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T cells represent a crucial component of the adaptive immune system and

mediate anti-tumoral immunity as well as protection against infections, including

respiratory viruses such as SARS-CoV-2. Next-generation sequencing of the T-

cell receptors (TCRs) can be used to profile the T-cell repertoire. We developed a

customized pipeline for Network Analysis of Immune Repertoire (NAIR) with

advanced statistical methods to characterize and investigate changes in the

landscape of TCR sequences. We first performed network analysis on the TCR

sequence data based on sequence similarity. We then quantified the repertoire

network by network properties and correlated it with clinical outcomes of

interest. In addition, we identified (1) disease-specific/associated clusters and

(2) shared clusters across samples based on our customized search algorithms

and assessed their relationship with clinical outcomes such as recovery from

COVID-19 infection. Furthermore, to identify disease-specific TCRs, we

introduced a new metric that incorporates the clonal generation probability

and the clonal abundance by using the Bayes factor to filter out the false

positives. TCR-seq data from COVID-19 subjects and healthy donors were

used to illustrate that the proposed approach to analyzing the network

architecture of the immune repertoire can reveal potential disease-specific

TCRs responsible for the immune response to infection.

KEYWORDS

adaptive immune response, sequencing generation probability, network analysis, SARS-
CoV-2, T cell repertoire sequencing
1 Introduction

T cells are a vital component of the adaptive immune system and are responsible for

defending against infection. The unique T-cell receptor (TCR) on each T cell dictates

antigen specificity. Collectively, all of an individual’s TCRs make up the T-cell immune

repertoire. Thus, investigating the immune repertoire is paramount to understanding the

basis underlying the immune response to infection (1). Because of the enormous breadth of
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epitopes recognized by the adaptive immune system, the T-cell

immune repertoire is highly diverse and dynamic. Repertoire

dynamics span several orders of magnitude in size (germline gene

to clonal diversity), physical location (circulation, lymph nodes, and

tissues), and time (short-lived responses to immunological memory

that can persist for decades) (2–7). Advancements in next-

generation sequencing technology have allowed researchers to

sequence deeply enough to provide a comprehensive profile of the

high-dimensional complexity of the adaptive immune receptor

repertoire (AIRR-seq).

Recently, the AIRR-seq analysis has been applied to COVID-

19 subjects to understand how the adaptive immune system is

induced by SARS-CoV-2 (8). A higher proportion of somatic

hypermutation was associated with more severe COVID-19

infection (9, 10). Global analysis of the TCR repertoire in

COVID-19 subjects revealed that recovered subjects had

increased diversity and richness above healthy individuals and

that the VJ gene usage in the TCR beta chain was skewed. Overall,

this type of immune repertoire analysis demonstrates the excellent

potential to be a biomarker for improved diagnosis and

monitoring of disease.

Unlike the immune repertoire diversity, which is based on the

frequency profiles of individual clones (11), sequence similarity

architecture captures frequency-independent clonal sequence

similarity relations. Conserved sequences in the complementarity-

determining region 3 (CDR3) region within the immune receptors

directly influence the antigen recognition breadth: The more

different receptors are, the larger the antigen space covered.

Network analysis clusters TCRs based on sequence similarity and

thereby adds a complementary layer of information to repertoire

diversity analysis. However, only networks with hundred thousand

nodes can be visualized, and such visualization of networks only

provides marginal quantitation of the network similarity

architecture. Graph properties and quantitative analysis of

network analysis have been recently employed to quantify the

network architecture of immune repertoires (12). These

advancements provide better understanding of the fundamental

properties of repertoire architecture such as reproducibility,

robustness, and redundancy (13).

Public or shared T-cell clones are T cells that have the exact

same CDR3 nucleotide or amino acid sequence between individuals

or within an individual across time (14). Functionally, public

(shared) clones are enriched for Major histocompatibility

complex-diverse CDR3 sequences previously associated with

autoimmune, allograft, tumor-related, and anti-pathogen–related

reactions (15). Public clones from different time points or

specimens belonging to the same subject are more likely to be

antigen specific (15). However, it is also possible for public clones to

target epitopes that are shared with other diseases. Public clone

searching can identify common and similar TCRs (defined as a

cluster in network analysis) but might miss the rare TCRs closely

related to the disease, especially clusters with small sizes. Therefore,

we propose customized pipelines to identify the disease-associated

clusters to find the rare TCRs closely associated to disease.

Probability of generation (pgen) evaluates which specific amino

acid sequences and sequence motifs are likely to be generated and
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found in repertoires (16, 17). It is essential to distinguish the

antigen-driven clonotypes from genetically naïve predetermined

clones. A higher generation probability of a given receptor sequence

leads to a higher chance of finding it in any given individual.

Therefore, public or shared clones usually have a higher generation

of probability. The probability of generating any nucleotide

sequence is defined as the sum of probabilities for all generative

events that could potentially produce that sequence (16, 17). Here,

we introduced a newmetric to evaluate the importance of the clones

by incorporating both generation probability and clonal abundance

by utilizing Bayes factor.

GLIPH2 (18) and ImmunoMap (19) can also be applied to bulk

AIRR-seq data to identify potential targets for immunotherapeutic

interventions in various diseases. GLIPH works by clustering TCR

sequences based on the similarity of sequences, while ImmunoMap

works by using a database of known antigens to identify the antigen

specificities of TCR sequences. However, they both lack a more

comprehensive searching algorithm (e.g., disease specific) and

downstream analysis to related with the clinical characteristics/

outcome. Our primary objective in this paper is to develop such

comprehensive search algorithms and downstream analysis

(Figure 1A). We applied the proposed approaches and pipelines

to publicly available AIRR-seq data of a group of European COVID-

19 subjects and healthy donors (20) to identify COVID-19–specific

and COVID-19–associated TCRs, and we validated our findings

using the MIRA (Multiplex Identification of Antigen-Specific T-

Cell Receptors Assay) database (21).
2 Materials and methods

2.1 European COVID data

The TCR-sequencing data from the European COVID-19 subjects

(20, 22) includes three cohorts: a cohort of subjects who recovered after

COVID-19 with mild-to-moderate disease courses (n = 19), a cohort of

subjects with active infection and severely symptomatic who had

comorbidities (n = 18), all of which required hospitalization and an

age-matched healthy donor cohort tested negative for COVID-19

antibodies (n = 39). Up to nine follow-up blood samples were

available per subject, some spanning different disease stages in the

same subject (e.g., two recovered subjects, Patients 6 and 7, also had

one and three samples collected during they were actively infected),

totaling 108 samples (Supplementary Table S1). The AIRR-seq data

include 19 recovered samples from the recovered subjects (additionally,

four samples during active infection), 46 samples during active

infection from 18 subjects with active infection, and 39 samples from

the healthy donors. The characteristics of the subjects were shown in

(20) (gateway.ireceptor.org; Study ID: IR-Binder-000001). As described

in (20), next-generation sequencing of the TCR beta chain was

performed for all acquired blood samples. Each unique CDR3 amino

acid sequence was defined as one clone. There were 901,045 unique

TCRs. Annotation of TCR loci rearrangements was computed with the

MiXCR framework (3.0.13) (23). The default MiXCR library was used

for TCR sequences as the reference for sequence alignment. More

specifically, we used “analyze shotgun” pipeline with setting –species
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FIGURE 1

The diagrams of the proposed pipelines. (A) Overall roadmap. We started with a general network analysis for each sample and correlated the
network properties with the subjects’ clinical characteristics. We then developed pipelines to find disease-associated clusters and shared clusters
across samples to identify antigen-driven T-cell receptors (TCRs) with downstream analysis. (B) Finding disease-associated clusters pipeline. (1) First,
we obtained the number of samples share by a given TCR. (2) Then, we identified the COVID-associated TCRs, based on their presenting frequency
in COVID subjects comparing to that of healthy samples using Fisher’s exact test (p< 0.05) and shared at least by 10 samples. We only kept the TCRs
with length >= 6. (3) For each COVID-associated TCRs, we identified the TCRs that were in the same cluster by searching among all TCRs from
shared samples by network analysis (hamming distance<= 1). The TCR clusters now only present in COVID samples were defined as COVID-only
TCR clusters and rest were COVID-associated TCR clusters. (4) Last, we generated a network across all COVID-associated TCRs including their
member TCRs in the same cluster and assigned global membership to the COVID-associated clusters. (C) Finding public clusters workflow. (1) First,
we built the network for each sample. (2) Within the network for each sample, we picked the top K largest clusters or the single node with a large
abundance (count > 100). (3) Within each cluster, we identified a representative clone with the largest count. (4) We built a new network based on
those selected clones, and the clusters with clones from different samples were considered as the skeleton of public clusters. (5) We generated
public clusters by expanding each skeleton public cluster to include any clones belonging to the same cluster in the original sample by another
network analysis. (6) We assigned global membership to the public clusters based on Step 5.
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hsa –starting-material rna. Non-productive reads and sequences with

less than two read counts were not considered for further analysis.
2.2 Adaptive MIRA database

Adaptive Multiplex Identification of Antigen-Specific T-Cell

Receptors Assay (MIRA) was used to identify antigen-specific TCRs

(21). The COVID-19 MIRA dataset maps TCRs binding to SARS-

Cov-2 virus epitopes and includes data from exposed subjects and

naive controls. The COVID-19 MIRA dataset contains more than

135,000 high-confidence SARS-CoV-2–specific TCRs. Data are

available at https://clients.adaptivebiotech.com/pub/covid-2020;

_DOI 10.21417/ADPT2020COVID.
2.3 Network analysis

The pairwise distance matrix of TCR amino acid sequences for

each subject was calculated using Hamming distance (Pythonmodule

SciPy with pdist function). When Hamming distance is less than or

equal to 1, then the edge is equal to 1; otherwise, it is equal to 0. A

network cluster was defined as a group of clones with a Hamming

distance less than or equal to 1 (allowing a maximum of one base pair

mismatch among clone sequences) by fast greedy algorithm (igraph

(24)). Network visualization was performed using R packages: igraph

and ggraph. Each node represents a single TCR amino acid CDR3

sequence. The patterns of the sequences within a cluster were

visualized by sequence logos using R package: ggseglogo (25). In

addition, we have included network features as one of the major

outputs to describe the network. There are two types of network

properties (13): global properties which describe the network as

whole and local properties which characterize clonal features for

each node in repertoire networks (Supplementary Table S2). To

quantitatively correlate the network with clinical characteristics/

outcome, for example, healthy donors versus COVID-19 samples

coming from multiple time points, we applied a generalized linear

mixed model to account for the repeated measures, where we focused

on the global properties. Specially, for each global property, we used

the maximum value within a given sample as the outcome variable,

since we usually have many clusters within one sample. We then

treated time (the number of weeks since diagnosed with COVID) and

sample characteristics, such as COVID active, COVID received, or

healthy, as fixed effects, while the subject was considered as a random

effect. This approach allowed us to account for multiple samples from

the same subject and to compare the maximum property values

across different groups. In addition, for each global property, we used

heatmaps to display the distribution of all values for each cluster

(columns) across the samples (rows), while the dendrogram on the

left side shows the hierarchical clustering based on the corresponding

property values.
2.4 Analysis pipeline

The disease-associated TCR cluster is characterized as a group

comprising TCRs that exhibit, at most, one amino acid difference in
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their TCR sequences and display a statistically significant difference

in their frequency between the disease group and the control group.

As illustrated in Figure 1B, first, we obtained the number of samples

share by a given TCR. To identify the COVID-associated TCRs, we

performed a Fisher exact test. Specifically, we calculated the number

of samples that shares a given TCR sequence, resulting in a 2 × 2

table. The first row of the table includes two numbers: the number

of healthy donors who share and do not share the given TCR

sequence. The second row includes two numbers: the number of

COVID-19 patients who share and do not share the given TCR

sequence. We used Fisher’s exact test (p< 0.05) to identify TCR

sequences that are potentially associated with COVID-19 based on

this 2 × 2 table. To identify clusters of COVID-associated TCRs, we

searched for TCRs that were in the same cluster as the COVID-

associated TCRs by analyzing all TCRs from shared samples using

network analysis (with a Hamming distance of<= 1). The TCR

clusters that were found only in COVID-19 samples were defined as

COVID-only TCR clusters, while the rest were defined as COVID-

associated TCR clusters. Finally, we constructed a network across all

COVID-associated TCRs, including their member TCRs in the

same cluster, and assigned global membership to the COVID-

associated clusters.

We proposed a workflow to identify the public clusters

(Figure 1C) by a customized search algorithm. The public cluster

encompasses TCRs that exhibit a maximum of one amino acid

disparity in their TCR sequences across individuals or within an

individual over time. Within the network for each sample, we

picked the top K largest clusters or a single node with a high

abundance (count > 100). Next, we selected a representative clone

with the largest count within each cluster. We then built a new

network using these selected clones, and the clusters that contained

clones from different samples were considered as the skeleton of

public clusters. To generate public clusters, we expanded each

skeleton public cluster to include any clones that belonged to the

same cluster in the original sample by another network analysis.

Finally, we assigned global membership to the public clusters based

on the previous step.

We also proposed downstream analysis to identify interesting

disease-specific and public clusters by testing across sample types.

Last, we validated our findings by exactly matching with the TCR

clones in MIRA datasets. All analyses, unless noted, were done by

the statistical computing software R and the programming

language Python.
2.5 Downstream analysis within disease-
associated clusters and public clusters

2.5.1 Differential testing of the TCR clusters
Once we assigned the global membership based on either Public

Clusters or Disease Associated Clusters Pipeline, we treated each

global cluster as a feature and then performed differential testing.

First, we aggregated the TCR clonal count for each sample for those

TCRs belong to the same global cluster. Next, to perform differential

testing of the aggregated counts between groups defined by clinical

characteristics/outcome, for example, active COVID-19 samples
frontiersin.org

https://clients.adaptivebiotech.com/pub/covid-2020
https://doi.org/10.3389/fimmu.2023.1181825
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2023.1181825
versus healthy donors, recovered COVID-19 samples versus healthy

donors and active COVID-19 samples versus recovered COVID-19

samples coming frommultiple time points, we applied a generalized

linear mixed model to account for the repeated measures. We first

aggregated counts for each global cluster within a given sample,

normalized the aggregated counts by dividing them by the sample

read depth, and then applied a logarithmic transformation to the

normalized values, which served as the outcome variable. We

treated time and sample characteristics, such as COVID active,

COVID received, or healthy, as fixed effects, while accounting for

the subject as a random effect. This enabled us to control for

multiple samples from the same subject and to compare the cluster

aggregated counts across different groups.

2.5.2 Correlation between TCRs based
on Atchley factor

To analyze the TCR sequences within a cluster, we first

visualized the sequence pattern of each cluster through a

sequence logo (25), and then characterized each TCR

biochemically using its Atchley factor (26). The overall

biochemical properties of any amino acid sequence can be

expressed as a sequence of five Atchley factor values, which

correspond loosely to polarity, secondary structure, molecular

volume, codon diversity, and electrostatic charge (26). For the

TCR clones that belong to a TCR cluster, we first used TESSA

software (27) to create a numeric embedding of TCRs, where each

numeric vector represented a TCR sequence. Then, the pairwise

Pearson’s correlation coefficient among the Atchley factor encoded

TCRs within a cluster can be calculated, and their median and

interquartile range (IQR) can be obtained as a measure of the

similarity within the cluster.

2.5.3 Clustering samples based on TCRs
We first quantified the number of TCRs belonging to each TCR

cluster (defined based on network analysis as either COVID-

associated or public) in each sample and then normalized this

value by dividing it by the total number of TCRs within the sample.

Next, we calculated the correlation coefficient based on the

normalized number of TCRs in each TCR cluster across all

samples. We clustered the samples by hierarchical clustering

based on the normalized frequencies calculated in the previous step.

2.5.4 Probability of generation and Bayes factor
adjusted P-value (false discovery rate)

We introduced a new metric to evaluate the importance of the

clones by incorporating clonal generation probability (pgen) and

clonal abundance using Bayes factor to evaluate the significance of

identified clones. We then calculated Bayes factor adjusted p-value

and false discovery rate (FDR) for each TCR and summarized the

proportion of the TCRs with Bayes adjusted FDR< 0.05.

The Bayes factor is the ratio of two marginal likelihoods. Clonal

generation probability (pgen) probabilistically annotates sequences,

and its modular structure can be used to investigate models of

increasing biological complexity for different organisms, which is

calculated by OLGA (28). For each clone Mc, Bayes factor between
Frontiers in Immunology 05
clone Mc and clone Mj is calculated by

BFc(j)) =
P(McjD)=P(Mc)
P(MjjD)=P(Mj)

 for c ≠ j and c,   j = 1,  …,K ,

where P(Mj)   is the pgen of clone Mj, and P(MjjD)  is the

normalized frequencies of clone Mj   in the repertoire D, j =

1,  …,K . Thus, each clone Mc has a vector of K − 1 of BFc(j) values

corresponding to K − 1 clones in the same repertoire. We are

interested in the proportion of X = log10(BFc(j)) ≥ x0 because

log10(BFc(j)) falls between the intervals of (0.5, 1), (1, 2), and > 2,

representing substantial, strong, and decisive chance presented in the

current data, respectively (29). Here, we can consider x0 = 2. Note

that, under the null hypothesis,X follows a normal distribution with a

mean of 0 and a standard deviation of s (s will be estimated through

the real data). Let Z be the number of log10(BFc(j)) ≥ x0  , for c ≠ j

and c,   j = 1,  …,K , then under the null hypothesis, Z follows a

binomial distribution P(Zjp) e   Binomial   (K − 1,   p) with a

probability of p  =
Z ∞

x0
f (x)dx, where f (x) is a normal density

function. Then, we can calculate a pseudo p-value Pc
BF =

oZ≥z0
P(Zjp) for each clone c, corresponding to the probability

that clone c has no less than z0 of BFc(j) ≥ x0  in the null model

than in the data. z0 can be calculated within each sample as the total

of the clones which have log10(BFc(j)) ≥ x0. Those clones with FD

Rc
BF < 0.05 will have a high potential to be COVID-specific TCRs,

where FDRc
BF is adjusted Pc

BF (30).

2.5.5 MIRA validation
We first conducted an exact matching to identify TCR

sequences found in the European COVID-19 dataset that were

exactly the same as those in the MIRA database. We then counted

the total number of matching TCR sequences within each cluster

and calculated the percentage by dividing this number by the total

number of TCRs within that cluster. It allowed us to identify and

quantify the degree of overlap between the TCR sequences found in

the European COVID-19 dataset and those in the MIRA database

and provided insights into the potential relevance of these

sequences to COVID-19 immunology.
3 Results

3.1 TCR repertoire responses in
SARS-CoV-2

The network analysis (Figure 2A, Supplementary Table S3)

showed that, in the recovered samples, there were more clusters

(Supplementary Figures S1A, B) identified with larger cluster size

(Supplementary Figures S1C, D), diameters (Figures 2B, C), and

assortativity (Supplementary Figures S1E, F) compared with healthy

donors and active samples (samples collected during active

infection), respectively. Interestingly, the repertoire network of

active samples had similar cluster size, maximum cluster size,

maximum diameter, and maximum assortativity as healthy

donors. Additionally, the maximum diameter for active samples

went down over the time while that of recovered samples went up.
frontiersin.org
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This indicates that the recovered samples tend to have more

COVID-specific TCR clones than active samples and healthy

donors. This is consistent with a previous study that

demonstrated that patients who have recovered from COVID-19

had a more diverse repertoire compared with active COVID-19

infection and healthy donors (20). Perhaps patients with active

COVID-19 infection have not developed an adequate T-cell

response to clear infection.
3.2 Network analysis identifies the
COVID-associated clusters

We identified 135 clusters (a total of 10,416 TCRs) associated

with the COVID-19 samples based on Fisher’s exact test p< 0.05.

There are 30 COVID-only clusters, each shared by at least five

unique COVID samples (Table 1, Supplementary Table S4,

Supplementary Figure S2). Those clusters have a relatively small

size (a smaller number of TCRs), and their median pgen ranges from

1.2e-07 to 1.6e-17. Although the median pgen across the samples in

this study is 2e-10, there are 11 COVID-only clusters with median
Frontiers in Immunology 06
pgen less than 2e-10 and some even as low as 1.6e-17, indicating

those clusters might be the interesting COVID-specific TCRs. The

local network property, coreness, is very close to the number of

unique TCRs in the corresponding clusters (Table 1). The median

correlation coefficients of Atchley factor decoded TCR sequences

within each cluster ranges from 0.76 to 1, indicating that TCR

sequences within the same cluster are highly similar. These results

suggest that some clusters possess almost identical TCR sequences.

Among the 30 COVID-only TCR clusters, 17 clusters exhibit a high

degree of similarity in their TCR sequences, with only one or fewer

sequence variations within each cluster.

Among the 105 non-COVID-only clusters, we found eight

clusters associated with COVID-19 samples (Clusters 1, 3, 9, 14,

48, 58, and 68) and three associated with HD (Clusters 37, 64, and

76) based on differential testing (Table 2, Figures 3A, B). However,

the cluster size varies. Unlike the COVID-only clusters, coreness is

relatively smaller than the corresponding cluster size, indicating the

increased variability of TCR sequences within the clusters. We

found that, for all clusters except Cluster 14, the percentage of

significant TCRs based on Bayes factor adjusted FDR (FDRBF< 0.05)

was higher than 83%, indicating substantial TCRs in these clusters
B C

A

FIGURE 2

The relationship between the TCR repertoires and sample disease status. (A) The network for the representative samples (red: COVID active sample,
green: healthy donors, and blue: COVID recovered samples). Each dot represents a single T-cell receptor (TCR), which are connected based on their
similarity. The node size is proportional to the TCR clonal abundance. (B) Boxplot of the maximum diameter among the clusters for each sample
across time by disease status. (C) Heatmap of all diameter values for each cluster across samples. Each row represents an individual sample (with left
bar presenting the sample information) and each column is the diameter value for each sample, while the dendrogram on the left side shows the
hierarchical clustering based on diameter values.
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TABLE 1 Summary of COVID-only clusters.

Cluster
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TCRs
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COVID samplesiii
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estimate
(95% CI)
P valuev

Core
me
[m
m

4 57 25 11
−1.03

(−2.08, 0.03)
p = 0.058

56[5

6 20 1 9 NA 5[

7 74 16 2
0.3

(−0.26,0.87)
p = 0.293

55[3

8 31 21 5
0.48

(−0.05,1.02)
p = 0.077

27[2

10 31 18 4
−0.76

(−2.57,1.06)
p = 0.413

27[2

11 25 20 4
−1.28 (−3,0.44)

p = 0.144
24[2

12 24 20 2
−0.53

(−2.63,1.57)
p = 0.623

23[2

13 25 20 3
−1.28

(−3.33,0.76)
p = 0.218

23[2

20 19 16 3
−1.56

(−3.35,0.23)
p = 0.088

19[1
n
d

a

4
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essvi

ian
in,
x]

Pgenvii

median
[min,
max]

Correlation
of Atchley
factorviii

median [IQR]

The % of TCRs
matched with

MIRAix

8,18]

9.3e−10
[9.3e

−10,9.3e
−10]

1[1,1] 0.0%

7,17]

2.2e−13
[5.0e

−14,2.2e
−13]

1[1,1] 0.0%

7,17]

2.8e−11
[2.8e

−11,1.6e
−10]

1[1,1] 0.0%

5,17]

1.6e−07
[7.0e

−09,1.6e
−07]

0.88[0.84,1] 4.0%

2,16]

2.4e−07
[8.1e

−08,5.0e
−07]

0.915[0.77,1] 11.1%

5,15]

3.0e−10
[3.0e

−10,3.0e
−10]

1[1,1] 0.0%

5,15]

9.4e−11
[9.4e

−11,3.9e
−09]

1[1,1] 0.0%

5,15]

8.6e−10
[8.5e

−16,8.6e
−10]

1[1,1] 0.0%

1,16]

6.2e−10
[1.0e

−10,1.1e
−09]

0.96[0.92,0.99] 0.0%
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TABLE 1 Continued

Cluster
IDi

No. of
TCRs

Motifii No. of active
COVID samplesiii

No. of recovered
COVID samplesiv

Recovered
vs. active
estimate
(95% CI)
P valuev

Core
me
[m
m

22 18 15 3
−0.95

(−2.75, 0.85)
p = 0.3

18[1

23 19 10 6
−0.83

(−1.37, −0.29)
p = 0.002

17[1

25 18 17 0 NA 17[1

29 25 13 2
−0.92

(−2.8,0.96)
p = 0.339

17[1

30 18 5 3
0.25

(−0.44,0.94)
p = 0.474

16[1

31 16 15 1
−1.65

(−4.79,1.49)
p = 0.303

15[1

32 15 13 1
−1.14

(−4.86,2.57)
p = 0.546

15[1

33 16 13 2
−1.02

(−3.21,1.18)
p = 0.363

15[1

34 23 6 1
0.06

(−0.1,0.22)
p = 0.47

16[1
n
d

a
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essvi

ian
in,
x]

Pgenvii

median
[min,
max]

Correlation
of Atchley
factorviii

median [IQR]

The % of TCRs
matched with

MIRAix

4,21]

1.8e−07
[1.7e

−08,4.2e
−07]

0.93[0.82,0.98] 75.8%

3,13]

1.0e−15
[1.0e

−15,1.0e
−15]

1[1,1] 0.0%

3,13]

7.3e−14
[7.3e

−14,7.3e
−14]

1[1,1] 0.0%

2,22]

5.1e−08
[1.1e

−09,1.6e
−07]

0.9[0.86,0.95] 13.2%

2,12]

1.6e−17
[1.6e

−17,2.1e
−17]

1[1,1] 0.0%

1,11]

1.2e−15
[1.2e

−15,1.2e
−15]

1[1,1] 0.0%

1,11]

2.6e−09
[2.6e

−09,2.6e
−09]

1[1,1] 0.0%

1,11]

4.9e−11
[3.1e

−22,4.9e
−11]

1[1,1] 0.0%

0,10]

1.8e−10
[1.8e

−10,1.8e
−10]

1[1,1] 0.0%
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TABLE 1 Continued

Cluster
IDi

No. of
TCRs

Motifii No. of active
COVID samplesiii

No. of recovered
COVID samplesiv

Recovered
vs. active
estimate
(95% CI)
P valuev

Core
me
[m
m

36 33 7 3
−0.58

(−2.44,1.29)
p = 0.544

21[1

40 14 12 2
−0.91

(−3.26,1.44)
p = 0.448

13[1

42 14 14 0 NA 13[1

43 38 5 5
0.16

(−0.25,0.57)
p = 0.435

22[1

45 13 10 2
−1.55

(−4.16,1.07)
p = 0.246

12[1

47 12 10 2
−2.22

(−3.99, −0.46)
p = 0.014

11[1

49 12 11 1
−1.68

(−5.26,1.89)
p = 0.356

11[1

50 12 10 1
−0.81

(−2.67,1.06)
p = 0.397

11[1

51 11 10 1
−1.64

(−4.41,1.13)
p = 0.245

10[1
n
d

a
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active
mplesiii

No. of recovered
COVID samplesiv

Recovered
vs. active
estimate
(95% CI)
P valuev

Corenessvi

median
[min,
max]

Pgenvii

median
[min,
max]

Correlation
of Atchley
factorviii

median [IQR]

The % of TCRs
matched with

MIRAix

5
−0.44

−0.89,0.01)
p = 0.053

19[9,19]

1.6e−07
[3.9e

−08,2.3e
−07]

0.87[0.81,0.93] 58.3%

6 NA 6[4,6]

2.7e−07
[7.4e

−08,5.1e
−07]

0.78[0.69,0.89] 18.2%

3
−0.33

(−1.49,0.83)
p = 0.58

3[2,3]

1.2e−07
[2.1e

−08,1.4e
−07]

0.89[0.86,0.92] 0.0%

luster.
TCR sequences within the public cluster, where the amino acid sequences were transformed by Atchley factor.

ssociated with COVID-active samples.
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TABLE 1 Continued

Cluster
IDi

No. of
TCRs

Motifii No. of
COVID sa

54 24 3

74 11 1

88 5 2

iCluster ID is defined based on the network analysis across all samples.
iiSequence logo visualizes all TCR sequences within the corresponding cluster.
iiiThe number of the active COVID samples which the corresponding cluster belongs to.
ivThe number of the recovered COVID samples which the corresponding cluster belongs to.
vEstimate (with 95% CI) and p-value were obtained based on a linear mixed model or linear model.
viSummary of the coreness (local property) of the TRCs in the corresponding network cluster.
viiSummary statistics [median Interquartile range (IQR)] of pgen of TCRs in the corresponding network c
viiiSummary statistics [median [Interquartile range (IQR)] of pairwise correlation coefficients between the
ixThe percentage of the TCRs in the public cluster matched with MIRA.
Clusters 23 and 47, highlighted in light green, had negative estimates and p< 0.05 were considered to be
 a
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2
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significant TCRs based on

Bayes factorix

Correlation of Atchley factorix

median [IQR]

The % of TCRs matched

with MIRAix

99.2% 0.55[0.36, 0.74] 82.6%

98.1% 0.53[0.39,0.69] 59.6%

99.5% 0.67[0.53,0.78] 74.6%

4.2% 1[1,1] 0.0%

100.0% 0.59[0.33,0.81] 59.2%

98.4% 0.61[0.49,0.74] 58.0%

99.6% 0.78[0.66,0.87] 81.3%

83.3% 0.86[0.78,1] 0.0%

100.0% 0.82[0.7,0.88] 65.8%

99.2% 0.61[0.47,0.76] 88.0%
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TABLE 2 Summary of COVID-associated clusters.

Cluster

IDix

No. of

TCRs

Motifix No. of HD

samplesix

No. of active COVID

samplesix

No. of Recovered COVID

samplesix

Estimate (95% CI) P-valueix Corenessix

Median

[Min, Max]

% o

Active vs. HD Recovered

vs. HD

Recovered vs.

active

1 884 22 32 19 −0.09

(−0.4, 0.23)

p = 0.588

0.44

(0.08, 0.8)

p = 0.016

0.53

(0.17, 0.88)

p = 0.004

146[1,

155]

3 641 26 32 19 0.33

(−0.09, 0.75)

p = 0.121

0.66

(0.19, 1.12)

p = 0.006

0.32

(−0.2, 0.83)

p = 0.224

75[1,118]

9 1668 30 34 19 0.26

(0.09, 0.43)

p = 0.003

0.62

(0.43, 0.82)

p< 0.001

0.36

(0.18, 0.54)

p< 0.001

375

[10,609]

14 24 2 14 5 2.24

(1.16, 3.32)

p< 0. 001

1.63

(0.48, 2.79)

p = 0.006

−0.6

(−1.39, 0.18)

p = 0.132

22[22,22]

19 71 11 10 9 -0.28

(−0.7, 0.14)

p = 0.186

0.08

(−0.34, 0.5)

p = 0.712

0.36

(0.11, 0.61)

p = 0.005

37[1,37]

21 317 18 22 17 −0.33

(−0.72, 0.06)

p = 0.101

0.03

(−0.38, 0.45)

p = 0.883

0.36

(0.02, 0.7)

p = 0.04

25[1,86]

26 224 13 15 15 −0.33

(−0.8, 0.15)

p = 0.178

0.15

(−0.33, 0.62)

p = 0.54

0.48

(0.01, 0.94)

p = 0.045

142[1,142]

37 18 2 8 1 −2.62

(−3.75, −1.5)

p< 0.001

−3.61

(-5.33, −1.89)

p< 0.001

−0.99

(−2.59, 0.62)

p = 0.227

14[14,14]

38 38 1 2 8 1.04

(0.25, 1.84)

p = 0.01

0.62

(−0.07, 1.31)

p = 0.078

−0.42

(−0.94, 0.09)

p = 0.105

22[13,22]

48 933 22 32 18 0.09

(−0.21, 0.39)

p = 0.547

0.5

(0.16, 0.83)

p = 0.004

0.4

(0.05, 0.75)

p = 0.024

224

[11,343]
f
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Corenessix

Median

[Min, Max]

% of significant TCRs based on

Bayes factorix

Correlation of Atchley factorix

median [IQR]

The % of TCRs matched

with MIRAix

vs.

6)

2

77[4,268] 99.3% 0.58[0.41,0.72] 74.0%

25)

4

31[4,33] 98.9% 0.66[0.47,0.83] 75.8%

.01)

7

6[1,6] 100.0% 0.8[0.74,0.87] 12.5%

79)

3

64[2,80] 100.0% 0.51[0.36,0.7] 56.9%

2)

2

53[1,169] 99.5% 0.59[0.43,0.75] 75.3%

4)

2

3[3,4] 100.0% 0.72[0.61,0.87] 72.7%

o acid sequences were transformed by Atchley factor.

columns were considered to be associated with COVID-19 samples. Clusters 37, 64, and 76, highlighted in light
Similarly, Clusters 1, 9, 19, 21, 26, 48, 53, 68, and 76, highlighted in light pink, with positive estimates and p< 0.05
een, had negative estimates and p< 0.05 was considered to be associated with COVID-active samples.
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TABLE 2 Continued

Cluster

IDix

No. of

TCRs

Motifix No. of HD

samplesix

No. of active COVID

samplesix

No. of Recovered COVID

samplesix

Estimate (95% CI) P-valueix

Active vs. HD Recovered

vs. HD

Recovere

activ

53 1134 20 37 18 −0.06

(−0.29, 0.17)

p = 0.612

0.17

(−0.07, 0.41)

p = 0.156

0.23

(0.01, 0

p = 0.0

58 91 3 7 12 1.11

(0.74, 1.48)

p =< 0.001

1.1

(0.75, 1.44)

p< 0.001

−0.01

(−0.28, 0

p = 0.9

63 8 1 1 5 0.14

(−0.84, 1.11)

p = 0.782

−0.63

(−1.38, 0.13)

p = 0.103

−0.77

(−1.52, −

p = 0.0

64 281 12 18 16 −0.49

(−0.91, −0.07)

p = 0.022

−0.12

(−0.53, 0.3)

p = 0.581

0.38

(−0.02, 0

p = 0.0

68 632 21 25 18 −0.13

(−0.53, 0.28)

p = 0.543

0.56 (0.11, 1)

p = 0.014

0.68

(0.25, 1

p = 0.0

76 11 2 1 6 −0.72

(−1.3, −0.13)

p = 0.017

−0.07

(−0.47, 0.32)

p = 0.71

0.64

(0.14, 1

p = 0.0

ixCluster ID is defined based on the network analysis across all samples.
ixSequence logo visualizes TCR sequences within the corresponding cluster.
ixThe number of the healthy donor (HD) samples which the corresponding cluster belongs to.
ixThe number of the active COVID samples which the corresponding cluster belongs to.
ixThe number of the recovered COVID samples which the corresponding cluster belongs to.
ixEstimate (with 95% CI) and p-value were obtained based on a linear mixed model or a linear model.
ixSummary of the coreness (local property) of the TRCs in the corresponding network cluster.
ixThe percentage of the significant TCRs within each cluster based on Bayes factor FDR< 0.05.
ixSummary statistics [median (interquartile range, IQR)] of pairwise correlation coefficients between the TCR sequences within the cluster, where the ami
ixThe percentage of the TCRs in the cluster matched with MIRA.
Clusters 1, 3, 9, 14, 38, 48, 58, and 68, highlighted in light pink, with positive estimates and p values< 0.05 in either the active versus HD or recovered versus H
green, with negative estimates and p< 0.05 in either the active versus HD or Recovered versus HD columns, were considered to be associated with HD samples
in recovered versus active columns were therefore considered to be associated with COVID-19-recovered samples, while Cluster 63, highlighted in light gr
d
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presented in the current data with strong evidence. In addition,

most clusters each have at least 50% of TCRs matched with the

MIRA dataset, suggesting that TCRs in these clusters have a high

potential to be SARS-CoV-2 antigen-specific TCRs. The median of

the correlation coefficients of the Atchley factor decoded TCRs

within each cluster ranges from 0.51 to 0.86, indicating that all

clusters have highly correlated structures. Figure 3C presents the

sample classification based on correlation coefficient of TCRs.
3.3 Network analysis identifies the
public clusters shared by different
samples and subjects

We identified 1,594 public clusters shared among at least two

samples, among which more than two unique individuals shared

170 clusters. Fourteen public clusters were identified by comparing

the aggregated clonal abundance across the three groups (healthy

donor samples vs. COVID active and recovered samples,

respectively) (Table 3, Figures 4A, B). These public clusters

usually have huge cluster sizes, and the TCRs in most public

clusters have very small coreness, implying relatively high

variability among the TCR sequences within each cluster. The

median of the correlation coefficients of Atchley factor coded
Frontiers in Immunology 13
TCRs within each cluster ranges from 0.35 to 0.67, indicating the

structures of the clusters are moderately correlated. Figure 4C

presents the sample classification based on correlation coefficient

of TCRs. In addition, we found that except for Clusters 32 and 44,

the percent of the significant TCRs (FDRBF< 0.05) was higher than

84%, indicating substantial TCRs in these public clusters presented

in the current data with a strong chance. Furthermore, three clusters

have more than 50% of their TCRS matched with the MIRA dataset.

Those results suggested that those TCRs in these public clusters

have a high potential to be SARS-CoV-2 antigen-specific TCRs.
3.4 Comparing with GLIPH2 results

We further compared our findings with the results obtained by

GLIPH2 (Supplementary Table S5). Using GLIPH2 to analyze the

European COVID datasets, we found 57,943 TCRs within 4,009

patterns when comparing COVID samples versus HD samples (p<

0.05, out of 833,028 TCRs within 156,383 patterns). Downstream

differential testing based on TCR clonal abundance was applied to

the 3,979 TCR clusters (32,282 unique TCRs) with at least three

position matching. Supplementary Table S5 presents the number of

unique TCR clones identified by both Network Analysis of Immune

Repertoire (NAIR) and GLIPH2, their overlaps, and the number of
B

CA

FIGURE 3

COVID-associated TCR clusters. (A) The network of the COVID-associated T-cell receptors (TCRs) whose clusters have statistically significant
abundance across subjects’ disease status. Each node represents a single TCR, which are connected if the distance between the two nodes is <= 1
with color coded for the disease status. (B) A representative COVID-associated TCR cluster. The plot exhibits network of all TCRs within the selected
cluster, where each TCR is color coded based on different metadata information. The right panel presents the corresponding sample’s status, such
as active COVID sample, healthy donor, or recovered COVID sample, and the middle panel shows whether the Bayes factor corrected FDR is less
than 0.05 or not. The final panel included information on exact matching with MIRA, indicating whether the TCRs match with those identified in the
MIRA dataset that bind to specific epitopes. (C) Heatmap of pairwise correlation coefficients across samples. The hierarchical clustering of the
samples was performed using the Pearson’s correlation coefficient. Correlation coefficient was calculated based on the normalized number of TCRs
in each COVID-associated cluster within the samples.
frontiersin.org
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six

x]

The % of signifi-
cant TCRs based
on Bayes factorix

Correlation of
Atchley factorix

median [IQR]

The % of
TCRs

matched
with MIRAix

84.6% 0.37
[0.2,0.53]

28.7%

95.3% 0.44
[0.28,0.59]

41.6%

90.4% 0.5
[0.34,0.65]

39.5%

86.1% 0.67
[0.55,0.78]

22.1%

90.4% 0.44
[0.28,0.6]

80.3%

90.5% 0.43
[0.27,0.59]

50.5%

93.4% 0.54
[0.4,0.68]

26.3%

84.8% 0.6
[0.46,0.74]

29.0%

97.0% 0.42
[0.26,0.57]

50.7%

89.7% 0.67
[0.55,0.84]

48.9%

92.1% 0.41
[0.26,0.56]

28.1%
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TABLE 3 Summary of public clusters.

Public
cluster
IDix

No.
of

TCRs

Motifix No. of
HD

samplesix

No. of
active
COVID

samplesix

No. of
recovered
COVID

samplesix

Estimate (95% CI)
P-valueix

Corene
Media
[Min,Ma

Active
COVID vs.

HD

Recovered
COVID vs.

HD

Recovered
COVID vs.
active
COVID

1 2092 12 39 19 0.33
(0.02, 0.64)
p = 0.039

0.7 (0.38, 1.02)
p< 0.001

0.37 (0.11, 0.63)
p = 0.005

1[1,6]

2 1918 13 40 18 −0.79
(−1.07, -0.51)
p< 0.001

−0.49
(−0.79, -0.19)
p = 0.001

0.3 (0.06, 0.54)
p = 0.015

2[1,7]

4 2321 13 40 18 0.46
(0.09, 0.84)
p = 0.016

0.67
(0.25, 1.09)
p = 0.002

0.2
(−0.14, 0.54)
p = 0.24

1[1,6]

6 1585 12 39 18 0.41
(0.02, 0.81)
p = 0.041

0.55 (0.11, 1)
p = 0.014

0.14(−0.2, 0.48)
p = 0.424

1[1,4]

7 1011 12 38 18 0.38
(0.08, 0.67) p

= 0.012

0.5 (0.19, 0.82)
p = 0.002

0.12
(−0.13, 0.38)
p = 0.342

1[1,8]

8 21799 17 39 19 0.25
(−0.02, 0.51)
p = 0.067

0.46
(0.18, 0.73)
p = 0.001

0.21
(−0.04, 0.46)
p = 0.095

2[1,9]

9 782 8 24 18 −0.82
(−1.27, −0.38)

p< 0.001

−0.63
(−1.07, -0.19)
p = 0.005

0.19
(-0.14, 0.53)
p = 0.26

1[1,6]

11 894 9 34 15 −0.07
(−0.48, 0.34)
p = 0.733

0.27
(−0.18, 0.73)
p = 0.241

0.35 (0.01, 0.68)
p = 0.045

1[1,9]

16 493 7 13 15 −0.41
(−0.75, −0.07)
p = 0.017

−0.25
(−0.56, 0.07)
p = 0.12

0.16
(−0.12, 0.44)
p = 0.262

1[1,4]

18 681 12 27 18 0.13
(−0.14, 0.4)
p = 0.334

0.34
(0.06, 0.61)
p = 0.015

0.21
(−0.03, 0.44)
p = 0.084

3[1,8]

22 698 9 16 13 −0.36
(−0.7, −0.02)
p = 0.036

−0.34
(−0.66, −0.02)
p = 0.039

−0.25
(−0.79, 0.28)
p = 0.352

1[1,4]
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n
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TABLE 3 Continued

Public
cluster
IDix

No.
of

TCRs

Motifix No. of
HD

samplesix

No. of
active
COVID

samplesix

No. of
recovered
COVID

samplesix
C

27 334 5 12 10
(

32 103 4 9 8
(

44 34 0 8 4

ixPublic cluster ID is defined based on the network analysis across all samples.
ixSequence logo visualizes all TCR sequences within the corresponding public cluster.
ixThe number of the healthy donor (HD) samples which the corresponding public cluster belongs to.
ixThe number of the active COVID samples which the corresponding public cluster belongs to.
ixThe number of the recovered COVID samples which the corresponding public cluster belong to.
ixEstimate (with 95% CI) and p-value were obtained by a linear mixed model or a linear model.
ixSummary of the coreness (local property) of the TRCs in the corresponding network cluster.
ixThe percentage of the significant TCRs within each public cluster based on Bayes factor FDR< 0.05.
ixSummary statistics [median (Interquartile range, IQR)] of pairwise correlation coefficients between the TCR s
ixThe percentage of the TCRs in the public cluster matched with MIRA.
Clusters 1, 4, 6, 7, 8, and 18, highlighted in light pink, with positive estimates and p< 0.05 in either the active versu
with negative estimates and p< 0.05 in either the active versus HD or recovered versus HD columns, were consider
columns were therefore considered to be associated with COVID-19–recovered samples, while Cluster 44, high
−
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those TCR clones matched with the MIRA database after initial

searching and after differential testing. Interestingly, the TCRs

identified by both approaches are more likely to be validated by

the MIRA database (last column). NAIR consistently outperforms

much better than GLIPH2 based on the number of TCRs validated

by the MIRA database.
3.5 Sensitivity analysis

Because clonal grouping can be impacted by experimental

factors such as sampling and sequencing depth, we performed a

sensitivity analysis on one active sample and one recovered sample

for illustration purposes (Supplementary Figures S3A, B). We

subsampled clones to achieve similar sequencing depth of 5,000,

weighted by the distribution of normalized abundance. Although

the number and size of the clusters decreased, the general pattern of

the network and matching with the MIRA dataset remained

(Supplementary Figures S3C, D).

To account for the differences in sequence lengths when using

Hamming distance, we expanded all sequences to the maximum

length by appending zero to the right side of each sequence, a

common way to deal with discrepancies in sequence lengths.

However, we acknowledge that this alteration may introduce bias
Frontiers in Immunology 16
into our analysis. As a sensitivity analysis, we also used the

Levenshtein distance metric, which is designed to compare the

dissimilarity of TCR sequences of different lengths while accounting

for gaps and insertions. Although the Levenstein distance (Python

module Levenshtein with distance function) versus Hamming

distance (Python module SciPy with pdist funct ion)

(Supplementary Figures S3E, F) were similar in structure and

pattern, the threshold of distance might play a significant role.

Since the current paper focused on the CDR3 amino acid sequence,

as discussed in (31), we used a cutoff of 1. However, for full-length

nucleotide TCR sequences, a cutoff of 1 is probably too stringent.

Based on the sensitivity analysis with different cutoffs

(Supplementary Table S6A), we found that, as expected with a

higher cutoff (i.e., 2), the number of clusters within the network is

smaller and the cluster sizes are relatively larger. Such differences

are more noticeable when Levenstein distance is applied. However,

the differences are less when applied to CDR3 nucleotide

sequence analysis.

We chose fast greedy approach as the clustering approach for

network analysis due to the fastest speed. We compared the results

of all available methods in igraph (fast greedy, walktrap, eigen,

betweenness, and Louvain). All approaches generated similar

results for small-to-moderate-size clusters except Leiden

(Supplementary Table S6B). However, when the data have larger
B

CA

FIGURE 4

Public shared TCR clusters. (A) The network of the public T-cell receptors (TCRs) whose clusters have statistically significant abundance across
subjects’ disease status. Each node represents a single TCR, which are connected if the distance between the two nodes is <= 1 with color coded
for the disease status. (B) A representative public TCR cluster. The plot exhibits network of all TCRs within the selected cluster, where each TCR is
color coded based on different metadata information. The right panel presents the corresponding sample’s status, such as active COVID sample,
healthy donor, or recovered COVID sample, and the middle panel shows whether the Bayes factor corrected FDR is less than 0.05 or not. The final
panel included information on exact matching with MIRA, indicating whether the TCRs match with those identified in the MIRA dataset that bind to
specific epitopes. (C) Heatmap of pairwise correlation coefficients across samples. The hierarchical clustering of the samples was performed using
the Pearson’s correlation coefficient. Correlation coefficient was calculated based on the normalized number of TCRs in each public cluster within
the samples.
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nodes, such as when we perform network analysis to obtain the

global membership to obtain public clusters, fast greedy and

Louvain provide comparable similar results while other methods

break the clusters into small-size memberships.

For public cluster searching, the choice of K is arbitrary. As

expected, the larger the K is, the more public clusters will be

identified. However, the choice is relatively robust regarding the

number of clusters shared by more than five samples. Since the

identified TCRs in the clusters will usually be used for further

validation by either external data or functional analysis, one can

choose a loose criterion to include more candidate TCRs.
3.6 Computational environment

With a MacBook Pro (Processor of 2.3 GHz Intel Core i9 and

Memory of 32 GB 2400 MHz DDR4), it uses 50–1,700 Mb memory

to perform network analysis (Hamming distance) on a sample with

1,000–50,000 clones by using the current version of the software,

which takes 2 s to 35 min, respectively. It takes much longer (up to

25 times longer) if Levenshtein distance is applied.
4 Conclusion and discussion

Due to the heterogeneous nature of T cells across time and

different subjects, analyses of AIRR-seq data have been challenging.

Network analysis allows us to potentially uncover the biological

significance of unique TCRs based on sequence. We developed two

different pipelines to identify disease-specific clusters and public

clusters, along with novel metrics to evaluate the identified clusters

along with downstream analysis. The workflows can be applied to

B-cell repertoires directly and can be easily extended to identify the

clusters that respond to treatment (32).

COVID-19 epitope-specific TCR clones in MIRA were also

found in the European datasets, suggesting that COVID-19 subjects

develop a distinct subset of T cells against just a few epitopes (18).

When matching with MIRA data, results indicated a higher

proportion of COVID-19–specific TCRs in recovered subjects,

implying TCRs might be used as a prognostic marker.

Interestingly, samples from subjects with active COVID-19

infection were more similar to those of healthy donors. This is

consistent with a previous study that demonstrated that patients

who have recovered from COVID-19 had a more diverse repertoire

compared with active COVID-19 infection and healthy donors (20).

Patients with active COVID-19 infection may not have developed

an adequate T-cell response to clear infection. Thus, their repertoire

appears similar to healthy donors. It is not surprising that more

public TCR clusters were detected within the MIRA dataset but

fewer COVID-specific clusters matched with MIRA datasets. As

shown in Table 2, those public TCR clusters have a relatively high

probability of generation, which means they have a higher chance to

present in human subjects (including the MIRA dataset). In

comparison, the COVID-specific clusters have a relatively low
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probability of generation (Table 1) or a lower chance of

presenting in human subjects. The MIRA dataset is still under

construction, so it does not have a complete list of COVID-related

epitopes. Furthermore, the MIRA dataset mainly collected samples

from North America instead of Europe, and it used Adaptive

ImmunoSQE (21), while the European data used customized

NGS (20).

Several methods for the computational and statistical analysis

of large-scale AIRR-seq data have been developed to resolve

immune repertoire complexity and to understand the dynamics of

adaptive immunity by using network analysis, such as GLIPH2 (18),

ImmunoMap (19), TESSA (27), and iSMART (33). However,

GLIPH2, iSMART, and TESSA focus more on single-cell RNA

sequences. The comparison with GLIPH2 shows that our proposed

pipelines can identify more COVID-specific TCRs (Supplementary

Table S5). Like many other computational approaches, our method

involved selecting specific methods and parameters. To assess the

robustness of our results to these choices, we conducted brief

sensitivity analyses of the critical options (Supplementary Figure

S3, Supplementary Table S6). We found that the results were

relative robust to variations in these options and parameters.

One limitation of our proposed method is that we have used a

dataset derived from COVID-19 subjects. SARS-CoV-2, the virus

responsible for COVID-19, has relatively fewer epitopes compared

with more complex diseases, such as malignancies with high-

mutational burden (33). Thus, applying the proposed analysis

workflow to study the immune response in other diseases, such as

cancer and treatment (e.g., cancer immunotherapy), may be

significantly more complex. Although the proposed pipeline can

be applied to diverse sequence assays, if the objective is to identify

public or related clusters, then it is advisable to use TCR sequences

obtained from the same sequencing assay. Additionally, another

limitation to searching for disease-associated clusters is that the

initial implementation of Fisher’s exact test requires an adequate

sample sizes. Finally, human leukocyte antigens (HLA) are proteins

that help individual immune cells from distinguishing between

foreign and self. HLA alleles have been correlated to incidence

and severity of diseases such as COVID-19. For example, HLA-

B*15:03 has been shown to present a larger array of peptides and

individuals with Class I HLA alleles have milder COVID-19

infections compared with other individuals with higher

heterozygosity. Interestingly, HLA-B*15:03 is prevalent in West

Africa and countries with high-endemic malaria. Our data do not

have the complete set of HLA alleles possible, because much of our

data come from Europe. A larger andmore diverse dataset including

HLA allele information combined with identified COVID-specific

can provide a more comprehensive understanding of the T-cell

response to COVID-19.

In conclusion, we have developed a bioinformatics pipeline by

incorporating the proposed methods and techniques to tackle the

complexity of the immunosequencing data in a translational

fashion. The associations found in our study need further

functional studies to confirm the biological significance and to

explore their clinical applications. Validation of TCR antigen
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specificity traditionally require identification of antigen-specific

TCRs with peptide/HLA multimers then expression and

functional testing of identified TCRs, which is labor and time

intensive. This in-silico bioinformatic approach can improve the

current workflows by narrowing the number of TCRs that need to

be tested.
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SUPPLEMENTARY FIGURE 1

Network properties. (A) Boxplot of the (log10 transformed) number of the

clusters within each sample. (B)Heatmap of the number of the clusters within
each sample. Each row represents an individual sample (with left bar

presenting the sample information), while the column corresponds to the
number of the clusters. (C) Boxplot of the (log10 transformed) maximum

number of the T-cell receptors (TCRs) within each of the clusters for each
sample. (D) Heatmap of the number of the TCRs within each of the clusters

for each sample. Each row represents an individual sample (with left bar

presenting the sample information), while each column corresponds to the
number of the TCRs within each of the clusters for each sample. (E) Boxplot
of the maximum assortativity within each of the clusters of the clusters for
each sample. (F)Heatmap of the assortativity within each of the clusters of the

clusters for each sample. Each row represents an individual sample (with left
bar presenting the sample information), while each column corresponds to

the assortativity within each of the clusters of the clusters for each sample.

SUPPLEMENTARY FIGURE 2

Representative COVID-only TCR clusters. (A–C) Each figure presents a T-cell
receptor (TCR) cluster with the motif showing on the top. Each node

represents a single TCR which are connected if the distance between the
two nodes is<= 1, with node size is proportional to the TCR clonal abundance.

The color code in the top panel presents if the TCRs belong to active (red) or

recovered (blue) samples, while in the bottom panel, color corresponds to
each individual subject information.

SUPPLEMENTARY FIGURE 3

Sensitive analysis. (A, B) Network analysis of samples Pt-5-2 (actives) and
Pt-7-4 (recovered) based on the original data using Hamming distance. (C, D)
Network analysis of samples Pt-5-2 (actives) and Pt-7-4 (recovered) based on

the subsampling using Hamming distance. (E, F) Network analysis of samples
Pt-5-2 (actives) and Pt-7-4 (recovered) based on the original data using

Levenshtein distance. In each figure, each node represents a single TCR
which are connected if the distance between the two nodes is<= 1. Colored

dots represent if matched with MIRA data (green) or not (red).
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