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Abstract: This study develops a unified test procedure for nonparametric functions
in a reproducing kernel Hilbert space of high-dimensional or functional covariates.
The test procedure is simple, computationally efficient, and practical because we
do not need to distinguish high-dimensional or functional covariates. We derive the
asymptotic distributions of the proposed test statistic under the null and a series
of local alternative hypotheses. The asymptotic distributions depend on the de-
cay rate of the eigenvalues of the kernel function. This decay rate is determined
by the kernel function and the types of covariates. We also develop a novel ker-
nel selection procedure to maximize the power of the proposed test by maximizing
the signal-to-noise ratio. The proposed kernel selection procedure is shown to be
consistent in selecting the kernels that maximize the power function. Moreover, a
test with a regularized kernel is constructed to further improve the power. It is
shown that the proposed test nearly achieves the power of an oracle test if the reg-
ularization parameter is properly chosen. Extensive simulation studies evaluate the
finite-sample performance of the proposed method. Finally, we apply the proposed
method to a Yorkshire gilt data set to identify pathways that are associated with
the triiodothyronine level. The proposed methods are included in an R package
“KerUTest.”

Key words and phrases: Gene set analysis, kernel funection, nonparametric regres-
sion, reproducing kernel Hilbert space.

1. Introduction

High-dimensional or functional data arise in a wide range of areas, including
biology, imaging, and climate. In genetic studies, millions of single nucleotide
polymorphisms (SNPs) can be measured simultaneously using high-throughput
technologies. The identification of genes that are associated with certain traits,
such as blood pressure and grain yield, is becoming increasingly important in

health and agriculture sciences. Although the traditional methods focus on a

Corresponding author: Ping-Shou Zhong, Department of Mathematics, Statistics and Computer
Science, University of Illinois at Chicago, Chicago, IL 60607-7045, USA. E-mail: pszhong@uic.edu.

This content downloaded from
130.212.18 96 on Thu, 15 Jan 2026 20:18:48 UTC
All use subject to https://about jstor.org/terms


https://doi.org/10.5705/ss.202020.0339
mailto:pszhong@uic.edu

920 HE ET AL.

single gene-based analysis, this method has limitations (Manolio et al. (2009)).
Gene-set based analysis (e.g., Subramanian et al. (2005)) holds great promise,
because gene regulation is often complex and genes tend to work together in a
nonlinear way (Liu, Lin and Ghosh (2007); Li and Cui (2012)) to achieve certain
biological functions. To model the association between a certain trait ¥ and a
gene set X, we consider the following nonparametric regression:

Yi=p+h(Xi)+e i=1,...,n, (1.1)

where X4, ..., Xy are independent and identically distributed (i.i.d.) p-dimensional
covariates generated from a probability measure on RP, h(X;) is an unknown non-
parametric function of X; = (Xa,..., Xip)T, and ¢; are i.i.d. random errors with
mean zero and variance o2. For the purpose of model identification, without loss
of generality, we assume F{h(X;)} = 0.

In a gene-set analysis, the number of genes p in a gene-set can be in the order
of thousands, but the sample size n is limited and much smaller than p. If there
is no natural ordering among {X;; }?=1, X, is a p-dim vector and X; may be con-
sidered to be high-dimensional data (e.g., Bai and Saranadasa (1996)). A “large
p, small n” setup can be used to study high-dimensional data when p is much
larger than n. If {X;;}7_; can be indexed by a certain variable (e.g., chromo-
some locations), then Xj;; may be considered as a realization of a functional curve
X;(-) observed at t;, where t; <ty < --- < t,. Then, X; = {X;(t1),.. .,Xi(tp)}T
is a collection of p repeated measurements of X;(-), a smooth curve in some
underlying functional space (Ramsay and Silverman (2005)). When p is much
larger than n, X; denotes dense functional data. An interesting procedure called
“stringing” was developed by Chen et al. (2011) to transform high-dimensional
data into functional data. However, in many real applications, considering X as
high-dimensional or functional data is often subjective. To avoid this subjective
choice, we use a general reproducing kernel Hilbert space (RKHS) for h(-), so
that our approach is applicable to both high-dimensional and functional data.

This study aims to test the existence of a nonlinear association between a
quantitative trait Y and a gene set X, which is equivalent to testing the following;:

Ho:h(-)=0 vs Hi:h(-)#0. (1.2)

Hypothesis testing for a nonparametric function of an explanatory variable in a
finite-dimensional Euclidean space has been well studied in the literature. For
example, Chen, Hardle and Li (2003) and Gao and Gijbels (2008) considered

inference for nonparametric functions based on kernel smoothing estimators.

This content downloaded from
130.212.18 96 on Thu, 15 Jan 2026 20:18:48 UTC
All use subject to https://about jstor.org/terms



UNIFIED TESTS FOR NONPARAMETRIC FUNCTIONS IN RKHS 921

Shang and Cheng (2013) developed a general inference for nonparametric func-
tions in a Sobolev space based on smoothing spline estimators. Fan, Zhang and
Zhang (2001) developed generalized likelihood ratio tests for various nonparamet-
ric models with parametric distribution errors, and established Wilks theorems
for a class of the generalized likelihood statistics using local polynomial estima-
tors. Recently, Yang, Shang and Cheng (2020) developed a non-asymptotic test
and Liu, Shang and Cheng (2018) developed a computationally efficient test for
nonparametric functions. Most existing methods require an estimation of non-
parametric functions, and suffer from the “curse of dimensionality” (Fan (2018)).
Hence, they cannot be easily generalized to functions with explanatory variables
in a high-dimensional space without a specific structure. In the high-dimensional
linear regression with h(X) = XT3, testing h(-) = 0 is equivalent to testing
high-dimensional coefficients 3 = 0 (e.g., Zhong and Chen (2011), Lan, Wang
and Tsai (2014), Wang and Cui (2013)). However, these methods were designed
for a linear model and do not apply to a general nonparametric function. When
X; is considered as functional data, extensive studies have been done for hy-
pothesis testing under various model settings, for example, under the functional
linear model (e.g., Kong, Staicu and Maity (2016); Su, Di and Hsu (2017)), under
generalized functional linear models (e.g., Shang and Cheng (2015); Li and Zhu
(2020)), and considering nonparametric functions of functional covariates (e.g.,
Delsol, Ferraty and Vieu (2011); Delsol (2013)). See Tekbudak et al. (2019) for
a recent review. Delsol, Ferraty and Vieu (2011) and Delsol (2013) constructed
Cramér—von Mises-type test statistics based on a local smoothing estimator of
the nonparametric function, and applied wild bootstrap procedures for practical
implementation, which are computationally intensive.

An RKHS-based method is a popular approach for modeling nonparametric
functions. Most existing methods study RKHS for nonparametric functions of
finite-dimensional covariates, where p is a fixed constant and does not grow with
the sample size (Wahba (1990), Liu, Lin and Ghosh (2007), and Liu, Ghosh
and Lin (2008)). The estimation of the RKHS-based nonparametric function of
functional data covariates (i.e., h(X) is a function of functionals) was developed
in Lian (2007) and Avery et al. (2014). However, there is no existing unified
inference method for h(-) of high-dimensional or functional covariates.

The goal of this study is to develop a unified method for testing a nonpara-
metric function in an RKHS of high-dimensional or functional covariates. The
proposed method does not directly estimate the nonparametric function h(-) of
the high-dimensional or functional covariates, and does not require a dimension-
reduction method. Our key idea is to transform the hypothesis in (1.2) into an
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922 HE ET AL.

equivalent hypothesis. A U-statistic-based test statistic is then developed to test
the equivalent hypothesis (see Section 2). The asymptotic distributions of the test
statistic are obtained under the null hypothesis and a series of local alternatives,
without a specific distribution assumption. The asymptotic distributions depend
on the decay rate of the eigenvalues of a given kernel function. However, the
decay rate is usually unknown, because it is determined both by the smoothness
of the reproducing kernel K and the distribution (hence, the types) of the covari-
ates X. As a result, the asymptotic distributions are not directly applicable. To
address this challenge, we develop a unified and practical approximation method
that does not require knowledge of the decay rate. Moreover, the proposed test
procedure is computationally efficient without bootstrap procedures.

An important finding in this study is that testing for the nonparametric
function h(-) of high-dimensional covariates is feasible, even if no specific structure
is imposed for h(-). The consistency of the test depends on the smoothness of
the functional space and the data type of the covariates. If the functional space
A% generated by the kernel is sufficiently smooth (e.g., Gaussian kernel) or
the covariates X are functional data, the proposed test is consistent without
restrictions on the relationship between the dimension of the covariate p and the
sample size n. If the functional space ##% is not sufficiently smooth and the
covariate X is high-dimensional data, some restrictions on p and n are needed to
make the proposed test consistent.

In practice, the power of the proposed test depends on the choice of kernels.
As aresult, kernel selection is an important issue in a kernel machine-based testing
procedure (Liu, Lin and Ghosh (2007)). However, few studies have examined
this area. We propose a new procedure for selecting kernels in the hypothesis
testing context. By obtaining an explicit power function of the proposed test, we
choose the kernel that maximizes the power function. Unlike the BIC proposed
in Liu, Lin and Ghosh (2007), our procedure is tailored to the hypothesis testing
problem, and is particularly designed to improve the power of the proposed test.
We show that the kernel selection procedure is consistent in the sense that it
selects the kernels that maximize the power with probability one. Moreover, we
can construct a regularized kernel to further improve the power of the test. A
novel method for choosing the regularization parameter is introduced. We show
that the proposed test with a regularized kernel achieves the power of an oracle
test if the regularization parameter is properly chosen.

The rest of the paper is organized as follows. In Section 2, we introduce the
RKHS, functional space for h(-), and equivalent hypothesis. Section 3 proposes
a new test statistic and establishes the main asymptotic distributions of the
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UNIFIED TESTS FOR NONPARAMETRIC FUNCTIONS IN RKHS 923

proposed test statistic under the null hypothesis and local alternatives. The
kernel selection and regularization are discussed in Section 4. The finite-sample
performance of the proposed test statistic is evaluated using extensive simulations
in Section 5. In Section 6, we apply the proposed method to a Yorkshire gilt
data set to identify gene sets associated with trilodothyronine levels. A brief
discussion is given in Section 7. Some theoretical results, all the technical details,

and additional simulation results are relegated to the Supplementary Material.

2. Functional Space and Equivalent Hypothesis

Consider functions h(-) that belong to a functional space #% generated by a
kernel Ky, g, (-,-), where 6, are tuning parameters that possibly depend on n. For
notational convenience, we suppress n in 6, in the rest of this paper. The kernel
Kno(z1,22) : RP x RP — R is any symmetric and positive semi-definite function
defined on RP x RP. Throughout the paper, we assume p = p(n) is a function of n.
A kernel K, g(z1,2) is said to be positive semi-definite if the associated kernel
matrix (Kng(zi, z; ))2";=1 is an M x M positive semi-definite matrix defined on any
M distinct points z1,...,2y € RP. We use K,y and bold font K to denote the
kernel function and an n x n kernel matrix defined by K = {Kn,g(Xi, Xj)}?J:l’
respectively. Some commonly used kernel functions include the linear kernel
Kng(z1,22) = 212, /6 and the Gaussian kernel K g(21,22) = exp(—||z1—22||%/0).
Additional examples of kernel functions can be found in Liu, Lin and Ghosh
(2007).

The functional space % is determined by the kernel function K,4. To
define the functional space .#% , we define the following normalized kernel

Kno(z1,22)
VEEE (X1, Xa)}

Kn,e(ﬂ?l,ﬂ?ﬂ =

where X, and X5 are two independent copies of X with probability measure P.
It is then obvious that E {K:?;,e(xl , X2)} = 1and Ky, g(z1, z2) is still positive semi-
definite and symmetric. The above normalization ensures {’Ci,B(Xlﬂ Xs)} < o0,
so that the eigen-decomposition of K, gy can be properly defined according to
Lemma 1 in the Supplemental Material. The normalization is needed because
E {Ki,g(Xl,Xg)} could diverge in the high-dimensional case. For instance, if
Kn0(X1,Xs5) = XTX, and Var(X) = X, then E{Kﬁ,e(X],XQ)} > tr(X2), which
implies that {Kg,g(Xl, X32)} is at least of order p if all the eigenvalues of X are
bounded away from zero. Note that the normalization is mainly for theoretical

analyses. Our standardized test statistic is invariant to the kernel normalization.
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924 HE ET AL.

Thus, the normalization is not needed in practice for the proposed test.
By Corollary 1 in the Supplemental Material, we can write

’Cn,ﬂ(xla 372) = Z )‘Kje,mwn.‘.?,m(xl)wm‘},m(mﬂa

m=1

where A, 1 > Ax,,2 > - -+ are eigenvalues of Ky, g, and {¢ng.m(-)} form a complete
orthogonal normal system on L?(P). This representation extends the eigen-
decomposition of a kernel (or covariance) function from a one-dimensional space
to a p-dimensional (or functional) space. Without causing confusion, we use
Ank,m and Ynm(-) to denote A\px, m and ¥pgm(-), respectively. Then, the space
Hi is defined as (Cucker and Smale (2002))

Hy = {f(m) s fz) = Z omUnm(z) for a,, satisfying Z /\:i < oo}
m=1 K.m

m=1

For example, if a centralized linear kernel K, g(z1,22) = (21 — px)7 (z2 — px)
with uy = E(X) is used, the space #% contains linear functions f(z) = 37 z.
If X is a high-dimensional vector, model (1.1) reduces to a linear model. If
X is a functional data vector, model (1.1) becomes a functional linear model
h(z) = [ «(t)B(t)dt. If nonlinear kernels such as polynomial and Gaussian kernels
are given, the functional space .#% includes very general nonlinear models.

To distinguish H; from Hg, we define a measure to quantify the distance

between h(-) and zero. Here, we define the norm || - || as a measure:
o0
”h‘”%{ = Z /\nmafm (2.1)
m=1

where \pm = \/ E {Kfl,e(Xl, X2)}Ank,m, which may be considered as the eigen-
values of the kernel function Ky g(z,y). Obviously, the null hypothesis in (1.2)
is true if and only if ||h||% = 0, and ||h||% > O under the alternative hypothesis.
Therefore, the hypothesis considered in (1.2) is equivalent to

Ho: ||h||% =0 vs Hy:|h|% > 0. (2.2)

The connection between a nonparametric function and its eigen-decomposition
has been used for statistical inference in the literature. For example, Fan (1996)
developed Neyman’s adaptive tests based on the Fourier transform of a nonpara-

metric function.
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UNIFIED TESTS FOR NONPARAMETRIC FUNCTIONS IN RKHS 925

For model identification, in the rest of this paper, we consider a centralized
kernel K, g that satisfies px = F{Kp (X1,X2)} = 0. Recall that h(-) needs to
satisfy E{h(X;)} = 0 for the purpose of identification. Note that the central-
ized kernel is equipped with the zero-mean eigenfunctions {{nm(-)}pe_;. As a
result, the functions in the corresponding RKHS .7 have zero means, because
E{h(X;)} = E{D> o @m®nm(X;)} = 0. The centralized kernel K, g can be con-
structed from any positive-definite kernel function K ;,9 by setting Ky 9(x1,%x2) =
K g(x1,x2) — K g(x1) — K7 g(x2) + -, where K g(x1) = E{KGg(x1,X2)} is
the first-order projection of K,;,e. By Lemma 3 in the Supplementary Material,
K, ¢ is still semi-positive definite with only one zero eigenvalue A, = 0 cor-
responding to the eigenfunction ), () = 1, if K} is positive definite. Some
benefits of a centralized kernel are discussed in Lindsay et al. (2008). The prac-
tical construction of a centralized kernel is discussed in the next section.

3. Test Statistics and Asymptotic Distributions

By the orthonormal expansion of K, ¢(z,y) in Section 2, we observe that
E{(Yi — p)(Yj — 0)Kno(Xi, X;)} = ||R||%, for any (i,j) pair such that i # j.

Motivated by this observation, we consider the following test statistic:

1 3 Kno(Xi,X;5)(Yi — Ya)(Y; — Ya)

52

(3.1)
1#]
where Y;, = n~! Y"1 | Y; is the sample mean and 6% = (n—1)"1 Y1, (Yi—Yy)? is
the sample variance estimator of 02 under the null hypothesis (1.2). We can then
check that E(T;,) = o(1) under the null hypothesis and E(T;,) = ||h||%/o?{1 +
0(1)} under the alternative. Therefore, the test statistic T3, is able to distinguish
the null and alternative hypotheses in (1.2).

Define Kopg(z,y) = EF{Kpg(z, X)K,0(X,y)}. Let Ap1t > Ana > Apg >
--- be eigenvalues of the kernel function Ky g, and define Vi, = Zf:ﬂ /\ﬁm for
integers k = 1,2,... The asymptotic framework considered here is p(n) — oo
as n — oo, where p(n) diverges as n diverges. However, we do not require an
explicit relationship between p(n) and n. To study the asymptotic distributions
of the proposed test statistic T}, we need the following technical assumptions:

(C1) Assume 73 < 0o, where 7, = E(€¥) is the kth moment of the random error
€.

(C2) Assume sup, V2;1_6x2E|Kn,9(X1, X3)|*t® < oo, for some § > 0, and
p Dy )‘fm,m — 0 uniformly for all n > ngy as ng and M — oco.

This content downloaded from
130.212.18 96 on Thu, 15 Jan 2026 20:18:48 UTC
All use subject to https://about jstor.org/terms



926 HE ET AL.

(C3) Assume E{Kgn,g(Xl,Xg)} = o(VQ‘;) and E{K%n,e(Xl,Xl)} = o(ann).

The following theorem summarizes the asymptotic distribution of 7T}, under

Hy, and the proof can be found in the Supplemental Material.

Theorem 1. Under the null hypothesis Hy in (1.2) and (C1): (i) Assume (C2)
holds. If Akm — Acm as n — oo, then nTn/\/Van 4, Zﬁ:] Aem(x2, — 1),
where x2, are independent chi-squared distributions with one degree of freedom;
(%) If condition (C3) holds, then O'r;nlnTn 4 N(0,1), where 07, = 2V,

Remark 1. Theorem 1 shows that the asymptotic distributions of T}, depend
on the decay rate of the eigenvalues Anx m, which is determined by the kernel
function and the dimension and distribution of the random vector X. Consider
a linear kernel given by K, g(z1,22) = (21 — px)T (23 — px). The eigenvalues of
the linear kernel are given by the eigenvalues of Var(X) = 3. Part (i) of Theorem
1 provides an asymptotic distribution of nT}, when the eigenvalues decay fast and
nT,/v/Van has the same distribution as the finite sum Zg;‘;l Aem(x2, — 1), for
some M in (C2). If X = {Xi(t1),...,Xi(tp)}T is a functional data vector, the
assumptions in (C2) are typical in a functional PCA type-based analysis, where
the first few eigenvalues are dominant. The asymptotic distribution of T}, is a
weighted chi-squared distribution, not a chi-squared distribution, which differs
from the Wilks’ phenomena established for the nonparametric likelihood ratio
test statistics (e.g., Fan, Zhang and Zhang (2001)).

However, for high-dimensional data, the eigenvalues may not decay at a fast
enough rate. Under this scenario, the asymptotic distribution is an asymp-
totic normal, as established in part (ii) of Theorem 1. For the above linear
kernel, if we further assume that X; and X5 are multivariate normal, then
E{K3 ,(X1,X2)} = 3tr’(2?%) + 6tr(X®) and E{K2Z, ,(X1,X1)} = tr?(2?) +
2tr(24j. If tr(X4) = o{tr’(X£?)} (Zhong and Chen (2011)), then condition (C3)
holds. The condition tr(X%) = oftr?(X?)} is true for most scenarios when the

eigenvalues of X decay slowly.

Remark 2. Because the decay rate of the eigenvalues Apic s is difficult to deter-
mine for a general kernel, and it relies on the distribution of X, the asymptotic
distributions are not directly applicable. On the one hand, part (i) of Theorem 1
shows that the limiting distribution of nTy/v/Van is Y pe_; Acm(x2,—1). Because
Anm = VVanAnkm and Apxm — Arcm, We may approximate the distribution of
nTy, by Tn = > o0 Aum(x% — 1). On the other hand, if condition (C3) holds,
then Lyapunov’s condition Vj,/V2, — 0 is satisfied so that the central limit the-
orem holds for the sum of the weighted centralized chi-squared distributions 7,;
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UNIFIED TESTS FOR NONPARAMETRIC FUNCTIONS IN RKHS 927

that is, Jil'?; 4N (0,1). This means that the asymptotic normality in Theorem
1 may be considered as the limiting distribution of 7,,. Thus, 7, is flexible enough
to approximate the asymptotic distributions in both scenarios in Theorem 1, and
Tn provides a unified inference approach for both high-dimensional and functional
data.

In practice, obtaining accurate estimators for all the eigenvalues A, (m =
1,2,...) simultaneously is difficult. Nevertheless, we apply a Satterthwaite ap-
proximation to the mixture of chi-squares Zf:ﬂ AnmX2, using a scaled chi-
squared distribution &nxg“, where §, = Vm/&n, a, = &%ﬂ/ (21?1“), and V;, =
n_ltr(HK) is an unbiased estimator of Vi,,. Here, H =1 — n~'J is a projection
matrix and J is an n X n matrix with all elements equal to one. Then, we ap-
proximate 7, by Einxgn — Vin. The accuracy of the Satterthwaite approximation
is at the order of O{(V2,/V3,)}/?}. Taking the linear kernel as an example, if all
the eigenvalues of ¥ are finite, then (V22,/V;3)1/? is at the order of p~1/2.

A unified asymptotic a-level test rejects the null hypothesis if

nTy + 1lAfl'n

2
> X3 , 3.2
Gn Xgn,]—a ( )

where X_g,l—o: is the 1 — a quantile of a chi-squared distribution with g degrees of
freedom.

Remark 3. If conditions (C3) holds, then an a-level test rejects the null if
Gr.nTn > 21-a, (3.3)

where z1_, is the lower 1 — a quantile of the standard normal distribution, &%ﬂ =
2(n — 1)~ *tr(HKHK?") is a ratio-consistent estimator for o7 (see Proposition
1 in Section 4.1), where A% = (A%) is a zero-diagonal matrix with Agj = A;;, for
i#j and A% = 0.

To achieve better accuracy in the size approximation, we adjust the variance
estimator 6’%“ using the high-order moments of € in (1.1). The adjusted variance
estimator 6’%“ adj replaces the estimator 6% in the simulation study in Section
5 and the real-data analysis in Section 6. Assume the density function of € is
symmetric around zero. The adjusted variance estimator &%ﬂ adj 1S &52’"“, adj = {(2—
12/(n — 1)+6A /n)tr(HK°HK®) — (2/n+A /n)tr?(HK®) + Atr(Aoc A) }/(n—1)2,
where o denotes the Hadamard product, A = HK°H, and A = n=! 0 | [(Vi —
Yn)/5]* — 3. The derivation of J%madj is provided in the Supplementary Material.

Remark 4. If the centralized kernel K, g is unknown and is constructed from
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928 HE ET AL.

a kernel function K7, 4, it may contain unknown quantities pg+ and K7 5(X1).
Thus, T3, is not directly applicable. In this case, we can replace K, g(X;, X;)
with K, o(X;,X;), which is the (i,7) element of K = K} — (n — 1) J(K})° —
(n— 1)_1(K;)0J+n_l(n - 1)_1J(K;)DJ. Let T}, be the test statistic with corre-
sponding kernel Kﬂ,,g. It can be shown that (nTy, — n1})/v/Van = op(1) (see the
proof of Remark 4 in the Supplemental Material). This implies that nT), /vV/Van
has the same limiting distribution as nTy/v/Van.

The next theorem studies the asymptotic distribution of the test statistic T},

under a sequence of local alternative hypotheses,
Hyy, @ h(z) = dp(z), (3.4)

where dp,(z) is any unknown function that possibly depends on n. For model
identification, assume E{d,(X)} = 0. As usual, we consider local alternatives
that are close to the null hypothesis because these are more challenging to detect
than fixed alternatives. More specifically, assume that d,,(-) satisfies the following

condition:

(C4) The local alternatives dy, (z) satisfy ndg = O(V;T?) and n?E{d} (X)} = o(1),
where dx = E {Kp (X1, X2)dn(X1)dn(X2)}.

Theorem 2. Under the local alternatives Hyy, in (3.4) satisfying (C4): (i) As-
suming (C2) holds with § = 2, we have VQ;UQ{RTH—JT"\I'(dn)} 4 Yoo Aem (X,
—1), where ¥(d,,) = néx /(0%0T,) is the signal-to-noise ratio (SNR); (ii) If (C3)
holds, then o7 'nT, — W(dn) 3 N(0,1).

The proof of Theorem 2 can be found in the Supplementary Material. Ap-
plying Theorem 2, the power of an a-level test for the rejection region in (3.3)
under the local alternatives (3.4) is Q(dn) = 1 — ®{z1_a — U(dyn)}, where &(-)
is the CDF for the standard normal distribution. Therefore, the power of the
proposed test is determined by the SNR ¥(d,). If the a-level rejection region in
(3.2) is used, the power of the test is Q(dn) = P(x2, > Xz, 1-a — 07, ¥(dn)/an),
where an = 0%, /(2Vin).

Let dp(x) = bnAn(x) such that E{\, K, (X1, X2)An(X1)An(X2)} is a
constant. Then, the proposed test has non-trivial power if b, = V;T{él /v/nAn. If
Vap is a constant, which implies that A,; is a constant, then the proposed test is
able to detect alternatives of order 1/4/n. However, in high-dimensional cases, if
Van/ '\12;1 — oo at a certain rate, the proposed test can detect alternatives of order
V217{4 /v/nAn1, which is larger than 1/4/n. This reveals an adverse effect of dimen-
sionality on the test. We observe that as long as Vs, = o(n?)\,;;), the proposed
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UNIFIED TESTS FOR NONPARAMETRIC FUNCTIONS IN RKHS 929

test is consistent so that the power of the test converges to one. Depending on
the chosen kernel, this condition might or might not impose conditions on p(n)
and n, because Vs, = E{Kﬁ,g(X],XQ}} depends on p(n).

Assume that X is a p-dim random vector with mean E(X) = px and covari-
ance Var(X) = X. Let 1 > --- > 1jp be the eigenvalues of X and ry, = nm/m be
the ratio of the eigenvalues. In the following, we discuss the implication of the
condition Vs, = o(n2)\n1) on the relationship between p and n for four commonly
used kernels: the linear, quadratic, polynomial, and Gaussian kernels.

Example 1 (Linear Kernel). If K, (X1,X2) = (X1 — px)T(X2 — px) is a
centralized linear kernel, then V5, = E {K,g,e(Xl,Xg)} = tr(X?). Assume that
rm < m~P/2. The proposed test is consistent if p = o{n?/(17#)} for 0 < B < 1.
If B = 1, the condition is p = ofexp (n?)}. If B > 1, then the proposed test is
consistent for any relationship between p and n.

Example 2 (Quadratic Kernel). Consider the quadratic kernel K. ;,g(X]?X2) =
(XTX3 + 1)2. Then, the corresponding centralized kernel is Kpg(X1, X2) =
2(X; — pux)T(Xy — px) + (XTX5)?2 — XTRX, — XITRX, + tr(R?), where R =
X+ px ,u%. If X; and X5 are multivariate normally distributed with px = 0,
then Vo, < tr2(X2). Therefore, the proposed method is consistent if tr?(X?2) =
o(n®Mn1). If ry < m™P/2 ) the proposed test is consistent if p = o{n'/1=A)} for
0 < B < 1. If B =1, the condition is p = o{exp (n)}. If § > 1, the proposed test
is consistent for any relationship between p and n.

Example 3 (Polynomial Kernel). Consider the polynomial kernel K "o (X1,X2)=
(XTX;)? with a finite d. Assume X; and X, are independent multivariate
normally distributed with mean px and variance ¥. Let X; = »/ 27, and
¥ = QAQT be the eigen-decomposition of X, where A = diag(m,...,np) is a
diagonal matrix and @ is the corresponding eigenvector matrix. We then write
(XTX2)4 = (ZT'AZ2)?, where Z1 and Zs3 are independent multivariate normally
distributed vectors with mean p* = QTX/2ux and identity covariance. As a
result, we consider a polynomial kernel K7, o(Z1,Z2) = (ZTAZ5)?, where Z; and
Z2 are independent multivariate distributed normal random vectors with mean
p* and covariance L,. In the Supplemental Material, we show that the centralized

kernel of K;,Q is

S
d! Gy [ 70 j j j
Kno(Z1,Z3) = > IR [ {0 — E(ZiOHZ5 — B(Zy)},
L A
where ji, ..., j, are non-negative integers and {k,..., kg, } is a subset of {1,...,
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930 HE ET AL.

p}, for which jg, #0and [ =1,...,S; and S is the number of nonzero integers
in the set J = {j1,...,7p}. Here, n; is the jth largest eigenvalue of A and
Z, = (Z11,.. .,le)T. In the Supplemental Material, we also show that V5, =
tr?(X?). Therefore, the proposed method is consistent if tré(X2) = o(n?Ap1). If
rm =< m~P/2 the proposed test is consistent if p = o{nw{d(l_ﬁ)}}, for0< B <1
If 3 = 1, the condition is p = o{exp(n?/9)}. If B > 1, the proposed test is

consistent for any relationship between p and n.

et

Example 4 (Gaussian Kernel). Consider the Gaussian kernel K (X1, X2) =
exp{—(X1—X32)T (X1 —X3)/8}, with X; and X3 following a normal distribution.
The centralized kernel function Ky g(X;,X2) is Ky o(X1,X2) = exp{—(X; —
Xo) (X1 —X5)/0}—k1 32, exp(—XTBX;)+ kg, where B = 671 1—2072(20 ' 1+
N k=10 (207 m +1)7Y2, ke = T (43 /0 + 1)/, and {mm}},_,
are the eigenvalues of . Moreover, V,, =III _, (Snm/ﬂ—l—l)_lﬂ—?ﬂgl:l (2nm /0+
1)~ Y2(60, /0 +1)"/2 4TI _, (47m /6 + 1)~ 1. When all the eigenvalues of X are
bounded, we can see that Vy, is a constant. Then, the condition Va, = o(n?)y;)
is satisfied if n?\n1 diverges. Under this condition, the proposed test is consistent
regardless of the relationship between p and n.

Remark 5. We observe some interesting phenomena from the above examples.
If the eigenvalues of the kernel function K, 9 decay slowly, some restrictions on
the relationship between the data dimension and the sample size are needed. This
corresponds to the case in which data should be considered as high-dimensional
data. If the eigenvalues decay fast enough, we do not need any assumption on
the data dimension and sample size. This is the case for functional data or
kernel functions that generate sufficiently smooth functional spaces. For linear,
quadratic, and polynomial kernels, the eigenvalues of the covariance of X need
to decay fast enough so that we can treat X as functional data. However, if
the Gaussian kernel is used, the corresponding functional space is equipped with
smooth functional spaces, so that we do not need to worry about the data type

of X.

4. Kernel Selection and Regularization

To further improve the power of the proposed test, we consider the choice of
kernel function and the construction of a regularized kernel in this section.

4.1. Kernel selection

In Sections 2-3, we assume that the kernel K that generates the functional
space #% is known. However, the functional space 7% is typically unknown.

This content downloaded from
130.212.18 96 on Thu, 15 Jan 2026 20:18:48 UTC
All use subject to https://about jstor.org/terms



UNIFIED TESTS FOR NONPARAMETRIC FUNCTIONS IN RKHS 931

Therefore, an important question in practice is how to select kernels to improve
the power of the proposed test. The kernel selection problem has been studied
for Fisher discriminant analysis (Kim, Magnani and Boyd (2006)) and semi-
supervised learning (Dai, Yeung and Qian (2007)). However, no kernel selection
method is tailored to the hypothesis testing problem (Liu, Lin and Ghosh (2007)).

We propose selecting kernels by maximizing the SNR. of the proposed test.
The motivation is to choose a kernel with a better SNR, so that the proposed
test is more powerful. Because the SNR Uk, (d,) = ndk,/(c%0T,), it is equiva-
lent to maximizing J}:(}'Ke, because n and 2 do not depend on the kernel Kj.
Therefore, given a family of candidate kernels .Zk, the kernel Ky may be selected
by maximizing the SNR, as follows:

A

_ 5
Kp = argmax AKS . (41)
KGE‘Q‘D{ O-Tn

For a candidate kernel Ky € %k, the unknown parameters dx, and o7, can be
substituted using estimators, dx, = {n(n —1)}~! 2y Ko (X5, X5) (Y; — Yo)(Y; —
Yy,) and 67 defined in equation (3.3), respectively. These estimators are ratio
consistent, as shown in Proposition 1.

Define Ky = argmaxy . #, 0x,/0T, as the kernel with the largest SNR in
the set Z#x. Let k1 be the set of kernels with SNRs at the same order as
the SNR of ]Kg, and Fgo = Fx/Fx,1 be the set of kernels in Fg, but not in
Fx 1. Assume that all the kernels K € F( satisfy |o;;“1,

-1 -

%% ~ o1, KkOK| =

O'; IK 5@8. Here, O'% i is the variance of T;, constructed using kernel K. This
n g s

means that the SNRs of the kernels in #xo and #x1 have distinct orders.

Moreover, let Ry, = mingegz,, IO’T %, og, — EHI,K5K|/J}:,K5K and Vpaxx, =

max [ﬂ. 1V2n,VaI{Kg(Xl,X2)h(X])h(X2)},VaI{Kg(Xl,Xg)h(Xl)}] Define |LQK|

as the cardinality of the set .#x. Assume the following condition:
(C5) The kernel Ky satisfies V nax & o(n52 ) and |k 0| = of mln(n5 /
JRmirl) }

The above condition (C5) is a mild condition on the SNR of the unknown func-
tion h(-) with respect to the kernel Ky. The signal is slightly stronger than those

max ]Kg

required in the local alternative condition (C4) so that the kernel selection con-
sistency can be established. This is not surprising, because selection consistency
typically requires a stronger signal than detection. In the first part of (C5),
Vo ax & e quantifies the variation of the estimator 5~ whereas 5}2 measures the
51gnal strength of the projection of the underlying functlon h(- ) to the kernel
Kg, It requires that the signal strength is not too small when compared to the
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932 HE ET AL.

variation of its estimator so that the projection dg, can be estimated consistently.

Note that the proposed kernel selection method is not designed to choose
the underlying true kernel that generates the space .7¢). In the nonparametric
function estimation context, if the kernel Ky used for estimation is not the same
as the underlying true kernel K that generates the functional space .7, the
functional space of the estimated functions j‘é’%g could be different from 7.
However, in the hypothesis testing framework, the goal is to distinguish whether
the true function h(X) is in Hp or in Hy. If Ky # K, the possible impact is
that the decisions (reject Hy or fail to reject Hp) based on the test statistics
constructed using K and K‘g could be different. The following Proposition 1
proves the ratio consistency of the SNRs by proving the ratio consistency of SKS
and &52’"“' Moreover, we show that a kernel with the SNR at the same order as
that of ]Kg will be selected with probability one, and the proposed kernel selection
is consistent in the hypothesis testing context. The proof of Proposition 1 can be

found in the Supplemental Material.

Proposition 1. Asn — oo, (i) 6% /0F. 2 1; (i) if condition (C5) holds, then
Sﬁe/éﬁe %1 and Ky € Fx 1 with probability one; and (iii) assuming Var(Y) < oo
and the kernel K that generates the RKHS ¥ also satisfies condition (C5), then
the proposed kernel selection is consistent in the sense that the decision rule (reject
or fail to reject Hy) using T,, built on the selected kernel ]Kg is the same as that

based on the true kernel K.

4.2. Kernel regularization

In this section, we show that the power of the proposed test can be further
improved by using a regularized kernel. The power function is determined by the
SNR ¥(d,,), which can be written as ¥(d,) = n Y °_; Aumb2m/(0%0T,), where
brm = E{dn(X)¢¥nm(X)} is the projection of dn(X) onto the mth eigenfunction
Ynm(X) of K, 9. We observe that the numerator of ¥(dy) (the signal part) is de-
termined by the magnitude of the eigenvalues A,;, and the projections b,,,. For
a given set of eigenfunctions {¢nm(z)}m_, and a function dy(z), the projections
bnm are fixed. To increase the numerator of ¥(dy), one could adjust the eigen-
values A, associated with the projection by, so that larger nonzero projections
receive higher weights than small projections do.

To adjust the eigenvalues of the kernel without changing the eigenfunctional
space, we introduce a regularized kernel in the following. For any centralized

kernel matrix K, define the regularized kernel matrix Kgy as
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UNIFIED TESTS FOR NONPARAMETRIC FUNCTIONS IN RKHS 933

Kr, =K — K(nyl + K)"'K. (4.2)

A similar version in a two-sample problem was discussed in Eric, Bach and
Harchaoui (2008). Let Kpgy be the kernel function corresponding to the kernel
matrix Kz . It can be proved (see Lemma 4 in the Supplementary Material) that
the eigenfunctions of the kernel function Kp, are still {t),(X)}5o_,, which are
the same as those of K5 9. However, the corresponding eigenvalues of Kp, are
{7 Anm/(Anm +7) }55_;. According to the definition of the RKHS J#% in Section
2, the space .#% is mainly determined by the eigenfunctions and eigenvalues.
As a result, the function smoothness in the RKHS defined by the regularized
kernel could be different to that in the space defined by the unregularized kernel.
However, similarly to the kernel selection in the last subsection, note that the
regularization does not change the RKHS that generates the true function h(-).
It is mainly designed to improve the power of the proposed test.

We now show how a regularized kernel Kg, can improve the power of the
proposed test. To see the point, we compare the SNRs ¥(d,,) and Ug(d,,7)
corresponding to the kernels K,y and K, respectively. Let C, = n/ (V202).

Then, we have

[o0] 2 [o.¢] 2
V(dy) = cn—2m=1 Anmbrm 14 @ R(dn,7) = Cn L1 A/ Anm + 7). (4.3)
Z 2 HZOO 2 2
m=1 ’\nm m=1 ’\nm/('\ﬂm + 'Y)

By comparing the above two expressions, we see that sup, Yg(dn,7) > ¥(dn).
Because

>t Aumbam/Anm /v + 1)
VYt Mo/ Aam [y +1)2

the regularized kernel K g, is the same as the unregularized kernel Ky, g if v — oo.

Up(dn,v) =Chn — U(dn) as v — o0,

Thus, the introduction of the regularization parameter v allows us to strike a
balance between the numerator and the denominator so that Ug(dy,~) is larger
than ¥(d,) for some ~.

To select the best regularization parameter +, it is natural to consider max-
imizing the SNR Ug(dn,vy). That is, § = argmax,yesifg(dn,'y), where § =
{s1,...,sB} is a set of positive candidate regularization parameters ordered in
increasing order. Note that the denominator of Ug(dy, ) in (4.3) goes to infinity
and the numerator of the SNR in (4.3) increases as v — 0. A reasonable esti-
mate for the numerator of (4.3) should be nondecreasing as v — 0. However,
the numerator may not be well estimated if the sample size is small. We there-
fore propose a modification to the above approach. Let s; € S be the smallest
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934 HE ET AL.

regularization parameter in S such that SK,—Y(dn), the numerator of ¥g(dn,7),
achieves its maximum value in S. We then focus on the tuning parameters that
are larger than s; in the set of S. Given the samples, we can find the optimal

tuning parameter by maximizing the following criterion:

4= argmax Wg(dy,,7). (4.4)
76{3;!‘“333}

For the stability selection consideration, we propose the following procedure
to select the tuning parameter ~:

1. Randomly divide the sample {Y;, X;} | into L parts with equal sample

sizes.

2. We drop the Ith (I = 1,2,...,L) part of the sample, select the tuning
parameter 4; using the remaining L —1 parts of the sample based on criterion
(4.4).

3. Repeat step 2 for [ = 1,..., L. The stabilized tuning parameter is defined
as 4 = median{41,...,9L}-

The simulation studies in Section 5 demonstrate that the above tuning parameter
selection method works well in practice. For the regularization parameter -+,
we recommend choosing an interval that satisfies the conditions of Theorem 3
in the Supplementary Material, and then selecting a sequence of values that
are discrete uniformly distributed within an appropriate interval to perform the
stability selection procedure described above. Based on our experience in the
simulations, one could choose L between four to eight. Please refer to Section 5.2
for more details. For a given candidate set S = {s;,...,sp} for the regularization
parameter v, define S* = {s/,...,sp} C S as the set of regularization parameters
used in (4.4). Let 4 = argmax,cs. Vg(dn,7) and [S*| be the cardinality of the set
S*. If the regularized kernels corresponding to 4 and |S*| satisfy the conditions
in (C5), then the proposed kernel regularization method also has the consistency
established in Proposition 1.

The regularization is most effective in the “sparse” case, in which the nonzero
projections reside only in the first N coordinates corresponding to the IV largest
eigenvalues. In Section S2 of the Supplementary Material, we show that the SNR
URr(dn,7*) of the proposed test with a regularized kernel can attain the SNR of
an oracle test within a factor of a slowly varying function log(N).
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5. Simulation Study

The simulation studies were designed to evaluate the finite-sample perfor-
mance of the proposed test for high-dimensional and functional covariates, kernel
selection, and regularization methods. We simulated ii.d. samples {X;,Y;}

from the following model:
Yi=p+h(X;)+e, i=1,...,n, (5.1)

where the random error ¢; was simulated from N (0,1) or Laplace(0,+/2/2). We
considered both high-dimensional and functional covariates X. To generate high-

dimensional X, we first generated a p-dimensional normally distributed random
P

i,j=1"
the covariates X = (X1,.. .,Xp)T by setting the jth component using X; =

vector Z with mean zero and covariance X = (0.6/"=7) Then, we obtained
Fynj(Zj), for 5 = 1,...,p. Here, Fy; is the empirical cumulative distribution of
the jth component given by Fy,;(z) =n~! Y"1 | I(Z;; < z). To generate the func-
tional covariates X, we first generated a sequence of time points 0 < t; < --- <
tp < 1 uniformly from (0,1), and then generated X; = X(t;) using the stochastic
process X (t) = 3 po0 (2war—1) " ?mor—1 cos(2kmt) + 310 (2war) Y *nok sin(2kt),
where wp, = 20(k + 1.5)72 and s are i.i.d. N(0,1). We considered two settings
for the relationship between n and p: (i) p < n and (ii) p >> n, with n = 40, 60,
and 100. Specifically, p = (3,5,10) in setting (i), and p = (1500, 3000, 4500)
in setting (ii). All the results for evaluating the empirical power are based on
1,000 simulation replicates and those for the empirical size are based on 5,000
simulation replicates. To save space, the simulation results for setting (i) and
the simulation studies for the Laplace errors are presented in Section S3 of the
Supplementary Material. In all of our simulation and empirical studies, we used
the scaled chi-squared approximation discussed in Remark 2 after Theorem 1.
In particular, when the data dimension is low, we found that the chi-squared
approximation was more accurate than the normal approximation.

We wish to test Ho : h(-) = 0. To assess the empirical size of the pro-
posed test, we chose h(x) = 0 under Hy. To evaluate the empirical power, we
chose h(x) = hg(x) — E(hg) in setting (i), where hg(x) = ¢1 Y oy (—1)Fz +
2 S0 {exp(—=3} /p) Ha(zr /p) }+-c3{z123+cos(23) }, where Hy(-) is the kth-order
Hermite polynomial, and ¢y, ¢z, and c3 are constants specified below. In setting
(ii), we designed two scenarios with different values of c1, ¢z, and c3 for each set-
ting: S3 = {¢; = 0.1,¢c5 = 100,¢3 = 0.1} and &4 = {¢; = 100u,c3 = 0.1u,c3 =
0.1u,u = 0.015}. In scenario S3, ¢z are chosen to be much larger than ¢; such
that the nonlinear parts dominate the functions. In &4, ¢; are much larger than
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936 HE ET AL.

Table 1. Empirical size (in percentages) of the proposed test (Proposed) and the method
of Liu, Lin and Ghosh (2007) (LLD) for Gaussian errors with high-dimensional and

functional covariates using different kernels.

High-dimensional covariates Functional covariates
n =40 n =60 n =100 n =40 n =60 n =100

P method Kgp Kp K¢ Kg K. Ke Kgp K, Ke Kg K. K¢ K K1 K¢ Kg Ki. Kg
1,500 Proposed 6.2 6.2 62 53 51 51 54 51 52 6.2 61 59 47 49 50 45 44 45
LLD 49 49 49 39 40 40 47 51 53 45 52 49 55 51 56 44 42 41

3,000 Proposed 64 63 63 52 51 52 59 56 53 56 50 52 55 52 55 51 51 50
LLD 41 40 40 50 45 46 59 56 56 42 41 42 55 51 55 47 49 48

4,500 Proposed 6.0 62 60 54 54 54 59 60 60 54 61 59 50 47 49 50 52 51
LLD 47 44 43 54 53 54 61 59 60 47 51 50 44 41 41 51 48 50

co so that the linear parts dominate.

Three types of commonly used kernels were compared in all the simulations:
the linear kernel Ky (x,y) = x'y/#, Gaussian kernel Kg(x,y) = exp{—|x —
v||?/8}, and the exponential kernel Kg(x,y) = exp{—(||x]|?> + 3||x — y||* +
l¥]|?)/6}. The tuning parameter § was set to p to make the computation more
stable. This choice of @ is also closely related to the “median heuristic” used
in the machine learning literature (see Schélkopf, Smola and Bach (2002)). In
practice, one might also apply the proposed kernel selection method to select the
parameter 6y > 0 in the tuning parameter 6 with the form # = pfy. Further
discussion on the choice of # can be found in Section S3.5 of the Supplementary
Material.

Table 1 summarizes the empirical sizes of the proposed test and the test
procedure (LLD) proposed by Liu, Lin and Ghosh (2007) for high-dimensional
and functional covariates. We see that both methods have similar empirical sizes
and can control the type-I errors reasonably well. Table 2 contains the empirical
power of the proposed test under setting (ii) with high-dimensional covariates.
Several observations are given below: 1) There is a clear difference in power
between the three types of kernels Kg, Kg, and K7, especially when p and n
are relatively small. The power difference is particularly striking in Table S2
in the Supplementary Material. The power based on the exponential kernel is
higher than those using the other kernels. This is understandable, because the
nonlinear parts dominate the function hy(x) (see Section S3.1 in the Supplemen-
tary Material) and the exponential and Gaussian kernels contain richer nonlinear
eigenfunctions than that of the linear kernel, and can capture more information
nonlinear functions; 2) The power increases as the sample size increases in all the
cases; and 3) The proposed test is very robust to the change of error distributions.
Because the power patterns for the functional and high-dimensional covariates are
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Table 2. Empirical power (in percentages) of the proposed test (Proposed) and the
method of Liu, Lin and Ghosh (2007) (LLD) for Gaussian errors with dependent covari-
ates using different kernels under scenarios S3 and 8. The estimated theoretical power
is given in parentheses, and the percentage of a kernel being selected among the three
candidate kernels is displayed underneath.

S3 Sy
n p method Kg Kg Ke Kg K, Kg
1,500 Proposed 50.2(50.2) 47.2(47.9) 47.3(48.0) 57.7(55.5) 57.2(55.3) 57.3(55.)
(839) (110 (51)  (339)  (330)  (33.)
LLD 43.6 42.7 42.8 50.7 51.5 51.7
3,000 Proposed 26.2(32.1) 25.7(3L.7) 25.5(31.8) 30.0(41.5) 38.7(41.4) 30.1(41.5)
10 (52.1)  (292)  (187)  (352)  (369)  (27.9)
LLD 20.8 21.1 21.1 32.8 34.8 34.8

4500 Proposed 20.6(26.5) 20.6(26.4) 20.3(26.4) 29.4(35.4) 20.1(35.3) 29.5(35.3)
(39.2) (41.3) (19.5) (38.1) (39.7) (22.2)

LLD 16.1 15.4 15.5 25.4 26.0 26.0
1,500 Proposed 76.3(71.1) 74.1(68.6) 74.2(68.7) 84.4(78.5) 84.3(78.4) 84.2(78.4)
(91.8) (4.6) (3.6) (35.5) (34.8) (29.7)
LLD 73.4 71.9 71.8 83.0 83.9 83.7
3,000 Proposed 41.0(43.1) 40.0(42.5) 39.9(42.6) 62.1(59.8) 61.7(59.7) 62.1(59.7)
60 (60.0) (25.1) (14.9) (39.0) (32.5) (28.5)
LLD 36.3 36.7 36.6 59.2 59.2 59.2

4500 Proposed 32.2(36.5) 31.8(36.2) 32.0(26.3) 51.3(50.6) 51.4(50.5) 50.9(50.6)
(46.5) (33.0) (20.5) (37.2) (36.7) (26.1)

LLD 29.9 29.2 29.4 48.2 48.1 47.9
1,500 Proposed 98.3(94.7) 97.7(93.3) 97.7(93.3) 99.8(98.2) 99.8(98.3) 99.8(98.3)
(98.2) (1.2) (0.6) (37.2) (34.9) (27.9)
LLD 98.3 97.6 97.6 99.7 99.7 99.7
3,000 Proposed 76.1(69.7) 75.0(68.9) 75.0(69.0) 94.7(88.8) 94.7(88.8) 04.7(88.8)
100 (70.3) (16.7) (13.0) (39.9) (31.1) (29.0)
LLD 74.2 74.3 74.5 93.9 04.3 94.3

4500 Proposed 56.0(54.2) 55.7(53.9) 55.7(54.0) 85.4(77.9) 85.2(77.9) 85.2(77.9)
(52.2) (26.9) (20.9) (42.3) (30.7) (27.0)
LLD 53.6 53.5 53.6 83.0 83.4 83.4

very similar, we omit the power results for the functional covariates. Additional

simulation studies for p > n cases can be found in the Supplementary Material.

5.1. Kernel selection

We observed from Table 2 and Tables S2, S3, S5, S6, S7, and S9 in the
Supplementary Material that the empirical power of the test corresponding to
different kernels can be very different. This naturally motivated us to select a
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kernel to improve the performance of the test. We applied the kernel selection
method proposed in Section 4.1 to choose the optimal kernel among Kz, Kz, and
K, for each simulation replicate.

We report the percentage of each kernel being selected in 1,000 simulation
replicates from among three candidate kernels Kg, K, and K;. In almost all
cases in Table 2 and Tables S2, S3 S5, S6, S7, and S9 in the Supplementary
Material, the kernel selection method chooses the kernel with the highest power.
This shows that the proposed kernel selection method works very well in selecting
the optimal kernel. When the power of the different kernels was similar, the
percentages were evenly distributed among the three kernels. To further confirm
the validity of the proposed kernel selection method, for each simulation replicate,
we estimated the theoretical power of the test using (4.1) for each kernel Kg, K7,
and K¢g. In Table 2 and Tables S2, S3 S5, S6, S7, and S9 in the Supplementary
Material, we report the mean of the estimated power for the three kernels based
on 1,000 simulation replicates. We observe that the estimated theoretical power
is very close to the empirical power. In summary, the proposed kernel selection

method is reliable for practical use.

5.2. Regularization

To show the impact of the kernel regularization on the power improvement,
we generated data according to model (5.1), where the random error € follows
a Laplace distribution, and the covariates X; are i.i.d. random vectors with
independently Uniform (0,1) components. The function h(x) was chosen to be
zero under Hy. Under the alternative, we chose h(x) = hg(x), with the constants
c1,¢o, and ¢3 set according to scenario S3. In this simulation, the sample size
was n = 60 and the data dimension was p = 200. All the simulation results
reported in this part are based on 1,000 simulation replicates. To understand the
computational cost for the proposed tests with and without regularized kernels,
we also summarize the mean and standard deviation of the computation time in
Section S3.6 in the Supplementary Material.

For each kernel Kg, K, and K, we constructed the regularized kernels
with the regularization parameter 7 using (4.2). We selected a sequence of reg-
ularization parameters of different orders (v = 107%/n, a € (—5,2)) to check
their effects on the empirical power. For each regularization parameter value, we
constructed the corresponding regularized test statistic and applied the test to
data generated under Hy and H;. The simulation results for K; and K are
summarized in Section S3.4 in the Supplementary Material.

Figure 1 shows the empirical power and size of the proposed test using the
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Figure 1. The empirical power (left panel) and size (right panel) for regularized kernels,
where the vertical purple lines in the left panel denote the first, second, and third quantiles
of the selected regularization parameters among 1,000 simulation replicates. For each
replicate, the regularization parameter was selected by the method introduced in Section
4.2.

regularized kernel Kg,. The x-axis represents the —log;o(7y), and the y-axis is
the empirical power or size. The power with large regularization parameters -y is
not displayed in the graph to enable a better view for small . When = is large
—logo(7y) € (—3.222,1.778), not shown in Figure 1, the power of the test was the
same as that using non-regularized kernels (0.769 for Kg), and then started to
grow slowly. For —log,,~ € (1.778,3.778), the power peak (0.810 for Kg) of the
proposed test can be observed for all three kernels. It can be seen from Figure 1
that the empirical size of the regularized test is reasonably controlled.

To evaluate the method for selecting the regularization parameters proposed
in Section 4.2, we also mark the regularization parameter selection results in
Figure 1. The three vertical lines correspond to the first quantile (Q;), median,
and third quantile (Q3), respectively, of the stabilized 4 obtained from the 1,000
simulation replicates, where L = 5 was chosen in the stability selection. It can
be seen from Figure 1 that the vertical lines are all very close to where the
maximum power is achieved. This suggests that the proposed regularization
selection method can locate the optimal regularization parameter to maximize

the power of the proposed test.

6. An Empirical Study

We applied the proposed test to a Yorkshire gilt data set to find gene sets
that are associated with trilodothyronine (73), which is an important thyroid
hormone affecting growth and metabolism in the body. A total of 24,123 gene
expressions were measured using liver tissues for 24 six-month-old Yorkshire gilts,
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whose T3 levels in blood were also recorded. All the genes in the Yorkshire gilt
data set were classified into 6,176 gene ontology (GO) terms (gene sets), where
each gene could be assigned to several GO terms according to its gene attributes
in one of three domains: cellular component, molecular function, and biological
process. More details about the data set can be found in Lkhagvadorj et al.
(2009).

Let ¥; and ng) = (ng),Xg), et ,Xg::)T be the measure of the T3 level for
the ith gilt and the standardized gene expression vector of the kth GO term for the
ith gilt, respectively, where p; is the total number of genes in the kth GO term.
Among the 6,176 GO terms, 560 have p; larger than the sample size 24, with
first quantile 36.75, median 60, third quantile 125.25, and maximum 5,158. Our
proposed methods work for both pr > n and pr < n cases. Simulation studies for
pr > n cases are reported in Section 5 and Section S3 in the Supplementary Mate-
rial, and simulation studies for pp < n are included in Tables S1-S3 in Section S3
of the Supplemental Material. We considered the following nonparametric regres-
sion model ¥; = p(® —|—h("")(X§k)) —i—egk), fori=1,...,24and k=1,...,6176. For
the kth GO term, we are interested in testing Hp : h*)(-) = 0 vs. Hy : h(®)(-) £ 0.

To apply our proposed kernel selection and regularization procedure, we
applied the multiple splitting procedure in Meinshausen, Meier and Biihlmann
(2009) to avoid double dipping. We randomly split the sample B = 50 times. For
each split, the first half of the sample was used to search for the best combination
of kernel function and regularization parameter « using our proposed methods in
Section 4. The second half was used to perform the proposed hypothesis testing
based on the selected regularized kernel from the first half. Specifically, we con-
sidered four different centralized kernels: the exponential kernel Kz, Gaussian
kernel K¢, linear kernel Ky,, and polynomial kernel Kp, where Kg, K¢, and K,
are defined in Section 5, and Kp(x;,x;) = (x!'x;/0)? and 6§ was set as the dimen-
sion of X for each kernel. The regularization parameter v was set as 10%, where
a € {—3.00,—-2.95,...,4.95,5}. For each GO term, we obtained B p-values from
B subsamples. These B p-values were then aggregated into one p-value using the
empirical quantile function of p-values (see Meinshausen, Meier and Biihlmann
(2009)). For comparisons, we also applied LLD (Liu, Lin and Ghosh (2007)) with
the same centralized kernels. After controlling the false discovery rate at level
0.01 (Storey and Tibshirani (2003)), the proposed method declared 58 statisti-
cally significant GO terms, while the LLD test only identified 13 significant GO
terms using the centralized Gaussian kernel. However, the LLD method with the
exponential, linear, and polynomial kernels did not find any significant GO terms.
This indicates the advantages of the proposed approach. The two methods share
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five of the significant GO terms discovered.

7. Discussion

We have modeled the joint effect of high-dimensional or functional covariates
in a set using a nonparametric function in an RKHS. We have addressed a funda-
mental question about testing nonparametric functions of high-dimensional data,
without assuming any model structures. We proposed a nonparametric test for
assessing the significance of a nonparametric function. In contrast to previous in-
vestigations, our method can be applied to both high-dimensional and functional
data. We derived the asymptotic distributions of the test statistic under the null
hypothesis and a sequence of local alternative hypotheses, and found the explicit
effects of kernel functions and types of covariates on the asymptotic distributions.

Based on the obtained explicit power function, we proposed a kernel selec-
tion method designed to improve the power of the proposed test. Moreover, we
introduced a test with the regularized kernel that can further improve the power
and enhance the dimensionality the test can handle. It was shown that the regu-
larized kernel plays a similar role to that of a re-weighting method that adds large
weights to nonzero projections of the nonparametric function to the orthogonal
bases of the RKHS. With a properly chosen regularization parameter, we demon-
strated that the proposed test can achieve almost the same power as the oracle
test. A practical method for selecting regularization parameters was also intro-
duced. Our method was motivated and further demonstrated by a genomic study.
However, it can be broadly applied to other areas in which high-dimensional or

functional data are routinely generated.

Supplementary Material

Technical proofs, more details about the regularized kernel and its oracle
property, and some additional simulation results are included in the Supple-
mentary Material. An associated R package “KerUTest” is available on https:
//github.com/hetaol12/KerUTest.
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