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Abstract

T-cell Receptors (TCRs) play a pivotal role in antigen recognition and binding, and their sequence similarity significantly impacts the breadth of antigen
recognition. Network analysis is employed to explore TCR sequence similarity and investigate the architecture of the TCR repertoire. Network properties
hence could be utilized to quantify the structure of the TCR network. However, the heterogeneous nature of TCR network properties poses challenges in
performing statistical learning across subjects directly, particularly when assessing their relationship with disease states, clinical outcomes, or patient
characteristics. To overcome this challenge, a powerful method is developed, TCR-NP (TCR Network properties Prioritization), that aggregates the raw
heterogeneous network properties and conducts grouped feature selection using a pseudo-variables-assisted penalized group Lasso model. Unlike the
traditional parameter-tuning using cross-validation, a novel tuning strategy is introduced by incorporating permutation and pseudo-variables to improve
the selection performance. The effectiveness of the proposed method is demonstrated through comprehensive evaluation, including simulation studies
and real data analysis. By comparing the performance of the different approaches, the advantages of the proposed methodology in capturing the
underlying relationships between TCR network properties and clinical outcomes or patient characteristics are highlighted.
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Introduction

T-cells are one of the key components of the adaptive immune
systeml'l, T-cell Receptors (TCRs)'"2 are a group of protein
complexes on the surface of T-cells. TCRs recognize and bind to
specific antigen peptidest! found on abnormal cells or potentially
harmful pathogens. Once the TCRs bind to the pathogens, the T-
cells attack these cells and help the body fight infection, cancer, or
other diseases. TCR repertoires, which are continually shaped
throughout the lifetime of an individual in response to pathogenic
exposure, can serve as a fingerprint of an individual's current
immunological profile. The protein structures of TCRs determine the
binding between TCRs and antigen peptides!¥. Thus, the similarity
among TCR sequences directly influences the antigen peptide
recognition breadth. Network analysis, where TCR clones are repre-
sented by vertices and connected if similar in sequences (distance is
less than a particular number) by using some sequence similarity
measures (e.g., Hamming distance, Levenshtein distancel®), etc.), was
used as a novel perspective to study TCR clusters and their binding
to antigen peptides. As the binding patterns will eventually impact
the high-level responses, the aim is to use network structure as a
special layer of information to investigate its potential connection to
clinical outcome or disease status, as evidenced in existing litera-
turel®, For example, it was observed that lung cancer patients with
focused TCR repertoires and complex network connections attained
significantly longer overall survival (OS) than those with smaller clus-
ters’l. Therefore, quantitative analysis of the TCR repertoire network
properties has the potential to provide a better understanding of
the immune landscape involving T cell responses. However, network
properties are highly heterogeneous, as they can be measured at
node and cluster levels, and networks differ in the number of nodes
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and clusters. Thus, it is challenging to perform statistical inference or
machine learning directly on the TCR network properties to study
their relationship with clinical outcomes.

A flexible and efficient approach was proposed to prioritize TCR
Network Properties (TCR-NP) by leveraging extracted features from
the heterogeneous network properties to assess their relationship
with the outcome of interest, while incorporating the group struc-
ture based on the nature of the features. As an initial investigation,
we propose extracting simple summary statistics (e.g., min, Q1,
mean, median, Q3, max) from the network property values since
they can be easily calculated and carry the key signatures of a distri-
bution. Since the extracted features are naturally grouped by net-
work property, TCR-NP is constructed on the Group Lasso model®, a
classical statistical method that offers several advantages in feature
selection and prioritization. Specifically, it promotes group-level
selection and addresses multicollinearity issues by selecting or
excluding the entire groups (network properties), which is particu-
larly beneficial when dealing with highly correlated variables (often
found within the same network property). Moreover, it can handle
the high-dimensional data (small sample, a large number of features
commonly seen in TCR network data) efficiently (via L1 regulariza-
tionl), resulting in a sparse solution that will facilitate the subse-
quent interpretations. Additionally, it can be applied to different
response types (e.g., categorial, quantitative, and time-to-event),
which will fulfill the needs of different application scenarios.

Instead of using the commonly used cross-validation (CV)['% tech-
nique, it was proposed to utilize pseudo-variables to assist the selec-
tion in the Group Lasso model, inspired by Yang et al.l''l, Traditional
CV tuning typically minimizes prediction errors, which are indirect
measures of selection performance. In contrast, pseudo-variables,
generated through permutation as artificial unrelated features,
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serve as 'known negatives'. The goal is to select features with
stronger association signals than the pseudo-variables, which is a
more direct approach to improve selection performance. Such a
strategy enhances precision by minimizing false positives, resulting
in a condensed set of strongly associated features. Moreover, acting
as a filter, pseudo-variables contribute to a more robust model,
capable of handling variations and maintaining performance in
noisy datasets.

In this paper, extensive simulation studies under different scenar-
ios were conducted to demonstrate the efficacy of TCR-NP. Perfor-
mance measures, including F-1 score, False Discovery Rate (FDR),
sensitivity, and stability were calculated for each of the four follow-
ing methods: permutation-assisted Group Lasso (P-Group Lasso),
cross-validation tunned Lasso (CV-Lasso), cross-validation tunned
Group Lasso (CV-Group Lasso), and permutation-assisted Lasso (P-
Lasso). The proposed methods were also applied to a lung cancer
TCR data for illustration.

Materials and methods

Network analysis and network properties

A matrix of pairwise distance of amino acid sequences was calcu-
lated for each sample based on Levenshtein distance!®l. Then, a TCR
network can be generated by connecting the amino acid sequences
(nodes) with a distance less than or equal to 1 (allowing a maximum
of 1 amino acid difference among sequences). A cluster of a network
represents a group of clones that are similar in sequence, and here,
clusters are only considered with at least two clones (nodes). Based
on the network generated, several quantitative properties, such as
the number of clusters, diameter, assortativity, etc, are calculated
(Table 1). Network analysis was performed using the R package
NAIRI'2L. As mentioned earlier, within each TCR repertoire for each
sample, there are different numbers of clusters, each corresponding
to its properties. Therefore, for each property, the property dimen-
sion varies amongst samples. To tackle those issues, descriptive
summary statistics for all the TCR repertoire network properties
were derived and considered them as network property features
(Fig. 1, top) for each patient. These summary statistics contain mini-
mum, 1t quartile (Q,), median, mean, 3™ quartile (Q;), and maxi-
mum values. This approach helps obtain the TCR network property
features for each patient (Table 2). Those results are independent of
the number of collected TCRs for each patient and the number of
clusters for each network, making the input structure the same

Table 1. Parameters used for feature selection methods.
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across patients and suitable for making statistical inferences at the
patients' level.

Group Lasso model

Assume a total of G network properties are considered, where the
g-th property generated v, network property features by using
summary statistics of the network property, g = 1, .., G. Define
X = (x{l,--- ,fo)Tas the network property features generated from
i-th patient's TCR repertoires, where the x;, € R’ represents the
features from g-th property, with Zf=| ve=P i=1,.,n Lety=
(4, - ¥n) be a binary response of interest, i.e,, y; €{0,1},i=1, .., n.
The binary response could be disease status, response to treatment,
prolonged survival, etc. We assume the relationship between the
response variable and network property features follows a logistic
regression model:
Pr(y; = 1)) = exp(np(x;))
1 +exp(np(x)
where,

np (i) = Bo+B1 i1 + -+ +BGXiG

The above equation represents a linear combination of network
property features. 8 = (8o, IT ,ﬁé)T is the logistic regression coef-
ficient where B, € R is the coefficient vector for v, network
features generated by g-th property, g = 1, ..., G. The goal is to iden-
tify the network properties that are associated with the response
variable, i.e,, identify the property feature groups with g, #0. The
Group Lasso method (Fig. 1, bottom right) is well-fitted to the prob-
lem due to the group structure among variables and the need for
shrinkage. It can efficiently shrink the coefficients of less important
groups to exactly zero for high-dimensional data, while the group
with nonzero coefficients could stand out and are considered the
most important properties associated with the response variable.
The solution of the logistic group Lasso model corresponds to an
optimization problem by minimizing the objective function:

n G
LiB) == ) [yimp ) —log (1 +exp( )] + 2D s (ve) 1Bl
i=1 g=1

where, s(v,) is the penalty for gth set and by default is set to Vs for
group Lasso model (i.e, the larger penalty for the larger set), ||B,ll,
represents the L, norm of the vector §, and 2 2 0 is a tuning parameter
controlling the amount of shrinkage. A large 4 promotes heavier
shrinkage, i.e,, more coefficient vectors §; shrink to zero. In the extreme
case, when 1 = 0, the solution of the optimization problem is the same

Network properties Description

Function

Count at baseline

Count post treatment
treatment.

The number of node in a given membership.
The length of the longest geodesic.

Cluster size
Diameter length
Assortativity

Summation of the TCR counts of a given membership at baseline.

Summation of the TCR counts of a given membership post

The assortativity coefficient which is positive if similar vertices (based

sum(input_data[input_datamembership ==
membership_id, Count_baseline])
sum(input_data [input_data$membership ==
membership_id, Count_post_treatment])
table(input_data Smembership)
get_diameter(net, directed = F)
assortativity_degree(net, directed = F)

on some external property) tend to connect to each, or negative

otherwise.
Transitivity The probability that the adjacent vertices of a vertex are connected.
Density The ratio of the number of edges and the number of possible edges.

Degree centrality

Closeness centrality

Eigenvector centrality
positions v within it.

Central Eigenvector

Graph centralization based on the degrees of vertices.

Graph centralization based on the closeness of vertices.
Graph centralization based on the eigenvector centralities of

Graph centralization based on the Eigenvector centrality of vertices.

transitivity(net, type = "global")

edge_density(net, loops = F)

centr_degree(net, mode = "in", normalized = T)
Scentralization

centr_clo(net, mode = "all", normalized = T) $centralization
eigen_centrality(net, directed = F, weights = NA) $value

centr_eigen(net, directed = F, normalized =T)
$centralization
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TCR network

Heterogeneous TCR network properties
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Homogenized TCR network properties
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Fig. 1 Proposed pipeline. Top: Derivation of the network properties to network property features; Bottom left: Cross-Validation (CV) tuning and
permutation-assisted tuning; Bottom right: Summary of the feature selection models (Lasso and Group Lasso).

Table2. TCR network properties and derived network property features.

Network properties Network property features

Min, Q1, Median, Mean, Q3, Max
Min, Q1, Median, Mean, Q3, Max
Min, Q1, Median, Mean, Q3, Max
Min, Q1, Median, Mean, Q3, Max
prob(NA), Min, Q1, Median, Mean, Q3, Max
prob(NA), Min, Q1, Median, Mean, Q3, Max
Min, Q1, Median, Mean, Q3, Max
Min, Q1, Median, Mean, Q3, Max
prob(NA), Min, Q1, Median, Mean, Q3, Max
Min, Q1, Median, Mean, Q3, Max
prob(NA), Min, Q1, Median, Mean, Q3, Max

* Properties/property features in bold font are considered as the causal
properties/features in simulation studies.

Node count

*Count pre infusion
Count dose 2
*Diameter length
Assortativity
Transitivity

Density

Degree centrality
Closeness centrality
*Eigenvector centrality
*Central Eigen

as the logistic regression coefficient, while 1 = « gives (87, --- ,ﬁ(T;) =0,
i.e,, shrinking all coefficients vectors to zero. For a given 1 an estimate
of B(1) can be obtained by solving the optimization.

A novel approach for group feature selection

Selecting the right tuning parameter 4 is crucial for improving the
performance and robustness of a model. Shrinkage techniques like
Lasso and Group Lasso typically use K-fold cross-validation to iden-
tify the optimal value of the tuning parameter 1 from a range of
different / values. In this method, the dataset is divided into K equal
folds. For each candidate 4 value, the model is trained using K-1
folds and validated on the remaining fold. This process is repeated
for each 7 value and the optimal 1 is chosen based on minimizing
the average loss, such as mean square error for Gaussian response
or deviance for a binary response, across all validation folds.
However, the average loss that guides the selection, is not a direct
measure of the selection performance. In the past decade, pseudo-
variables have been used to improve the performance of variable
selection('314], Inspired by Yang et al.l'l, where pseudo-variables
were utilized to assist the variable selection in the Lasso model and
applied to genome-wide association studies, the pseudo-variable

Banerjee et al. Statistics Innovation 2024, 1: e003

assisted tuning procedure was developed on the proposed Group
Lasso model (Fig. 1, bottom left) to identify the important network
properties associated with the clinical outcome.

First, the G groups of pseudo-features are introduced
X = (5 gy ,x{m)T, which is generated by a permutation = (i.e.

randomly shuffling the rows of the original matrix). Hence the
augmented features x! include both the original grouped variables
x; and the pseudo-grouped variables x7.
= (X X, X))
The updated logistic regression model becomes:
ex x4
Pr(y,- _ 1|X14) _ p(’]ﬁA( i )
1 +exp(ga ()
where,

np (') = Bo+ Bl xia +++ +Bhxia6
represents a linear combination of augmented features. The logis-

tic Group Lasso estimator 35 for this augmented design matrix is
derived by minimizing the below objective function.
n 2G
La(*) = = 25 [y (1) =g (1-+ exp e (1)) +.4 25 5 (ve) 1l
i=1 g=1
Since the pseudo-variables are generated by permutations,
their group sizes are the same as the original ones, i.e. vg,g = vy g =
1, .., G. In the above equation, the tuning parameter /. =0 controls
the amount of penalization (i.e., how many groups have non-zero
coefficient vectors). More explicitly, 2G groups have non-zero coeffi-
cient vectors when 1 = 0. As 1 increase, more groups are excluded
(i.e., coefficient vectors are shrunk to zeros) from the model until
every group is excluded when 1 is large enough, following the fash-
ion that more important ones stay in the model longer when A4
increases. Therefore, the magnitude of /1 reflects the importance of
the variable: if a group still has a nonzero coefficient when 4 is rela-
tively large, this group is considered more important, compared to
the ones that have been shrunk to zeros. Along with this idea, we
define an importance metric for the g-th variable group.
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W = sup{d: () #0};g=1,--,2G

The group-variable selection procedure given below assumes
that true active grouped variables are more likely to stay in the
model than the pseudo-grouped variables (known noises) when the
penalty 1 increases. Define C; = maxg.1)<g<26(Wy) for the permuta-
tion copy i, i.e, the largest importance score among the pseudo
groups. This can serve as a benchmark to separate the true active
group variables from the pseudo group variables. We want to select
the true groups that are more important than the strongest signal
among the pseudo groups. Specifically, the selection of groups
under a particular permutation = is defined as:
Se={g:We>Crg=1,.G}.

The selection process involves iteratively creating K different
permutation copies (e.g. K = 50) to evaluate the frequency of selec-
tion for each of the G groups across these K permutations. A group
will be selected if its selection frequencies out of the K permuta-
tions are greater than a threshold .

Lung cancer data

The TCR repertoire sequencing data of 65 patients enrolled in the
Phase | trial NCT01693562, 14 September, 2012) of durvalumab was
included for this analysis. Patients with OS 220.3 months are cate-
gorized into the longer overall survival group and patients with OS <
20.3 months are categorized into the shorter overall survival group,
where the median overall survival was 20.3 months. The bulk TCR
beta chain sequencing was done for each blood sample (two
samples per patient including baseline and post-treatment) by the
Invitrogen Qubit dsDNA HS assay (Thermo Fisher Scientific). The
median number of unique clonotypes was 4,994 (ranging from 403
to 17,876). The clinical characteristics of the patients and sequenc-
ing information are as reported in the study by Naidus et al.l”.,

Simulation strategy

To demonstrate the performance of the proposed method on TCR
data, an efficient simulation approach is proposed to generate TCR
network properties based on real data (Supplementary Figure S1).
Firstly, the values of the network properties were computed based
on the observed data. The correlation structure of the properties
was also estimated using the observed data. Secondly, the empiri-
cal distributions for cluster size were approximated (using log-
normal distribution with estimated parameters). Thirdly, based on
the estimated distributions and correlation structure the artificial

Table 3. Simulation scenarios.

TCR-NP: prioritizing TCR Network Properties

data was simulated to mimic the real data. This process was
repeated to generate network properties for a sample of n patients.
Finally, the summary statistics were extracted for each of the 11
properties and aggregated these summary statistics to generate 70
network features as listed in Table 2. Besides the 70 network
features, additional variables were simulated using Uniform(0,1)
distribution to mimic appliable variables from other sources, result-
ing in a total of P features.

To simulate the response variable, it is assumed there are four
non-observed causal variables {Z,, Z,, Z5, Z,}, corresponding to four
different network properties, where each causal variable is a linear
combination of percentiles from the distribution of the correspond-
ing property (Supplementary Fig. S2). The four causal properties
generate 25 observed network property features (shown in bold
font in Table 2), which are considered as (indirect) causal variables in
the simulation studies. The rest of the P-25 network features are
then considered as non-casual variables. The aim is to evaluate how
well the proposed method could determine those 25 causal vari-
ables. The response variable is generated using the logistic regres-
sion model:

expi{n, (Z)}

L +exp{n. (Z)}

where, 1, (Z;) is a function of the four causal variables, which can be
either a linear or nonlinear function. Then y; is generated via a random
sample from Bernoulli distribution with Pr(y; = 1) for i = 1, .., n. The
simulation is repeated N = 100 times under each of the 12 different
scenarios (Table 3) with various sample size n, various dimension
parameter P, balanced or unbalanced response, and a linear or
nonlinear relationship in n, (Z;).

Pr(yi=1)=

Performance evaluation criteria

Performance measures, including sensitivity, False Discovery Rate
(FDR), F-1 score, and stability, are used to evaluate the various
feature selection models. Sensitivity is defined as the proportion of
correctly identifying causal variables among the total 25 causal vari-
ables in a single iteration and higher sensitivity is preferred. FDR is
defined as the frequency of false-positive findings among all vari-
ables selected and a lower value is preferred. F-1 score is the
harmonic mean of the sensitivity and precision (1-FDR), i.e. 2 X
(Precision X Sensitivity)/(Precision + Sensitivity). It is a balanced
measure between sensitivity and precision of the model and a
higher value is preferred. The average sensitivity, FDR, and F-1
among the N = 100 simulation replicates were calculated and

*%
Scenario # *n P ***Balanced data ***¥%| inear/non-linear
Causal Non-causal Additional

n200_p270_baln_lin 200 25 45 200 Balanced Linear
n200_p270_baln_nonlin 200 25 45 200 Balanced Non-linear
n200_p70_baln_lin 200 25 45 NA Balanced Linear
n200_p70_baln_nonlin 200 25 45 NA Balanced Non-linear
n300_p270_baln_lin 300 25 45 200 Balanced Linear
n300_p270_baln_nonlin 300 25 45 200 Balanced Non-linear
n300_p270_unbaln_lin 300 25 45 200 Imbalanced Linear
n300_p270_unbaln_nonlin 300 25 45 200 Imbalanced Non-linear
n300_p70_baln_lin 300 25 45 NA Balanced Linear
n300_p70_baln_nonlin 300 25 45 NA Balanced Non-linear
n300_p70_unbaln_lin 300 25 45 NA Imbalanced Linear
n300_p70_unbaln_nonlin 300 25 45 NA Imbalanced Non-linear

* n: # of simulated patients. ** P: # of simulated signals (causal TCR network property features, non-causal TCR n/w property features, additional correlated multivariate
noise signals). *** Balanced data: denotes the simulated dataset has balanced proportion of shorter and longer survival groups. **** Linear: denotes the simulated
response variable Y consist of a linear combination of the causal variables. Non-linear: denotes the simulated variable Y consists of linear and interaction terms generated

using the causal variables.
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reported. To estimate the stability of a variable selection model, all
pairwise combinations of the N = 100 selected variable lists from all
iterations are considered. For each pair, the stability of the two lists
of selected variables is determined using the Jaccard's index given

[Aina,]

as j(Ai, A j) = , where Ai, Aj (i # j; i, je{1,2,...N} are the list

JUA;
of variables s|electeé in the j-th and jth iteration respectively,
|| denotes the cardinality of the set. Jaccard's index takes values
between 0 and 1, where a zero value indicates the two lists do not
overlap, and a one Jaccard index means the two lists contain exactly
the same variables (i.e., very stable). The average of all pairs is used
as the stability value for that method.

Results

Real data analysis results

TCR repertoire network analysis was conducted for each of 65
lung cancer patientsl’l. Figure 2a and b illustrate the network for two
representative patients. The number of TCR clusters in each patient
ranged from 15 to 883 per patient with a median of 271. Eleven
network properties for each TCR cluster were evaluated (Table 1)
and 70 network property features derived (Supplementary Table S2)
by obtaining summary statistics of each network property for each
patient (Fig. 1 & Table 2). The summary statistics consist of descrip-
tive information like minimum, 15t quartile, median, mean, 3t
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!
o
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quartile, and maximum values and the proportion of NA if it exists.
The existence of NA values is due to not being able to evaluate for a
particular cluster structure. For example, assortativity, transitivity,
central Eigen, and central closeness are all NA when there are two
nodes in one cluster (Supplementary Fig. S1). All extracted features
are then standardized, following common practice. CV-Lasso, P-
Lasso, CV-Group Lasso, and P-Group Lasso models were then
applied with the corresponding parameters listed in Supplementary
Table S1. The significant network property features identified by the
P-Lasso model were a subset of those from the CV-Lasso model,
aligning with the known tendency of permutation-assisted tuning
to reduce false positives (Table 4). The consistency between P-Group
Lasso and CV-Group Lasso results, including identical prediction
outcomes (AUCs), strengthen findings (Fig. 2c). Both models
selected all features from the most significant network properties,
resulting in a higher AUC (0.87) than CV-Lasso and P-Lasso (Fig. 2c).
Furthermore, composite scores were calculated using the linear
combination of the model coefficients times the corresponding
selected features in the logistic regression model. The weighted
composite scores were compared between longer and shorter
survival (overall survival greater than or less than the median overall
survival, respectively) by two-sample t-test. It was found that the
differences in scores between longer and shorter survival groups
(overall survival above or below median) were more significant in
the CV-Group Lasso and the P-Group Lasso (p-value < 0.0001)
compared to CV-Lasso and P-Lasso (Fig. 2d).

c ROC Curves
104 0000 e
0.8 1
- -
£ 0.6 .
i%
& -
(%)) ().ZL 7 |
0.2 1 CV-Lasso (AUC = 0.716)
- P-Lasso (AUC = 0.723)
CV-Group lasso (AUC = 0.87)
0 A - P-Group lasso (AUC = 0.87)
0 0.2 0.4 06 0.8 1.0
1-Specificity

*kkk *kkk

. .

CV-Group lasso P-Group lasso

Fig. 2 The results for the lung cancer dataset. (a) and (b) Networks for two representative patients. Within each network figure, each node represents
TCR and nodes are connected if their distance is less than or equal to 1. (c) ROC curves for each of the approaches. (d) Boxplots of the composite scores.
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Table 4. Results from real data analysis. The table lists the network properties
and corresponding network property features selected by each approach.

Network properties CV-Lasso*  P-Lasso Ct/;g;;)*lip T_aGsrs%gE
Count pre infusion Max Max All All
Count dose2 - - All All
Node count - - All -
Diameter length Max Max - -
Assortativity - - - -
Transitivity - - - -
Density - - - -
Degree centrality - - - -
Closeness centrality - - - -
Eigenvector centrality Max Max All All
Central Eigen Max - - -

* The network property features extracted using CV-Lasso model are used as the
causal variables for simulation study. ** The value 'All' represents the entire set of
descriptive summary statistics derived from the TCR network property.

Simulation study results

An extensive simulation study was conducted to assess the
performance of the four models, using the parameters outlined in
Supplementary Table S1. The simulation scenarios are detailed in
Table 3, with additional parameters provided in Supplementary Fig.
S2. The observations indicate that Group Lasso models consistently
exhibit higher sensitivity in identifying causal variables compared to
Lasso models, with CV slightly outperforming permutation-assisted
parameter tuning regardless of the Lasso or Group Lasso approach
(Fig. 3a). Notably, permutation-assisted parameter tuning demon-
strates superior FDR results for both Lasso and Group Lasso models
(Fig. 3b). Specifically, the P-Group Lasso model shows improved

TCR-NP: prioritizing TCR Network Properties

performance across F1 scores (Fig. 3c) and stability (Fig. 3d) in all
scenarios compared to CV-Group Lasso, with a notably lower FDR.
Conversely, P-Lasso and CV-Lasso models exhibit poorer perfor-
mance across all metrics compared to P-Group Lasso and CV-Group
Lasso, except for FDR, where results vary by scenario. Interestingly,
P-Lasso and P-Group Lasso models demonstrate the ability to
extract causal features without any false positives in certain scena-
rios, aligning with the lower false positive rates associated with
permutation-assisted tuning. Furthermore, increased model stabi-
lity was observed with P-Lasso and P-Group Lasso, a critical feature
in biomedical settings. While CV-Lasso and P-Lasso models extract
top network property features regardless of underlying grouping
structures, CV-Group Lasso and P-Group Lasso models consistently
identify top network properties across all grouped variables. Overall,
the models exhibit robustness across various simulation scenarios,
including sample size, number of features, balance of outcome in-
terest, and linear vs nonlinear relationships among causal variables.

Conclusions and discussion

This paper introduces a novel approach to prioritize the heteroge-
nous TCR network properties that are associated with a binary
response of interest to identify TCR network properties as the prog-
nostic features or predictive markers in high-throughput TCR
sequencing data of clinical samples. The heterogeneous network
properties are first aggregated to the homogeneous network
features. The present method utilizes a group Lasso model, integrat-
ing a group structure to facilitate efficient model fitting and genera-
lization to various response types such as time-to-event, multi-class
categorial, and quantitative responses. Additionally, pseudo-values
are introduced as known negatives to further enhance selection

a b
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1.00- 1.00-
0.75- 0.75-
0.50- 0.50-
0.25- | 0.25- |
0_||I|I|||I|I0_ I | |
¢ F-1 d Stability
1.00- 1.00-
0.75- 0.75-
0.50- 0.50-
0.25- | | I | | 0.25-
0- I I 0-
& 3 o o 5 & o’ o’ 3 F S S 3 F o’ o’ & 3 o’ o’ & & S S
s & & F 8 5 S E §F 5oy § & & ¢ v g FE §F 5y
S § & & F & & & & & & & CEE A G Y A O S N
I o7 $ o S S S o < & $ N < e 3 g & S
& ¢ R A N & § C & 8 DR S
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<
Scenarios
ModelGroup CV-Lasso | P-Lasso CV-Group lasso [l P-Group lasso
Fig. 3 Performance evaluation based on simulation. (a) Sensitivity. (b) FDR. (c) F-1. (d) Stability. In each panel, x-axis stands for different simulation

scenario listed in Table 3 and color-coded for different approaches.
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performance by reducing the false discovery rate and increase the
stability of selection. When comparing the proposed P-Group Lasso
model result to the two-sample comparison results (Supplementary
Table S2), some consistency with the identified properties are
observed (e.g., Diameter Length, Eigen Centrality, Central Eigen)
using the proposed method. Moreover, the proposed method
selected less properties than t-test (4 vs 6) which might indicate its
advantages in reducing the false positives, as was observed in simu-
lation studies. This approach has the potential to develop markers
from network topological structures to predict the responses.

While the proposed method was specifically applied to TCR
network analysis, its versatility extends to a wide range of genetic and
medical research data, including genomic, transcriptomic, epige-
nomic, and proteomic data, with or without a natural group structure.
If the features come with a natural group structure (e.g. pathway,
multiple class categorical features), the present method can help to
prioritize the group associated with the response. If the features don't
have a natural group structure, one can also be defined by letting
highly correlated variables form a group. By prioritizing relevant
groups associated with the response, the present method enhances
interpretability, computational efficiency, and reliability of down-
stream analyses. It can filter out irrelevant noise variables, prevent
overfitting, and facilitate the discovery of meaningful biological
insights. Moreover, the present approach can be generalized to vari-
ous outcome types, including continuous and time-to-event
outcomes, beyond the binary setting assumed in this paper.

However, there are two major limitations. Firstly, within each reper-
toire for each patient, there are numerous clones and hundreds of
clusters, each with its node or cluster-level properties. Therefore, there
are thousands of values per property per patient. Currently, this
complexity is addressed by using summary statistics (such as mean,
median, or maximum), which may not adequately represent the data
variation. Other distribution features (e.g. percentiles) could also be
derived and fed into the proposed method similarly. Secondly, Lasso
or Group Lasso are both based on linear models. Though regulariza-
tion and permutation-assisted tuning were introduced, the perfor-
mance might be compromised when the true relationship deviates
from linear. Future work could involve feature engineering on
network properties and extending the linear regression model to a
nonlinear one to overcome this limitation.
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