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T cells represent a crucial component of the adaptive immune system and
mediate anti-tumoral immunity as well as protection against infections, including
respiratory viruses such as SARS-CoV-2. Next-generation sequencing of the T-
cell receptors (TCRs) can be used to profile the T-cell repertoire. We developed a
customized pipeline for Network Analysis of Immune Repertoire (NAIR) with
advanced statistical methods to characterize and investigate changes in the
landscape of TCR sequences. We first performed network analysis on the TCR
sequence data based on sequence similarity. We then quantified the repertoire
network by network properties and correlated it with clinical outcomes of
interest. In addition, we identified (1) disease-specific/associated clusters and
(2) shared clusters across samples based on our customized search algorithms
and assessed their relationship with clinical outcomes such as recovery from
COVID-19 infection. Furthermore, to identify disease-specific TCRs, we
introduced a new metric that incorporates the clonal generation probability
and the clonal abundance by using the Bayes factor to filter out the false
positives. TCR-seq data from COVID-19 subjects and healthy donors were
used to illustrate that the proposed approach to analyzing the network
architecture of the immune repertoire can reveal potential disease-specific
TCRs responsible for the immune response to infection.

KEYWORDS

adaptive immune response, sequencing generation probability, network analysis, SARS-
CoV-2, T cell repertoire sequencing

1 Introduction

T cells are a vital component of the adaptive immune system and are responsible for
defending against infection. The unique T-cell receptor (TCR) on each T cell dictates
antigen specificity. Collectively, all of an individual’s TCRs make up the T-cell immune
repertoire. Thus, investigating the immune repertoire is paramount to understanding the
basis underlying the immune response to infection (1). Because of the enormous breadth of
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epitopes recognized by the adaptive immune system, the T-cell
immune repertoire is highly diverse and dynamic. Repertoire
dynamics span several orders of magnitude in size (germline gene
to clonal diversity), physical location (circulation, lymph nodes, and
tissues), and time (short-lived responses to immunological memory
that can persist for decades) (2-7). Advancements in next-
generation sequencing technology have allowed researchers to
sequence deeply enough to provide a comprehensive profile of the
high-dimensional complexity of the adaptive immune receptor
repertoire (AIRR-seq).

Recently, the AIRR-seq analysis has been applied to COVID-
19 subjects to understand how the adaptive immune system is
induced by SARS-CoV-2 (8). A higher proportion of somatic
hypermutation was associated with more severe COVID-19
infection (9, 10). Global analysis of the TCR repertoire in
COVID-19 subjects revealed that recovered subjects had
increased diversity and richness above healthy individuals and
that the V] gene usage in the TCR beta chain was skewed. Overall,
this type of immune repertoire analysis demonstrates the excellent
potential to be a biomarker for improved diagnosis and
monitoring of disease.

Unlike the immune repertoire diversity, which is based on the
frequency profiles of individual clones (11), sequence similarity
architecture captures frequency-independent clonal sequence
similarity relations. Conserved sequences in the complementarity-
determining region 3 (CDR3) region within the immune receptors
directly influence the antigen recognition breadth: The more
different receptors are, the larger the antigen space covered.
Network analysis clusters TCRs based on sequence similarity and
thereby adds a complementary layer of information to repertoire
diversity analysis. However, only networks with hundred thousand
nodes can be visualized, and such visualization of networks only
provides marginal quantitation of the network similarity
architecture. Graph properties and quantitative analysis of
network analysis have been recently employed to quantify the
network architecture of immune repertoires (12). These
advancements provide better understanding of the fundamental
properties of repertoire architecture such as reproducibility,
robustness, and redundancy (13).

Public or shared T-cell clones are T cells that have the exact
same CDR3 nucleotide or amino acid sequence between individuals
or within an individual across time (14). Functionally, public
(shared) clones are enriched for Major histocompatibility
complex-diverse CDR3 sequences previously associated with
autoimmune, allograft, tumor-related, and anti-pathogen-related
reactions (15). Public clones from different time points or
specimens belonging to the same subject are more likely to be
antigen specific (15). However, it is also possible for public clones to
target epitopes that are shared with other diseases. Public clone
searching can identify common and similar TCRs (defined as a
cluster in network analysis) but might miss the rare TCRs closely
related to the disease, especially clusters with small sizes. Therefore,
we propose customized pipelines to identify the disease-associated
clusters to find the rare TCRs closely associated to disease.

Probability of generation (pg.,) evaluates which specific amino
acid sequences and sequence motifs are likely to be generated and
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found in repertoires (16, 17). It is essential to distinguish the
antigen-driven clonotypes from genetically naive predetermined
clones. A higher generation probability of a given receptor sequence
leads to a higher chance of finding it in any given individual.
Therefore, public or shared clones usually have a higher generation
of probability. The probability of generating any nucleotide
sequence is defined as the sum of probabilities for all generative
events that could potentially produce that sequence (16, 17). Here,
we introduced a new metric to evaluate the importance of the clones
by incorporating both generation probability and clonal abundance
by utilizing Bayes factor.

GLIPH2 (18) and ImmunoMap (19) can also be applied to bulk
AIRR-seq data to identify potential targets for immunotherapeutic
interventions in various diseases. GLIPH works by clustering TCR
sequences based on the similarity of sequences, while InmunoMap
works by using a database of known antigens to identify the antigen
specificities of TCR sequences. However, they both lack a more
comprehensive searching algorithm (e.g., disease specific) and
downstream analysis to related with the clinical characteristics/
outcome. Our primary objective in this paper is to develop such
comprehensive search algorithms and downstream analysis
(Figure 1A). We applied the proposed approaches and pipelines
to publicly available AIRR-seq data of a group of European COVID-
19 subjects and healthy donors (20) to identify COVID-19-specific
and COVID-19-associated TCRs, and we validated our findings
using the MIRA (Multiplex Identification of Antigen-Specific T-
Cell Receptors Assay) database (21).

2 Materials and methods

2.1 European COVID data

The TCR-sequencing data from the European COVID-19 subjects
(20, 22) includes three cohorts: a cohort of subjects who recovered after
COVID-19 with mild-to-moderate disease courses (1 = 19), a cohort of
subjects with active infection and severely symptomatic who had
comorbidities (n = 18), all of which required hospitalization and an
age-matched healthy donor cohort tested negative for COVID-19
antibodies (1 = 39). Up to nine follow-up blood samples were
available per subject, some spanning different disease stages in the
same subject (e.g., two recovered subjects, Patients 6 and 7, also had
one and three samples collected during they were actively infected),
totaling 108 samples (Supplementary Table S1). The AIRR-seq data
include 19 recovered samples from the recovered subjects (additionally,
four samples during active infection), 46 samples during active
infection from 18 subjects with active infection, and 39 samples from
the healthy donors. The characteristics of the subjects were shown in
(20) (gateway.ireceptor.org; Study ID: IR-Binder-000001). As described
in (20), next-generation sequencing of the TCR beta chain was
performed for all acquired blood samples. Each unique CDR3 amino
acid sequence was defined as one clone. There were 901,045 unique
TCRs. Annotation of TCR loci rearrangements was computed with the
MiXCR framework (3.0.13) (23). The default MiXCR library was used
for TCR sequences as the reference for sequence alignment. More
specifically, we used “analyze shotgun” pipeline with setting —species
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FIGURE 1

The diagrams of the proposed pipelines. (A) Overall roadmap. We started with a general network analysis for each sample and correlated the
network properties with the subjects’ clinical characteristics. We then developed pipelines to find disease-associated clusters and shared clusters
across samples to identify antigen-driven T-cell receptors (TCRs) with downstream analysis. (B) Finding disease-associated clusters pipeline. (1) First,
we obtained the number of samples share by a given TCR. (2) Then, we identified the COVID-associated TCRs, based on their presenting frequency
in COVID subjects comparing to that of healthy samples using Fisher's exact test (p< 0.05) and shared at least by 10 samples. We only kept the TCRs
with length >= 6. (3) For each COVID-associated TCRs, we identified the TCRs that were in the same cluster by searching among all TCRs from
shared samples by network analysis (hamming distance<= 1). The TCR clusters now only present in COVID samples were defined as COVID-only
TCR clusters and rest were COVID-associated TCR clusters. (4) Last, we generated a network across all COVID-associated TCRs including their
member TCRs in the same cluster and assigned global membership to the COVID-associated clusters. (C) Finding public clusters workflow. (1) First,
we built the network for each sample. (2) Within the network for each sample, we picked the top K largest clusters or the single node with a large
abundance (count > 100). (3) Within each cluster, we identified a representative clone with the largest count. (4) We built a new network based on
those selected clones, and the clusters with clones from different samples were considered as the skeleton of public clusters. (5) We generated
public clusters by expanding each skeleton public cluster to include any clones belonging to the same cluster in the original sample by another
network analysis. (6) We assigned global membership to the public clusters based on Step 5.
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hsa -starting-material rna. Non-productive reads and sequences with
less than two read counts were not considered for further analysis.

2.2 Adaptive MIRA database

Adaptive Multiplex Identification of Antigen-Specific T-Cell
Receptors Assay (MIRA) was used to identify antigen-specific TCRs
(21). The COVID-19 MIRA dataset maps TCRs binding to SARS-
Cov-2 virus epitopes and includes data from exposed subjects and
naive controls. The COVID-19 MIRA dataset contains more than
135,000 high-confidence SARS-CoV-2-specific TCRs. Data are
available at https://clients.adaptivebiotech.com/pub/covid-2020;
_DOI 10.21417/ADPT2020COVID.

2.3 Network analysis

The pairwise distance matrix of TCR amino acid sequences for
each subject was calculated using Hamming distance (Python module
SciPy with pdist function). When Hamming distance is less than or
equal to 1, then the edge is equal to 1; otherwise, it is equal to 0. A
network cluster was defined as a group of clones with a Hamming
distance less than or equal to 1 (allowing a maximum of one base pair
mismatch among clone sequences) by fast greedy algorithm (igraph
(24)). Network visualization was performed using R packages: igraph
and ggraph. Each node represents a single TCR amino acid CDR3
sequence. The patterns of the sequences within a cluster were
visualized by sequence logos using R package: ggseglogo (25). In
addition, we have included network features as one of the major
outputs to describe the network. There are two types of network
properties (13): global properties which describe the network as
whole and local properties which characterize clonal features for
each node in repertoire networks (Supplementary Table S2). To
quantitatively correlate the network with clinical characteristics/
outcome, for example, healthy donors versus COVID-19 samples
coming from multiple time points, we applied a generalized linear
mixed model to account for the repeated measures, where we focused
on the global properties. Specially, for each global property, we used
the maximum value within a given sample as the outcome variable,
since we usually have many clusters within one sample. We then
treated time (the number of weeks since diagnosed with COVID) and
sample characteristics, such as COVID active, COVID received, or
healthy, as fixed effects, while the subject was considered as a random
effect. This approach allowed us to account for multiple samples from
the same subject and to compare the maximum property values
across different groups. In addition, for each global property, we used
heatmaps to display the distribution of all values for each cluster
(columns) across the samples (rows), while the dendrogram on the
left side shows the hierarchical clustering based on the corresponding
property values.

2.4 Analysis pipeline

The disease-associated TCR cluster is characterized as a group
comprising TCRs that exhibit, at most, one amino acid difference in
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their TCR sequences and display a statistically significant difference
in their frequency between the disease group and the control group.
As illustrated in Figure 1B, first, we obtained the number of samples
share by a given TCR. To identify the COVID-associated TCRs, we
performed a Fisher exact test. Specifically, we calculated the number
of samples that shares a given TCR sequence, resulting in a 2 x 2
table. The first row of the table includes two numbers: the number
of healthy donors who share and do not share the given TCR
sequence. The second row includes two numbers: the number of
COVID-19 patients who share and do not share the given TCR
sequence. We used Fisher’s exact test (p< 0.05) to identify TCR
sequences that are potentially associated with COVID-19 based on
this 2 x 2 table. To identify clusters of COVID-associated TCRs, we
searched for TCRs that were in the same cluster as the COVID-
associated TCRs by analyzing all TCRs from shared samples using
network analysis (with a Hamming distance of<= 1). The TCR
clusters that were found only in COVID-19 samples were defined as
COVID-only TCR clusters, while the rest were defined as COVID-
associated TCR clusters. Finally, we constructed a network across all
COVID-associated TCRs, including their member TCRs in the
same cluster, and assigned global membership to the COVID-
associated clusters.

We proposed a workflow to identify the public clusters
(Figure 1C) by a customized search algorithm. The public cluster
encompasses TCRs that exhibit a maximum of one amino acid
disparity in their TCR sequences across individuals or within an
individual over time. Within the network for each sample, we
picked the top K largest clusters or a single node with a high
abundance (count > 100). Next, we selected a representative clone
with the largest count within each cluster. We then built a new
network using these selected clones, and the clusters that contained
clones from different samples were considered as the skeleton of
public clusters. To generate public clusters, we expanded each
skeleton public cluster to include any clones that belonged to the
same cluster in the original sample by another network analysis.
Finally, we assigned global membership to the public clusters based
on the previous step.

We also proposed downstream analysis to identify interesting
disease-specific and public clusters by testing across sample types.
Last, we validated our findings by exactly matching with the TCR
clones in MIRA datasets. All analyses, unless noted, were done by
the statistical computing software R and the programming
language Python.

2.5 Downstream analysis within disease-
associated clusters and public clusters

2.5.1 Differential testing of the TCR clusters

Once we assigned the global membership based on either Public
Clusters or Disease Associated Clusters Pipeline, we treated each
global cluster as a feature and then performed differential testing.
First, we aggregated the TCR clonal count for each sample for those
TCRs belong to the same global cluster. Next, to perform differential
testing of the aggregated counts between groups defined by clinical
characteristics/outcome, for example, active COVID-19 samples
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versus healthy donors, recovered COVID-19 samples versus healthy
donors and active COVID-19 samples versus recovered COVID-19
samples coming from multiple time points, we applied a generalized
linear mixed model to account for the repeated measures. We first
aggregated counts for each global cluster within a given sample,
normalized the aggregated counts by dividing them by the sample
read depth, and then applied a logarithmic transformation to the
normalized values, which served as the outcome variable. We
treated time and sample characteristics, such as COVID active,
COVID received, or healthy, as fixed effects, while accounting for
the subject as a random effect. This enabled us to control for
multiple samples from the same subject and to compare the cluster
aggregated counts across different groups.

2.5.2 Correlation between TCRs based
on Atchley factor

To analyze the TCR sequences within a cluster, we first
visualized the sequence pattern of each cluster through a
sequence logo (25), and then characterized each TCR
biochemically using its Atchley factor (26). The overall
biochemical properties of any amino acid sequence can be
expressed as a sequence of five Atchley factor values, which
correspond loosely to polarity, secondary structure, molecular
volume, codon diversity, and electrostatic charge (26). For the
TCR clones that belong to a TCR cluster, we first used TESSA
software (27) to create a numeric embedding of TCRs, where each
numeric vector represented a TCR sequence. Then, the pairwise
Pearson’s correlation coefficient among the Atchley factor encoded
TCRs within a cluster can be calculated, and their median and
interquartile range (IQR) can be obtained as a measure of the
similarity within the cluster.

2.5.3 Clustering samples based on TCRs

We first quantified the number of TCRs belonging to each TCR
cluster (defined based on network analysis as either COVID-
associated or public) in each sample and then normalized this
value by dividing it by the total number of TCRs within the sample.
Next, we calculated the correlation coefficient based on the
normalized number of TCRs in each TCR cluster across all
samples. We clustered the samples by hierarchical clustering
based on the normalized frequencies calculated in the previous step.

2.5.4 Probability of generation and Bayes factor
adjusted P-value (false discovery rate)

We introduced a new metric to evaluate the importance of the
clones by incorporating clonal generation probability (pg.,) and
clonal abundance using Bayes factor to evaluate the significance of
identified clones. We then calculated Bayes factor adjusted p-value
and false discovery rate (FDR) for each TCR and summarized the
proportion of the TCRs with Bayes adjusted FDR< 0.05.

The Bayes factor is the ratio of two marginal likelihoods. Clonal
generation probability (pg.,,) probabilistically annotates sequences,
and its modular structure can be used to investigate models of
increasing biological complexity for different organisms, which is
calculated by OLGA (28). For each clone M,, Bayes factor between
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clone M, and clone M; is calculated by

B = POLID)/P(M)

=— " % forc#jandc j=1, ..., K,
P(M;|D)/P(M,) Janee

where P(M;) is the pg, of clone M;, and P(Mj|D) is the
normalized frequencies of clone MJ in the repertoire D, j=
1, ..., K. Thus, each clone M, has a vector of K — 1 of BF,(j) values
corresponding to K —1 clones in the same repertoire. We are
interested in the proportion of X = log;o(BF.(j)) = x, because
log;o(BE.(j)) falls between the intervals of (0.5, 1), (1, 2), and > 2,
representing substantial, strong, and decisive chance presented in the
current data, respectively (29). Here, we can consider x, = 2. Note
that, under the null hypothesis, X follows a normal distribution with a
mean of 0 and a standard deviation of ¢ (¢ will be estimated through
the real data). Let Z be the number of log;o(BF.(j)) = x, , for ¢ #j
and ¢, j=1, ...,K, then under the null hypothesis, Z follows a
binomial distribution P(Z|p)~ Binomial (K -1, p) with a
probability of p =
function. Then, we 'can calculate a pseudo p-value P =

f(x)dx, where f(x) is a normal density

> 72, P(Z|p) for each clone ¢, corresponding to the probability
that clone ¢ has no less than z, of BF.(j) > x, in the null model
than in the data. z; can be calculated within each sample as the total
of the clones which have log;o(BF.(j)) = x,. Those clones with FD
Rgr < 0.05 will have a high potential to be COVID-specific TCRs,
where FDRg; is adjusted Pgp (30).

2.5.5 MIRA validation

We first conducted an exact matching to identify TCR
sequences found in the European COVID-19 dataset that were
exactly the same as those in the MIRA database. We then counted
the total number of matching TCR sequences within each cluster
and calculated the percentage by dividing this number by the total
number of TCRs within that cluster. It allowed us to identify and
quantify the degree of overlap between the TCR sequences found in
the European COVID-19 dataset and those in the MIRA database
and provided insights into the potential relevance of these
sequences to COVID-19 immunology.

3 Results

3.1 TCR repertoire responses in
SARS-CoV-2

The network analysis (Figure 2A, Supplementary Table S3)
showed that, in the recovered samples, there were more clusters
(Supplementary Figures S1A, B) identified with larger cluster size
(Supplementary Figures S1C, D), diameters (Figures 2B, C), and
assortativity (Supplementary Figures S1E, F) compared with healthy
donors and active samples (samples collected during active
infection), respectively. Interestingly, the repertoire network of
active samples had similar cluster size, maximum cluster size,
maximum diameter, and maximum assortativity as healthy
donors. Additionally, the maximum diameter for active samples
went down over the time while that of recovered samples went up.
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FIGURE 2

The relationship between the TCR repertoires and sample disease status. (A) The network for the representative samples (red: COVID active sample,
green: healthy donors, and blue: COVID recovered samples). Each dot represents a single T-cell receptor (TCR), which are connected based on their
similarity. The node size is proportional to the TCR clonal abundance. (B) Boxplot of the maximum diameter among the clusters for each sample
across time by disease status. (C) Heatmap of all diameter values for each cluster across samples. Each row represents an individual sample (with left
bar presenting the sample information) and each column is the diameter value for each sample, while the dendrogram on the left side shows the

hierarchical clustering based on diameter values.

This indicates that the recovered samples tend to have more
COVID-specific TCR clones than active samples and healthy
donors. This is consistent with a previous study that
demonstrated that patients who have recovered from COVID-19
had a more diverse repertoire compared with active COVID-19
infection and healthy donors (20). Perhaps patients with active
COVID-19 infection have not developed an adequate T-cell
response to clear infection.

3.2 Network analysis identifies the
COVID-associated clusters

We identified 135 clusters (a total of 10,416 TCRs) associated
with the COVID-19 samples based on Fisher’s exact test p< 0.05.
There are 30 COVID-only clusters, each shared by at least five
unique COVID samples (Table 1, Supplementary Table S4,
Supplementary Figure S2). Those clusters have a relatively small
size (a smaller number of TCRs), and their median pg.,, ranges from
1.2e-07 to 1.6e-17. Although the median py., across the samples in
this study is 2e-10, there are 11 COVID-only clusters with median
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Pgen less than 2e-10 and some even as low as 1.6e-17, indicating
those clusters might be the interesting COVID-specific TCRs. The
local network property, coreness, is very close to the number of
unique TCRs in the corresponding clusters (Table 1). The median
correlation coefficients of Atchley factor decoded TCR sequences
within each cluster ranges from 0.76 to 1, indicating that TCR
sequences within the same cluster are highly similar. These results
suggest that some clusters possess almost identical TCR sequences.
Among the 30 COVID-only TCR clusters, 17 clusters exhibit a high
degree of similarity in their TCR sequences, with only one or fewer
sequence variations within each cluster.

Among the 105 non-COVID-only clusters, we found eight
clusters associated with COVID-19 samples (Clusters 1, 3, 9, 14,
48, 58, and 68) and three associated with HD (Clusters 37, 64, and
76) based on differential testing (Table 2, Figures 3A, B). However,
the cluster size varies. Unlike the COVID-only clusters, coreness is
relatively smaller than the corresponding cluster size, indicating the
increased variability of TCR sequences within the clusters. We
found that, for all clusters except Cluster 14, the percentage of
significant TCRs based on Bayes factor adjusted FDR (FDRpg< 0.05)
was higher than 83%, indicating substantial TCRs in these clusters
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Cluster  No. of No. of active ~ No. of recovered Recovered Coreness” Pgen"" Correlation The % of TCRs
ID' TCRs COVID samples"  COVID samples" vs. active di median of Atchley matched with
estimate ecian [min factor" MIRAX
[min . )
(95% Cl) max]’ max] median [IQR]
P value”
o3 2.0e-10
o [2.0e
4 57 C ASSEGQLSTDTQYF 25 11 (~2.08, 0.03) 56[56,56] 05.0e 1[1,1] 0.0%
p=0058 o O']
8.0e-08
6 20 C ASSgPGgGSYEQYF 1 9 NA 5(4,6] _(E;iele 0.76[0.65,0.85] 40.0%
=25 07
s 1.4e-08
7 74 C AS@LGL AGQNEQFF 16 2 (~0.26,0.87) 55[30,55] (E;'ies 0.85[0.76,1] 35.1%
), p=0293 - o] ¢
048 3.9e-13
8 31 C ASSFGV AGGIYSPLHF 21 5 (~0.05,1.02) 27[27,27) 71[91'35; 1[1,1] 0.0%
\ p=0077 ) ©
076 7.9e-08
e [3.2¢
10 31 18 4 (~2.57,1.06) 27[25,27] o813 1[0.98,1] 0.0%
\ p=0413 _(;7']
1.7e-12
~1.28 (~3,0.44) [1.0 .
11 25 C ASQGLVDENEQFF 20 4 ol 24[24,24] bige 1[1,1] 0.0%
-12]
053 5.5e-09
e [1.7e
12 24 C ASSL AGGRTQETQYF 20 2 (-2.63,1.57) 23(23,.23] Cooss 1[1,1] 0.0%
p=0623 ol €
Lo 4.9e-10
T [2.9¢
13 25 20 3 (~3.33,0.76) 23[23,23] oo 11,1] 0.0%
p=0218 o N
156 1.3e-12
T [1.3e
20 19 C ATSRDWGQQGEQFF 16 3 (-335,0.23) 19[19,19] s 1L1] 0.0%
p=10.088 _1’2‘]
(Continued)
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TABLE 1 Continued

Cluster = No. of No. of active  No. of recovered Recovered Coreness" Pgen"" Correlation The % of TCRs
ID' TCRs COVID samples”  COVID samples" vs. active . median of Atchley matched with
. median . viii ix
estimate T [min, factor MIRA
(95% Cl) max]’ max] median [IQR]
P value”
095 9.3e-10
2 18 C ASVPRGLTDTQYF 15 (~2.75, 0.85) 18[18,18] _1[3'3633 1[1,1] 0.0%
p=03 _1’ 0']
o 22e-13
23 19 10 (~1.37, -0.29) 17[17,17] _l[i'gez 1[1,1] 0.0%
p=0.002 ) ¢
2.8e-11
25 18 C ASSPIRQG AKDTQYF 17 NA 17[17,17) _l[?'fese 1[1,1] 0.0%
= -10]
09 1.6e-07
29 25 C ASSRQGBTDTQYF 13 (~2.8,0.96) 17[15,17] 7511)66 0.88[0.84,1] 4.0%
JIVKUN p=0339 _(;7'] €
025 2.4e-07
30 18 C ASSLGQGGEKLFF 5 (-0.44,0.94) 16[12,16] 7(52.51;; 0915[0.77,1] 1L1%
Vs p=0474 _(;7']
es 3.0e-10
31 16 C ATSQDFQETQYF 15 (-4.79,1.49) 15[15,15] _1[3'?0 1[L1] 0.0%
p=0.303 o ©
ey 9.4e-11
3 15 C ASSPTSYGG ADTQYF 13 (-4.86,2.57) 15[15,15] 1[?.:69 11,1] 0.0%
Y P =0.546 N o) N
o 8.6e~10
33 16 C ASSL AGTTLGYTF 13 (-321,1.18) 15[15,15] 1[23 e6 1[L,1] 0.0%
p=0.363 7_1’0'] ¢
006 6.2e-10
34 23 C ATSDPGlGlTGELFF 6 (-0.1,0.22) 16[11,16] _1[(1)‘(1)316 0.96[0.92,0.99] 0.0%
1A p =047 _(;9‘]
(Continued)
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TABLE 1 Continued

Cluster = No. of No. of active  No. of recovered Recovered Coreness" Pgen"" Correlation The % of TCRs
ID' TCRs COVID samples”  COVID samples" vs. active . median of Atchley matched with
. median . viii ix
estimate T [min, factor MIRA
(95% Cl) . max] median [IQR]
¥ max]
P value
058 1.8e-07
36 33 C ASSEGL AGGXEQXF 7 (-2.44,1.29) 21[14,21] (E:;'Zez 0.93[0.82,0.98] 75.8%
= p=0544 h _(;7'] ¢
ool 1.0e-15
40 14 C ASSTVPGTIY A ANTGELFF 12 (-3.26,1.44) 13[13,13] 1[51;(1)eo 1[1,1] 0.0%
p = 0.448 __1’5'] ¢
7.3e-14
) 14 C ASSIEL ADNLFF 14 NA 13[13,13] _I[Z';Ze 1[L,1] 0.0%
~14]
o6 5.1e-08
43 38 C ASSLGL AGGQETQYF 5 (-0.25,0.57) 22[12,22] 7(53.?6 0.9[0.86,0.95] 13.2%
=\ = p=0435 e ¢
s L6e-17
45 13 CSVF' I TGPSETSYNEQFF 10 (-4.16,1.07) 1212,12] 71[;;61 1L,1] 0.0%
v p=0246 o ¢
o 12e-15
47 12 C ASSQDLVVPDSLFSG ANVLTF 10 (-3.99, ~0.46) 11[11,11] _1[;?2 1[1,1] 0.0%
p=0014 s ¢
s 2.66-09
49 12 C ASSLGR ARGDTQYF 11 (-5.26,1.89) 1[11,11] 52'22 11,1] 0.0%
p=0356 - 9 ¢
os1 49¢-11
50 12 C ASRPK AVSSYNSPLHF 10 (-2.67,1.06) 1[11,11] 2[;'1: 1[1,1] 0.0%
p=0397 7_1’1'] ¢
e 1.8¢-10
51 11 C ASSLEWTGLNYEQYF 10 (~4.41,1.13) 10[10,10] 1[(1)'?58 1[L1] 0.0%
p=0245 - o ¢
(Continued)

‘le 1@ bue)

GZ8T8TT 2202 NWWY/68¢¢°0T


https://doi.org/10.3389/fimmu.2023.1181825
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

ABojounwiwi| Ul s1913U044

0T

[SSIRVFETMIIT]

TABLE 1 Continued

Cluster = No. of No. of active  No. of recovered Recovered Coreness" Pgen"" Correlation The % of TCRs
ID' TCRs COVID samples”  COVID samples" vs. active . median of Atchley matched with
. median . viii ix
estimate T [min, factor MIRA
(95% Cl) . max] median [IQR]
¥ max]
P value
—044 1.6e-07
[3.9¢
54 24 C ASS%L AGGQETQYF 3 5 ~0.89,0.01) 19[9,19] ot se 0.87[0.81,0.93] 58.3%
z p=0053 - (;7']
2.7e-07
[7.4e o
74 11 C ASSLQEQSGNTIYF 1 6 NA 64,6] 08516 0.78[0.69,0.89] 18.2%
-07]
o 1.{2;07
88 5 C ASSngL AGTDTQYF 2 3 (~1.49,0.83) 3123] —08.1e4e 0.89[0.86,0.92] 0.0%
p =058 _(;7']

'Cluster ID is defined based on the network analysis across all samples.
iiSequence logo visualizes all TCR sequences within the corresponding cluster.

""The number of the active COVID samples which the corresponding cluster belongs to.
“The number of the recovered COVID samples which the corresponding cluster belongs to.

“Estimate (with 95% CI) and p-value were obtained based on a linear mixed model or linear model.

“iSummary of the coreness (local property) of the TRCs in the corresponding network cluster.

ViSummary statistics [median Interquartile range (IQR)] of pgen of TCRs in the corresponding network cluster.
"i“Summary statistics [median [Interquartile range (IQR)] of pairwise correlation coefficients between the TCR sequences within the public cluster, where the amino acid sequences were transformed by Atchley factor.
“The percentage of the TCRs in the public cluster matched with MIRA.
Clusters 23 and 47, highlighted in light green, had negative estimates and p< 0.05 were considered to be associated with COVID-active samples.
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Cluster No. of HD No. of active COVID No. of Recovered COVID Estimate (95% Cl) P-value™ Coreness™ % of significant TCRs based on Correlation of Atchley factor™ The % of TCRs matched
ID* samples™ samples™ samples™ Median Bayes factor™ median [IQR] with MIRA™
Active vs. HD Recovered Recovered vs. [Min, Max]
vs. HD active
1 884 22 32 -0.09 0.44 0.53 146(1, 99.2% 0.55[0.36, 0.74] 82.6%
(-0.4, 0.23) (0.08, 0.8) (0.17, 0.88) 155]
p=0588 P=0016 P =0.004
3 641 26 32 0.33 0.66 0.32 75[1,118] 98.1% 0.53[0.39,0.69] 59.6%
(~0.09, 0.75) (0.19, 1.12) (<02, 0.83)
p=0121 p =0.006 p=0224
9 1668 30 34 0.26 0.62 0.36 375 99.5% 0.67[0.53,0.78] 74.6%
(0.09, 0.43) (0.43, 0.82) (0.18, 0.54) [10,609]
p =0.003 < 0.001 p< 0.001
14 24 2 14 224 1.63 -0.6 22[22,22] 4.2% 1[1,1] 0.0%
(1.16, 3.32) (0.48, 2.79) (~1.39, 0.18)
p< 0. 001 P =0.006 p=0132
19 71 11 10 -0.28 0.08 0.36 37[1,37] 100.0% 0.59[0.33,0.81] 59.2%
(-0.7, 0.14) (-0.34, 0.5) (0.11, 0.61)
p=0.186 p=0712 p =0.005
21 317 18 22 -0.33 0.03 0.36 25[1,86] 98.4% 0.61[0.49,0.74] 58.0%
(~0.72, 0.06) (~0.38, 0.45) (0.02, 0.7)
p=0.101 p=0883 =004
26 224 13 15 -0.33 0.15 0.48 142[1,142] 99.6% 0.78[0.66,0.87] 81.3%
(<08, 0.15) (-0.33, 0.62) (0.01, 0.94)
' p=0178 p=054 = 0045
37 18 2 8 -2.62 -3.61 -0.99 14[14,14] 83.3% 0.86[0.78,1] 0.0%
(=517, =115) (-5.33, -1.89) (-2.59, 0.62)
p<0.001 p<0.001 p=0227
38 38 1 2 1.04 0.62 -0.42 22[13,22] 100.0% 0.82[0.7,0.88] 65.8%
(0.25, 1.84) (-0.07, 1.31) (~0.94, 0.09)
p =001 p=0078 p=0.105
48 933 22 32 0.09 0.5 0.4 224 99.2% 0.61[0.47,0.76] 88.0%
(-0.21, 0.39) (0.16, 0.83) (0.05, 0.75) [11,343]
p=0547 P =0.004 p=0024
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TABLE 2 Continued

Cluster Motif™ No. of HD No. of active COVID No. of Recovered COVID Estimate (95% Cl) P-value™ Coreness™ % of significant TCRs based on Correlation of Atchley factor™ The % of TCRs matched
D™ samples™ samples™ samples™ Median Bayes factor™ median [IQR] with MIRA™
Active vs. HD Recovered Recovered vs. [Min, Max]
vs. HD active
53 1134 gN 20 37 18 -0.06 0.17 0.23 77(4,268] 99.3% 0.58[0.41,0.72] 74.0%
-0.29, 0.17 -0.07, 0.41 0.01, 0.46,
REET, ( ) ( ) (¢ )
p=0612 p=0.156 p = 0.042
58 91 3 7 12 1.11 1.1 -0.01 31[4,33] 98.9% 0.66[0.47,0.83] 75.8%
(0.74, 1.48) (0.75, 1.44) (~0.28, 0.25)
o p =< 0,001 p< 0.001 p=0914
63 8 1 1 5 0.14 -0.63 -0.77 6[1,6] 100.0% 0.8[0.74,0.87] 12.5%
3| (-0.84, 1.11) (~1.38, 0.13) (-1.52, -0.01)
A
p=0782 p=0.103 p =0.047
64 281 12 18 16 -0.49 -0.12 0.38 64(2,80] 100.0% 0.51[0.36,0.7] 56.9%
(=0.91, -0.07) (-0.53,0.3) (-0.02, 0.79)
o p=0022 p=0581 = 0063
68 632 E 21 25 18 -0.13 0.56 (0.11, 1) 0.68 53[1,169] 99.5% 0.59[0.43,0.75] 75.3%
é (~0.53,0.28) p=0014 (025, 1.12)
p=0543 p = 0.002
76 11 g 2 1 6 -0.72 -0.07 0.64 3[3,4] 100.0% 0.72[0.61,0.87] 72.7%
(1.3, -0.13) (-0.47, 0.32) (0.14, 1.14)
p=0017 p=071 p=0012

“Cluster ID is defined based on the network analysis across all samples.

Sequence logo visualizes TCR sequences within the corresponding cluster.

“The number of the healthy donor (HD) samples which the corresponding cluster belongs to.

“The number of the active COVID samples which the corresponding cluster belongs to.

“The number of the recovered COVID samples which the corresponding cluster belongs to.

*Estimate (with 95% CI) and p-value were obtained based on a linear mixed model or a linear model.

“Summary of the coreness (local property) of the TRCs in the corresponding network cluster.

“The percentage of the significant TCRs within each cluster based on Bayes factor FDR< 0.05.

PSummary statistics [median (interquartile range, IQR)] of pairwise correlation coefficients between the TCR sequences within the cluster, where the amino acid sequences were transformed by Atchley factor.

The percentage of the TCRs in the cluster matched with MIRA.

Clusters 1, 3,9, 14, 38, 48, 58, and 68, highlighted in light pink, with positive estimates and p values< 0.05 in either the active versus HD or recovered versus HD columns were considered to be associated with COVID-19 samples. Clusters 37, 64, and 76, highlighted in light
green, with negative estimates and p< 0.05 in either the active versus HD or Recovered versus HD columns, were considered to be associated with HD samples. Similarly, Clusters 1, 9, 19, 21, 26, 48, 53, 68, and 76, highlighted in light pink, with positive estimates and p< 0.05
in recovered versus active columns were therefore considered to be associated with COVID-19-recovered samples, while Cluster 63, highlighted in light green, had negative estimates and p< 0.05 was considered to be associated with COVID-active samples.
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COVID-associated TCR clusters. (A) The network of the COVID-associated T-cell receptors (TCRs) whose clusters have statistically significant
abundance across subjects’ disease status. Each node represents a single TCR, which are connected if the distance between the two nodes is <= 1
with color coded for the disease status. (B) A representative COVID-associated TCR cluster. The plot exhibits network of all TCRs within the selected
cluster, where each TCR is color coded based on different metadata information. The right panel presents the corresponding sample’s status, such
as active COVID sample, healthy donor, or recovered COVID sample, and the middle panel shows whether the Bayes factor corrected FDR is less
than 0.05 or not. The final panel included information on exact matching with MIRA, indicating whether the TCRs match with those identified in the
MIRA dataset that bind to specific epitopes. (C) Heatmap of pairwise correlation coefficients across samples. The hierarchical clustering of the
samples was performed using the Pearson’s correlation coefficient. Correlation coefficient was calculated based on the normalized number of TCRs

in each COVID-associated cluster within the samples.

presented in the current data with strong evidence. In addition,
most clusters each have at least 50% of TCRs matched with the
MIRA dataset, suggesting that TCRs in these clusters have a high
potential to be SARS-CoV-2 antigen-specific TCRs. The median of
the correlation coefficients of the Atchley factor decoded TCRs
within each cluster ranges from 0.51 to 0.86, indicating that all
clusters have highly correlated structures. Figure 3C presents the
sample classification based on correlation coefficient of TCRs.

3.3 Network analysis identifies the
public clusters shared by different
samples and subjects

We identified 1,594 public clusters shared among at least two
samples, among which more than two unique individuals shared
170 clusters. Fourteen public clusters were identified by comparing
the aggregated clonal abundance across the three groups (healthy
donor samples vs. COVID active and recovered samples,
respectively) (Table 3, Figures 4A, B). These public clusters
usually have huge cluster sizes, and the TCRs in most public
clusters have very small coreness, implying relatively high
variability among the TCR sequences within each cluster. The
median of the correlation coefficients of Atchley factor coded
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TCRs within each cluster ranges from 0.35 to 0.67, indicating the
structures of the clusters are moderately correlated. Figure 4C
presents the sample classification based on correlation coefficient
of TCRs. In addition, we found that except for Clusters 32 and 44,
the percent of the significant TCRs (FDRgg< 0.05) was higher than
84%, indicating substantial TCRs in these public clusters presented
in the current data with a strong chance. Furthermore, three clusters
have more than 50% of their TCRS matched with the MIRA dataset.
Those results suggested that those TCRs in these public clusters
have a high potential to be SARS-CoV-2 antigen-specific TCRs.

3.4 Comparing with GLIPH2 results

We further compared our findings with the results obtained by
GLIPH2 (Supplementary Table S5). Using GLIPH2 to analyze the
European COVID datasets, we found 57,943 TCRs within 4,009
patterns when comparing COVID samples versus HD samples (p<
0.05, out of 833,028 TCRs within 156,383 patterns). Downstream
differential testing based on TCR clonal abundance was applied to
the 3,979 TCR clusters (32,282 unique TCRs) with at least three
position matching. Supplementary Table S5 presents the number of
unique TCR clones identified by both Network Analysis of Immune
Repertoire (NAIR) and GLIPH2, their overlaps, and the number of

frontiersin.org
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Public No. Motif™ No. of No. of No. of Estimate (95% Cl) Coreness™  The % of signifi-  Correlation of The % of
cluster  of HD active recovered P-value™ Median  cant TCRs based  Atchley factor™ TCRs
ID™ TCRs samples™ COovID CcoviD [Min,Max] = on Bayes factor™  median [IQR] matched
. Y
samples™ samples™ Active Recovered = Recovered with MIRAX
COVID vs. COVID vs. COVID vs.
HD HD active
COVvID
1 2092 S 12 39 19 033 0.7 (0.38, 1.02) | 0.37 (0.11, 0.63) 1[1,6] 84.6% 0.37 28.7%
CASS QgggYEQXF (0.02, 0.64) p< 0.001 p =0.005 [0.2,0.53]
A p =0.039
2 1918 13 40 18 -0.79 ~0.49 0.3 (0.06, 0.54) 2[1,7) 95.3% 0.4 41.6%
(-1.07,-051) | (~0.79, -0.19) p=0015 (0.28,0.59]
vl p< 0.001 p=0.001
4 2321 g Y 13 40 18 0.46 0.67 02 1[1,6] 90.4% 0.5 39.5%
2 (0.09, 0.84) (0.25, 1.09) (-0.14, 0.54) (0.34,0.65)
vResE p=0016 p =0.002 p=024
6 1585 ﬁﬁ 12 39 18 041 055 (0.11,1)  0.14(-0.2, 0.48) 1[1,4] 86.1% 0.67 22.1%
o (0.02, 0.81) p=0014 p=0424 [0.55,0.78]
VEBAEE p = 0.041
7 1011 gY 12 38 18 038 0.5 (0.19, 0.82) 0.12 1[1.8] 90.4% 0.4 80.3%
CAS%%@EQXF (0.08, 0.67) p p =0.002 (-0.13, 0.38) (0.28,0.6]
T =0.012 p=0342
8 21799 17 39 19 025 0.46 021 2[1,9] 90.5% 0.43 50.5%
(-0.02, 0.51) (0.18, 0.73) (~0.04, 0.46) [0.27,0.59]
vessEla p =0.067 p = 0.001 p=0.095
9 782 N 8 24 18 -0.82 -0.63 0.19 1[16] 93.4% 0.54 26.3%
258 (-1.27,-0.38)  (~1.07, -0.19) (-0.14, 0.53) 0.4,0.68]
e < 0.001 p = 0.005 p=026
11 894 9 34 15 -0.07 0.27 0.35 (0.01, 0.68) 1[1,9] 84.8% 0.6 29.0%
2 (-0.48, 0.34) (-0.18, 0.73) p=0045 [0.46,0.74]
: : p=0733 p=0241
16 493 7 13 15 -0.41 -0.25 0.16 1[1,4] 97.0% 0.42 50.7%
(-0.75,-0.07)  (~0.56, 0.07) (=0.12, 0.44) (0.26,0.57)
VS p=0017 p=012 p=0262
18 681 EQ 12 27 18 0.13 034 021 3[1,8] 89.7% 0.67 48.9%
g (-0.14, 0.4) (0.06, 0.61) (~0.03, 0.44) [0.55,0.84]
ot p=0334 p=0015 p =0.084
22 698 9 16 13 -0.36 -0.34 -0.25 1[1,4] 92.1% 0.41 28.1%
3 (-0.7,-0.02)  (~0.66, ~0.02) (0.79, 0.28) [0.26,0.56]
e p=0.036 P =0.039 p=0352
(Continued)

GZ8T8TT 2202 NWWY/68¢¢°0T


https://doi.org/10.3389/fimmu.2023.1181825
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

ABojounwiwi| Ul s1913U044

ST

[SSIRVFETMIIT]

TABLE 3 Continued

Public
cluster
IDix

(\[oR

of

TCRs

No. of

active

coviD.
samples'

No. of
recovered
CoviID.
samples™

Active
COVID vs.
HD

Estimate (95% Cl)

P-value™

Recovered
COVID vs.
HD

Recovered
COVID vs.
active
CovID

X

Coreness'
Median
[Min,Max]

The % of signifi-
cant TCRs based
on Bayes factor™

Correlation of
Atchley factor
median [IQR]

IX

The % of
TCRs
matched
with MIRA™

27 334 12 10 -0.52 -0.39 0.13 1[1,5] 92.8% 047 25.7%
(=09, -0.13) (=077, 0) (<0.18, 0.45) [0.31,0.62]
= p=0.008 p=0051 p = 0409
32 103 9 8 -0.75 -1.18 -0.43 1[1,5] 77.7% 035 35.9%
(-1.39,-0.1)  (~1.84, —0.52) (-0.95, 0.09) [0.15,0.55]
=adl p=0023 p< 0.001 p=0.104
44 34 A 8 4 NA NA -0.46 1[1,1] 52.9% 0.44 5.9%
G (-0.82, -0.1) [0.29,0.6]
p=0012

*Ppublic cluster ID is defined based on the network analysis across all samples.

Sequence logo visualizes all TCR sequences within the corresponding public cluster.

“The number of the healthy donor (HD) samples which the corresponding public cluster belongs to.
The number of the active COVID samples which the corresponding public cluster belongs to.

“The number of the recovered COVID samples which the corresponding public cluster belong to.
*Estimate (with 95% CI) and p-value were obtained by a linear mixed model or a linear model.
“Summary of the coreness (local property) of the TRCs in the corresponding network cluster.

™The percentage of the significant TCRs within each public cluster based on Bayes factor FDR< 0.05.

“Summary statistics [median (Interquartile range, IQR)] of pairwise correlation coefficients between the TCR sequences within the public cluster, where the amino acid sequences were transformed by Atchley factor.

“The percentage of the TCRs in the public cluster matched with MIRA.
Clusters 1, 4, 6, 7, 8, and 18, highlighted in light pink, with positive estimates and p< 0.05 in either the active versus HD or recovered versus HD columns were considered to be associated with COVID-19 samples. Clusters 2, 9, 16, 22, 27, and 32, highlighted in light green,
with negative estimates and p< 0.05 in either the active versus HD or recovered versus HD columns, were considered to be associated with HD samples. Similarly, Clusters 1, 2, 8, and 11, highlighted in light pink, with positive estimates and p< 0.05 in recovered versus active
columns were therefore considered to be associated with COVID-19-recovered samples, while Cluster 44, highlighted in light green, had negative estimates and p< 0.05 was considered to be associated with COVID-active samples.
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Public shared TCR clusters. (A) The network of the public T-cell receptors (TCRs) whose clusters have statistically significant abundance across
subjects’ disease status. Each node represents a single TCR, which are connected if the distance between the two nodes is <= 1 with color coded
for the disease status. (B) A representative public TCR cluster. The plot exhibits network of all TCRs within the selected cluster, where each TCR is
color coded based on different metadata information. The right panel presents the corresponding sample’s status, such as active COVID sample,
healthy donor, or recovered COVID sample, and the middle panel shows whether the Bayes factor corrected FDR is less than 0.05 or not. The final
panel included information on exact matching with MIRA, indicating whether the TCRs match with those identified in the MIRA dataset that bind to
specific epitopes. (C) Heatmap of pairwise correlation coefficients across samples. The hierarchical clustering of the samples was performed using
the Pearson’s correlation coefficient. Correlation coefficient was calculated based on the normalized number of TCRs in each public cluster within

the samples.

those TCR clones matched with the MIRA database after initial
searching and after differential testing. Interestingly, the TCRs
identified by both approaches are more likely to be validated by
the MIRA database (last column). NAIR consistently outperforms
much better than GLIPH2 based on the number of TCRs validated
by the MIRA database.

3.5 Sensitivity analysis

Because clonal grouping can be impacted by experimental
factors such as sampling and sequencing depth, we performed a
sensitivity analysis on one active sample and one recovered sample
for illustration purposes (Supplementary Figures S3A, B). We
subsampled clones to achieve similar sequencing depth of 5,000,
weighted by the distribution of normalized abundance. Although
the number and size of the clusters decreased, the general pattern of
the network and matching with the MIRA dataset remained
(Supplementary Figures S3C, D).

To account for the differences in sequence lengths when using
Hamming distance, we expanded all sequences to the maximum
length by appending zero to the right side of each sequence, a
common way to deal with discrepancies in sequence lengths.
However, we acknowledge that this alteration may introduce bias
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into our analysis. As a sensitivity analysis, we also used the
Levenshtein distance metric, which is designed to compare the
dissimilarity of TCR sequences of different lengths while accounting
for gaps and insertions. Although the Levenstein distance (Python
module Levenshtein with distance function) versus Hamming
distance (Python module SciPy with pdist function)
(Supplementary Figures S3E, F) were similar in structure and
pattern, the threshold of distance might play a significant role.
Since the current paper focused on the CDR3 amino acid sequence,
as discussed in (31), we used a cutoft of 1. However, for full-length
nucleotide TCR sequences, a cutoff of 1 is probably too stringent.
Based on the sensitivity analysis with different cutoffs
(Supplementary Table S6A), we found that, as expected with a
higher cutoff (i.e., 2), the number of clusters within the network is
smaller and the cluster sizes are relatively larger. Such differences
are more noticeable when Levenstein distance is applied. However,
the differences are less when applied to CDR3 nucleotide
sequence analysis.

We chose fast greedy approach as the clustering approach for
network analysis due to the fastest speed. We compared the results
of all available methods in igraph (fast greedy, walktrap, eigen,
betweenness, and Louvain). All approaches generated similar
results for small-to-moderate-size clusters except Leiden
(Supplementary Table S6B). However, when the data have larger
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nodes, such as when we perform network analysis to obtain the
global membership to obtain public clusters, fast greedy and
Louvain provide comparable similar results while other methods
break the clusters into small-size memberships.

For public cluster searching, the choice of K is arbitrary. As
expected, the larger the K is, the more public clusters will be
identified. However, the choice is relatively robust regarding the
number of clusters shared by more than five samples. Since the
identified TCRs in the clusters will usually be used for further
validation by either external data or functional analysis, one can
choose a loose criterion to include more candidate TCRs.

3.6 Computational environment

With a MacBook Pro (Processor of 2.3 GHz Intel Core i9 and
Memory of 32 GB 2400 MHz DDR4), it uses 50-1,700 Mb memory
to perform network analysis (Hamming distance) on a sample with
1,000-50,000 clones by using the current version of the software,
which takes 2 s to 35 min, respectively. It takes much longer (up to
25 times longer) if Levenshtein distance is applied.

4 Conclusion and discussion

Due to the heterogeneous nature of T cells across time and
different subjects, analyses of AIRR-seq data have been challenging.
Network analysis allows us to potentially uncover the biological
significance of unique TCRs based on sequence. We developed two
different pipelines to identify disease-specific clusters and public
clusters, along with novel metrics to evaluate the identified clusters
along with downstream analysis. The workflows can be applied to
B-cell repertoires directly and can be easily extended to identify the
clusters that respond to treatment (32).

COVID-19 epitope-specific TCR clones in MIRA were also
found in the European datasets, suggesting that COVID-19 subjects
develop a distinct subset of T cells against just a few epitopes (18).
When matching with MIRA data, results indicated a higher
proportion of COVID-19-specific TCRs in recovered subjects,
implying TCRs might be used as a prognostic marker.
Interestingly, samples from subjects with active COVID-19
infection were more similar to those of healthy donors. This is
consistent with a previous study that demonstrated that patients
who have recovered from COVID-19 had a more diverse repertoire
compared with active COVID-19 infection and healthy donors (20).
Patients with active COVID-19 infection may not have developed
an adequate T-cell response to clear infection. Thus, their repertoire
appears similar to healthy donors. It is not surprising that more
public TCR clusters were detected within the MIRA dataset but
fewer COVID-specific clusters matched with MIRA datasets. As
shown in Table 2, those public TCR clusters have a relatively high
probability of generation, which means they have a higher chance to
present in human subjects (including the MIRA dataset). In
comparison, the COVID-specific clusters have a relatively low
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probability of generation (Table 1) or a lower chance of
presenting in human subjects. The MIRA dataset is still under
construction, so it does not have a complete list of COVID-related
epitopes. Furthermore, the MIRA dataset mainly collected samples
from North America instead of Europe, and it used Adaptive
ImmunoSQE (21), while the European data used customized
NGS (20).

Several methods for the computational and statistical analysis
of large-scale AIRR-seq data have been developed to resolve
immune repertoire complexity and to understand the dynamics of
adaptive immunity by using network analysis, such as GLIPH2 (18),
ImmunoMap (19), TESSA (27), and iSMART (33). However,
GLIPH2, iSMART, and TESSA focus more on single-cell RNA
sequences. The comparison with GLIPH2 shows that our proposed
pipelines can identify more COVID-specific TCRs (Supplementary
Table S5). Like many other computational approaches, our method
involved selecting specific methods and parameters. To assess the
robustness of our results to these choices, we conducted brief
sensitivity analyses of the critical options (Supplementary Figure
S3, Supplementary Table S6). We found that the results were
relative robust to variations in these options and parameters.

One limitation of our proposed method is that we have used a
dataset derived from COVID-19 subjects. SARS-CoV-2, the virus
responsible for COVID-19, has relatively fewer epitopes compared
with more complex diseases, such as malignancies with high-
mutational burden (33). Thus, applying the proposed analysis
workflow to study the immune response in other diseases, such as
cancer and treatment (e.g., cancer immunotherapy), may be
significantly more complex. Although the proposed pipeline can
be applied to diverse sequence assays, if the objective is to identify
public or related clusters, then it is advisable to use TCR sequences
obtained from the same sequencing assay. Additionally, another
limitation to searching for disease-associated clusters is that the
initial implementation of Fisher’s exact test requires an adequate
sample sizes. Finally, human leukocyte antigens (HLA) are proteins
that help individual immune cells from distinguishing between
foreign and self. HLA alleles have been correlated to incidence
and severity of diseases such as COVID-19. For example, HLA-
B*15:03 has been shown to present a larger array of peptides and
individuals with Class I HLA alleles have milder COVID-19
infections compared with other individuals with higher
heterozygosity. Interestingly, HLA-B*15:03 is prevalent in West
Africa and countries with high-endemic malaria. Our data do not
have the complete set of HLA alleles possible, because much of our
data come from Europe. A larger and more diverse dataset including
HLA allele information combined with identified COVID-specific
can provide a more comprehensive understanding of the T-cell
response to COVID-19.

In conclusion, we have developed a bioinformatics pipeline by
incorporating the proposed methods and techniques to tackle the
complexity of the immunosequencing data in a translational
fashion. The associations found in our study need further
functional studies to confirm the biological significance and to
explore their clinical applications. Validation of TCR antigen
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specificity traditionally require identification of antigen-specific
TCRs with peptide/HLA multimers then expression and
functional testing of identified TCRs, which is labor and time
intensive. This in-silico bioinformatic approach can improve the
current workflows by narrowing the number of TCRs that need to
be tested.
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SUPPLEMENTARY FIGURE 1

Network properties. (A) Boxplot of the (logio transformed) number of the
clusters within each sample. (B) Heatmap of the number of the clusters within
each sample. Each row represents an individual sample (with left bar
presenting the sample information), while the column corresponds to the
number of the clusters. (C) Boxplot of the (logig transformed) maximum
number of the T-cell receptors (TCRs) within each of the clusters for each
sample. (D) Heatmap of the number of the TCRs within each of the clusters
for each sample. Each row represents an individual sample (with left bar
presenting the sample information), while each column corresponds to the
number of the TCRs within each of the clusters for each sample. (E) Boxplot
of the maximum assortativity within each of the clusters of the clusters for
each sample. (F) Heatmap of the assortativity within each of the clusters of the
clusters for each sample. Each row represents an individual sample (with left
bar presenting the sample information), while each column corresponds to
the assortativity within each of the clusters of the clusters for each sample.

SUPPLEMENTARY FIGURE 2

Representative COVID-only TCR clusters. (A—C) Each figure presents a T-cell
receptor (TCR) cluster with the motif showing on the top. Each node
represents a single TCR which are connected if the distance between the
two nodes is<= 1, with node size is proportional to the TCR clonal abundance.
The color code in the top panel presents if the TCRs belong to active (red) or
recovered (blue) samples, while in the bottom panel, color corresponds to
each individual subject information.

SUPPLEMENTARY FIGURE 3

Sensitive analysis. (A, B) Network analysis of samples Pt-5-2 (actives) and
Pt-7-4 (recovered) based on the original data using Hamming distance. (C, D)
Network analysis of samples Pt-5-2 (actives) and Pt-7-4 (recovered) based on
the subsampling using Hamming distance. (E, F) Network analysis of samples
Pt-5-2 (actives) and Pt-7-4 (recovered) based on the original data using
Levenshtein distance. In each figure, each node represents a single TCR
which are connected if the distance between the two nodes is<= 1. Colored
dots represent if matched with MIRA data (green) or not (red).
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