
I n s ti t u t e o f S t a ti s ti c al S ci e n c e, A c a d e mi a Si ni c a
 

U NI FI E D T E S T S F O R N O N P A R A M E T RI C F U N C TI O N S I N R K H S WI T H K E R N E L S E L E C TI O N

A N D R E G U L A RI Z A TI O N  

A u t h o r( s): T a o H e, Pi n g - S h o u Z h o n g, Y u e h u a C ui a n d Vi d y a d h a r M a n d r e k a r  

S o u r c e: S t a ti s ti c a Si ni c a , 2 0 2 3, V ol. 3 3, N o. 2 ( 2 0 2 3), p p. 9 1 9 - 9 4 4  

P u bli s h e d b y: I n s ti t u t e o f S t a ti s ti c al S ci e n c e, A c a d e mi a Si ni c a  

S t a bl e U R L: h t t p s: / / w w w.j s t o r. o r g / s t a bl e / 1 0. 2 3 0 7 / 2 7 2 4 9 9 4 5 

 
J S T O R i s a n o t - f o r - p r o fi t s e r vi c e t h a t h el p s s c h ol a r s, r e s e a r c h e r s, a n d s t u d e n t s di s c o v e r, u s e, a n d b uil d u p o n a wi d e
r a n g e o f c o n t e n t i n a t r u s t e d di gi t al a r c hi v e. W e u s e i n f o r m a ti o n t e c h n ol o g y a n d t o ol s t o i n c r e a s e p r o d u c ti vi t y a n d
f a cili t a t e n e w f o r m s o f s c h ol a r s hi p. F o r m o r e i n f o r m a ti o n a b o u t J S T O R, pl e a s e c o n t a c t s u p p o r t @j s t o r. o r g.
 
Y o u r u s e o f t h e J S T O R a r c hi v e i n di c a t e s y o u r a c c e p t a n c e o f t h e T e r m s & C o n di ti o n s o f U s e, a v ail a bl e a t
h t t p s: / / a b o u t.j s t o r. o r g / t e r m s

I n s ti t u t e o f S t a ti s ti c al S ci e n c e, A c a d e mi a Si ni c a i s c oll a b o r a ti n g wi t h J S T O R t o di gi ti z e, p r e s e r v e a n d e x t e n d
a c c e s s t o St atisti c a Si ni c a

T his c o nt e nt d o w nl o a d e d fr o m
1 3 0. 2 1 2. 1 8. 9 6 o n T h u, 1 5 J a n 2 0 2 6 2 0: 1 8: 4 8 U T C

All us e s u bj e ct t o htt ps:// a b o ut.jst or. or g/t er ms



S t a ti s ti c a Si ni c a 3 3 ( 2 0 2 3 ), 9 1 9- 9 4 4
d oi: h t t p s: / / d oi. o r g / 1 0. 5 7 0 5 / s s. 2 0 2 0 2 0. 0 3 3 9

U N I F I E D T E S T S F O R N O N P A R A M E T R I C F U N C T I O N S

I N R K H S W I T H K E R N E L S E L E C T I O N

A N D R E G U L A R I Z A T I O N

T a o H e 1 , Pi n g- S h o u Z h o n g2 , Y u e h u a C ui3 a n d Vi d y a d h ar M a n dr e k ar 3

1 S a n Fr a n ci s c o St at e U ni v e r sit y, 2 U ni v e r sit y of Illi n oi s at C hi c a g o

a n d 3 Mi c hi g a n St at e U ni v e r sit y

A b st r a ct: T hi s s t u d y d e v el o p s a u ni fi e d t e s t p r o c e d u r e f o r n o n p a r a m e t ri c f u n c ti o n s

i n a r e p r o d u ci n g k e r n el Hil b e r t s p a c e of hi g h- di m e n si o n al o r f u n c ti o n al c o v a ri a t e s.

T h e t e s t p r o c e d u r e i s si m pl e, c o m p u t a ti o n all y e ffi ci e nt, a n d p r a c ti c al b e c a u s e w e

d o n o t n e e d t o di s ti n g ui s h hi g h- di m e n si o n al o r f u n c ti o n al c o v a ri a t e s. We d e ri v e t h e

a s y m p t o ti c di s t ri b u ti o n s of t h e p r o p o s e d t e s t s t a ti s ti c u n d e r t h e n ull a n d a s e ri e s

of l o c al al t e r n a ti v e h y p o t h e s e s. T h e a s y m p t o ti c di s t ri b u ti o n s d e p e n d o n t h e d e-

c a y r a t e of t h e ei g e n v al u e s of t h e k e r n el f u n c ti o n. T hi s d e c a y r a t e i s d e t e r mi n e d

b y t h e k e r n el f u n c ti o n a n d t h e t y p e s of c o v a ri a t e s. We al s o d e v el o p a n o v el k e r-

n el s el e c ti o n p r o c e d u r e t o m a xi mi z e t h e p o w e r of t h e p r o p o s e d t e s t b y m a xi mi zi n g

t h e si g n al- t o- n oi s e r a ti o. T h e p r o p o s e d k e r n el s el e c ti o n p r o c e d u r e i s s h o w n t o b e

c o n si s t e nt i n s el e c ti n g t h e k e r n el s t h a t m a xi mi z e t h e p o w e r f u n c ti o n. M o r e o v e r, a

t e s t wi t h a r e g ul a ri z e d k e r n el i s c o n s t r u c t e d t o f u r t h e r i m p r o v e t h e p o w e r. I t i s

s h o w n t h a t t h e p r o p o s e d t e s t n e a rl y a c hi e v e s t h e p o w e r of a n o r a cl e t e s t if t h e r e g-

ul a ri z a ti o n p a r a m e t e r i s p r o p e rl y c h o s e n. E x t e n si v e si m ul a ti o n s t u di e s e v al u a t e t h e

fi ni t e- s a m pl e p e rf o r m a n c e of t h e p r o p o s e d m e t h o d. Fi n all y, w e a p pl y t h e p r o p o s e d

m e t h o d t o a Y o r k s hi r e gil t d a t a s e t t o i d e ntif y p a t h w a y s t h a t a r e a s s o ci a t e d wi t h

t h e t rii o d o t h y r o ni n e l e v el. T h e p r o p o s e d m e t h o d s a r e i n cl u d e d i n a n R p a c k a g e

“ K e r U Te s t. ”

K e y w o r d s a n d p h r a s e s: G e n e s e t a n al y si s, k e r n el f u n c ti o n, n o n p a r a m e t ri c r e g r e s-

si o n, r e p r o d u ci n g k e r n el Hil b e r t s p a c e.

1. I n t r o d u c ti o n

Hi g h- di m e n si o n al or f u n cti o n al d at a ari s e i n a wi d e r a n g e of ar e a s, i n cl u di n g

bi ol o g y, i m a gi n g, a n d cli m at e. I n g e n eti c st u di e s, milli o n s of si n gl e n u cl e oti d e

p ol y m or p hi s m s ( S N P s) c a n b e m e a s ur e d si m ult a n e o u sl y u si n g hi g h-t hr o u g h p ut

t e c h n ol o gi e s. T h e i d e nti fi c ati o n of g e n e s t h at ar e a s s o ci at e d wit h c ert ai n tr ait s,

s u c h a s bl o o d pr e s s ur e a n d gr ai n yi el d, i s b e c o mi n g i n cr e a si n gl y i m p ort a nt i n

h e alt h a n d a gri c ult ur e s ci e n c e s. Alt h o u g h t h e tr a diti o n al m et h o d s f o c u s o n a

C o r r e s p o n di n g a u t h o r:  Pi n g- S h o u Z h o n g, D e p a r t m e nt of M a t h e m a ti c s, S t a ti s ti c s a n d C o m p u t e r
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si n gl e g e n e- b a s e d a n al y si s, t hi s m et h o d h a s li mit ati o n s ( M a n oli o et al. ( 2 0 0 9)).

G e n e- s et b a s e d a n al y si s ( e. g., S u br a m a ni a n et al. ( 2 0 0 5)) h ol d s gr e at pr o mi s e,

b e c a u s e g e n e r e g ul ati o n i s oft e n c o m pl e x a n d g e n e s t e n d t o w or k t o g et h er i n a

n o nli n e ar w a y ( Li u, Li n a n d G h o s h ( 2 0 0 7); Li a n d C ui ( 2 0 1 2)) t o a c hi e v e c ert ai n

bi ol o gi c al f u n cti o n s. T o m o d el t h e a s s o ci ati o n b et w e e n a c ert ai n tr ait Y a n d a

g e n e s et X , w e c o n si d er t h e f oll o wi n g n o n p ar a m etri c r e gr e s si o n:

Y i = µ + h (X i ) + i , i = 1 , . . . , n, ( 1. 1)

w h er e X 1 , . . . , X n ar e i n d e p e n d e nt a n d i d e nti c all y di stri b ut e d (i.i. d.) p - di m e n si o n al

c o v ari at e s g e n er at e d fr o m a pr o b a bilit y m e a s ur e o n R p , h (X i ) i s a n u n k n o w n n o n-

p ar a m etri c f u n cti o n of X i = ( X i1 , . . . , Xi p )
T , a n d i ar e i.i. d. r a n d o m err or s wit h

m e a n z er o a n d v ari a n c e σ 2 . F or t h e p ur p o s e of m o d el i d e nti fi c ati o n, wit h o ut l o s s

of g e n er alit y, w e a s s u m e E { h (X i )} = 0.

I n a g e n e- s et a n al y si s, t h e n u m b e r of g e n e s p i n a g e n e- s et c a n b e i n t h e or d er

of t h o u s a n d s, b ut t h e s a m pl e si z e n i s li mit e d a n d m u c h s m all er t h a n p . If t h er e

i s n o n at ur al or d eri n g a m o n g { X i j }
p
j = 1 , X i i s a p - di m v e ct or a n d X i m a y b e c o n-

si d er e d t o b e hi g h- di m e n si o n al d at a ( e. g., B ai a n d S ar a n a d a s a ( 1 9 9 6)). A “l ar g e

p , s m all n ” s et u p c a n b e u s e d t o st u d y hi g h- di m e n si o n al d at a w h e n p i s m u c h

l ar g er t h a n n . If { X i j }
p
j = 1 c a n b e i n d e x e d b y a c ert ai n v ari a bl e ( e. g., c hr o m o-

s o m e l o c ati o n s), t h e n X i j m a y b e c o n si d er e d a s a r e ali z ati o n of a f u n cti o n al c ur v e

X i (·) o b s er v e d at tj , w h er e t1 < t 2 < · · · < t p . T h e n, X i = { X i (t1 ), . . . , Xi (tp )} T

i s a c oll e cti o n of p r e p e at e d m e a s ur e m e nt s of X i (·), a s m o ot h c ur v e i n s o m e

u n d erl yi n g f u n cti o n al s p a c e ( R a m s a y a n d Sil v er m a n ( 2 0 0 5)). W h e n p i s m u c h

l ar g er t h a n n , X i d e n ot e s d e n s e f u n cti o n al d at a. A n i nt er e sti n g pr o c e d ur e c all e d

“ stri n gi n g ” w a s d e v el o p e d b y C h e n et al. ( 2 0 1 1) t o tr a n sf or m hi g h- di m e n si o n al

d at a i nt o f u n cti o n al d at a. H o w e v er, i n m a n y r e al a p pli c ati o n s, c o n si d eri n g X a s

hi g h- di m e n si o n al or f u n cti o n al d at a i s oft e n s u bj e cti v e. T o a v oi d t hi s s u bj e cti v e

c h oi c e, w e u s e a g e n er al r e pr o d u ci n g k er n el Hil b ert s p a c e ( R K H S) f or h (·), s o

t h at o ur a p pr o a c h i s a p pli c a bl e t o b ot h hi g h- di m e n si o n al a n d f u n cti o n al d at a.

T hi s st u d y ai m s t o t e st t h e e xi st e n c e of a n o nli n e ar a s s o ci ati o n b et w e e n a

q u a ntit ati v e tr ait Y a n d a g e n e s et X , w hi c h i s e q ui v al e nt t o t e sti n g t h e f oll o wi n g:

H 0 : h (·) = 0 v s H 1 : h (·) = 0 . ( 1. 2)

H y p ot h e si s t e sti n g f or a n o n p ar a m etri c f u n cti o n of a n e x pl a n at or y v ari a bl e i n a

fi nit e- di m e n si o n al E u cli d e a n s p a c e h a s b e e n w ell st u di e d i n t h e lit er at ur e. F or

e x a m pl e, C h e n, H ä r dl e a n d Li ( 2 0 0 3) a n d G a o a n d Gij b el s ( 2 0 0 8) c o n si d er e d

i nf er e n c e f or n o n p ar a m etri c f u n cti o n s b a s e d o n k er n el s m o ot hi n g e sti m at or s.
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S h a n g a n d C h e n g ( 2 0 1 3) d e v el o p e d a g e n er al i nf er e n c e f or n o n p ar a m etri c f u n c-

ti o n s i n a S o b ol e v s p a c e b a s e d o n s m o ot hi n g s pli n e e sti m at or s. F a n, Z h a n g a n d

Z h a n g ( 2 0 0 1) d e v el o p e d g e n er ali z e d li k eli h o o d r ati o t e st s f or v ari o u s n o n p ar a m et-

ri c m o d el s wit h p ar a m etri c di stri b uti o n err or s, a n d e st a bli s h e d Wil k s t h e or e m s

f or a cl a s s of t h e g e n er ali z e d li k eli h o o d st ati sti c s u si n g l o c al p ol y n o mi al e sti m a-

t or s. R e c e ntl y, Y a n g, S h a n g a n d C h e n g ( 2 0 2 0) d e v el o p e d a n o n- a s y m pt oti c t e st

a n d Li u, S h a n g a n d C h e n g ( 2 0 1 8) d e v el o p e d a c o m p ut ati o n all y e ffi ci e nt t e st f or

n o n p ar a m etri c f u n cti o n s. M o st e xi sti n g m et h o d s r e q uir e a n e sti m ati o n of n o n-

p ar a m etri c f u n cti o n s, a n d s u ff er fr o m t h e “ c ur s e of di m e n si o n alit y ” ( F a n ( 2 0 1 8)).

H e n c e, t h e y c a n n ot b e e a sil y g e n er ali z e d t o f u n cti o n s wit h e x pl a n at or y v ari a bl e s

i n a hi g h- di m e n si o n al s p a c e wit h o ut a s p e ci fi c str u ct ur e. I n t h e hi g h- di m e n si o n al

li n e ar r e gr e s si o n wit h h (X ) = X T β , t e sti n g h (·) = 0 i s e q ui v al e nt t o t e sti n g

hi g h- di m e n si o n al c o e ffi ci e nt s β = 0 ( e. g., Z h o n g a n d C h e n ( 2 0 1 1), L a n, W a n g

a n d T s ai ( 2 0 1 4), W a n g a n d C ui ( 2 0 1 3)). H o w e v er, t h e s e m et h o d s w er e d e si g n e d

f or a li n e ar m o d el a n d d o n ot a p pl y t o a g e n er al n o n p ar a m etri c f u n cti o n. W h e n

X i i s c o n si d er e d a s f u n cti o n al d at a, e xt e n si v e st u di e s h a v e b e e n d o n e f or h y-

p ot h e si s t e sti n g u n d er v ari o u s m o d el s etti n g s, f or e x a m pl e, u n d er t h e f u n cti o n al

li n e ar m o d el ( e. g., K o n g, St ai c u a n d M ait y ( 2 0 1 6); S u, Di a n d H s u ( 2 0 1 7)), u n d er

g e n er ali z e d f u n cti o n al li n e ar m o d el s ( e. g., S h a n g a n d C h e n g ( 2 0 1 5); Li a n d Z h u

( 2 0 2 0)), a n d c o n si d eri n g n o n p ar a m etri c f u n cti o n s of f u n cti o n al c o v ari at e s ( e. g.,

D el s ol, Ferr at y a n d Vi e u ( 2 0 1 1); D el s ol ( 2 0 1 3)). S e e Te k b u d a k et al. ( 2 0 1 9) f or

a r e c e nt r e vi e w. D el s ol, Ferr at y a n d Vi e u ( 2 0 1 1) a n d D el s ol ( 2 0 1 3) c o n str u ct e d

Cr a m é r – v o n Mi s e s-t y p e t e st st ati sti c s b a s e d o n a l o c al s m o ot hi n g e sti m at or of

t h e n o n p ar a m etri c f u n cti o n, a n d a p pli e d wil d b o ot str a p pr o c e d ur e s f or pr a cti c al

i m pl e m e nt ati o n, w hi c h ar e c o m p ut ati o n all y i nt e n si v e.

A n R K H S- b a s e d m et h o d i s a p o p ul ar a p pr o a c h f or m o d eli n g n o n p ar a m etri c

f u n cti o n s. M o st e xi sti n g m et h o d s st u d y R K H S f or n o n p ar a m etri c f u n cti o n s of

fi nit e- di m e n si o n al c o v ari at e s, w h er e p i s a fi x e d c o n st a nt a n d d o e s n ot gr o w wit h

t h e s a m pl e si z e ( W a h b a ( 1 9 9 0), Li u, Li n a n d G h o s h ( 2 0 0 7), a n d Li u, G h o s h

a n d Li n ( 2 0 0 8)). T h e e sti m ati o n of t h e R K H S- b a s e d n o n p ar a m etri c f u n cti o n of

f u n cti o n al d at a c o v ari at e s (i. e., h (X ) i s a f u n cti o n of f u n cti o n al s) w a s d e v el o p e d

i n Li a n ( 2 0 0 7) a n d A v er y et al. ( 2 0 1 4). H o w e v er, t h er e i s n o e xi sti n g u ni fi e d

i nf er e n c e m et h o d f or h (·) of hi g h- di m e n si o n al or f u n cti o n al c o v ari at e s.

T h e g o al of t hi s st u d y i s t o d e v el o p a u ni fi e d m et h o d f or t e sti n g a n o n p ar a-

m etri c f u n cti o n i n a n R K H S of hi g h- di m e n si o n al or f u n cti o n al c o v ari at e s. T h e

pr o p o s e d m et h o d d o e s n ot dir e ctl y e sti m at e t h e n o n p ar a m etri c f u n cti o n h (·) of

t h e hi g h- di m e n si o n al or f u n cti o n al c o v ari at e s, a n d d o e s n ot r e q uir e a di m e n si o n-

r e d u cti o n m et h o d. O ur k e y i d e a i s t o tr a n sf or m t h e h y p ot h e si s i n ( 1. 2) i nt o a n
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e q ui v al e nt h y p ot h e si s. A U- st ati sti c- b a s e d t e st st ati sti c i s t h e n d e v el o p e d t o t e st

t h e e q ui v al e nt h y p ot h e si s ( s e e S e cti o n 2). T h e a s y m pt oti c di stri b uti o n s of t h e t e st

st ati sti c ar e o bt ai n e d u n d er t h e n ull h y p ot h e si s a n d a s eri e s of l o c al alt er n ati v e s,

wit h o ut a s p e ci fi c di stri b uti o n a s s u m pti o n. T h e a s y m pt oti c di stri b uti o n s d e p e n d

o n t h e d e c a y r at e of t h e ei g e n v al u e s of a gi v e n k er n el f u n cti o n. H o w e v er, t h e

d e c a y r at e i s u s u all y u n k n o w n, b e c a u s e it i s d et er mi n e d b ot h b y t h e s m o ot h n e s s

of t h e r e pr o d u ci n g k er n el K a n d t h e di stri b uti o n ( h e n c e, t h e t y p e s) of t h e c o v ari-

at e s X . A s a r e s ult, t h e a s y m pt oti c di stri b uti o n s ar e n ot dir e ctl y a p pli c a bl e. T o

a d dr e s s t hi s c h all e n g e, w e d e v el o p a u ni fi e d a n d pr a cti c al a p pr o xi m ati o n m et h o d

t h at d o e s n ot r e q uir e k n o wl e d g e of t h e d e c a y r at e. M or e o v er, t h e pr o p o s e d t e st

pr o c e d ur e i s c o m p ut ati o n all y e ffi ci e nt wit h o ut b o ot str a p pr o c e d ur e s.

A n i m p ort a nt fi n di n g i n t hi s st u d y i s t h at t e sti n g f or t h e n o n p ar a m etri c

f u n cti o n h (·) of hi g h- di m e n si o n al c o v ari at e s i s f e a si bl e, e v e n if n o s p e ci fi c str u ct ur e

i s i m p o s e d f or h (·). T h e c o n si st e n c y of t h e t e st d e p e n d s o n t h e s m o ot h n e s s of

t h e f u n cti o n al s p a c e a n d t h e d at a t y p e of t h e c o v ari at e s. If t h e f u n cti o n al s p a c e

H K g e n er at e d b y t h e k er n el i s s u ffi ci e ntl y s m o ot h ( e. g., G a u s si a n k er n el) or

t h e c o v ari at e s X ar e f u n cti o n al d at a, t h e pr o p o s e d t e st i s c o n si st e nt wit h o ut

r e stri cti o n s o n t h e r el ati o n s hi p b et w e e n t h e di m e n si o n of t h e c o v ari at e p a n d t h e

s a m pl e si z e n . If t h e f u n cti o n al s p a c e H K i s n ot s u ffi ci e ntl y s m o ot h a n d t h e

c o v ari at e X i s hi g h- di m e n si o n al d at a, s o m e r e stri cti o n s o n p a n d n ar e n e e d e d t o

m a k e t h e pr o p o s e d t e st c o n si st e nt.

I n pr a cti c e, t h e p o w er of t h e pr o p o s e d t e st d e p e n d s o n t h e c h oi c e of k er n el s.

A s a r e s ult, k er n el s el e cti o n i s a n i m p ort a nt i s s u e i n a k er n el m a c hi n e- b a s e d t e sti n g

pr o c e d ur e ( Li u, Li n a n d G h o s h ( 2 0 0 7)). H o w e v er, f e w st u di e s h a v e e x a mi n e d

t hi s ar e a. We pr o p o s e a n e w pr o c e d ur e f or s el e cti n g k er n el s i n t h e h y p ot h e si s

t e sti n g c o nt e xt. B y o bt ai ni n g a n e x pli cit p o w er f u n cti o n of t h e pr o p o s e d t e st, w e

c h o o s e t h e k er n el t h at m a xi mi z e s t h e p o w er f u n cti o n. U nli k e t h e BI C pr o p o s e d

i n Li u, Li n a n d G h o s h ( 2 0 0 7), o ur pr o c e d ur e i s t ail or e d t o t h e h y p ot h e si s t e sti n g

pr o bl e m, a n d i s p arti c ul arl y d e si g n e d t o i m pr o v e t h e p o w er of t h e pr o p o s e d t e st.

We s h o w t h at t h e k er n el s el e cti o n pr o c e d ur e i s c o n si st e nt i n t h e s e n s e t h at it

s el e ct s t h e k er n el s t h at m a xi mi z e t h e p o w er wit h pr o b a bilit y o n e. M or e o v er, w e

c a n c o n str u ct a r e g ul ari z e d k er n el t o f urt h er i m pr o v e t h e p o w er of t h e t e st. A

n o v el m et h o d f or c h o o si n g t h e r e g ul ari z ati o n p ar a m et er i s i ntr o d u c e d. We s h o w

t h at t h e pr o p o s e d t e st wit h a r e g ul ari z e d k er n el a c hi e v e s t h e p o w er of a n or a cl e

t e st if t h e r e g ul ari z ati o n p ar a m et er i s pr o p erl y c h o s e n.

T h e r e st of t h e p a p er i s or g a ni z e d a s f oll o w s. I n S e cti o n 2, w e i ntr o d u c e t h e

R K H S, f u n cti o n al s p a c e f or h (·), a n d e q ui v al e nt h y p ot h e si s. S e cti o n 3 pr o p o s e s

a n e w t e st st ati sti c a n d e st a bli s h e s t h e m ai n a s y m pt oti c di stri b uti o n s of t h e

T his c o nt e nt d o w nl o a d e d fr o m
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pr o p o s e d t e st st ati sti c u n d er t h e n ull h y p ot h e si s a n d l o c al alt er n ati v e s. T h e

k er n el s el e cti o n a n d r e g ul ari z ati o n ar e di s c u s s e d i n S e cti o n 4. T h e fi nit e- s a m pl e

p erf or m a n c e of t h e pr o p o s e d t e st st ati sti c i s e v al u at e d u si n g e xt e n si v e si m ul ati o n s

i n S e cti o n 5. I n S e cti o n 6, w e a p pl y t h e pr o p o s e d m et h o d t o a Y or k s hir e gilt

d at a s et t o i d e ntif y g e n e s et s a s s o ci at e d wit h trii o d ot h yr o ni n e l e v el s. A bri ef

di s c u s si o n i s gi v e n i n S e cti o n 7. S o m e t h e or eti c al r e s ult s, all t h e t e c h ni c al d et ail s,

a n d a d diti o n al si m ul ati o n r e s ult s ar e r el e g at e d t o t h e S u p pl e m e nt ar y M at eri al.

2. F u n c ti o n al S p a c e a n d E q ui v al e n t H y p o t h e si s

C o n si d er f u n cti o n s h (·) t h at b el o n g t o a f u n cti o n al s p a c e H K g e n er at e d b y a

k er n el K n, θ n
(·, ·), w h er e θ n ar e t u ni n g p ar a m et er s t h at p o s si bl y d e p e n d o n n . F or

n ot ati o n al c o n v e ni e n c e, w e s u p pr e s s n i n θ n i n t h e r e st of t hi s p a p er. T h e k er n el

K n, θ (x 1 , x2 ) : R p × R p → R i s a n y s y m m etri c a n d p o siti v e s e mi- d e fi nit e f u n cti o n

d e fi n e d o n R p × R p . T hr o u g h o ut t h e p a p er, w e a s s u m e p = p (n ) i s a f u n cti o n of n .

A k er n el K n, θ (x 1 , x2 ) i s s ai d t o b e p o siti v e s e mi- d e fi nit e if t h e a s s o ci at e d k er n el

m atri x ( K n, θ (x i , xj ))
M
i, j = 1 i s a n M × M p o siti v e s e mi- d e fi nit e m atri x d e fi n e d o n a n y

M di sti n ct p oi nt s x 1 , . . . , xM ∈ R p . We u s e K n, θ a n d b ol d f o nt K t o d e n ot e t h e

k er n el f u n cti o n a n d a n n × n k er n el m atri x d e fi n e d b y K = K n, θ (X i , X j )
n

i, j = 1
,

r e s p e cti v el y. S o m e c o m m o nl y u s e d k er n el f u n cti o n s i n cl u d e t h e li n e ar k er n el

K n, θ (z 1 , z2 ) = z T
1 z 2 / θ a n d t h e G a u s si a n k er n el K n, θ (z 1 , z2 ) = e x p( − z 1 − z 2

2 / θ ).

A d diti o n al e x a m pl e s of k er n el f u n cti o n s c a n b e f o u n d i n Li u, Li n a n d G h o s h

( 2 0 0 7).

T h e f u n cti o n al s p a c e H K i s d et er mi n e d b y t h e k er n el f u n cti o n K n, θ . T o

d e fi n e t h e f u n cti o n al s p a c e H K , w e d e fi n e t h e f oll o wi n g n or m ali z e d k er n el

K n, θ (x 1 , x2 ) =
K n, θ (x 1 , x2 )

E { K 2
n, θ (X 1 , X 2 )}

,

w h er e X 1 a n d X 2 ar e t w o i n d e p e n d e nt c o pi e s of X wit h pr o b a bilit y m e a s ur e P .

It i s t h e n o b vi o u s t h at E { K 2
n, θ (X 1 , X 2 )} = 1 a n d K n, θ (x 1 , x2 ) i s still p o siti v e s e mi-

d e fi nit e a n d s y m m etri c. T h e a b o v e n or m ali z ati o n e n s ur e s E { K 2
n, θ (X 1 , X 2 )} < ∞ ,

s o t h at t h e ei g e n- d e c o m p o siti o n of K n, θ c a n b e pr o p erl y d e fi n e d a c c or di n g t o

L e m m a 1 i n t h e S u p pl e m e nt al M at eri al. T h e n or m ali z ati o n i s n e e d e d b e c a u s e

E { K 2
n, θ (X 1 , X 2 )} c o ul d di v er g e i n t h e hi g h- di m e n si o n al c a s e. F or i n st a n c e, if

K n, θ (X 1 , X 2 ) = X T
1 X 2 a n d V ar( X ) = Σ , t h e n E { K 2

n, θ (X 1 , X 2 )} ≥ tr( Σ 2 ), w hi c h

i m pli e s t h at E { K 2
n, θ (X 1 , X 2 )} i s at l e a st of or d er p if all t h e ei g e n v al u e s of Σ ar e

b o u n d e d a w a y fr o m z er o. N ot e t h at t h e n or m ali z ati o n i s m ai nl y f or t h e or eti c al

a n al y s e s. O ur st a n d ar di z e d t e st st ati sti c i s i n v ari a nt t o t h e k er n el n or m ali z ati o n.
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T h u s, t h e n or m ali z ati o n i s n ot n e e d e d i n pr a cti c e f or t h e pr o p o s e d t e st.

B y C or oll ar y 1 i n t h e S u p pl e m e nt al M at eri al, w e c a n writ e

K n, θ (x 1 , x2 ) =

∞

m = 1

λ K θ , mψ n θ, m (x 1 )ψ n θ, m (x 2 ),

w h er e λ K θ ,1 ≥ λ K θ ,2 ≥ · · · ar e ei g e n v al u e s of K n, θ , a n d { ψ n θ, m (·)} f or m a c o m pl et e

ort h o g o n al n or m al s y st e m o n L 2 (P ). T hi s r e pr e s e nt ati o n e xt e n d s t h e ei g e n-

d e c o m p o siti o n of a k er n el ( or c o v ari a n c e) f u n cti o n fr o m a o n e- di m e n si o n al s p a c e

t o a p - di m e n si o n al ( or f u n cti o n al) s p a c e. Wit h o ut c a u si n g c o nf u si o n, w e u s e

λ n K , m a n d ψ n m (·) t o d e n ot e λ n K θ , m a n d ψ n θ, m (·), r e s p e cti v el y. T h e n, t h e s p a c e

H K i s d e fi n e d a s ( C u c k er a n d S m al e ( 2 0 0 2))

H K = f (x ) : f (x ) =

∞

m = 1

α m ψ n m (x ) f or α m s ati sf yi n g

∞

m = 1

α 2
m

λ n K , m
< ∞ .

F or e x a m pl e, if a c e ntr ali z e d li n e ar k er n el K n, θ (x 1 , x2 ) = (x 1 − µ X ) T (x 2 − µ X )

wit h µ X = E (X ) i s u s e d, t h e s p a c e H K c o nt ai n s li n e ar f u n cti o n s f (x ) = β T x .

If X i s a hi g h- di m e n si o n al v e ct or, m o d el ( 1. 1) r e d u c e s t o a li n e ar m o d el. If

X i s a f u n cti o n al d at a v e ct or, m o d el ( 1. 1) b e c o m e s a f u n cti o n al li n e ar m o d el

h (x ) = x (t)β (t)dt . If n o nli n e ar k e r n el s s u c h a s p ol y n o mi al a n d G a u s si a n k er n el s

ar e gi v e n, t h e f u n cti o n al s p a c e H K i n cl u d e s v er y g e n er al n o nli n e ar m o d el s.

T o di sti n g ui s h H 1 fr o m H 0 , w e d e fi n e a m e a s ur e t o q u a ntif y t h e di st a n c e

b et w e e n h (·) a n d z er o. H er e, w e d e fi n e t h e n or m · K a s a m e a s ur e:

h 2
K =

∞

m = 1

λ n m α 2
m , ( 2. 1)

w h er e λ n m = E { K 2
n, θ (X 1 , X 2 )} λ n K , m, w hi c h m a y b e c o n si d er e d a s t h e ei g e n-

v al u e s of t h e k er n el f u n cti o n K n, θ (x, y ). O b vi o u sl y, t h e n ull h y p ot h e si s i n ( 1. 2)

i s tr u e if a n d o nl y if h 2
K = 0, a n d h 2

K > 0 u n d er t h e alt er n ati v e h y p ot h e si s.

T h er ef or e, t h e h y p ot h e si s c o n si d er e d i n ( 1. 2) i s e q ui v al e nt t o

H 0 : h 2
K = 0 v s H 1 : h 2

K > 0 . ( 2. 2)

T h e c o n n e cti o n b et w e e n a n o n p ar a m etri c f u n cti o n a n d it s ei g e n- d e c o m p o siti o n

h a s b e e n u s e d f or st ati sti c al i nf er e n c e i n t h e lit er at ur e. F or e x a m pl e, F a n ( 1 9 9 6)

d e v el o p e d N e y m a n’ s a d a pti v e t e st s b a s e d o n t h e F o uri er tr a n sf or m of a n o n p ar a-

m etri c f u n cti o n.
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F or m o d el i d e nti fi c ati o n, i n t h e r e st of t hi s p a p er, w e c o n si d er a c e ntr ali z e d

k er n el K n, θ t h at s ati s fi e s µ K = E { K n, θ (X 1 , X 2 )} = 0. R e c all t h at h (·) n e e d s t o

s ati sf y E { h (X i )} = 0 f or t h e p ur p o s e of i d e nti fi c ati o n. N ot e t h at t h e c e ntr al-

i z e d k er n el i s e q ui p p e d wit h t h e z er o- m e a n ei g e nf u n cti o n s { ψ n m (·)} ∞
m = 1 . A s a

r e s ult, t h e f u n cti o n s i n t h e c orr e s p o n di n g R K H S H K h a v e z er o m e a n s, b e c a u s e

E { h (X i )} = E { ∞
m = 1 α m ψ n m (X i )} = 0. T h e c e ntr ali z e d k er n el K n, θ c a n b e c o n-

str u ct e d fr o m a n y p o siti v e- d e fi nit e k er n el f u n cti o n K ∗
n, θ b y s etti n g K n, θ (x 1 , x 2 ) =

K ∗
n, θ (x 1 , x 2 ) − K ∗

1 , θ(x 1 ) − K ∗
1 , θ(x 2 ) + µ K ∗ , w h er e K ∗

1 , θ(x 1 ) = E { K ∗
n, θ (x 1 , X 2 )} i s

t h e fir st- or d er pr oj e cti o n of K ∗
n, θ . B y L e m m a 3 i n t h e S u p pl e m e nt ar y M at eri al,

K n, θ i s still s e mi- p o siti v e d e fi nit e wit h o nl y o n e z er o ei g e n v al u e λ ∗
n m = 0 c or-

r e s p o n di n g t o t h e ei g e nf u n cti o n ψ ∗
n m (x ) = 1, if K ∗

θ i s p o siti v e d e fi nit e. S o m e

b e n e fit s of a c e ntr ali z e d k er n el ar e di s c u s s e d i n Li n d s a y et al. ( 2 0 0 8). T h e pr a c-

ti c al c o n str u cti o n of a c e ntr ali z e d k er n el i s di s c u s s e d i n t h e n e xt s e cti o n.

3. T e s t S t a ti s ti c s a n d A s y m p t o ti c Di s t ri b u ti o n s

B y t h e ort h o n or m al e x p a n si o n of K n, θ (x, y ) i n S e cti o n 2, w e o b s er v e t h at

E { (Y i − µ )(Y j − µ )K n, θ (X i , X j )} = h 2
K , f or a n y (i, j ) p air s u c h t h at i = j .

M oti v at e d b y t hi s o b s e r v ati o n, w e c o n si d er t h e f oll o wi n g t e st st ati sti c:

T n =
1

n (n − 1)
i= j

K n, θ (X i , X j )(Y i − Ȳ n )(Y j − Ȳ n )

σ̂ 2
, ( 3. 1)

w h er e Ȳ n = n − 1 n
i= 1 Y i i s t h e s a m pl e m e a n a n d σ̂ 2 = ( n − 1) − 1 n

i= 1 (Y i − Ȳ n ) 2 i s

t h e s a m pl e v ari a n c e e sti m at or of σ 2 u n d er t h e n ull h y p ot h e si s ( 1. 2). We c a n t h e n

c h e c k t h at E (T n ) = o ( 1) u n d er t h e n ull h y p ot h e si s a n d E (T n ) = h 2
K / σ 2 { 1 +

o ( 1) } u n d er t h e alt er n ati v e. T h er ef or e, t h e t e st st ati sti c T n i s a bl e t o di sti n g ui s h

t h e n ull a n d alt er n ati v e h y p ot h e s e s i n ( 1. 2).

D e fi n e K 2 n, θ (x, y ) = E { K n, θ (x, X )K n, θ (X , y)} . L et λ n 1 ≥ λ n 2 ≥ λ n 3 ≥

· · · b e ei g e n v al u e s of t h e k er n el f u n cti o n K n, θ , a n d d e fi n e V k n = ∞
m = 1 λ k

n m f or

i nt e g er s k = 1 , 2 , . . . T h e a s y m pt oti c fr a m e w or k c o n si d er e d h er e i s p (n ) → ∞

a s n → ∞ , w h er e p (n ) di v e r g e s a s n di v er g e s. H o w e v er, w e d o n ot r e q uir e a n

e x pli cit r el ati o n s hi p b et w e e n p (n ) a n d n . T o st u d y t h e a s y m pt oti c di stri b uti o n s

of t h e pr o p o s e d t e st st ati sti c T n , w e n e e d t h e f oll o wi n g t e c h ni c al a s s u m pti o n s:

( C 1) A s s u m e τ 8 < ∞ , w h er e τ k = E ( k ) i s t h e k t h m o m e nt of t h e r a n d o m err or

.

( C 2) A s s u m e s u p n V
− 1 − δ / 2

2 n E |K n, θ (X 1 , X 2 )|2 + δ < ∞ , f or s o m e δ > 0, a n d
∞
m = M λ 2

n K , m → 0 u nif or ml y f or all n > n 0 a s n 0 a n d M → ∞ .
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1 3 0. 2 1 2. 1 8. 9 6 o n T h u, 1 5 J a n 2 0 2 6 2 0: 1 8: 4 8 U T C

All us e s u bj e ct t o htt ps:// a b o ut.jst or. or g/t er ms



9 2 6 H E E T A L.

( C 3) A s s u m e E { K 4
2 n, θ (X 1 , X 2 )} = o (V 4

2 n ) a n d E { K 2
2 n, θ (X 1 , X 1 )} = o (n V 2

2 n ).

T h e f oll o wi n g t h e or e m s u m m ari z e s t h e a s y m pt oti c di stri b uti o n of T n u n d er

H 0 , a n d t h e pr o of c a n b e f o u n d i n t h e S u p pl e m e nt al M at eri al.

T h e o r e m 1. U n d e r t h e n ull h y p ot h e si s H 0 i n ( 1. 2) a n d ( C 1) : (i ) A s s u m e ( C 2)

h ol d s. If λ n K , m → λ K , m a s n → ∞ , t h e n n T n /
√

V 2 n
d

→ ∞
m = 1 λ K , m(χ

2
m − 1) ,

w h e r e χ 2
m a r e i n d e p e n d e nt c hi- s q u a r e d di st ri b uti o n s wit h o n e d e g r e e of f r e e d o m;

(ii ) If c o n diti o n ( C 3) h ol d s, t h e n σ − 1
T n

n T n
d

→ N ( 0, 1) , w h e r e σ 2
T n

= 2 V 2 n .

R e m a r k 1. T h e or e m 1 s h o w s t h at t h e a s y m pt oti c di stri b uti o n s of T n d e p e n d

o n t h e d e c a y r at e of t h e ei g e n v al u e s λ n K , m, w hi c h i s d et e r mi n e d b y t h e k er n el

f u n cti o n a n d t h e di m e n si o n a n d di stri b uti o n of t h e r a n d o m v e ct or X . C o n si d er

a li n e ar k er n el gi v e n b y K n, θ (x 1 , x2 ) = (x 1 − µ X ) T (x 2 − µ X ). T h e ei g e n v al u e s of

t h e li n e ar k er n el ar e gi v e n b y t h e ei g e n v al u e s of V ar( X ) = Σ . P art (i) of T h e or e m

1 pr o vi d e s a n a s y m pt oti c di stri b uti o n of n T n w h e n t h e ei g e n v al u e s d e c a y f a st a n d

n T n /
√

V 2 n h a s t h e s a m e di stri b uti o n a s t h e fi nit e s u m M
m = 1 λ K , m(χ

2
m − 1), f or

s o m e M i n ( C 2). If X = { X i (t1 ), . . . , Xi (tp )} T i s a f u n cti o n al d at a v e ct or, t h e

a s s u m pti o n s i n ( C 2) ar e t y pi c al i n a f u n cti o n al P C A t y p e- b a s e d a n al y si s, w h er e

t h e fir st f e w ei g e n v al u e s ar e d o mi n a nt. T h e a s y m pt oti c di stri b uti o n of T n i s a

w ei g ht e d c hi- s q u ar e d di stri b uti o n, n ot a c hi- s q u ar e d di stri b uti o n, w hi c h di ff er s

fr o m t h e Wil k s’ p h e n o m e n a e st a bli s h e d f or t h e n o n p ar a m etri c li k eli h o o d r ati o

t e st st ati sti c s ( e. g., F a n, Z h a n g a n d Z h a n g ( 2 0 0 1)).

H o w e v er, f or hi g h- di m e n si o n al d at a, t h e ei g e n v al u e s m a y n ot d e c a y at a f a st

e n o u g h r at e. U n d er t hi s s c e n ari o, t h e a s y m pt oti c di stri b uti o n i s a n a s y m p-

t oti c n or m al, a s e st a bli s h e d i n p art (ii) of T h e or e m 1. F or t h e a b o v e li n e ar

k er n el, if w e f urt h er a s s u m e t h at X 1 a n d X 2 ar e m ulti v ari at e n or m al, t h e n

E { K 4
2 n, θ (X 1 , X 2 )} = 3tr 2 (Σ 4 ) + 6tr( Σ 8 ) a n d E { K 2

2 n, θ (X 1 , X 1 )} = tr 2 (Σ 2 ) +

2tr( Σ 4 ). If tr( Σ 4 ) = o { tr 2 (Σ 2 )} ( Z h o n g a n d C h e n ( 2 0 1 1)), t h e n c o n diti o n ( C 3)

h ol d s. T h e c o n diti o n tr( Σ 4 ) = o { tr 2 (Σ 2 )} i s tr u e f or m o st s c e n ari o s w h e n t h e

ei g e n v al u e s of Σ d e c a y sl o wl y.

R e m a r k 2. B e c a u s e t h e d e c a y r at e of t h e ei g e n v al u e s λ n K , m i s di ffi c ult t o d et e r-

mi n e f or a g e n er al k er n el, a n d it r eli e s o n t h e di stri b uti o n of X , t h e a s y m pt oti c

di stri b uti o n s ar e n ot dir e ctl y a p pli c a bl e. O n t h e o n e h a n d, p art (i) of T h e or e m 1

s h o w s t h at t h e li miti n g di stri b uti o n of n T n /
√

V 2 n i s ∞
m = 1 λ K , m(χ

2
m − 1). B e c a u s e

λ n m =
√

V 2 n λ n K , m a n d λ n K , m → λ K , m, w e m a y a p pr o xi m at e t h e di stri b uti o n of

n T n b y T n = ∞
m = 1 λ n m (χ 2

m − 1). O n t h e ot h er h a n d, if c o n diti o n ( C 3) h ol d s,

t h e n L y a p u n o v’ s c o n diti o n V 4 n / V 2
2 n → 0 i s s ati s fi e d s o t h at t h e c e ntr al li mit t h e-

or e m h ol d s f or t h e s u m of t h e w ei g ht e d c e ntr ali z e d c hi- s q u ar e d di stri b uti o n s T n ;
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t h at i s, σ − 1
T n

T n
d

→ N ( 0, 1). T hi s m e a n s t h at t h e a s y m pt oti c n or m alit y i n T h e or e m

1 m a y b e c o n si d er e d a s t h e li miti n g di stri b uti o n of T n . T h u s, T n i s fl e xi bl e e n o u g h

t o a p pr o xi m at e t h e a s y m pt oti c di stri b uti o n s i n b ot h s c e n ari o s i n T h e or e m 1, a n d

T n pr o vi d e s a u ni fi e d i nf er e n c e a p pr o a c h f or b ot h hi g h- di m e n si o n al a n d f u n cti o n al

d at a.

I n pr a cti c e, o bt ai ni n g a c c ur at e e sti m at or s f or all t h e ei g e n v al u e s λ n m (m =

1 , 2 , . . .) si m ult a n e o u sl y i s di ffi c ult. N e v ert h el e s s, w e a p pl y a S att ert h w ait e a p-

pr o xi m ati o n t o t h e mi xt ur e of c hi- s q u ar e s ∞
m = 1 λ n m χ 2

m u si n g a s c al e d c hi-

s q u ar e d di stri b uti o n â n χ 2
ĝ n

, w h er e ĝ n = V̂ 1 n / â n , â n = σ̂ 2
T n

/ ( 2 V̂ 1 n ), a n d V̂ 1 n =

n − 1 tr( H K ) i s a n u n bi a s e d e sti m at or of V 1 n . H er e, H = I − n − 1 J i s a pr oj e cti o n

m atri x a n d J i s a n n × n m atri x wit h all el e m e nt s e q u al t o o n e. T h e n, w e a p-

pr o xi m at e T n b y â n χ 2
ĝ n

− V̂ 1 n . T h e a c c ur a c y of t h e S att ert h w ait e a p pr o xi m ati o n

i s at t h e or d er of O { (V 2
3 n / V 3

2 n ) 1 / 2 } . T a ki n g t h e li n e ar k er n el a s a n e x a m pl e, if all

t h e ei g e n v al u e s of Σ ar e fi nit e, t h e n ( V 2
3 n / V 3

2 n ) 1 / 2 i s at t h e or d er of p − 1 / 2 .

A u ni fi e d a s y m pt oti c α -l e v el t e st r ej e ct s t h e n ull h y p ot h e si s if

n T n + V̂ 1 n

â n
> χ 2

ĝ n ,1 − α , ( 3. 2)

w h er e χ 2
g, 1 − α i s t h e 1 − α q u a ntil e of a c hi- s q u ar e d di stri b uti o n wit h g d e gr e e s of

fr e e d o m.

R e m a r k 3. If c o n diti o n s ( C 3) h ol d s, t h e n a n α -l e v el t e st r ej e ct s t h e n ull if

σ̂ − 1
T n

n T n > z 1 − α , ( 3. 3)

w h er e z 1 − α i s t h e l o w er 1 − α q u a ntil e of t h e st a n d ar d n or m al di stri b uti o n, σ̂ 2
T n

=

2( n − 1) − 2 tr( H K 0 H K 0 ) i s a r ati o- c o n si st e nt e sti m at or f or σ 2
T n

( s e e Pr o p o siti o n

1 i n S e cti o n 4. 1), w h er e A 0 = ( A 0
i j ) i s a z er o- di a g o n al m atri x wit h A 0

i j = A i j , f or

i = j a n d A 0
ii = 0.

T o a c hi e v e b ett er a c c ur a c y i n t h e si z e a p pr o xi m ati o n, w e a dj u st t h e v ari a n c e

e sti m at or σ̂ 2
T n

u si n g t h e hi g h- or d er m o m e nt s of i n ( 1. 1). T h e a dj u st e d v ari a n c e

e sti m at or σ̂ 2
T n , a dj r e pl a c e s t h e e sti m at or σ̂ 2

T n
i n t h e si m ul ati o n st u d y i n S e cti o n

5 a n d t h e r e al- d at a a n al y si s i n S e cti o n 6. A s s u m e t h e d e n sit y f u n cti o n of i s

s y m m etri c ar o u n d z er o. T h e a dj u st e d v ari a n c e e sti m at or σ̂ 2
T n , a dj i s ˆσ 2

T n , a dj = ( 2 −

1 2 / (n − 1) + 6 ∆̂ / n )t r( H K 0 H K 0 ) − ( 2/ n + ∆̂ / n )t r 2 (H K 0 ) + ∆̂ t r( A ◦ A ) / (n − 1) 2 ,

w h er e ◦ d e n ot e s t h e H a d a m ar d pr o d u ct, A = H K 0 H , a n d ∆̂ = n − 1 n
i= 1 [(Y i −

Ȳ n )/ σ̂ ]4 − 3. T h e d eri v ati o n of σ 2
T n , a dj i s pr o vi d e d i n t h e S u p pl e m e nt ar y M at eri al.

R e m a r k 4. If t h e c e ntr ali z e d k er n el K n, θ i s u n k n o w n a n d i s c o n str u ct e d fr o m

T his c o nt e nt d o w nl o a d e d fr o m
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a k er n el f u n cti o n K ∗
n, θ , it m a y c o nt ai n u n k n o w n q u a ntiti e s µ K ∗ a n d K ∗

1 , θ(X 1 ).

T h u s, T n i s n ot dir e ctl y a p pli c a bl e. I n t hi s c a s e, w e c a n r e pl a c e K n, θ (X i , X j )

wit h ˆK n, θ (X i , X j ), w hi c h i s t h e ( i, j ) el e m e nt of K = K ∗
θ − (n − 1) − 1 J (K ∗

θ ) 0 −

(n − 1) − 1 (K ∗
θ ) 0 J + n − 1 (n − 1) − 1 J (K ∗

θ ) 0 J . L et T̂ n b e t h e t e st st ati sti c wit h c orr e-

s p o n di n g k er n el ˆK n, θ . It c a n b e s h o w n t h at (n T n − n T̂ n )/
√

V 2 n = o p ( 1) ( s e e t h e

pr o of of R e m ar k 4 i n t h e S u p pl e m e nt al M at eri al). T hi s i m pli e s t h at n T̂ n /
√

V 2 n

h a s t h e s a m e li miti n g di stri b uti o n a s n T n /
√

V 2 n .

T h e n e xt t h e or e m st u di e s t h e a s y m pt oti c di stri b uti o n of t h e t e st st ati sti c T n

u n d er a s e q u e n c e of l o c al alt er n ati v e h y p ot h e s e s,

H 1 n : h (x ) = d n (x ), ( 3. 4)

w h er e d n (x ) i s a n y u n k n o w n f u n cti o n t h at p o s si bl y d e p e n d s o n n . F or m o d el

i d e nti fi c ati o n, a s s u m e E d n (X ) = 0. A s u s u al, w e c o n si d er l o c al alt er n ati v e s

t h at ar e cl o s e t o t h e n ull h y p ot h e si s b e c a u s e t h e s e ar e m or e c h all e n gi n g t o d et e ct

t h a n fi x e d alt er n ati v e s. M or e s p e ci fi c all y, a s s u m e t h at d n (·) s ati s fi e s t h e f oll o wi n g

c o n diti o n:

( C 4) T h e l o c al alt er n ati v e s d n (x ) s ati sf y n δ K = O (V
1 / 2

2 n ) a n d n 2 E { d 8
n (X )} = o ( 1),

w h er e δ K = E { K n, θ (X 1 , X 2 )d n (X 1 )d n (X 2 )} .

T h e o r e m 2. U n d e r t h e l o c al alt e r n ati v e s H 1 n i n ( 3. 4) s ati sf yi n g ( C 4) : (i ) A s-

s u mi n g ( C 2) h ol d s wit h δ = 2 , w e h a v e V
− 1 / 2

2 n n T n − σ T n
Ψ( d n )

d
→ ∞

m = 1 λ K , m(χ
2
m

− 1) , w h e r e Ψ( d n ) = n δ K / (σ 2 σ T n
) i s t h e si g n al-t o- n oi s e r ati o ( S N R ); (ii ) If ( C 3)

h ol d s, t h e n σ − 1
T n

n T n − Ψ( d n )
d

→ N ( 0, 1) .

T h e pr o of of T h e or e m 2 c a n b e f o u n d i n t h e S u p pl e m e nt ar y M at eri al. A p-

pl yi n g T h e or e m 2, t h e p o w er of a n α -l e v el t e st f or t h e r ej e cti o n r e gi o n i n ( 3. 3)

u n d er t h e l o c al alt er n ati v e s ( 3. 4) i s Ω( d n ) = 1 − Φ z 1 − α − Ψ( d n ) , w h er e Φ(·)

i s t h e C D F f or t h e st a n d ar d n or m al di stri b uti o n. T h er ef or e, t h e p o w er of t h e

pr o p o s e d t e st i s d et er mi n e d b y t h e S N R Ψ( d n ). If t h e α -l e v el r ej e cti o n r e gi o n i n

( 3. 2) i s u s e d, t h e p o w er of t h e t e st i s Ω( d n ) = P χ 2
g n

> χ 2
g n ,1 − α − σ T n

Ψ( d n )/ a n ,

w h er e a n = σ 2
T n

/ ( 2V 1 n ).

L et d n (x ) = b n ∆ n (x ) s u c h t h at E λ − 1
n 1 K n, θ (X 1 , X 2 ) ∆ n (X 1 ) ∆ n (X 2 ) i s a

c o n st a nt. T h e n, t h e pr o p o s e d t e st h a s n o n-tri vi al p o w er if b n = V
1 / 4

2 n /
√

n λ n 1 . If

V 2 n i s a c o n st a nt, w hi c h i m pli e s t h at λ n 1 i s a c o n st a nt, t h e n t h e pr o p o s e d t e st i s

a bl e t o d et e ct alt er n ati v e s of or d er 1 /
√

n . H ow e v er, i n hi g h- di m e n si o n al c a s e s, if

V 2 n / λ 2
n 1 → ∞ at a c ert ai n r at e, t h e pr o p o s e d t e st c a n d et e ct alt er n ati v e s of or d er

V
1 / 4

2 n /
√

n λ n 1 , w hi ch i s l ar g er t h a n 1 /
√

n . T hi s r e v e al s a n a d v er s e e ff e ct of di m e n-

si o n alit y o n t h e t e st. We o b s er v e t h at a s l o n g a s V 2 n = o (n 2 λ n 1 ), t h e pr o p o s e d

T his c o nt e nt d o w nl o a d e d fr o m
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t e st i s c o n si st e nt s o t h at t h e p o w er of t h e t e st c o n v er g e s t o o n e. D e p e n di n g o n

t h e c h o s e n k er n el, t hi s c o n diti o n mi g ht or mi g ht n ot i m p o s e c o n diti o n s o n p (n )

a n d n , b e c a u s e V 2 n = E { K 2
n, θ (X 1 , X 2 )} d e p e n d s o n p (n ).

A s s u m e t h at X i s a p - di m r a n d o m v e ct or wit h m e a n E (X ) = µ X a n d c o v ari-

a n c e V ar( X ) = Σ . L et η 1 ≥ · · · ≥ η p b e t h e ei g e n v al u e s of Σ a n d r m = η m / η 1 b e

t h e r ati o of t h e ei g e n v al u e s. I n t h e f oll o wi n g, w e di s c u s s t h e i m pli c ati o n of t h e

c o n diti o n V 2 n = o (n 2 λ n 1 ) o n t h e r el ati o n s hi p b et w e e n p a n d n f or f o ur c o m m o nl y

u s e d k er n el s: t h e li n e ar, q u a dr ati c, p ol y n o mi al, a n d G a u s si a n k er n el s.

E x a m pl e 1 ( Li n e ar K er n el) . If K n, θ (X 1 , X 2 ) = (X 1 − µ X ) T (X 2 − µ X ) i s a

c e ntr ali z e d li n e ar k er n el, t h e n V 2 n = E { K 2
n, θ (X 1 , X 2 )} = tr( Σ 2 ). A s s u m e t h at

r m m − β / 2 . T h e pr o p o s e d t e st i s c o n si st e nt if p = o { n 2 / ( 1 − β ) } f or 0 ≤ β < 1.

If β = 1, t h e c o n diti o n i s p = o { e x p ( n 2 )} . If β > 1, t h e n t h e pr o p o s e d t e st i s

c o n si st e nt f or a n y r el ati o n s hi p b et w e e n p a n d n .

E x a m pl e 2 ( Q u a dr ati c K er n el) . C o n si d er t h e q u a dr ati c k er n el K ∗
n, θ (X 1 , X 2 ) =

(X T
1 X 2 + 1) 2 . T h e n, t h e c orr e s p o n di n g c e ntr ali z e d k er n el i s K n, θ (X 1 , X 2 ) =

2( X 1 − µ X ) T (X 2 − µ X ) + (X T
1 X 2 ) 2 − X T

1 R X 1 − X T
2 R X 2 + tr( R 2 ), w h er e R =

Σ + µ X µ T
X . If X 1 a n d X 2 ar e m ulti v ari at e n or m all y di stri b ut e d wit h µ X = 0,

t h e n V 2 n tr 2 (Σ 2 ). T h er ef or e, t h e pr o p o s e d m et h o d i s c o n si st e nt if tr 2 (Σ 2 ) =

o (n 2 λ n 1 ). If r m m − β / 2 , t h e pr o p o s e d t e st i s c o n si st e nt if p = o { n 1 / ( 1 − β ) } , f or

0 ≤ β < 1. If β = 1, t h e c o n diti o n i s p = o { e x p ( n )} . If β > 1, t h e pr o p o s e d t e st

i s c o n si st e nt f or a n y r el ati o n s hi p b et w e e n p a n d n .

E x a m pl e 3 ( P ol y n o mi al K er n el) . C o n si d er t h e p ol y n o mi al k er n el K ∗
n, θ (X 1 , X 2 ) =

(X T
1 X 2 ) d wit h a fi nit e d . A s s u m e X 1 a n d X 2 ar e i n d e p e n d e nt m ulti v ari at e

n or m all y di stri b ut e d wit h m e a n µ X a n d v ari a n c e Σ . L et X 1 = Σ 1 / 2 Z 1 a n d

Σ = Q Λ Q T b e t h e ei g e n- d e c o m p o siti o n of Σ , w h er e Λ = di a g(η 1 , . . . , ηp ) i s a

di a g o n al m atri x a n d Q i s t h e c orr e s p o n di n g ei g e n v e ct or m atri x. We t h e n writ e

(X T
1 X 2 ) d = ( Z T

1 Λ Z 2 ) d , w h er e Z 1 a n d Z 2 ar e i n d e p e n d e nt m ulti v ari at e n or m all y

di stri b ut e d v e ct or s wit h m e a n µ ∗ = Q T Σ − 1 / 2 µ X a n d i d e ntit y c o v ari a n c e. A s a

r e s ult, w e c o n si d er a p ol y n o mi al k er n el K ∗
n, θ (Z 1 , Z 2 ) = ( Z T

1 Λ Z 2 ) d , w h er e Z 1 a n d

Z 2 ar e i n d e p e n d e nt m ulti v ari at e di stri b ut e d n or m al r a n d o m v e ct or s wit h m e a n

µ ∗ a n d c o v ari a n c e I p . I n t h e S u p pl e m e nt al M at eri al, w e s h o w t h at t h e c e ntr ali z e d

k er n el of K ∗
n, θ i s

K n, θ (Z 1 , Z 2 ) =
j 1 + j 2 + ···+ j p = d

d !

j 1 ! · · · j p !

S J

l= 1

η
j k l

k l
{ Z

j k l

1 k l
− E (Z

j k l

1 k l
)} { Z

j k l

2 k l
− E (Z

j k l

2 k l
)} ,

w h er e j 1 , . . . , jp ar e n o n- n e g ati v e i nt e g er s a n d { k 1 , . . . , kS J
} i s a s u b s et of { 1 , . . . ,
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p } , f or w hi c h j k l
= 0 a n d l = 1 , . . . , SJ a n d S J i s t h e n u m b er of n o n z er o i nt e g er s

i n t h e s et J = { j 1 , . . . , jp } . H er e, η j i s t h e j t h l ar g e st ei g e n v al u e of Λ a n d

Z 1 = ( Z 1 1 , . . . , Z1 p ) T . I n t h e S u p pl e m e nt al M at eri al, w e al s o s h o w t h at V 2 n

tr d (Σ 2 ). T h er ef or e, t h e pr o p o s e d m et h o d i s c o n si st e nt if tr d (Σ 2 ) = o (n 2 λ n 1 ). If

r m m − β / 2 , t h e pr o p o s e d t e st i s c o n si st e nt if p = o { n 2 / { d ( 1 − β ) } } , f or 0 ≤ β < 1.

If β = 1, t h e c o n diti o n i s p = o { e x p( n 2 / d )} . If β > 1, t h e pr o p o s e d t e st i s

c o n si st e nt f or a n y r el ati o n s hi p b et w e e n p a n d n .

E x a m pl e 4 ( G a u s si a n K er n el) . C o n si d er t h e G a u s si a n k er n el K ∗
n, θ (X 1 , X 2 ) =

e x p { − (X 1 − X 2 ) T (X 1 − X 2 )/ θ } , wit h X 1 a n d X 2 f oll o wi n g a n or m al di stri b uti o n.

T h e c e ntr ali z e d k er n el f u n cti o n K n, θ (X 1 , X 2 ) i s K n, θ (X 1 , X 2 ) = e x p { − (X 1 −

X 2 ) T (X 1 − X 2 )/ θ } − κ 1
2
i= 1 e x p( − X T

i B X i ) + κ 2 , w h er e B = θ − 1 I − 2 θ − 2 ( 2θ − 1 I +

Σ − 1 ) − 1 , κ 1 = Π p
m = 1 ( 2θ − 1 η m + 1) − 1 / 2 , κ 2 = Π p

m = 1 ( 4η m / θ + 1) − 1 / 2 , a n d { η m } p
m = 1

ar e t h e ei g e n v al u e s of Σ . M or e o v er, V 2 n = Π p
m = 1 ( 8η m / θ + 1) − 1 / 2 − 2 Π p

m = 1 ( 2η m / θ +

1) − 1 / 2 ( 6η m / θ + 1) − 1 / 2 + Π p
m = 1 ( 4η m / θ + 1) − 1 . W h e n all t h e ei g e n v al u e s of Σ ar e

b o u n d e d, w e c a n s e e t h at V 2 n i s a c o n st a nt. T h e n, t h e c o n diti o n V 2 n = o (n 2 λ n 1 )

i s s ati s fi e d if n 2 λ n 1 di v er g e s. U n d er t hi s c o n diti o n, t h e pr o p o s e d t e st i s c o n si st e nt

r e g ar dl e s s of t h e r el ati o n s hi p b et w e e n p a n d n .

R e m a r k 5. We o b s er v e s o m e i nt er e sti n g p h e n o m e n a fr o m t h e a b o v e e x a m pl e s.

If t h e ei g e n v al u e s of t h e k er n el f u n cti o n K n, θ d e c a y sl o wl y, s o m e r e stri cti o n s o n

t h e r el ati o n s hi p b et w e e n t h e d at a di m e n si o n a n d t h e s a m pl e si z e ar e n e e d e d. T hi s

c orr e s p o n d s t o t h e c a s e i n w hi c h d at a s h o ul d b e c o n si d er e d a s hi g h- di m e n si o n al

d at a. If t h e ei g e n v al u e s d e c a y f a st e n o u g h, w e d o n ot n e e d a n y a s s u m pti o n o n

t h e d at a di m e n si o n a n d s a m pl e si z e. T hi s i s t h e c a s e f or f u n cti o n al d at a or

k er n el f u n cti o n s t h at g e n er at e s u ffi ci e ntl y s m o ot h f u n cti o n al s p a c e s. F or li n e ar,

q u a dr ati c, a n d p ol y n o mi al k er n el s, t h e ei g e n v al u e s of t h e c o v ari a n c e of X n e e d

t o d e c a y f a st e n o u g h s o t h at w e c a n tr e at X a s f u n cti o n al d at a. H o w e v er, if

t h e G a u s si a n k er n el i s u s e d, t h e c orr e s p o n di n g f u n cti o n al s p a c e i s e q ui p p e d wit h

s m o ot h f u n cti o n al s p a c e s, s o t h at w e d o n ot n e e d t o w orr y a b o ut t h e d at a t y p e

of X .

4. K e r n el S el e c ti o n a n d R e g ul a ri z a ti o n

T o f urt h er i m pr o v e t h e p o w er of t h e pr o p o s e d t e st, w e c o n si d er t h e c h oi c e of

k er n el f u n cti o n a n d t h e c o n str u cti o n of a r e g ul ari z e d k er n el i n t hi s s e cti o n.

4. 1. K e r n el s el e c ti o n

I n S e cti o n s 2 – 3, w e a s s u m e t h at t h e k er n el K t h at g e n er at e s t h e f u n cti o n al

s p a c e H K i s k n o w n. H o w e v er, t h e f u n cti o n al s p a c e H K i s t y pi c all y u n k n o w n.

T his c o nt e nt d o w nl o a d e d fr o m
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T h er ef or e, a n i m p ort a nt q u e sti o n i n pr a cti c e i s h o w t o s el e ct k er n el s t o i m pr o v e

t h e p o w er of t h e pr o p o s e d t e st. T h e k er n el s el e cti o n pr o bl e m h a s b e e n st u di e d

f or Fi s h er di s cri mi n a nt a n al y si s ( Ki m, M a g n a ni a n d B o y d ( 2 0 0 6)) a n d s e mi-

s u p er vi s e d l e ar ni n g ( D ai, Ye u n g a n d Qi a n ( 2 0 0 7)). H o w e v er, n o k er n el s el e cti o n

m et h o d i s t ail or e d t o t h e h y p ot h e si s t e sti n g pr o bl e m ( Li u, Li n a n d G h o s h ( 2 0 0 7)).

We pr o p o s e s el e cti n g k er n el s b y m a xi mi zi n g t h e S N R of t h e pr o p o s e d t e st.

T h e m oti v ati o n i s t o c h o o s e a k er n el wit h a b ett er S N R, s o t h at t h e pr o p o s e d

t e st i s m or e p o w e rf ul. B e c a u s e t h e S N R Ψ K θ
(d n ) = n δ K θ

/ (σ 2 σ T n
), it i s e q ui v a-

l e nt t o m a xi mi zi n g σ − 1
T n

δ K θ
, b e c a u s e n a n d σ 2 d o n ot d e p e n d o n t h e k er n el K θ .

T h er ef or e, gi v e n a f a mil y of c a n di d at e k e r n el s F K , t h e k er n el K θ m a y b e s el e ct e d

b y m a xi mi zi n g t h e S N R, a s f oll o w s:

K θ = ar g m a x
K θ ∈ F K

δ̂ K θ

σ̂ T n

. ( 4. 1)

F or a c a n di d at e k er n el K θ ∈ F K , t h e u n k n o w n p ar a m et er s δ K θ
a n d σ T n

c a n b e

s u b stit ut e d u si n g e sti m at or s, δ̂ K θ
= { n (n − 1) } − 1

i= j K θ (X i , X j )(Y i − Ȳ n )(Y j −

Ȳ n ) a n d σ̂ 2
T n

d e fi n e d i n e q u ati o n ( 3. 3), r e s p e cti v el y. T h e s e e sti m at or s ar e r ati o

c o n si st e nt, a s s h o w n i n Pr o p o siti o n 1.

D e fi n e K θ = ar g m a x K θ ∈ F K
δ K θ

/ σ T n
a s t h e k er n el wit h t h e l ar g e st S N R i n

t h e s et F K . L et F K ,1 b e t h e s et of k er n el s wit h S N R s at t h e s a m e or d er a s

t h e S N R of K θ , a n d F K ,0 = F K / F K ,1 b e t h e s et of k er n el s i n F K , b ut n ot i n

F K ,1 . A s s u m e t h at all t h e k er n el s K ∈ F K ,0 s ati sf y |σ − 1

T n ,K θ

δ K θ
− σ − 1

T n , K δ K |

σ − 1

T n ,K θ

δ K θ
. H er e, σ 2

T n , K i s t h e v ari a n c e of T n c o n str u ct e d u si n g k e r n el K . T hi s

m e a n s t h at t h e S N R s of t h e k er n el s i n F K ,0 a n d F K ,1 h a v e di sti n ct or d er s.

M or e o v er, l et R mi n = mi n K ∈ F K , 0
|σ − 1

T n ,K θ

δ K θ
− σ − 1

T n , K δ K |/ σ − 1
T n , K δ K a n d V m a x ,K θ

=

m a x n − 1 V 2 n , V ar K θ (X 1 , X 2 )h (X 1 )h (X 2 )} , V ar { K θ (X 1 , X 2 )h (X 1 )} . D e fi n e |F K |

a s t h e c ar di n alit y of t h e s et F K . A s s u m e t h e f oll o wi n g c o n diti o n:

( C 5) T h e k er n el K θ s ati s fi e s V m a x ,K θ
= o (n δ 2

K θ

) a n d |F K ,0 | = o mi n( n δ 2
K θ

/ V m a x ,K θ
,

R mi n ) .

T h e a b o v e c o n diti o n ( C 5) i s a mil d c o n diti o n o n t h e S N R of t h e u n k n o w n f u n c-

ti o n h (·) wit h r e s p e ct t o t h e k er n el K θ . T h e si g n al i s sli g htl y str o n g er t h a n t h o s e

r e q uir e d i n t h e l o c al alt er n ati v e c o n diti o n ( C 4) s o t h at t h e k er n el s el e cti o n c o n-

si st e n c y c a n b e e st a bli s h e d. T hi s i s n ot s ur pri si n g, b e c a u s e s el e cti o n c o n si st e n c y

t y pi c all y r e q uir e s a str o n g er si g n al t h a n d et e cti o n. I n t h e fir st p art of ( C 5),

V m a x ,K θ
q u a nti fi e s t h e v ari ati o n of t h e e sti m at or δ̂ K θ

w h er e a s δ 2
K θ

m e a s ur e s t h e

si g n al str e n gt h of t h e pr oj e cti o n of t h e u n d erl yi n g f u n cti o n h (·) t o t h e k er n el

K θ , It r e q uir e s t h at t h e si g n al str e n gt h i s n ot t o o s m all w h e n c o m p ar e d t o t h e

T his c o nt e nt d o w nl o a d e d fr o m
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v ari ati o n of it s e sti m at or s o t h at t h e pr oj e cti o n δ K θ
c a n b e e sti m at e d c o n si st e ntl y.

N ot e t h at t h e pr o p o s e d k er n el s el e cti o n m et h o d i s n ot d e si g n e d t o c h o o s e

t h e u n d erl yi n g tr u e k er n el t h at g e n er at e s t h e s p a c e H K . I n t h e n o n p ar a m etri c

f u n cti o n e sti m ati o n c o nt e xt, if t h e k er n el K̂ θ u s e d f or e sti m ati o n i s n ot t h e s a m e

a s t h e u n d erl yi n g tr u e k er n el K t h at g e n er at e s t h e f u n cti o n al s p a c e H K , t h e

f u n cti o n al s p a c e of t h e e sti m at e d f u n cti o n s H K̂ θ
c o ul d b e di ff er e nt fr o m H K .

H o w e v er, i n t h e h y p ot h e si s t e sti n g fr a m e w or k, t h e g o al i s t o di sti n g ui s h w h et h er

t h e tr u e f u n cti o n h (X ) i s i n H 0 or i n H 1 . If K̂ θ = K , t h e p o s si bl e i m p a ct i s

t h at t h e d e ci si o n s (r ej e ct H 0 or f ail t o r ej e ct H 0 ) b a s e d o n t h e t e st st ati sti c s

c o n str u ct e d u si n g K a n d K̂ θ c o ul d b e di ff er e nt. T h e f oll o wi n g Pr o p o siti o n 1

pr o v e s t h e r ati o c o n si st e n c y of t h e S N R s b y pr o vi n g t h e r ati o c o n si st e n c y of δ̂ K θ

a n d σ̂ 2
T n

. M or e o v er, w e s h o w t h at a k e r n el wit h t h e S N R at t h e s a m e or d er a s

t h at of K θ will b e s el e ct e d wit h pr o b a bilit y o n e, a n d t h e pr o p o s e d k er n el s el e cti o n

i s c o n si st e nt i n t h e h y p ot h e si s t e sti n g c o nt e xt. T h e pr o of of Pr o p o siti o n 1 c a n b e

f o u n d i n t h e S u p pl e m e nt al M at eri al.

P r o p o si ti o n 1. A s n → ∞ , (i ) σ̂ 2
T n

/ σ 2
T n

p
→ 1 ; (ii ) if c o n diti o n ( C 5) h ol d s, t h e n

δ̂ K θ
/ δ K θ

p
→ 1 a n d K θ ∈ F K ,1 wit h p r o b a bilit y o n e; a n d (iii ) a s s u mi n g V a r (Y ) < ∞

a n d t h e k e r n el K t h at g e n e r at e s t h e R K H S H K al s o s ati s fi e s c o n diti o n ( C 5) , t h e n

t h e p r o p o s e d k e r n el s el e cti o n i s c o n si st e nt i n t h e s e n s e t h at t h e d e ci si o n r ul e ( r ej e ct

o r f ail t o r ej e ct H 0 ) u si n g T n b uilt o n t h e s el e ct e d k e r n el K̂ θ i s t h e s a m e a s t h at

b a s e d o n t h e t r u e k e r n el K .

4. 2. K e r n el r e g ul a ri z a ti o n

I n t hi s s e cti o n, w e s h o w t h at t h e p o w er of t h e pr o p o s e d t e st c a n b e f urt h er

i m pr o v e d b y u si n g a r e g ul ari z e d k er n el. T h e p o w er f u n cti o n i s d et er mi n e d b y t h e

S N R Ψ( d n ), w hi c h c a n b e writt e n a s Ψ( d n ) = n ∞
m = 1 λ n m b 2

n m / (σ 2 σ T n
), w h er e

b n m = E { d n (X )ψ n m (X )} i s t h e pr oj e cti o n of d n (X ) o nt o t h e m t h ei g e nf u n cti o n

ψ n m (X ) of K n, θ . We o b s er v e t h at t h e n u m er at or of Ψ(d n ) (t h e si g n al p art) i s d e-

t er mi n e d b y t h e m a g nit u d e of t h e ei g e n v al u e s λ n m a n d t h e pr oj e cti o n s b n m . F or

a gi v e n s et of ei g e nf u n cti o n s { ψ n m (x )} ∞
m = 1 a n d a f u n cti o n d n (x ), t h e pr oj e cti o n s

b n m ar e fi x e d. T o i n c r e a s e t h e n u m er at or of Ψ( d n ), o n e c o ul d a dj u st t h e ei g e n-

v al u e s λ n m a s s o ci at e d wit h t h e pr oj e cti o n b n m s o t h at l ar g er n o n z er o pr oj e cti o n s

r e c ei v e hi g h er w ei g ht s t h a n s m all pr oj e cti o n s d o.

T o a dj u st t h e ei g e n v al u e s of t h e k e r n el wit h o ut c h a n gi n g t h e ei g e nf u n cti o n al

s p a c e, w e i ntr o d u c e a r e g ul ari z e d k er n el i n t h e f oll o wi n g. F or a n y c e ntr ali z e d

k er n el m atri x K , d e fi n e t h e r e g ul ari z e d k er n el m atri x K R, γ a s

T his c o nt e nt d o w nl o a d e d fr o m
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K R, γ = K − K (n γ I + K ) − 1 K . ( 4. 2)

A si mil ar v er si o n i n a t w o- s a m pl e pr o bl e m w a s di s c u s s e d i n Eri c, B a c h a n d

H ar c h a o ui ( 2 0 0 8). L et K R, γ b e t h e k e r n el f u n cti o n c orr e s p o n di n g t o t h e k e r n el

m atri x K R, γ . It c a n b e pr o v e d ( s e e L e m m a 4 i n t h e S u p pl e m e nt ar y M at eri al) t h at

t h e ei g e nf u n cti o n s of t h e k er n el f u n cti o n K R, γ ar e still { ψ n m (X )} ∞
m = 1 , w hi c h ar e

t h e s a m e a s t h o s e of K n, θ . H o w e v er, t h e c orr e s p o n di n g ei g e n v al u e s of K R, γ ar e

{ γ λ n m / (λ n m + γ )} ∞
m = 1 . A c c or di n g t o t h e d e fi niti o n of t h e R K H S H K i n S e cti o n

2, t h e s p a c e H K i s m ai nl y d et er mi n e d b y t h e ei g e nf u n cti o n s a n d ei g e n v al u e s.

A s a r e s ult, t h e f u n cti o n s m o ot h n e s s i n t h e R K H S d e fi n e d b y t h e r e g ul ari z e d

k er n el c o ul d b e di ff er e nt t o t h at i n t h e s p a c e d e fi n e d b y t h e u nr e g ul ari z e d k er n el.

H o w e v er, si mil arl y t o t h e k er n el s el e cti o n i n t h e l a st s u b s e cti o n, n ot e t h at t h e

r e g ul ari z ati o n d o e s n ot c h a n g e t h e R K H S t h at g e n er at e s t h e tr u e f u n cti o n h (·).

It i s m ai nl y d e si g n e d t o i m pr o v e t h e p o w er of t h e pr o p o s e d t e st.

We n o w s h o w h o w a r e g ul ari z e d k er n el K R, γ c a n i m pr o v e t h e p o w er of t h e

pr o p o s e d t e st. T o s e e t h e p oi nt, w e c o m p ar e t h e S N R s Ψ( d n ) a n d Ψ R (d n , γ)

c orr e s p o n di n g t o t h e k er n el s K n, θ a n d K R, γ , r e s p e cti v el y. L et C n = n / (
√

2 σ 2 ).

T h e n, w e h a v e

Ψ( d n ) = C n

∞
m = 1 λ n m b 2

n m
∞
m = 1 λ 2

n m

a n d Ψ R (d n , γ) = C n

∞
m = 1 λ n m b 2

n m / (λ n m + γ )
∞
m = 1 λ 2

n m / (λ n m + γ ) 2
. ( 4. 3)

B y c o m p ari n g t h e a b o v e t w o e x pr e s si o n s, w e s e e t h at s u p γ Ψ R (d n , γ) ≥ Ψ( d n ).

B e c a u s e

Ψ R (d n , γ) = C n

∞
m = 1 λ n m b 2

n m / (λ n m / γ + 1)
∞
m = 1 λ 2

n m / (λ n m / γ + 1) 2
→ Ψ( d n ) a s γ → ∞ ,

t h e r e g ul ari z e d k er n el K R, γ i s t h e s a m e a s t h e u nr e g ul ari z e d k er n el K n, θ if γ → ∞ .

T h u s, t h e i ntr o d u cti o n of t h e r e g ul ari z ati o n p ar a m et er γ all o w s u s t o stri k e a

b al a n c e b et w e e n t h e n u m er at or a n d t h e d e n o mi n at or s o t h at Ψ R (d n , γ) i s l ar g er

t h a n Ψ( d n ) f or s o m e γ .

T o s el e ct t h e b e st r e g ul ari z ati o n p ar a m et er γ , it i s n at ur al t o c o n si d er m a x-

i mi zi n g t h e S N R ΨR (d n , γ). T h at i s, γ̂ = a r g m a x γ ∈ S Ψ̂ R (d n , γ), w h er e S =

{ s 1 , . . . , sB } i s a s et of p o siti v e c a n di d at e r e g ul ari z ati o n p ar a m et er s or d er e d i n

i n cr e a si n g or d er. N ot e t h at t h e d e n o mi n at or of ΨR (d n , γ) i n ( 4. 3) g o e s t o i n fi nit y

a n d t h e n u m er at or of t h e S N R i n ( 4. 3) i n cr e a s e s a s γ → 0. A r e a s o n a bl e e sti-

m at e f or t h e n u m er at or of ( 4. 3) s h o ul d b e n o n d e cr e a si n g a s γ → 0. H o w e v er,

t h e n u m e r at or m a y n ot b e w ell e sti m at e d if t h e s a m pl e si z e i s s m all. We t h e r e-

f or e pr o p o s e a m o di fi c ati o n t o t h e a b o v e a p pr o a c h. L et s ∗
l ∈ S b e t h e s m all e st
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r e g ul ari z ati o n p ar a m et er i n S s u c h t h at δ̂ K , γ(d n ), t h e n u m er at or of Ψ R (d n , γ),

a c hi e v e s it s m a xi m u m v al u e i n S . We t h e n f o c u s o n t h e t u ni n g p ar a m et er s t h at

ar e l ar g er t h a n s ∗
l i n t h e s et of S . Gi v e n t h e s a m pl e s, w e c a n fi n d t h e o pti m al

t u ni n g p ar a m et er b y m a xi mi zi n g t h e f oll o wi n g crit eri o n:

γ̂ = a r g m a x
γ ∈ { s ∗

l ,..., sB }
Ψ̂ R (d n , γ). ( 4. 4)

F or t h e st a bilit y s el e cti o n c o n si d er ati o n, w e pr o p o s e t h e f oll o wi n g pr o c e d ur e

t o s el e ct t h e t u ni n g p ar a m et er γ :

1. R a n d o ml y di vi d e t h e s a m pl e { Y i , X i }
n
i= 1 i nt o L p art s wit h e q u al s a m pl e

si z e s.

2. We dr o p t h e lt h ( l = 1 , 2 , . . . , L) p art of t h e s a m pl e, s el e ct t h e t u ni n g

p ar a m et er γ̂ l u si n g t h e r e m ai ni n g L − 1 p art s of t h e s a m pl e b a s e d o n crit eri o n

( 4. 4).

3. R e p e at st e p 2 f or l = 1 , . . . , L. T h e st a bili z e d t u ni n g p ar a m et er i s d e fi n e d

a s γ̃ = m e di a n { γ̂ 1 , . . . , γ̂ L } .

T h e si m ul ati o n st u di e s i n S e cti o n 5 d e m o n str at e t h at t h e a b o v e t u ni n g p ar a m et er

s el e cti o n m et h o d w or k s w ell i n pr a cti c e. F or t h e r e g ul ari z ati o n p ar a m et er γ ,

w e r e c o m m e n d c h o o si n g a n i nt er v al t h at s ati s fi e s t h e c o n diti o n s of T h e or e m 3

i n t h e S u p pl e m e nt ar y M at eri al, a n d t h e n s el e cti n g a s e q u e n c e of v al u e s t h at

ar e di s cr et e u nif or ml y di stri b ut e d wit hi n a n a p pr o pri at e i nt e r v al t o p erf or m t h e

st a bilit y s el e cti o n pr o c e d ur e d e s cri b e d a b o v e. B a s e d o n o ur e x p eri e n c e i n t h e

si m ul ati o n s, o n e c o ul d c h o o s e L b et w e e n f o ur t o ei g ht. Pl e a s e r ef er t o S e cti o n 5. 2

f or m or e d et ail s. F or a gi v e n c a n di d at e s et S = { s 1 , . . . , sB } f or t h e r e g ul ari z ati o n

p ar a m et er γ , d e fi n e S ∗ = { s ∗
l , . . . , sB } ⊂ S a s t h e s et of r e g ul ari z ati o n p ar a m et er s

u s e d i n ( 4. 4). L et γ̃ = a r g m a x γ ∈ S ∗ Ψ R (d n , γ) a n d |S ∗ | b e t h e c ar di n alit y of t h e s et

S ∗ . If t h e r e g ul ari z e d k er n el s c orr e s p o n di n g t o γ̃ a n d |S ∗ | s ati sf y t h e c o n diti o n s

i n ( C 5), t h e n t h e pr o p o s e d k er n el r e g ul ari z ati o n m et h o d al s o h a s t h e c o n si st e n c y

e st a bli s h e d i n Pr o p o siti o n 1.

T h e r e g ul ari z ati o n i s m o st e ff e cti v e i n t h e “ s p ar s e ” c a s e, i n w hi c h t h e n o n z er o

pr oj e cti o n s r e si d e o nl y i n t h e fir st N c o or di n at e s c orr e s p o n di n g t o t h e N l ar g e st

ei g e n v al u e s. I n S e cti o n S 2 of t h e S u p pl e m e nt a r y M at e ri al, w e s h o w t h at t h e S N R

Ψ R (d n , γ∗ ) of t h e p r o p o s e d t e st wit h a r e g ul a ri z e d k e r n el c a n att ai n t h e S N R of

a n o r a cl e t e st wit hi n a f a ct o r of a sl o wl y v a r yi n g f u n cti o n l o g (N ).

T his c o nt e nt d o w nl o a d e d fr o m
1 3 0. 2 1 2. 1 8. 9 6 o n T h u, 1 5 J a n 2 0 2 6 2 0: 1 8: 4 8 U T C

All us e s u bj e ct t o htt ps:// a b o ut.jst or. or g/t er ms



U NI FI E D T E S T S F O R N O N P A R A M E T RI C F U N C TI O N S I N R K H S 9 3 5

5. Si m ul a ti o n S t u d y

T h e si m ul ati o n st u di e s w er e d e si g n e d t o e v al u at e t h e fi nit e- s a m pl e p erf or-

m a n c e of t h e pr o p o s e d t e st f or hi g h- di m e n si o n al a n d f u n cti o n al c o v ari at e s, k er n el

s el e cti o n, a n d r e g ul ari z ati o n m et h o d s. We si m ul at e d i.i. d. s a m pl e s { X i , Yi }
n
i= 1

fr o m t h e f oll o wi n g m o d el:

Y i = µ + h (X i ) + i , i = 1 , . . . , n, ( 5. 1)

w h er e t h e r a n d o m err or i w a s si m ul at e d fr o m N ( 0, 1) or L a pl a c e ( 0,
√

2 / 2). We

c o n si d er e d b ot h hi g h- di m e n si o n al a n d f u n cti o n al c o v ari at e s X . T o g e n er at e hi g h-

di m e n si o n al X , w e fir st g e n er at e d a p - di m e n si o n al n or m all y di stri b ut e d r a n d o m

v e ct or Z wit h m e a n z er o a n d c o v ari a n c e Σ = ( 0 .6 |i− j |) p
i, j = 1 . T h e n, w e o bt ai n e d

t h e c o v ari at e s X = ( X 1 , . . . , Xp ) T b y s etti n g t h e j t h c o m p o n e nt u si n g X j =

F n j (Z j ), f or j = 1 , . . . , p. H er e, F n j i s t h e e m piri c al c u m ul ati v e di stri b uti o n of

t h e j t h c o m p o n e nt gi v e n b y F n j (z ) = n − 1 n
i= 1 I (Z i j ≤ z ). T o g e n er at e t h e f u n c-

ti o n al c o v ari at e s X , w e fir st g e n er at e d a s e q u e n c e of ti m e p oi nt s 0 < t 1 < · · · <

tp < 1 u nif or ml y fr o m ( 0, 1), a n d t h e n g e n er at e d X j = X (tj ) u si n g t h e st o c h a sti c

pr o c e s s X (t) = 1 0 0
k = 1 ( 2ω 2 k − 1 ) 1 / 2 η 2 k − 1 c o s( 2 k π t ) + 1 0 0

k = 1 ( 2ω 2 k ) 1 / 2 η 2 k si n( 2 k π t ),

w h er e ω k = 2 0( k + 1 .5) − 3 a n d η k s ar e i.i. d. N ( 0, 1). We c o n si d er e d t w o s etti n g s

f or t h e r el ati o n s hi p b et w e e n n a n d p : (i) p < n a n d (ii) p > > n , wit h n = 4 0 , 6 0,

a n d 1 0 0. S p e ci fi c all y, p = ( 3 , 5 , 1 0) i n s etti n g (i), a n d p = ( 1 5 0 0 , 3 0 0 0 , 4 5 0 0)

i n s etti n g (ii). All t h e r e s ult s f or e v al u ati n g t h e e m piri c al p o w er ar e b a s e d o n

1, 0 0 0 si m ul ati o n r e pli c at e s a n d t h o s e f or t h e e m piri c al si z e ar e b a s e d o n 5, 0 0 0

si m ul ati o n r e pli c at e s. T o s a v e s p a c e, t h e si m ul ati o n r e s ult s f or s etti n g (i) a n d

t h e si m ul ati o n st u di e s f or t h e L a pl a c e err or s ar e pr e s e nt e d i n S e cti o n S 3 of t h e

S u p pl e m e nt ar y M at eri al. I n all of o ur si m ul ati o n a n d e m piri c al st u di e s, w e u s e d

t h e s c al e d c hi- s q u ar e d a p pr o xi m ati o n di s c u s s e d i n R e m ar k 2 aft er T h e or e m 1.

I n p arti c ul ar, w h e n t h e d at a di m e n si o n i s l o w, w e f o u n d t h at t h e c hi- s q u ar e d

a p pr o xi m ati o n w a s m or e a c c ur at e t h a n t h e n or m al a p pr o xi m ati o n.

We wi s h t o t e st H 0 : h (·) = 0. T o a s s e s s t h e e m piri c al si z e of t h e pr o-

p o s e d t e st, w e c h o s e h (x ) = 0 u n d er H 0 . T o e v al u at e t h e e m piri c al p o w er, w e

c h o s e h (x ) = h H (x ) − E (h H ) i n s etti n g (ii), w h er e h H (x ) = c 1
1 0 0
k = 1 (− 1) k x k +

c 2
1 0 0
k = 1 { e x p( − x 2

k / p )H 2 (x k / p )} + c 3 { x 1 x 3 + c o s( x 2
3 )} , w h er e H k (·) i s t h e k t h- or d er

H er mit e p ol y n o mi al, a n d c 1 , c2 , a n d c 3 ar e c o n st a nt s s p e ci fi e d b el o w. I n s etti n g

(ii), w e d e si g n e d t w o s c e n ari o s wit h di ff er e nt v al u e s of c 1 , c2 , a n d c 3 f or e a c h s et-

ti n g: S 3 = { c 1 = 0 .1 , c2 = 1 0 0 , c3 = 0 .1 } a n d S 4 = { c 1 = 1 0 0 u, c 2 = 0 .1 u, c 3 =

0 .1 u, u = 0 .0 1 5 } . I n s c e n ari o S 3 , c 2 ar e c h o s e n t o b e m u c h l ar g er t h a n c 1 s u c h

t h at t h e n o nli n e ar p art s d o mi n at e t h e f u n cti o n s. I n S 4 , c 1 ar e m u c h l ar g er t h a n

T his c o nt e nt d o w nl o a d e d fr o m
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T a bl e 1. E m piri c al si z e (i n p er c e nt a g e s) of t h e pr o p o s e d t e st ( Pr o p o s e d) a n d t h e m et h o d
of Li u, Li n a n d G h o s h ( 2 0 0 7) ( L L D) f or G a u s si a n e rr or s wit h hi g h- di m e n si o n al a n d
f u n cti o n al c o v ari at e s u si n g di ff er e nt k er n el s.

Hi g h- di m e n si o n al c o v ari at e s F u n cti o n al c o v ari at e s

n = 4 0 n = 6 0 n = 1 0 0 n = 4 0 n = 6 0 n = 1 0 0

p m et h o d K E K L K G K E K L K G K E K L K G K E K L K G K E K L K G K E K L K G

1, 5 0 0 Pr o p o s e d 6. 2 6. 2 6. 2 5. 3 5. 1 5. 1 5. 4 5. 1 5. 2 6. 2 6. 1 5. 9 4. 7 4. 9 5. 0 4. 5 4. 4 4. 5

L L D 4. 9 4. 9 4. 9 3. 9 4. 0 4. 0 4. 7 5. 1 5. 3 4. 5 5. 2 4. 9 5. 5 5. 1 5. 6 4. 4 4. 2 4. 1

3, 0 0 0 Pr o p o s e d 6. 4 6. 3 6. 3 5. 2 5. 1 5. 2 5. 9 5. 6 5. 3 5. 6 5. 0 5. 2 5. 5 5. 2 5. 5 5. 1 5. 1 5. 0

L L D 4. 1 4. 0 4. 0 5. 0 4. 5 4. 6 5. 9 5. 6 5. 6 4. 2 4. 1 4. 2 5. 5 5. 1 5. 5 4. 7 4. 9 4. 8

4, 5 0 0 Pr o p o s e d 6. 0 6. 2 6. 0 5. 4 5. 4 5. 4 5. 9 6. 0 6. 0 5. 4 6. 1 5. 9 5. 0 4. 7 4. 9 5. 0 5. 2 5. 1

L L D 4. 7 4. 4 4. 3 5. 4 5. 3 5. 4 6. 1 5. 9 6. 0 4. 7 5. 1 5. 0 4. 4 4. 1 4. 1 5. 1 4. 8 5. 0

c 2 s o t h at t h e li n e ar p art s d o mi n at e.

T hr e e t y p e s of c o m m o nl y u s e d k er n el s w er e c o m p ar e d i n all t h e si m ul ati o n s:

t h e li n e ar k er n el K L (x , y ) = x T y / θ , G a u s si a n k er n el K G (x , y ) = e x p { − x −

y 2 / θ } , a n d t h e e x p o n e nti al k er n el K E (x , y ) = e x p { − ( x 2 + 3 x − y 2 +

y 2 )/ θ } . T h e t u ni n g p ar a m et er θ w a s s et t o p t o m a k e t h e c o m p ut ati o n m or e

st a bl e. T hi s c h oi c e of θ i s al s o cl o s el y r el at e d t o t h e “ m e di a n h e uri sti c ” u s e d

i n t h e m a c hi n e l e ar ni n g lit er at ur e ( s e e S c h öl k o pf, S m ol a a n d B a c h ( 2 0 0 2)). I n

pr a cti c e, o n e mi g ht al s o a p pl y t h e pr o p o s e d k er n el s el e cti o n m et h o d t o s el e ct t h e

p ar a m et er θ 0 > 0 i n t h e t u ni n g p ar a m et er θ wit h t h e f or m θ = p θ 0 . F urt h er

di s c u s si o n o n t h e c h oi c e of θ c a n b e f o u n d i n S e cti o n S 3. 5 of t h e S u p pl e m e nt ar y

M at eri al.

T a bl e 1 s u m m ari z e s t h e e m piri c al si z e s of t h e pr o p o s e d t e st a n d t h e t e st

pr o c e d ur e ( L L D) pr o p o s e d b y Li u, Li n a n d G h o s h ( 2 0 0 7) f or hi g h- di m e n si o n al

a n d f u n cti o n al c o v ari at e s. We s e e t h at b ot h m et h o d s h a v e si mil ar e m piri c al si z e s

a n d c a n c o ntr ol t h e t y p e-I e rr or s r e a s o n a bl y w ell. T a bl e 2 c o nt ai n s t h e e m piri c al

p o w er of t h e pr o p o s e d t e st u n d er s etti n g (ii) wit h hi g h- di m e n si o n al c o v ari at e s.

S e v er al o b s er v ati o n s ar e gi v e n b el o w: 1) T h er e i s a cl e ar di ff er e n c e i n p o w er

b et w e e n t h e t hr e e t y p e s of k er n el s K E , KG , a n d K L , e s p e ci all y w h e n p a n d n

ar e r el ati v el y s m all. T h e p o w er di ff er e n c e i s p arti c ul arl y stri ki n g i n T a bl e S 2

i n t h e S u p pl e m e nt ar y M at eri al. T h e p o w er b a s e d o n t h e e x p o n e nti al k er n el i s

hi g h er t h a n t h o s e u si n g t h e ot h er k er n el s. T hi s i s u n d er st a n d a bl e, b e c a u s e t h e

n o nli n e ar p art s d o mi n at e t h e f u n cti o n h L (x ) ( s e e S e cti o n S 3. 1 i n t h e S u p pl e m e n-

t ar y M at eri al) a n d t h e e x p o n e nti al a n d G a u s si a n k er n el s c o nt ai n ri c h er n o nli n e ar

ei g e nf u n cti o n s t h a n t h at of t h e li n e ar k e r n el, a n d c a n c a pt ur e m or e i nf or m ati o n

n o nli n e ar f u n cti o n s; 2) T h e p o w er i n cr e a s e s a s t h e s a m pl e si z e i n cr e a s e s i n all t h e

c a s e s; a n d 3) T h e pr o p o s e d t e st i s v er y r o b u st t o t h e c h a n g e of err or di stri b uti o n s.

B e c a u s e t h e p o w er p att er n s f or t h e f u n cti o n al a n d hi g h- di m e n si o n al c o v ari at e s ar e

T his c o nt e nt d o w nl o a d e d fr o m
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T a bl e 2. E m piri c al p o w er (i n p er c e nt a g e s) of t h e pr o p o s e d t e st ( Pr o p o s e d) a n d t h e
m et h o d of Li u, Li n a n d G h o s h ( 2 0 0 7) ( L L D) f or G a u s si a n err or s wit h d e p e n d e nt c o v ari-
at e s u si n g di ff er e nt k er n el s u n d er s c e n ari o s S 3 a n d S 4 . T h e e sti m at e d t h e or eti c al p o w er
i s gi v e n i n p ar e nt h e s e s, a n d t h e p er c e nt a g e of a k er n el b ei n g s el e ct e d a m o n g t h e t hr e e
c a n di d at e k e r n el s i s di s pl a y e d u n d er n e at h.

S 3 S 4

n p m et h o d K E K L K G K E K L K G

4 0

1, 5 0 0 Pr o p o s e d 5 0 .2( 5 0 .2) 4 7 .2( 4 7 .9) 4 7 .3( 4 8 .0) 5 7 .7( 5 5 .5) 5 7 .2( 5 5 .3) 5 7 .3( 5 5 .4)

( 8 3.9) ( 1 1.0) ( 5.1) ( 3 3 .9) ( 3 3 .0) ( 3 3 .1)

L L D 4 3 .6 4 2 .7 4 2 .8 5 0 .7 5 1 .5 5 1 .7

3, 0 0 0 Pr o p o s e d 2 6 .2( 3 2 .1) 2 5 .7( 3 1 .7) 2 5 .5( 3 1 .8) 3 9 .0( 4 1 .5) 3 8 .7( 4 1 .4) 3 9 .1( 4 1 .5)

( 5 2.1) ( 2 9.2) ( 1 8 .7) ( 3 5 .2) ( 3 6 .9) ( 2 7 .9)

L L D 2 0 .8 2 1 .1 2 1 .1 3 2 .8 3 4 .8 3 4 .8

4, 5 0 0 Pr o p o s e d 2 0 .6( 2 6 .5) 2 0 .6( 2 6 .4) 2 0 .3( 2 6 .4) 2 9 .4( 3 5 .4) 2 9 .1( 3 5 .3) 2 9 .5( 3 5 .3)

( 3 9.2) ( 4 1.3) ( 1 9 .5) ( 3 8 .1) ( 3 9 .7) ( 2 2 .2)

L L D 1 6 .1 1 5 .4 1 5 .5 2 5 .4 2 6 .0 2 6 .0

6 0

1, 5 0 0 Pr o p o s e d 7 6 .3( 7 1 .1) 7 4 .1( 6 8 .6) 7 4 .2( 6 8 .7) 8 4 .4( 7 8 .5) 8 4 .3( 7 8 .4) 8 4 .2( 7 8 .4)

( 9 1.8) ( 4.6) ( 3.6) ( 3 5 .5) ( 3 4 .8) ( 2 9 .7)

L L D 7 3 .4 7 1 .9 7 1 .8 8 3 .0 8 3 .9 8 3 .7

3, 0 0 0 Pr o p o s e d 4 1 .0( 4 3 .1) 4 0 .0( 4 2 .5) 3 9 .9( 4 2 .6) 6 2 .1( 5 9 .8) 6 1 .7( 5 9 .7) 6 2 .1( 5 9 .7)

( 6 0.0) ( 2 5.1) ( 1 4 .9) ( 3 9 .0) ( 3 2 .5) ( 2 8 .5)

L L D 3 6 .3 3 6 .7 3 6 .6 5 9 .2 5 9 .2 5 9 .2

4, 5 0 0 Pr o p o s e d 3 2 .2( 3 6 .5) 3 1 .8( 3 6 .2) 3 2 .0( 2 6 .3) 5 1 .3( 5 0 .6) 5 1 .4( 5 0 .5) 5 0 .9( 5 0 .6)

( 4 6.5) ( 3 3.0) ( 2 0 .5) ( 3 7 .2) ( 3 6 .7) ( 2 6 .1)

L L D 2 9 .9 2 9 .2 2 9 .4 4 8 .2 4 8 .1 4 7 .9

1 0 0

1, 5 0 0 Pr o p o s e d 9 8 .3( 9 4 .7) 9 7 .7( 9 3 .3) 9 7 .7( 9 3 .3) 9 9 .8( 9 8 .2) 9 9 .8( 9 8 .3) 9 9 .8( 9 8 .3)

( 9 8.2) ( 1.2) ( 0.6) ( 3 7 .2) ( 3 4 .9) ( 2 7 .9)

L L D 9 8 .3 9 7 .6 9 7 .6 9 9 .7 9 9 .7 9 9 .7

3, 0 0 0 Pr o p o s e d 7 6 .1( 6 9 .7) 7 5 .0( 6 8 .9) 7 5 .0( 6 9 .0) 9 4 .7( 8 8 .8) 9 4 .7( 8 8 .8) 9 4 .7( 8 8 .8)

( 7 0.3) ( 1 6.7) ( 1 3 .0) ( 3 9 .9) ( 3 1 .1) ( 2 9 .0)

L L D 7 4 .2 7 4 .3 7 4 .5 9 3 .9 9 4 .3 9 4 .3

4, 5 0 0 Pr o p o s e d 5 6 .0( 5 4 .2) 5 5 .7( 5 3 .9) 5 5 .7( 5 4 .0) 8 5 .4( 7 7 .9) 8 5 .2( 7 7 .9) 8 5 .2( 7 7 .9)

( 5 2.2) ( 2 6.9) ( 2 0 .9) ( 4 2 .3) ( 3 0 .7) ( 2 7 .0)

L L D 5 3 .6 5 3 .5 5 3 .6 8 3 .0 8 3 .4 8 3 .4

v er y si mil ar, w e o mit t h e p o w er r e s ult s f or t h e f u n cti o n al c o v ari at e s. A d diti o n al

si m ul ati o n st u di e s f or p > n c a s e s c a n b e f o u n d i n t h e S u p pl e m e nt ar y M at eri al.

5. 1. K e r n el s el e c ti o n

We o b s er v e d fr o m T a bl e 2 a n d T a bl e s S 2, S 3, S 5, S 6, S 7, a n d S 9 i n t h e

S u p pl e m e nt ar y M at eri al t h at t h e e m piri c al p o w er of t h e t e st c orr e s p o n di n g t o

di ff er e nt k er n el s c a n b e v er y di ff er e nt. T hi s n at ur all y m oti v at e d u s t o s el e ct a

T his c o nt e nt d o w nl o a d e d fr o m
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k er n el t o i m pr o v e t h e p erf or m a n c e of t h e t e st. We a p pli e d t h e k er n el s el e cti o n

m et h o d pr o p o s e d i n S e cti o n 4. 1 t o c h o o s e t h e o pti m al k er n el a m o n g K E , KG , a n d

K L f or e a c h si m ul ati o n r e pli c at e.

We r e p ort t h e p er c e nt a g e of e a c h k er n el b ei n g s el e ct e d i n 1, 0 0 0 si m ul ati o n

r e pli c at e s fr o m a m o n g t hr e e c a n di d at e k er n el s K E , KG , a n d K L . I n al m o st all

c a s e s i n T a bl e 2 a n d T a bl e s S 2, S 3 S 5, S 6, S 7, a n d S 9 i n t h e S u p pl e m e nt ar y

M at eri al, t h e k er n el s el e cti o n m et h o d c h o o s e s t h e k er n el wit h t h e hi g h e st p o w er.

T hi s s h o w s t h at t h e pr o p o s e d k er n el s el e cti o n m et h o d w or k s v er y w ell i n s el e cti n g

t h e o pti m al k er n el. W h e n t h e p o w er of t h e di ff er e nt k er n el s w a s si mil ar, t h e

p er c e nt a g e s w er e e v e nl y di stri b ut e d a m o n g t h e t hr e e k er n el s. T o f urt h er c o n fir m

t h e v ali dit y of t h e pr o p o s e d k er n el s el e cti o n m et h o d, f or e a c h si m ul ati o n r e pli c at e,

w e e sti m at e d t h e t h e or eti c al p o w er of t h e t e st u si n g ( 4. 1) f or e a c h k er n el K E , KL ,

a n d K G . I n T a bl e 2 a n d T a bl e s S 2, S 3 S 5, S 6, S 7, a n d S 9 i n t h e S u p pl e m e nt ar y

M at eri al, w e r e p ort t h e m e a n of t h e e sti m at e d p o w er f or t h e t hr e e k er n el s b a s e d

o n 1, 0 0 0 si m ul ati o n r e pli c at e s. We o b s e r v e t h at t h e e sti m at e d t h e or eti c al p o w er

i s v er y cl o s e t o t h e e m piri c al p o w er. I n s u m m ar y, t h e pr o p o s e d k er n el s el e cti o n

m et h o d i s r eli a bl e f or pr a cti c al u s e.

5. 2. R e g ul a ri z a ti o n

T o s h o w t h e i m p a ct of t h e k er n el r e g ul ari z ati o n o n t h e p o w er i m pr o v e m e nt,

w e g e n er at e d d at a a c c or di n g t o m o d el ( 5. 1), w h er e t h e r a n d o m err or f oll o w s

a L a pl a c e di stri b uti o n, a n d t h e c o v ari at e s X i ar e i.i. d. r a n d o m v e ct or s wit h

i n d e p e n d e ntl y U nif or m ( 0, 1) c o m p o n e nt s. T h e f u n cti o n h (x ) w a s c h o s e n t o b e

z er o u n d er H 0 . U n d er t h e alt er n ati v e, w e c h o s e h (x ) = h H (x ), wit h t h e c o n st a nt s

c 1 , c2 , a n d c 3 s et a c c or di n g t o s c e n ari o S 3 . I n t hi s si m ul ati o n, t h e s a m pl e si z e

w a s n = 6 0 a n d t h e d at a di m e n si o n w a s p = 2 0 0. All t h e si m ul ati o n r e s ult s

r e p ort e d i n t hi s p art ar e b a s e d o n 1, 0 0 0 si m ul ati o n r e pli c at e s. T o u n d er st a n d t h e

c o m p ut ati o n al c o st f or t h e pr o p o s e d t e st s wit h a n d wit h o ut r e g ul ari z e d k er n el s,

w e al s o s u m m ari z e t h e m e a n a n d st a n d ar d d e vi ati o n of t h e c o m p ut ati o n ti m e i n

S e cti o n S 3. 6 i n t h e S u p pl e m e nt ar y M at e ri al.

F or e a c h k er n el K E , K L , a n d K G , w e c o n str u ct e d t h e r e g ul ari z e d k er n el s

wit h t h e r e g ul ari z ati o n p ar a m et er γ u si n g ( 4. 2). We s el e ct e d a s e q u e n c e of r e g-

ul ari z ati o n p ar a m et er s of di ff er e nt or d er s ( γ = 1 0 − a / n , a ∈ (− 5 , 2)) t o c h e c k

t h eir e ff e ct s o n t h e e m piri c al p o w er. F or e a c h r e g ul ari z ati o n p ar a m et er v al u e, w e

c o n str u ct e d t h e c orr e s p o n di n g r e g ul ari z e d t e st st ati sti c a n d a p pli e d t h e t e st t o

d at a g e n er at e d u n d er H 0 a n d H 1 . T h e si m ul ati o n r e s ult s f or K L a n d K G ar e

s u m m ari z e d i n S e cti o n S 3. 4 i n t h e S u p pl e m e nt ar y M at eri al.

Fi g ur e 1 s h o w s t h e e m piri c al p o w er a n d si z e of t h e pr o p o s e d t e st u si n g t h e
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Fi g ur e 1. T h e e m piri c al p o w er (l eft p a n el) a n d si z e (ri g ht p a n el) f or r e g ul ari z e d k er n el s,
w h er e t h e v erti c al p ur pl e li n e s i n t h e l eft p a n el d e n ot e t h e fir st, s e c o n d, a n d t hir d q u a ntil e s
of t h e s el e ct e d r e g ul ari z ati o n p ar a m et er s a m o n g 1, 0 0 0 si m ul ati o n r e pli c at e s. F or e a c h
r e pli c at e, t h e r e g ul ari z ati o n p ar a m et er w a s s el e ct e d b y t h e m et h o d i ntr o d u c e d i n S e cti o n
4. 2.

r e g ul ari z e d k er n el K R, γ . T h e x- a xi s r e pr e s e nt s t h e − l o g1 0 (γ ), a n d t h e y- a xi s i s

t h e e m piri c al p o w er or si z e. T h e p o w er wit h l ar g e r e g ul ari z ati o n p ar a m et er s γ i s

n ot di s pl a y e d i n t h e gr a p h t o e n a bl e a b ett er vi e w f or s m all γ . W h e n γ i s l ar g e

− l o g1 0 (γ ) ∈ (− 3 .2 2 2 , 1 .7 7 8), n ot s h o w n i n Fi g ur e 1, t h e p o w e r of t h e t e st w a s t h e

s a m e a s t h at u si n g n o n-r e g ul ari z e d k er n el s ( 0. 7 6 9 f or K E ), a n d t h e n st art e d t o

gr o w sl o wl y. F or − l o g1 0 γ ∈ ( 1.7 7 8 , 3 .7 7 8), t h e p o w er p e a k ( 0. 8 1 0 f or K E ) of t h e

pr o p o s e d t e st c a n b e o b s er v e d f or all t hr e e k er n el s. It c a n b e s e e n fr o m Fi g ur e 1

t h at t h e e m piri c al si z e of t h e r e g ul ari z e d t e st i s r e a s o n a bl y c o ntr oll e d.

T o e v al u at e t h e m et h o d f or s el e cti n g t h e r e g ul ari z ati o n p ar a m et er s pr o p o s e d

i n S e cti o n 4. 2, w e al s o m ar k t h e r e g ul ari z ati o n p ar a m et er s el e cti o n r e s ult s i n

Fi g ur e 1. T h e t hr e e v erti c al li n e s c orr e s p o n d t o t h e fir st q u a ntil e ( Q 1 ), m e di a n,

a n d t hir d q u a ntil e ( Q 3 ), r e s p e cti v el y, of t h e st a bili z e d γ̃ o bt ai n e d f r o m t h e 1, 0 0 0

si m ul ati o n r e pli c at e s, w h er e L = 5 w a s c h o s e n i n t h e st a bilit y s el e cti o n. It c a n

b e s e e n fr o m Fi g ur e 1 t h at t h e v erti c al li n e s ar e all v er y cl o s e t o w h er e t h e

m a xi m u m p o w er i s a c hi e v e d. T hi s s u g g e st s t h at t h e pr o p o s e d r e g ul ari z ati o n

s el e cti o n m et h o d c a n l o c at e t h e o pti m al r e g ul ari z ati o n p ar a m et er t o m a xi mi z e

t h e p o w er of t h e pr o p o s e d t e st.

6. A n E m pi ri c al S t u d y

We a p pli e d t h e pr o p o s e d t e st t o a Y or k s hir e gilt d at a s et t o fi n d g e n e s et s

t h at ar e a s s o ci at e d wit h trii o d ot h yr o ni n e ( T 3 ), w hi c h i s a n i m p ort a nt t h yr oi d

h or m o n e a ff e cti n g gr o wt h a n d m et a b oli s m i n t h e b o d y. A t ot al of 2 4, 1 2 3 g e n e

e x pr e s si o n s w er e m e a s ur e d u si n g li v er ti s s u e s f or 2 4 si x- m o nt h- ol d Y or k s hir e gilt s,

T his c o nt e nt d o w nl o a d e d fr o m
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w h o s e T 3 l e vel s i n bl o o d w er e al s o r e c or d e d. All t h e g e n e s i n t h e Y or k s hir e gilt

d at a s et w er e cl a s si fi e d i nt o 6, 1 7 6 g e n e o nt ol o g y ( G O) t er m s ( g e n e s et s), w h er e

e a c h g e n e c o ul d b e a s si g n e d t o s e v er al G O t er m s a c c or di n g t o it s g e n e attri b ut e s

i n o n e of t hr e e d o m ai n s: c ell ul ar c o m p o n e nt, m ol e c ul ar f u n cti o n, a n d bi ol o gi c al

pr o c e s s. M or e d et ail s a b o ut t h e d at a s et c a n b e f o u n d i n L k h a g v a d orj et al.

( 2 0 0 9).

L et Y i a n d X
( k )
i = ( X

( k )
i1 , X

( k )
i2 , . . . , X

( k )
i p k

) T b e t h e m e a s ur e of t h e T 3 l e v el f or

t h e it h gilt a n d t h e st a n d ar di z e d g e n e e x pr e s si o n v e ct or of t h e k t h G O t er m f or t h e

it h gilt, r e s p e cti v el y, w h er e p k i s t h e t ot al n u m b er of g e n e s i n t h e k t h G O t er m.

A m o n g t h e 6, 1 7 6 G O t er m s, 5 6 0 h a v e p k l ar g er t h a n t h e s a m pl e si z e 2 4, wit h

fir st q u a ntil e 3 6. 7 5, m e di a n 6 0, t hir d q u a ntil e 1 2 5. 2 5, a n d m a xi m u m 5, 1 5 8. O ur

pr o p o s e d m et h o d s w or k f or b ot h p k > n a n d p k < n c a s e s. Si m ul ati o n st u di e s f or

p k > n c a s e s ar e r e p ort e d i n S e cti o n 5 a n d S e cti o n S 3 i n t h e S u p pl e m e nt ar y M at e-

ri al, a n d si m ul ati o n st u di e s f or p k < n ar e i n cl u d e d i n T a bl e s S 1 – S 3 i n S e cti o n S 3

of t h e S u p pl e m e nt al M at eri al. We c o n si d er e d t h e f oll o wi n g n o n p ar a m etri c r e gr e s-

si o n m o d el Y i = µ ( k ) + h ( k ) (X
( k )
i ) +

( k )
i , f or i = 1 , . . . , 2 4 a n d k = 1 , . . . , 6 1 7 6 . F or

t h e k t h G O t e r m, w e ar e i nt er e st e d i n t e sti n g H 0 : h ( k ) (·) = 0 v s. H 1 : h ( k ) (·) = 0 .

T o a p pl y o ur pr o p o s e d k er n el s el e cti o n a n d r e g ul ari z ati o n pr o c e d ur e, w e

a p pli e d t h e m ulti pl e s plitti n g pr o c e d ur e i n M ei n s h a u s e n, M ei er a n d B ü hl m a n n

( 2 0 0 9) t o a v oi d d o u bl e di p pi n g. We r a n d o ml y s plit t h e s a m pl e B = 5 0 ti m e s. F or

e a c h s plit, t h e fir st h alf of t h e s a m pl e w a s u s e d t o s e ar c h f or t h e b e st c o m bi n ati o n

of k er n el f u n cti o n a n d r e g ul ari z ati o n p ar a m et er γ u si n g o ur pr o p o s e d m et h o d s i n

S e cti o n 4. T h e s e c o n d h alf w a s u s e d t o p erf or m t h e pr o p o s e d h y p ot h e si s t e sti n g

b a s e d o n t h e s el e ct e d r e g ul ari z e d k er n el fr o m t h e fir st h alf. S p e ci fi c all y, w e c o n-

si d er e d f o ur di ff er e nt c e ntr ali z e d k e r n el s: t h e e x p o n e nti al k er n el K E , G a u s si a n

k er n el K G , li n e ar k er n el K L , a n d p ol y n o mi al k er n el K P , w h er e K E , KG , a n d K L

ar e d e fi n e d i n S e cti o n 5, a n d K P (x i , x j ) = ( x T
i x j / θ ) 2 a n d θ w a s s et a s t h e di m e n-

si o n of X f or e a c h k er n el. T h e r e g ul ari z ati o n p ar a m et er γ w a s s et a s 1 0 a , w h er e

a ∈ { − 3 .0 0 , − 2 .9 5 , . . . , 4 .9 5 , 5 } . F or e a c h G O t er m, w e o bt ai n e d B p- v al u e s fr o m

B s u b s a m pl e s. T h e s e B p- v al u e s w er e t h e n a g gr e g at e d i nt o o n e p- v al u e u si n g t h e

e m piri c al q u a ntil e f u n cti o n of p- v al u e s ( s e e M ei n s h a u s e n, M ei er a n d B ü hl m a n n

( 2 0 0 9)). F o r c o m p ari s o n s, w e al s o a p pli e d L L D ( Li u, Li n a n d G h o s h ( 2 0 0 7)) wit h

t h e s a m e c e ntr ali z e d k er n el s. Aft er c o ntr olli n g t h e f al s e di s c o v er y r at e at l e v el

0. 0 1 ( St or e y a n d Ti b s hir a ni ( 2 0 0 3)), t h e pr o p o s e d m et h o d d e cl ar e d 5 8 st ati sti-

c all y si g ni fi c a nt G O t e r m s, w hil e t h e L L D t e st o nl y i d e nti fi e d 1 3 si g ni fi c a nt G O

t er m s u si n g t h e c e ntr ali z e d G a u s si a n k er n el. H o w e v er, t h e L L D m et h o d wit h t h e

e x p o n e nti al, li n e ar, a n d p ol y n o mi al k er n el s di d n ot fi n d a n y si g ni fi c a nt G O t er m s.

T hi s i n di c at e s t h e a d v a nt a g e s of t h e pr o p o s e d a p pr o a c h. T h e t w o m et h o d s s h ar e
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fi v e of t h e si g ni fi c a nt G O t er m s di s c o v er e d.

7. Di s c u s si o n

We h a v e m o d el e d t h e j oi nt e ff e ct of hi g h- di m e n si o n al or f u n cti o n al c o v ari at e s

i n a s et u si n g a n o n p ar a m etri c f u n cti o n i n a n R K H S. We h a v e a d dr e s s e d a f u n d a-

m e nt al q u e sti o n a b o ut t e sti n g n o n p ar a m etri c f u n cti o n s of hi g h- di m e n si o n al d at a,

wit h o ut a s s u mi n g a n y m o d el str u ct ur e s. We pr o p o s e d a n o n p ar a m etri c t e st f or

a s s e s si n g t h e si g ni fi c a n c e of a n o n p ar a m etri c f u n cti o n. I n c o ntr a st t o pr e vi o u s i n-

v e sti g ati o n s, o ur m et h o d c a n b e a p pli e d t o b ot h hi g h- di m e n si o n al a n d f u n cti o n al

d at a. We d eri v e d t h e a s y m pt oti c di stri b uti o n s of t h e t e st st ati sti c u n d er t h e n ull

h y p ot h e si s a n d a s e q u e n c e of l o c al alt er n ati v e h y p ot h e s e s, a n d f o u n d t h e e x pli cit

e ff e ct s of k er n el f u n cti o n s a n d t y p e s of c o v ari at e s o n t h e a s y m pt oti c di stri b uti o n s.

B a s e d o n t h e o bt ai n e d e x pli cit p o w er f u n cti o n, w e pr o p o s e d a k er n el s el e c-

ti o n m et h o d d e si g n e d t o i m pr o v e t h e p o w er of t h e pr o p o s e d t e st. M or e o v er, w e

i ntr o d u c e d a t e st wit h t h e r e g ul ari z e d k er n el t h at c a n f urt h er i m pr o v e t h e p o w er

a n d e n h a n c e t h e di m e n si o n alit y t h e t e st c a n h a n dl e. It w a s s h o w n t h at t h e r e g u-

l ari z e d k er n el pl a y s a si mil ar r ol e t o t h at of a r e- w ei g hti n g m et h o d t h at a d d s l ar g e

w ei g ht s t o n o n z er o pr oj e cti o n s of t h e n o n p ar a m etri c f u n cti o n t o t h e ort h o g o n al

b a s e s of t h e R K H S. Wit h a pr o p erl y c h o s e n r e g ul ari z ati o n p ar a m et er, w e d e m o n-

str at e d t h at t h e pr o p o s e d t e st c a n a c hi e v e al m o st t h e s a m e p o w er a s t h e or a cl e

t e st. A pr a cti c al m et h o d f or s el e cti n g r e g ul ari z ati o n p ar a m et er s w a s al s o i ntr o-

d u c e d. O ur m et h o d w a s m oti v at e d a n d f urt h er d e m o n str at e d b y a g e n o mi c st u d y.

H o w e v er, it c a n b e br o a dl y a p pli e d t o ot h er ar e a s i n w hi c h hi g h- di m e n si o n al or

f u n cti o n al d at a ar e r o uti n el y g e n er at e d.

S u p pl e m e n t a r y M a t e ri al

Te c h ni c al pr o of s, m or e d et ail s a b o ut t h e r e g ul ari z e d k er n el a n d it s or a cl e

pr o p ert y, a n d s o m e a d diti o n al si m ul ati o n r e s ult s ar e i n cl u d e d i n t h e S u p pl e-

m e nt ar y M at eri al. A n a s s o ci at e d R p a c k a g e “ K e r U Te st ” i s a v ail a bl e o n h t t p s :

/ / g i t h u b . c o m / h e t a o 1 2 / K e r U T e s t .

A c k n o wl e d g m e n t s

We ar e gr at ef ul t o t h e e dit or, a s s o ci at e e dit or, a n d t w o r ef er e e s f or t h eir

i n si g htf ul, c o n str u cti v e, a n d c ar ef ul c o m m e nt s. T h e a ut h or s a c k n o wl e d g e t h e

s u p p ort fr o m NI H gr a nt s 1 R 2 1 H G 0 1 0 0 7 3 a n d 1 R 0 1 G M 1 3 1 3 9 8, a n d a n N S F gr a nt

D M S- 2 1 3 7 9 8 3.
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