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The T and B cell repertoire make up the adaptive immune system and is mainly generated
through somatic V(D)J gene recombination. Thus, the VJ gene usage may be a potential
prognostic or predictive biomarker. However, analysis of the adaptive immune system is
challenging due to the heterogeneity of the clonotypes that make up the repertoire. To
address the heterogeneity of the T and B cell repertoire, we proposed a novel ensemble
feature selection approach and customized statistical learning algorithm focusing on the VJ
gene usage. We applied the proposed approach to T cell receptor sequences from
recovered COVID-19 patients and healthy donors, as well as a group of lung cancer
patients who received immunotherapy. Our approach identified distinct VJ genes used in
the COVID-19 recovered patients comparing to the healthy donors and the VJ genes
associated with the clinical response in the lung cancer patients. Simulation studies show
that the ensemble feature selection approach outperformed other state-of-the-art feature
selection methods based on both efficiency and accuracy. It consistently yielded higher
stability and sensitivity with lower false discovery rates. When integrated with different
classification methods, the ensemble feature selection approach had the best prediction
accuracy. In conclusion, the proposed novel approach and the integration procedure is an
effective feature selection technique to aid in correctly classifying different subtypes to
better understand the signatures in the adaptive immune response associated with
disease or the treatment in order to improve treatment strategies.

Keywords: feature ensemble, VJ gene usage, repertoire sequencing data, high-dimensional data, COVID-19,
adaptive immune system

INTRODUCTION

The adaptive immune system is responsible for recognizing and eliminating antigens originating
from infection and disease. It recognizes antigens via an immense array of antigen-binding
antibodies (B-cell receptors, BCRs) and T-cell receptors (TCRs), the immune repertoire. The
interrogation of immune repertoires is highly relevant for understanding the adaptive immune
response in autoimmunity, malignancy, and infection (Miho et al., 2018). Adaptive immune receptor
repertoire sequencing (Rep-seq) has driven the quantitative and molecular-level profiling of immune
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repertoires, thereby revealing the high-dimensional complexity of
the immune receptor sequence landscape. The advancement in
high-throughput next-generation sequencing (NGS) technology
has allowed researchers to sequence the immune repertoire
profile from a single sample of blood or tissue.

Identification of prognostic and predictive features among
high-throughput sequencing data is of high clinical relevance.
Because individuals share almost no exact TCR/BCR
nucleotide sequencing, TCR/BCR sequencing cannot be
directly compared between different patient groups on the
clonal level. However, TCR and BCR are the products of
somatic V(D)] gene recombination, plus the addition/
subtraction of nontemplated bases at recombination
junctions. Thus, individuals share V(D)] genes, which
allows for direct comparison of V and ] gene usage across
different patients. Therefore, it will enable researchers to
directly obtain statistical inferences across subjects to
provide insight into TCR/BCR repertoire with clinical
characteristics and outcomes.

Though preliminary analysis using Random Forest reveal has
been used to identify differentially expressed V] genes in distinct
disease types such as melanoma and prostate cancer (Cham
etal.,2020), it is limited by the instability of feature selection due
to the small sample size and sporadic gene usages. It has been
shown that selecting the right set of features for classification
and/or prediction can improve the performance of supervised
and unsupervised learning, reduce computational costs such as
training time or required resources, and mitigate the curse of
dimensionality in the case of high-dimensional input data.
Computing and using feature importance scores are also
necessary steps towards model interpretability. In this paper,
we introduce an ensemble feature selection strategy to select the
significant V and ] genes that can distinguish subjects in
different groups defined by clinical characteristics, clinical
treatment, or outcomes. Ensemble learning combines the
results from multiple approaches, instead of simply using a
single method, built on the rationale of “two heads are better
than one.” However, it has been primarily used in the classical
prediction task of machine learning and has successfully proven
its effectiveness. For example, boosting (Schapire and Freund,
2013) and bagging (Breiman, 1996) (the Random Forest is a
particular case of bagging) are two popular machine learning
algorithms based on the ensemble idea, where aggregating
multiple tree learners make the final prediction. Recently, it
has become more and more popular to use pseudo-variables
(e.g., permutation copies, knockoff copies) to assist variable
selection, where artificial variables (independent of the response
variable) will be generated (Candes et al., 2018). The advantage
of introducing pseudo-variables is that they can help reduce the
false-positive rate because they are designed to be inactive and
provide additional information. Here, we considered
implementing ensemble learning to improve the performance
of feature selection based on pseudo-variables. Simulation
studies were conducted to evaluate the efficiency and
accuracy of the proposed procedure in addition to real data
analysis by comparing our approach with current feature
selection approaches.

Novel Ensemble Feature Selection Approach

MATERIALS AND METHODS
European COVID-19 Data

The TCR-seq data used includes a cohort of patients who
recovered after COVID-19 with mild to moderate disease
courses (n = 19) and a cohort of age-matched healthy donor
cohort (n = 39) that tested negative for COVID-19 antibodies.
The clinical characteristics of the patients and sequencing
information were shown in (Schultheifs et al., 2020) (gateway.
ireceptor.org; Study ID: IR-Binder-000001). The median number
of unique clonotypes was 9,431 (ranging from 589 to 35065) for
healthy donors. Recovered patients had a median read depth of
72,152 ranging from 21,683 to 290,424. There was a total of 708
unique V] gene combinations across both cohorts. V] gene usage
was defined as the number of clonotypes that utilize a particular
combination of V and ] genes normalized by the number of
unique clones. Table 1 presents the summary statistics for the
TCR sequences.

Lung Cancer Data

The 686 TCR V] gene combinations of 50 non-small cell lung
cancer (NSCLC) patients receiving durvalumab enrolled in a
Phase I trial (NCT01693562, 14 September 2012) were included
for analysis. The median number of unique clonotypes was 4,994
(ranging from 403 to 17,876). In order to explore the treatment
effect, here we considered using log, transformed ratio of V] gene
usage after the treatment vs. the usage at baseline, where the VJ
gene usage is defined as above. The clinical characteristics of the
patients and sequencing information were shown in (Naidus
et al., 2021). Table 1 presents the summary statistics for the
TCR sequences.

Simulation Strategy

We use a modified version of the simulation strategy as in
(Degenhardt et al, 2019). The binary outcome is simulated
based on a logistic regression model

Pr(Y =

gm =By + Brx1 + Byx2 + fixs

The three base variables (x;, x,, and x3) and three additional
variables (x4, x5, and x¢) are independently sampled from a
uniform distribution of (0,1). The correlated predictor variables
are simulated based on

v = x4 (0.01 +

%'_11)) x N (0,0.3)

i

for j=1,...,g; and i =1,...,6, where v(]) denotes the j th

variable in group i and n; is the size of group i. The correlation
between the base variable x; and v(] decreased as j increases. The
additional predictor variables that are uncorrelated with any of
those base variables and each other, wy, k=1,..., (G- Zlegi),
are also simulated based on a uniform distribution of (0,1), where
G is the total number of the genes. Please note that x;,i = 1,.. ., 6,

are only used to simulate correlated variables v( ) and are not
included for feature selection and class1ﬁcat10n v ] =1...,9i
andi = 1, 2, 3, are the causal variables, while v ] =1,...,giand
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TABLE 1 | Summary of TCR sequences in the real datasets.

European COVID-19 data
[median (range)]

Number of unique clonotypes
Clonal counts

VJ gene usage

VJ gene usage for the selected 11
genes

17441 [6073,35065]
185758 [45066, 251020]
1.1 x 107° [0, 0.816]
0.010 [0, 0.816]

Lung Cancer Data

(median [range]) Baseline

Number of unique clonotypes
Clonal counts

6,144 [1,104,17876]

Recovered COVID patients (n = 19)

Longer survivors (n = 17)
Post-treatment

5,920 [403,13039)]
206440 [1543567,3994587] 2028347 [1502019, 2718355] 2322713 [1483854,6956035] 2282314 [1348433, 7944974]

Novel Ensemble Feature Selection Approach

Healthy donors (n = 39)

7952 [589,15271]
62429 [21683, 290424]
0.4 x 1078 [0, 0.283]
0.002 [0, 0.195]

Shorter survivors (n = 33)
Baseline Post-treatment

4,708 [840, 13200] 3,737 [943,13839)]

logs, (ratio of VJ gene usage) 0 [-16.31,15.60] 0 [-15.96, 16.00]
log, (ratio of VJ gene usage) of the 0[-13.14,12.88] 0[-12.59,12.69]
selected 9 genes
TABLE 2 | Simulation scenario.
Label Sample size # of genes P(Y = 1) Sparsity (# of By Bo B3

causal genes/# of

genes)

n50_G600_eta0.5 50 600 0.5 30/600 -9 6 3
n50_G1200_eta0.5 50 1,200 0.5 30/1,200 -9 6 3
n100_G600_eta0.5 100 600 0.5 30/600 -9 6 3
n100_G1200_eta0.5 100 1,200 0.5 30/1,200 -9 6 3
n50_G600_eta0.25 50 600 0.25 30/600 -14 12 -6
n50_G1200_eta0.25 50 1,200 0.25 30/1,200 -14 12 -6
n100_G600_eta0.25 100 600 0.25 30/600 -14 12 -6
n100_G1200_eta0.25 100 1,200 0.25 30/1,200 -14 12 -6

i=4,56andwy, k=1,..., (G- Zleg,-) are the non-causal
variables.

We consider several different simulation scenarios (Table 2)
including 1) different prevalence of the binary outcome
(7 =0.25and 0.5) which is mainly determined by the
coefficients in the logistic regression; 2) sparsity of causal
genes (2.5%, 5%) with a different number of genes (G = 600
and 1,200); and 3) different sample sizes (# = 50 and 100). Under
each scenario, the G genes consist of 30 causal ones {vi(’),i =
1,2,3;j=1,...,10} as well as 30 correlated, non-causal variables
{vi(]),i =4,5,6;j=1,...,10} and G-60 uncorrelated, non-
causal variables {wi,k=1,...,G—-60}. For each of the
scenarios,100 paired replicates are simulated. Each time the
first one is used for feature selection and training the classifier,
and the second is used for assessing stability and estimating
prediction performance.

Existing Approaches of Feature Selection

Feature selection methods are often categorized into four classes:
filters, wrappers, embedded, and hybrid methods. Filter methods
evaluate and rank the importance of a single feature (univariate
filter) or an entire subsect of features (multivariate filter) based
only on their inherent characteristics, without incorporating any
learning algorithm. Wrapper methods evaluate a specific subset
of variables by training and testing a specific learning model (e.g.,

K-Nearest Neighbors (KNN) (Dudani, 1976) or Support Vector
Machine (SVM) (Suykens and Vandewalle, 1999)). However, as
the space of variables subset grows exponentially with the number
of variables, the exhaustive search is very computationally
intensive. Two alternative search schemes are commonly used
to guide the search: sequential search, such as forward selection
(add one at a time) or Recursive Feature Elimination (RFE,
eliminate one at a time), and randomized search. Embedded
methods consist of algorithms that simultaneously perform
model fitting and feature selection. This approach is typically
implemented using a sparsity regularizer or constraint on
regression modeling, which shrinks the weight of some
features to zero. Hybrid methods start with an initial feature
filtering based on statistical properties, followed by a second
selection based on wrapper methods. In this paper, we evaluate a
variety of feature selection methods, including information gain
(Kent, 1983) (univariate filter), correlation-based feature
selection (Hall, 2000) (multivariate filter), SVM-RFE (Duan
et al, 2005) (wrapper), Boruta (Kursa and Rudnicki, 2010)
(wrapper), Vita (Malley et al, 2012) (wrapper), and LASSO
(Tibshirani, 1996) (embedded). In addition, Boruta and Vita
are built around Random Forest classifier and Random Forest
is a bagging technique, therefore, Boruta and Vita can also be
considered as feature selection approaches using bagging
technique. The detailed information on those methods is
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FIGURE 1 | Proposed pipeline. (A,B) Ensemble feature selection. (A) Feature selection based on different methods and aggregation of selected features. (B)

provided in Supplementary Table S1. In addition to those listed
above, there are a vast of feature selection methods existing in the
literature. However, most of the time, each method selects
different features, and it is difficult (almost impossible) to
make a correct choice. Moreover, for small sample data
(typical case for immune repertoire data), the selection based
on a single feature selection method is usually not stable.

A Novel Ensemble Feature Selection
Ensemble feature selection by combing the outputs from different
feature selection methods can solve the problem mentioned
above. Here, we propose a new ensemble feature selection
procedure based on pseudo-variables, which has two major
steps: 1) aggregating the feature selection results from multiple
feature selectors (Figure 1A) and 2) fitting a group lasso model on
the candidate feature set with a new permutation-assisted tuning
strategy (Figure 1B). In the first step, we further expand to highly
correlated features to generate a candidate set of features.
Aggregating the results from different feature selection
approaches is a critical step in ensemble learning. The outputs of
the different approaches can be various, either the subsets of selected
features, the rankings of all features, or both. We consider the
following general scheme to obtain the candidate feature set
depending on the types of outputs (Figure 1A). Suppose the
feature selection approach returns the subset output. In that case,
the selected features will be first converted to ranking, where the
selected features are treated as ties (unless there is order in output)
and ranked highest (tied for the first place), and the unselected
features are also treated as ties but rank lowest using the total number
of features. The highest rank across the approaches (ie., the best

position that the feature achieved) is used to generate the aggregated
ranking across all feature selection approaches for each feature. For
example, if one feature ranks first and 10th in two approaches, first
will be recorded as the aggregated ranking for this feature.

Now we introduce a group lasso model (Meier et al., 2008) on
the candidate feature set (Figure 1B). Denote the total number of
features included in the candidate feature set after aggregation
and expansion is p. Assume observations after the aggregation
and expansion are (x;,¥;),i=1,...,n, where x; is of
p-dimensional vector and y; € {0,1} is a binary outcome.
Without loss of generality, assume the p features are
quantitative variables, but the method can be applied for
categorical variables or a mixed type. By using the correlation
structure of the p variables, we can define blocks 1,2, ..., B such
that within each block, the absolute value of pairwise correlation
is all greater than a self-correlation threshold parameter p;.
Assume bth block includes L, variables and ¥} L, = p. Th
p-dimensional vector x; can be rewritten as x; =
(x,Tl,xg, . ..,xg)T with x; of dimension Ly, b=1,..., B. We
model the relationship between the binary Y; and features x;
using the following logistic regression model

log(

T

B
) =By + sz?;;ﬁb = yp (%),
b=1

1- TT;
with
T = P(Y, = 1|x,-),

where f3, is the intercept, and B, € R is the parameter vector for
bth block. Denote the complete parameter vector by f=
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(B> B, ..., BE)T € RP*L. In the repertoire-sequencing data, our
focus is to identify the crucial groups of V] genes associated with
the binary outcome, i.e., which B, # 0. The main challenge here is
that the dimension of the VJ genes of repertoire data is usually
very high (~1,000) compared to the sample size (20-50). Despite
the high dimensionality, we assume that only a small number of
V] gene groups impact the phenotype (i.e., a sparse model).
Hence, the group-lasso-type methods (Meier et al., 2008) fit the
scenario well because of their ability to shrink some of the
coefficient vectors to precisely zero. The important V] gene
sets with notable effects on the phenotype will stand out. The
estimation of the complete parameter vector B is given by
minimizing the following objective function

G
Qi (B) = ~L(B) + 1Y, sslIBby,,
where [ () is the log-likelihood function, i.e.,

1(B) = Y. iy (x:) — log[1 + exp{y, (x)}],

And A is the tuning parameter that controls the amount of
shrinkage (larger lambda shrinks more to zero). The s, is used to
rescale the penalty to each group and its default setting in group
lasso methods was +/I,. To put a small penalty on top-ranked
feature sets, we propose using the product of the minimum rank
among different feature selectors and /L.

The selection of the tuning parameter A of the group lasso
model is typically performed by maximizing the cross-validation
error (an estimate of prediction accuracy). However, the cross-
validation error has a considerable variation when the sample size
is small and potentially leads to less reliable conclusions
(Varoquaux, 2018). The objective of this study is more about
selecting the important features than improving the prediction
accuracy. Therefore, we propose to use pseudo-variables (Candes
et al, 2018) to facilitate the group-lasso tuning parameter
selection. Let X = (x1,%2,...,%,)" = (X1, X3,...,X,) be the
original input features (V] gene usage) matrix. The pseudo-
variables matrix X" is generated through permutation,
ie, X" = (X7(1)>%r(2)5 - - - ,xﬂ(,,))T, where {m(1),7(2),...n(n)}
is a permutation of {1,2,...,n}. Combining the original and
permutated design matrixes, we define the augmented design
matrix as X4 = (X, X™) of n rows and 2 p columns, where the
first p columns are original input features and second p columns
are pseudo features (but preserve the correlation of the structure
of original features). The optimization problem corresponding to
group lasso fitting after augmentation becomes

B (1) = argming ~ (B )”Zb LSolBlae

where B* = (B0, B4 1+ 2 Bh, 5B perr- - Bhap) € R s
the regression coefficients vector including the intercept, B sets
of original V] genes and B sets of pseudo-V] genes. Given a
tuning parameter 1, the estimated B* (1) can be obtained by
solving a convex optimization problem. As A increases, more
blocks of coefficient vectors f,, shrink to zero (ie., fewer
groups remain in the model), and the most important group
shrinks lastly. For each (either original or pseudo) set, define

Novel Ensemble Feature Selection Approach

= sup{A: ﬁg,b #0},b=1,..., 2B, which can be viewed as
an importance measure of the feature set. The larger R; is, the
more important the set is. Then define T, max Ry, which
can be utilized to separate the active feature§ Fidin the inactive
artificial ones. Based on the value “benchmark” T, the selection
for  each  permutation can be  made  with
S, = {b: Rp>T,, b=1,...,B}, ie, selecting the original sets
which are more important than the artificial ones. Repeat
this process for K times and report the feature sets selected
more than a certain percentage threshold 7 (e.g. 50%).

Integrated Feature Selection and

Classification Pipeline

We then feed the selected features (based on six existing methods
and the novel ensemble feature selection approach) into eight
different classifiers, including SVM with linear (SVM linear),
polynomial (SVM poly) and radius kernels (SVM rad) (Amari
and Wu, 1999), K-nearest neighbors (KNN) (Dudani, 1976),
Random Forest (Breiman, 2001), extreme gradient boosting
(XGB) (Chen et al, 2015), ridge (Le Cessie and Van
Houwelingen, 1992) and LASSO (Tibshirani, 1996).

Performance Evaluation

For simulation studies, we assess and compare the performance of
the different variable selection approaches by using the following
measures: false discovery rate (FDR), sensitivity, stability, F-1
score (Hua et al., 2009), and empirical power (Figure 1C). For
each method, within each replicate, FDR is calculated as the ratio
of the number of false-positive results, i.e., the total number of
non-causal Var1ables (v j=L...,gi and
i=4,56andwy, k=1,..., (G- Zl 19)) selected to the total
number of Varlables selected In contrast, sensitivity is deﬁned as
the proportion of correctly identified causal variables (v j=
1,...,g; and i = 1,2,3) among all causal variables per replicate
and method. F-1 score is calculated as 2*(precision*sensitivity)/
(precision + sensitivity), a balance (the harmonic mean) of
precision and sensitivity, where precision = 1-FDR (Hua et al,,
2009). For each pair of replicates, the Jaccard’s index is calculated
as the ratio of the length of the intersection and the length of the
union of the two sets of selected variables (He and Yu, 2010). The
average across all pairs is used to quantify the stability of variable
selection for the particular method (Kaloums et al., 2007). The
empirical power of each causal variable (v j=1,...,9; and
i=1,2,3) is calculated as the frequency of correct selections
among all replicates (Dash and Liu, 1997). The prediction
accuracy and area under the curve (AUC) are assessed on the
paired replicate to evaluate the performance of the classification
(Huang and Ling, 2005). The parameters we used were listed in
Table 3.

In the real data analysis, we use 5-fold cross-validation to
evaluate the prediction accuracy and AUC (Figure 1C). Feature
selection, model fitting, and parameter tuning are performed
using the four folds of the data, and prediction accuracy and AUC
are evaluated by averaging the values on the held-out fold data.
However, because the causal variables in real data are unknown,
we can’t assess FDR, sensitivity, F-1 score, and empirical power of
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TABLE 3 | Parameters used for feature selection methods.

Approach R Package Parameter
Information gain FSelector K
CFS FSelector default
Boruta Boruta Final Decision
Vita Vita k

pvalue threshold
SVM_RFE mSVM-RFE k

selection criteria
LASSO glmnet lamba
Ensemble PT

K

T

G is the total number of the features.

Select top k features

Three possible values as the final decision
Cross-validation fold

Description

Selection criteria of pvalue

Cross-validation fold

Top features
Tunning parameter grid values
Minimum pairwise correlation within block 0.75
Total number of permutations

Threshold of selection percentage

Novel Ensemble Feature Selection Approach
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the feature selection approaches. The relationship of features
selected in different feature selection methods was investigated,
and the most frequently selected features in each fold among all
methods for both datasets were also evaluated. Considering each
feature selection output varies in the number of features selected,
we used a weighted relative frequency (WRF) to measure the
relative frequency that a feature is selected across five different
folds. Specifically, WRF; = ZJSHI {X; € Sg}liny for j th feature,
where Sy is the set of selected features using all but f th fold data
and ny is the total number in Sy. I{X; € S¢} is an indicator
function which takes value 1 if feature X; is one of the selected
features and takes value 0 if not. For example, if the five selections
are {X1, Xp}, {Xa, X4, X5}, {X1, X5}, {X1} and {X3, X5, X7},
then WRF; =1/2+0/3 +1/2 + 1/1 + 0/3 = 2.

All the analyses were performed by R (https://www.r-
project.org).

RESULTS

Ensemble Feature Selection Approach
Efficiently Selected Key Features on Real

Data Analysis
We classified clonotypes into 708 V] gene combinations and
assessed whether V] gene usage within the T-cell repertoire
differed between the two cohorts in the COVID-19 dataset.
Our proposed ensemble method shows the gene usage of 11
V] genes that were all significantly higher in the COVID-19
recovered patients compared to their usage in healthy donors
(Figure 2A). The 11 genes are selected at least twice in the 5-folds
cross-validation procedure (Table 1), including a more
significant increase in the TCRV5-1/]2-1, V5-5/]2-7, V6-4/]2-
3, V12-3/]J1-2, V19/J2-1, and V19/]2-2 gene usages in COVID-19
recovered patients, which were reported in the original paper
(Schultheifd et al, 2020). The principal components analysis
(PCA) based on the 11 selected VJ genes shows that the two
cohorts can be segregated mainly by these 11 VJ usages
(Figure 2B). In addition, we compared the selection frequency
across the different feature selection approaches by cross-
validation. We did 5-fold cross-validation within each
approach and calculated the weighted relative frequency for
each gene. Figure 2C shows the heatmap of the top 20
selected genes ordered by their WRFs based on the ensemble
method, for different feature selection methods. It can be
observed that lasso can only identify the top signals with
strong signals (hence those variables have large WRFs), and
the proposed feature ensemble method can aggregate the top
signals identified by the existing approaches. Figure 2D presents
the prediction accuracy of the selected genes based on the
different feature selection methods for different classifiers. We
found that all feature selection approaches (including the feature
ensemble method) have very similar prediction accuracy in terms
of classification performance comparing to the results without
feature selection.

In addition, we considered to identify the V] genes in the lung
cancer dataset based on the patients’ overall survival time. There

Novel Ensemble Feature Selection Approach

are 17 longer survivors and 33 short survivors, which were
defined based on longer or shorter than the median overall
survival (20.3 months), respectively. Because the lung cancer
patients received durvalumab, we selected the V] genes based
on their usage changes from baseline to the post-treatment, which
was defined as the ratio of V] gene usages from post-treatment vs.
the usages from baseline. We identified 9 genes: TRBV5-3/]1-1,
TRBV1/]2-7, TRBV1/J1-5, TRBV20-1/J1-4, TRBV7-4/]2-3,
TRBV11-1/]2-6, TRBV7-7/]2-2, TRBV1/J1-1, and TRBV5-7/
J1-6 when long survivors compared to short survivors
(Supplementary Figure S1).

Ensemble Feature Selection Approach
Consistently Outperformed on Simulation
Studies

In general, the ensemble feature selection approach consistently
outperforms the other state-of-the-art feature selection methods
in terms of both stability and accuracy. It possesses consistent
higher stability and sensitivity but lower FDR independent of the
sample size choices, the sparsity of the causal genes, and the
prevalence of the outcomes (Figure 3). As expected, a larger
sample size increases the stability, sensitivity and F-1 score, but
almost didn’t change FDR. Interestingly, a higher outcome
prevalence results in lower stability for most methods except
lasso and CFS, higher FDR and lower sensitivity. More genes in
the pool introduce less stability, slightly more FDR and almost no
change in sensitivity. Together with LASSO, the ensemble
method is relatively robust to the choices of sample size, the
sparsity of the causal genes, and the prevalence of the outcomes in
terms of F-1 score, sensitivity and FDR. However, the
performance of LASSO is always much worse than the
ensemble method. In addition, the proposed ensemble
approach always maintains the largest power (close to 1) in all
simulation scenarios while some approaches could have as low as
less than 50% of power (Figure 4). And the power that the
ensemble approach can achieve is robust to the number of causal
variables in the simulation, unlike the traditional approaches, the
power is significantly impacted by the number of the causal
variables.

Overall, the ensemble feature selection also improves the
classification performance. The ensemble feature selection
approach has the best prediction accuracy when integrating
with LASSO, Random Forest, ridge, and SVM classification
methods. While combing with KNN, the ensemble feature
selection approach occasionally is not as good as information
gain performs, but most of the time is worse. When working with
xgb, the ensemble feature selection approach has competitive
performance compared to LASSO (Figure 5). The ensemble
feature selection approach has the highest AUC except when
interpreting with KNN and Random Forest, and it has
competitive performance compared to information gain
(Supplementary Figure S2). Similarly, a larger sample size or
a smaller number of genes increases the prediction accuracy while
a higher outcome prevalence results in lower prediction accuracy
(Figure 5). However, the influence on AUC is relatively small for
the ensemble method (Supplementary Figure S2).
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DISCUSSION

We formulated a novel ensemble feature selection approach with
a customized statistical learning algorithm focused on V] gene
usage in repertoire-sequencing data. Using the proposed
approach and algorithm, we identify the VJ genes with
significantly different usage in COVID-19 recovered patients
and healthy donors. Wang et al. analyzed the TCR repertoire
in patients with COVID-19 using single-cell sequencing and
found that the frequencies of TRAV4, TRAJ2-7, TRBV7-9,
and TRBJ2-3 were significantly higher compared to healthy
patients (Wang et al, 2021). We found that the TCR beta
chains TCRV5-1/J2-1, V5-5/]2-7, V6-4/]2-3, V12-3/]1-2, V19/
J2-1, and V19/]2-2 had higher frequencies among patients with
COVID-19. Overall, identifying these V] genes could reflect a

specific antigen milieu leading to the selection of a distinct
combination of V] genes. Further correlation of these unique
V] gene profiles with clinical outcomes can potentially aid in the
development of sorely needed prognostic tools for patients
infected with COVID-19. Additionally, among the 9 V] gene
usages identified in lung cancer patients treated with
Durvalumab, one of the identified V segments, TRBV20-1 has
been previously shown to be differentially expressed in cancer
tissue compared to healthy tissue (Wang et al, 2019).
Furthermore, TRBV20-1 usage has been associated with
improved response and survival in lung cancer patients treated
with anti-PD1 therapy such as Durvalumab (Dong et al., 2021).
Thus, the other identified V] gene segment pairs above should be
explored as potential additional features of the TCR repertoire
associated with improved clinical response.
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In the real data analysis, we found that none of the feature
selection approaches (including the feature ensemble method)
have substantial improvements in terms of classification
performance comparing to the results without feature
selection. This is not surprising, since feature selection is not
guaranteed to improve the prediction accuracy. However, feature
selection is able to reduce the dimensinsionality and complexity
of the predictive models, which eventually leads to a faster model
trainning time and convergency. Our ensemble method, though
is not driven by the prediction accuracy as some other feature
selectors (e.g., SVM-RFE, Boruta, Vita) is still able to exhibit a
competitive performance in spite of a small sample size and even
with highly correlated features included.

In addition, we carry out intensive simulation studies in
different scenarios. We found that the ensemble feature
selection approach surpasses the other commonly used feature
selection methods based on efficiency and accuracy. When
integrating with varying types of classification methods, in
most cases, the ensemble feature selection approach has the
best prediction performance. These results indicate that the
ensemble feature selection approach not only identifies the
most stable, highest sensitive features with low false discovery
rates but also greatly improves the prediction performance.
Sample size, sparsity of causal genes, and the prevalence of the
outcomes influence the performance but are relatively small for
the ensemble approach.
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In the similation studies shown above, the base learners used
in the first phase were information gain, SVM-RFE, Vita and
Boruta. We have conducted additional simulation studies, where
the different base learners were used. The results shown that our
proposed ensemble method is neither sensitive to the number nor
to the choice of base learners (Supplementary Table S2). In
addition, we found that the proposed method is also relatively
robust to the choices of those parameters based on the simulation
studies (Supplementary Table S§3). Note that the large threshold
pr will introduce singleton groups and small threshold will
introduce large groups, which may impact the variable
selection results. Very large groups, unless very strong signal,
will less likely to be included in the selection, because the
proposed group lasso model penalizes based on the group size.
In an extreme case of all groups are singleton, it is reduced to a
regular lasso model, where only one variable might got picked
among highly correlated variables. Therefore, a moderate
threshold is recommended. In our case, we set the correlation
threshold of 0.75 to keep the highly correlated variables in the
same block while the uncorrelated variables in singleton groups.

Though the repertoire-sequencing data was used to illustrate
this approach, the proposed approach can be applied to any other
feature selection work. In a real application, we could perform
stratified feature selection within the strata defined by the
important covariates or consider the covariates as additional
features. Although the ensemble feature selection was currently
applied to a binary outcome, it can also be extended to different
types of outcomes (continuous, multi-level categorical outcomes,
and time-to-event outcomes) by changing the log-likelihood in
the objective function in optimization. Not surprisingly, the
proposed ensemble method, which aggregates the output from
multiple feature selectors, takes longer than a single feature
selection method. However, it has been demonstrated in the
simulation studies that the feature selection performance can be
significantly boosted. Moreover, we want to point out that the
proposed method can be applied as an independent feature
selection method by setting the rank matrix with all elements
equal to a constant. In addition, by using parallel computing, the
computational time can be dramatically decreased. Furthermore,
learning in a small n large p case is always challenging due to the
minimal information observed in the high dimensional space.
However, our simulation shows that the performance of both
feature selection and classification is still appealing.

In conclusion, the proposed novel approach and integrated
procedure can help us pursue an effective feature selection
technique to aid in correctly prioritizing the important
features and classifying different subtypes.
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