.  The significant network  property  features identified by the
P-Lasso  model  were  a  subset  of  those  from  the  CV-Lasso  model,
aligning  with  the  known  tendency  of  permutation-assisted  tuning
to reduce false positives (Table 4). The consistency between P-Group
Lasso  and  CV-Group  Lasso  results,  including  identical  prediction
outcomes  (AUCs),  strengthen  findings  (Fig.  2c).  Both  models
selected  all  features  from  the  most  significant  network  properties,
resulting in a higher AUC (0.87) than CV-Lasso and P-Lasso (Fig. 2c).
Furthermore,  composite  scores  were  calculated  using  the  linear
combination  of  the  model  coefficients  times  the  corresponding
selected  features  in  the  logistic  regression  model.  The  weighted
composite  scores  were  compared  between  longer  and  shorter
survival (overall survival greater than or less than the median overall
survival,  respectively)  by  two-sample  t-test.  It  was  found  that  the
differences  in  scores  between  longer  and  shorter  survival  groups
(overall  survival  above  or  below  median)  were  more  significant  in
the  CV-Group  Lasso  and  the  P-Group  Lasso  (p-value  <  0.0001)
compared to CV-Lasso and P-Lasso (Fig. 2d). 
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Fig. 2    The results for the lung cancer dataset. (a) and (b) Networks for two representative patients. Within each network figure, each node represents
TCR and nodes are connected if their distance is less than or equal to 1. (c) ROC curves for each of the approaches. (d) Boxplots of the composite scores.
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Simulation study results
An  extensive  simulation  study  was  conducted  to  assess  the

performance  of  the  four  models,  using  the  parameters  outlined  in
Supplementary  Table  S1.  The  simulation  scenarios  are  detailed  in
Table 3, with additional parameters provided in Supplementary Fig.
S2. The observations indicate that Group Lasso models consistently
exhibit higher sensitivity in identifying causal variables compared to
Lasso models,  with CV slightly  outperforming permutation-assisted
parameter tuning regardless of  the Lasso or  Group Lasso approach
(Fig.  3a).  Notably,  permutation-assisted  parameter  tuning  demon-
strates superior FDR results for both Lasso and Group Lasso models
(Fig.  3b).  Specifically,  the  P-Group  Lasso  model  shows  improved

performance  across  F1  scores  (Fig.  3c)  and  stability  (Fig.  3d)  in  all
scenarios  compared  to  CV-Group  Lasso,  with  a  notably  lower  FDR.
Conversely,  P-Lasso  and  CV-Lasso  models  exhibit  poorer  perfor-
mance across all metrics compared to P-Group Lasso and CV-Group
Lasso,  except  for  FDR,  where results  vary  by scenario.  Interestingly,
P-Lasso  and  P-Group  Lasso  models  demonstrate  the  ability  to
extract  causal  features  without  any  false  positives  in  certain  scena-
rios,  aligning  with  the  lower  false  positive  rates  associated  with
permutation-assisted  tuning.  Furthermore,  increased  model  stabi-
lity was observed with P-Lasso and P-Group Lasso, a critical feature
in  biomedical  settings.  While  CV-Lasso  and  P-Lasso  models  extract
top  network  property  features  regardless  of  underlying  grouping
structures,  CV-Group  Lasso  and  P-Group  Lasso  models  consistently
identify top network properties across all grouped variables. Overall,
the  models  exhibit  robustness  across  various  simulation  scenarios,
including  sample  size,  number  of  features,  balance  of  outcome  in-
terest, and linear vs nonlinear relationships among causal variables. 

Conclusions and discussion

This paper introduces a novel approach to prioritize the heteroge-
nous  TCR  network  properties  that  are  associated  with  a  binary
response of interest to identify TCR network properties as the prog-
nostic  features  or  predictive  markers  in  high-throughput  TCR
sequencing  data  of  clinical  samples.  The  heterogeneous  network
properties  are  first  aggregated  to  the  homogeneous  network
features. The present method utilizes a group Lasso model, integrat-
ing a group structure to facilitate efficient model fitting and genera-
lization to various response types such as time-to-event, multi-class
categorial,  and  quantitative  responses.  Additionally,  pseudo-values
are  introduced  as  known  negatives  to  further  enhance  selection

 

Table 4.    Results from real data analysis. The table lists the network properties
and corresponding network property features selected by each approach.

Network properties CV-Lasso* P-Lasso CV-Group
Lasso**

P-Group
Lasso**

Count pre infusion Max Max All All
Count dose2 − − All All
Node count − − All −
Diameter length Max Max − −
Assortativity − − − −
Transitivity − − − −
Density − − − −
Degree centrality − − − −
Closeness centrality − − − −
Eigenvector centrality Max Max All All
Central Eigen Max − − −

* The network property features extracted using CV-Lasso model are used as the
causal variables for simulation study. ** The value 'All' represents the entire set of
descriptive summary statistics derived from the TCR network property.

 

a b

c d

ModelGroup CV-Lasso P-Lasso CV-Group lasso P-Group lasso
Scenarios

F-1 Stability

Sensitivity FDRFDR

1.00

0.75

0.50

0.25

0

1.00

0.75

0.50

0.25

0

1.00

0.75

0.50

0.25

0

1.00

0.75

0.50

0.25

0

 
Fig.  3    Performance  evaluation  based  on  simulation.  (a)  Sensitivity.  (b)  FDR.  (c)  F-1.  (d)  Stability.  In  each  panel,  x-axis  stands  for  different  simulation
scenario listed in Table 3 and color-coded for different approaches.
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performance  by  reducing  the  false  discovery  rate  and  increase  the
stability of selection. When comparing the proposed P-Group Lasso
model result to the two-sample comparison results (Supplementary
Table  S2),  some  consistency  with  the  identified  properties  are
observed  (e.g.,  Diameter  Length,  Eigen  Centrality,  Central  Eigen)
using  the  proposed  method.  Moreover,  the  proposed  method
selected less properties than t-test (4 vs 6) which might indicate its
advantages in reducing the false positives, as was observed in simu-
lation  studies.  This  approach  has  the  potential  to  develop  markers
from network topological structures to predict the responses.

While  the  proposed  method  was  specifically  applied  to  TCR
network analysis, its versatility extends to a wide range of genetic and
medical  research  data,  including  genomic,  transcriptomic,  epige-
nomic, and proteomic data, with or without a natural group structure.
If  the  features  come  with  a  natural  group  structure  (e.g.  pathway,
multiple  class  categorical  features),  the  present  method  can  help  to
prioritize the group associated with the response. If the features don't
have  a  natural  group  structure,  one  can  also  be  defined  by  letting
highly  correlated  variables  form  a  group.  By  prioritizing  relevant
groups  associated  with  the  response,  the  present  method  enhances
interpretability,  computational  efficiency,  and  reliability  of  down-
stream  analyses.  It  can  filter  out  irrelevant  noise  variables,  prevent
overfitting,  and  facilitate  the  discovery  of  meaningful  biological
insights.  Moreover,  the present approach can be generalized to vari-
ous  outcome  types,  including  continuous  and  time-to-event
outcomes, beyond the binary setting assumed in this paper.

However, there are two major limitations. Firstly, within each reper-
toire  for  each  patient,  there  are  numerous  clones  and  hundreds  of
clusters, each with its node or cluster-level properties. Therefore, there
are  thousands  of  values  per  property  per  patient.  Currently,  this
complexity  is  addressed  by  using  summary  statistics  (such  as  mean,
median, or maximum), which may not adequately represent the data
variation.  Other  distribution  features  (e.g.  percentiles)  could  also  be
derived and fed into the proposed method similarly.  Secondly, Lasso
or Group Lasso are both based on linear models.  Though regulariza-
tion  and  permutation-assisted  tuning  were  introduced,  the  perfor-
mance  might  be  compromised  when  the  true  relationship  deviates
from  linear.  Future  work  could  involve  feature  engineering  on
network  properties  and  extending  the  linear  regression  model  to  a
nonlinear one to overcome this limitation. 
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