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ABSTRACT

Anthropogenic activities add more reactive nitrogen
(N) to the environment than all natural sources
combined, and the fate of this N is of environmental
concern. If N that is deposited on terrestrial ecosys-
tems through atmospheric deposition is retained in
plant tissues or soil organic matter, it could stimulate
carbon (C) storage in plant biomass or soils. How-
ever, added N also could increase soil inorganic N
concentrations and leaching, potentially polluting
watersheds, particularly in areas with low-N soils
and/or a high propensity for leaching, such as sandy
or arid areas. Here, we assessed N allocation and
retention across a 13-year experimental N addition
gradient in a temperate grassland. We found that N
accumulation decreased significantly at mid- to high
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levels of N addition compared to the Control, such
that ecosystem N pools were equivalent across a
10 g m~? year ' range of annual N addition rates
(0-10 g N m™? year '), which spans most of the
global range of N deposition. Nitrogen addition in-
creased plant tissue percent N, but the total pool of N
did not increase because of reduced plant biomass,
particularly in roots. Nitrogen addition also in-
creased soil inorganic N concentrations. Our results
indicate that N addition is unlikely to increase
grassland N pools, particularly in sandy or low-fer-
tility ecosystems with a high potential for leaching
because high application rates lead to N saturation,
and additional inputs are lost.

Key words: Nitrogen addition; Nitrogen accu-
mulation; Nitrogen deposition; Soil carbon; Soil
nitrogen; Nitrogen losses.

HiGHLIGHTS

e We experimentally added multiple rates of N for
13 years to assess N accumulation
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e We found similar rates of N accumulation
regardless of N input rate

e Ecosystem N pools may not increase with N
supply rate, especially in sandy soils

INTRODUCTION

Eutrophication via nitrogen (N) loading from hu-
man activities is putting more reactive N into ter-
restrial ecosystems than lightning and natural
biological N fixation combined (Galloway and
others 2008), leaving a fingerprint on the world’s
natural systems (for example, Stevens and others
2015). Nitrogen is a key element for growth in all
organisms, and N addition often, but not always
(Fay and others 2015), increases plant growth by
reducing N limitation in terrestrial ecosystems (for
example, LeBauer and Treseder 2008). Too much N
addition, however, can decrease plant diversity and
soil microbial activity (Shi and others 2016; Li and
others 2017), promote soil acidification (Bobbink
and others 2010), and increase N leaching to
groundwater and runoff into surface waters
(Sparks 2019). Given that N deposition is predicted
to increase in many areas of the world, but is
decreasing or unchanging in others (Jefferies and
Maron 1997; Bebber 2021), understanding the fate
of N in ecosystems is critical: If N addition promotes
increased plant carbon uptake and growth (for
example, growth-dilution, Jarrell and Beverly
1981), it could promote carbon (C) storage, par-
ticularly in moist soils (for example, Keller and
others 2021). In areas where the potential for plant
biomass response to N is constrained by low water
availability (for example, Delgado-Baquerizo and
others 2013; Wang and others 2014), N addition
may lead to increased leaching and potentially
groundwater pollution if plant and microbial N
uptake are low but soil organic and inorganic N
accumulation is high. Furthermore, the rate of N
addition can shape C responses, including C uptake
and emission, and biomass distribution (for exam-
ple, Peng and others 2017a; Wilcots and others
2022), and may likely alter N retention as well.
Specifically, in grasslands, which make up 30% of
the earth’s ice-free surface and store between 30
and 90% of C belowground in soil and roots
(Scurlock and Hall 1998; Titlyanova and others
1999; Fan and others 2009), understanding the
effect of added N on N retention versus N loss and
associated effects on ecosystem C pools is important
for predicting changes in global C stocks. Further-
more, investigating grassland C and N stocks on
marginal grasslands, which are often the areas

where grassland restoration takes place (for exam-
ple, De and others 2020) could also improve esti-
mates of the climate mitigation potential of
grasslands.

There are multiple biotic and abiotic pathways
through which N might increase or reduce
ecosystem N pools in grasslands. Nitrogen addition
may lead to N gains in plant pools via biomass gains
(with no change in tissue N concentration) (Fig-
ure 1, circle 1) or increased tissue N concentration
(Figure 1, circle 2), either of which alone or in
combination would result in a larger plant N pool.
Nitrogen-induced increases in biomass or in leaf
tissue N concentration can also affect litter accu-
mulation and decomposition (Figure 1, circle 7);
increases in litter mass can reduce light levels and
the richness of understory species (Eskelinen and
others 2022), especially at relatively high rates of N
addition. However, if foliar tissue N increases with
increasing N addition (for example, Hao and others
2018; Prager and others 2020; Figure 1, circle 1),
litter in high-N areas may become more easily di-
gestible and initially decomposable, leading to in-
creased rates of N mineralization.

Nitrogen addition can shift species composition
such that community root:shoot ratios decrease
(Figure 1, circles 4 and 10). Optimal allocation
theory predicts that, as competition for below-
ground nutrients is relieved, competition will shift
aboveground for light (Newman 1973; Dybzinski
and Tilman 2007). Root:shoot ratios can also be
sensitive to the experimental rate of N addition
(Wilcots and others 2022), with lower root:shoot
ratios (that is, lower belowground biomass or
higher aboveground biomass) at high rates of N
addition. However, if this shift occurs concurrently
with a shift toward annual, fast-growing species,
belowground plant N inputs would also shift from
long-lived, low-N roots (Figure 1, circle 4) toward
annual, high-N roots (Figure 1, circle 10; Hendricks
and others 1993; Li and others 2015). Thus, shifting
community composition and subsequent root
turnover may influence soil N pools and fluxes.

Nitrogen retention is also strongly affected by soil
processes. Nitrogen addition often slows later stages
of microbial litter decomposition (Riggs and others
2015; Riggs and Hobbie 2016; Gill and others 2021,
2022) and decreases soil microbial biomass (Trese-
der 2008; Verma and Sagar 2020), which could
lead to an increased or reduced, respectively, soil N
pool (Figure 1, circle 3). Nitrogen addition, how-
ever, can increase leaching and/or gaseous N
emissions if N supply exceeds plant and microbial
demand (Chapin and others 1995; Perakis and
Hedin 2002; Lovett and Goodale 2011; Figure 1,
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Figure 1. A conceptual figure showing how nitrogen addition may affect total ecosystem N pools through changes in
above and belowground biomass, changes in herbivory, or changes in leaching and other pathways of N loss. (1) N-
induced increase in tissue N concentration, possibly through changes in species composition; (2) N-induced increase in
aboveground biomass; (3) N-induced increase in belowground biomass, via changes in species composition; (4) increases
in soil N pool; (5) losses via leaching; (6) losses via denitrification; (7) increase in N via litter buildup; (8) losses via
herbivory; (9) N additions via urine and excrement from herbivores; and (10) N-induced decrease in belowground biomass

via changes in species composition, or increase in root N

arrow 5), particularly in sandy soils (Cameron and
others 2013), and can increase nitrate (NOs™)
leaching via decreases in root biomass (Scherer-
Lorenzen and others 2003) or changes in species
diversity (Tilman and others 1996, 1997). En-
hanced denitrification (Figure 1, arrow 6) may also
play a role in N loss from N-enriched ecosystems
(Woodmansee 1978; Phoenix and others 2003),
albeit a smaller role in ecosystems with well-
drained soils (Cameron and others 2013).
Furthermore, N addition may lead to N losses via
herbivory and disease (Figure 1, arrows 8 and 9).
Large mammals can reduce total plant pools of N, P,
and K where water is limited, but can have little
impact on aboveground nutrient pools in areas
where water is not growth-limiting (Anderson and
others 2018). Nitrogen addition can increase both
arthropod abundance and size (Lind and others
2017) and can induce increased rates of pathogen
and invertebrate damage (Ebeling and others
2021), with herbivory and/or damage increasing as
a function of plant biomass (Borer and others
2020). However, both mammalian and insect her-
bivores can increase ecosystem N inputs via urine
and dung, if consumption occurs outside of
ecosystem boundaries and N is transferred into the

system via animal movement (Frost and Hunter
2007; Cameron and others 2013; Hobbie and Vil-
léger 2015; Le Roux and others 2020), or, con-
versely, increase ecosystem N losses, through
consumption and subsequent movement out of the
system. Alternatively, increased herbivory may
simply lead to faster rates of N cycling if there is no
net animal movement in or out of the ecosystem
(for example, Belovsky and Slade 2000; Figure 1,
arrow 5).

Crucially, though, these processes and mecha-
nisms may depend on the rate at which N is sup-
plied. If, for example, low rates of N addition do not
shift plant community composition toward species
with N-rich tissues (for example, Wilcots and oth-
ers 2021), the plant N pool might grow via in-
creased biomass (Figure 1, circle 2) rather than via
more N-rich tissues, with negligible effects on litter
N concentration. On the other hand, if the plant N
pool grows via increased tissue N (Figure 1, circle
1), litter tissue N would also increase and leaching
may become a prevalent loss pathway at higher N
supply rates (Chapin and others 1995; Figure 1,
arrow 5). Understanding the rate of N addition at
which N losses begin to outweigh gains will be
crucial for future ecosystem management as N
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deposition continues to increase in many regions,
with potential impacts on biodiversity, carbon
storage, and groundwater contamination.

Though the pools and fluxes of N in grasslands
have been well-documented (Woodmansee 1978)
and the impacts of N on individual pathways of N
loss and gain have been well-studied, integrating
all loss and gain pathways together can provide a
more holistic picture of how N addition may affect
the fates of N in grasslands and thus the commu-
nity and ecosystem consequences of enriched N
(for example, Lovett and Goodale 2011). As N
deposition is an increasing source of N to ecosys-
tems in many parts of the world, understanding the
effect of chronic N addition is crucial for estimating
N losses and gains, as well as the critical load of N
beyond which ecosystem function is impacted
(Jefferies and Maron 1997; Lovett and Goodale
2011). Assessing the impact of N at multiple rates
will thus be crucial for predicting how N deposition
might impact both N and C stocks. If added N pri-
marily ends up in biomass, it can promote C storage
through C:N stoichiometry if plants allocate N to
building new structures (for example, Shaver and
others 1992), and thus, grassland areas with higher
rates of N addition could potentially increase their
C stock and help mitigate rising atmospheric CO,
levels. However, if added N remains as inorganic N
in the soil, it could increase leaching, leading to soil
acidification and potentially groundwater pollu-
tion, or to increased N fluxes to the atmosphere,
particularly in mesic environments (for example,
Zhang and others 2023).

In light of recent theoretical (Bebber 2021) and
empirical (Peng and others 2017a, b; Wilcots and
others 2022) work that found nonlinear responses
of plant biomass to increasing N addition rates, it is
necessary to also assess how N gains and losses
change across multiple rates of N supply. Here, we
used data from a 13-year N addition experiment to
ask how N allocation and retention change across a
gradient of N addition. After 13 years of N addition,
we quantified N stocks (N pools in plant above-
ground biomass, root biomass, plant litter, and
soils) and potential N loss pathways (large mam-
malian and insect herbivory, gaseous N losses, and
potential for leaching of soil NO;~ and NH,") to
understand how a gradient of N addition rates
similar to N deposition might affect N loading in
grasslands. We hypothesized that total N stocks
would increase with increasing N addition, and that
the trend would be driven both by increased pool
size (for example, increasing plant biomass) and
increased tissue N concentration. Finally, we
hypothesized that N losses (herbivory, gaseous, and

leaching) would increase with N addition rate,
especially as other limitations, such as water limi-
tation, increase.

MATERIALS AND METHODS
Experimental Design

We collected data from a long-term (13 years)
nitrogen and nutrient addition and herbivore
exclusion experiment that was established in 2007
in an old field, 57 years after abandonment from
agriculture at Cedar Creek Ecosystem Science Re-
serve (CCESR) in East Bethel, MN, USA
(45.4020°N, 93.1994°W, mean annual tempera-
ture = 6 °C, mean annual precipita-
tion = 750 mm). CCESR is located on the Anoka
Sand Plain, characterized by sandy soils (> 88%
sand) with low nutrient content and negligible
carbonates (Grigal and others 1974). For this study,
we collected data from two sub-experiments in the
same location. The first experiment (E1) is a ran-
domized block design composed of five replicate
blocks of four 25-m? plots each with treatments as
follows: ambient N deposition with 0 (Control), + 1
(N1), + 5 (N5), and + 10 (N10) g N m * year '
above ambient N deposition. Nitrogen was added to
the plots as time-released urea (CH4N,0), which
has been found to be an effective mimic of N
deposition (Jia 2020), in spite of the majority of N
deposition being composed of NHx and NOy com-
pounds (Bebber 2021). Fertilizer was added at the
end of each growing season. Background N depo-
sition at this site is approximately 0.9 ¢ N m~
2 year™! (equivalent to 9 kg N ha~' year™!; Ack-
erman and others 2019). The second experiment
(E2) is a randomized block design composed of five
replicate blocks of four 25-m? plots each with
treatments as follows: Control, Fertilization (NPK),
Herbivore Exclusion (Fence), and Fertiliza-
tion + Herbivore Exclusion (NPK + Fence). The
Control plots from E1 and E2 are the same. The
NPK and NPK + Fence treatments received 10 g N,
10 g phosphorus (P; as triple super phosphate),
10 g potassium (K; as potassium sulfate) added per
m? annually, and a single addition of 100 g m~*
mixture of common micronutrients that was added
in Year 1 only (see Borer and others 2014). The
Fence and NPK + Fence treatments excluded large
herbivores (for example, white-tailed deer) using a
2.3 m tall fence with a 1 cm mesh size up to 90 cm
and 3 strands of barbless wire above this, equally
spaced up to 2 m (see Borer and others 2013). To
estimate site-level herbivory while avoiding con-
founding effects of continued herbivore exclusion
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(for example, changes in species composition and
litter accumulation), we compared data from the
fenced and unfenced plots in Year 1 of the exper-
iment.

Biomass Measurements

Aboveground biomass and litter were harvested in
two 10 cm x 100 cm strips per plot around peak
biomass in mid-August from 2007 to 2020. Biomass
from the two strips was pooled, sorted into species
groups, dried to a constant mass at 60 °C, weighed
to the nearest 0.01 g, and scaled to g m 2. The
locations of the clipped strips were moved every
year to adjacent, but previously unsampled, loca-
tions. Root biomass was harvested in E1 in late July
2020 only using two 5 cm diameter x 20 cm depth
soil cores per plot. The top 20 cm of soil contains
over 80% of root biomass at this site (Knops and
Bradley 2009). To estimate belowground net pri-
mary productivity (BNPP), we removed two 5 cm
diameter x 20 cm soil cores from each plot in E1 at
the beginning of the growing season, and a 1 cm
mesh core was placed in the hole. The soil removed
from the plot was immediately sieved at 2 mm to
remove roots, and the sieved soil was placed back
into the mesh core in the plot. Cores were placed
on May 18, 2020, after the soil had completely
thawed and removed on September 13, 2020, prior
to the first autumn frost. For both root biomass and
BNPP, soil was washed off the roots immediately
after harvest, and root biomass was dried to a
constant mass and weighed to the nearest 0.01 g.
Biomass was pooled between cores and then scaled
on an aerial basis to g m™~? to compare it directly to
aboveground biomass. We estimated root turnover
by dividing BNPP by total root biomass.

Insect and Disease Damage
Measurements

Disease and insect damage severity were assessed as
the percent of leaf area visibly damaged by fungus
or insects (Mitchell and others 2002; Ebeling and
others 2021). In July 2019, we randomly selected
ten tillers per species (Andropogon gerardii or Elymus
repens) per plot. Damage data were collected within
2 weeks in a randomized order between plots to
minimize rust spread between plots.

Nutrient Content Measurements

In 2020 only, we measured tissue C and N content
in E1 in the three main functional groups present
at our site: perennial C4 and C; grasses, and non-
leguminous forbs (legume forbs were not signifi-

cantly represented at the site). We pooled dried
biomass for each functional group, ground the tis-
sue samples, and analyzed them for C and N using
dry combustion on an ESC 4010 Elemental Ana-
lyzer (Costech, Valencia, CA, USA). Similarly, litter
biomass and root biomass for E1 were ground and
analyzed on an Elemental Analyzer for C and N
content.

Soil Chemistry, Temperature, Moisture,
and Climatic Variables

To assess the effect of N addition on soil chemistry,
we collected 20 cm deep soil cores in each plot in
El in late July 2020. Soil was sieved to 2 mm to
remove roots, air dried, ground, and weighed be-
fore being analyzed for C and N by dry combustion
with an ESC 4010 Elemental Analyzer (Costech,
Valencia, CA, USA). Soil bulk density was esti-
mated using previously collected data from the
same experiment (that is, Keller and others 2021).
To assess soil inorganic N content (ammonium;
NH,", and nitrate; NOs;~) (as an indicator of
potential for inorganic N leaching losses), we bur-
ied ion resin exchange beads at a depth of 5 cm on
June 4, 2019, in El. Briefly, beads (Dowex Mara-
thon MR-3 H/OH, Sigma-Aldrich) were placed into
bags made of fine mesh (pantyhose material) and
acid washed with a 10% HCI solution and rinsed
several times with deionized water before deploy-
ment. Four bags were buried in each plot and were
retrieved on October 7, 2019. Bags were immedi-
ately frozen until analysis. Beads were removed
from the bags, weighed, and air dried for several
days. The beads were then extracted with acidified
(0.1 M HCI) 2 M NaCl solution; the extractant
liquid was filtered through ashless Whatman filter
paper, and analyzed colorimetrically for NH,*- and
NO5; -N (Hood-Nowotny and others 2010). We
measured soil temperature using a Digi-Check soil
temperature probe (Cole Palmer, Vernon Hills, IL)
and soil moisture using a ProCheck moisture probe
(ICT International, New South Wales, Australia)
biweekly from April through September 2020 in
El. We averaged temperatures taken during peak
season (mid-July through mid-August) for use in
the multi-model averaging. We used data from the
Cedar Creek Weather Station, collected daily since
1962, to compare climatic conditions during the
years of our study to the long-term mean (Liang
2025). The mean growing season minimum and
maximum temperature fell within the interquartile
range (25th quartile-75th quartile) of mean tem-
perature 1962 (Supplemental Figure 1). Mean
growing season precipitation in 2019 fell within the



M. E. Wilcots and others

IQR, but mean growing season precipitation in
2020 fell between the long-term minimum and first
quartile, though still well within the long-term
95% confidence interval at our site.

Nitrogen Fluxes

In El1, we measured N,O and NH; fluxes in
September 2019 by measuring the change in con-
centration in the headspace of a closed chamber (a
1 m® PVC frame covered with six mil clear plastic
sheeting with 30 cm flaps that lay on ground)
placed over each plot, using a Gasmet FTIR DX4000
gas analyzer. The chamber was sealed to the
ground using two heavy chains placed on the
ground flaps, and three small fans were used inside
the chamber to ensure air mixing. Light conditions
inside the chamber were measured using an Apo-
gee MQ-200X PAR sensor (Apogee Instruments).
We measured the flux rate in four different light
environments that were manipulated using shade
cloth and a black tarp, and each measurement was
taken for 2 minutes. Ultimately, there was no dif-
ference in flux rate between the light environ-
ments, and flux rate for each plot was averaged
across the four different measurements. We col-
lected flux data at least 2 days removed from rain
events to avoid erroneously high readings (Zhang
and others 2023).

Total N Retention

To assess total Net Ecosystem N Accumulation (Eq. 1)
in E1, we subtracted the total ecosystem N pool
(Ecosystem N pool-) in the Control treatment from
the total ecosystem N pool in the N treatment
(Ecosystem N pooly) for each block to estimate the
net increase in total ecosystem N pools for each
experimental treatment, where ecosystem N pools
were the sum of N in plant aboveground and
belowground biomass, litter, and soil.

Net N Accumulation = Ecosystem N pooly
—Ecosystem N poolcgnirol

We then summed cumulative experimental N
additions through time for each treatment over the
course of the experiment (13 years) to determine
Cumulative N Addition and divided the net increase in
total ecosystem N pool resulting from N treatment by
Cumulative N addition minus estimated Cumulative
gaseous N losses to calculate N Recovery (Eq. 2).

(NetNAccumulation)

Neither N,O nor NH;3, the two measured N gases,
differed between treatments or differed from zero
(ST Figure 1), so we assumed that gaseous losses
were negligible. We were unable to measure N,
NO, or NO, gas flux, but the previous studies have
found that N,O fluxes from grasslands can be 50—
100 times larger than NO or NO, fluxes (Yamulki
and Jarvis 2002), so we assumed negligible N,, NO,
and NO, fluxes. Finally, we subtracted Cumulative N
addition from Net N accumulation to calculate the
change in total N pools (AN, in units of grams of N
m?) to assess how much of the added N was re-
tained in each treatment.

AN = Net N accumulation
— Cumulative N addition

Statistical Analyses

All statistical analyses were conducted using R
(v.4.1.1). We used mixed-effects models with rate of
N addition as a continuous, fixed effect and block as a
random effect (R package ‘nlme,” with function
Ime(), Pinheiro and others 2018) to assess the effect
of N addition on total ecosystem N, N concentration,
Nrecovery, and AN. We used the Ismeans package to
calculate marginal (R,,*) and conditional (R:Z) R-
squared values, which represent the percentage of
error explained by the fixed or fixed and random
variables, respectively (Lenth 2016). We used Sha-
piro—Wilk test to test assumptions of normality, and
total ecosystem N data were natural log-transformed
to meet assumptions of normality. We assessed the
influence of covariates on total N using multi-model
averaging with the dredge() and get.models() func-
tions in the MuMIn package in R (Bartén 2020). The
initial model included litter mass, soil moisture, rate
of annual N addition, total soil %C, soil pH, C5 and C4
grass biomass, aboveground biomass, root biomass,
BNPP, root turnover, and block as predictor vari-
ables. The final averaged model (R*=0.97,
p < 0.0001) included total soil %C, litter mass, and
soil pH. We used predicted R? to assess overparam-
eterization; the predicted R? value was 0.94, indi-
cating our approach is robust to
overparameterization. We used an F-test to assess
differences in variance between N addition treat-
ments (Snedecor and Cochran 1989). Statistical
significance was assessed at p < 0.05. In Figures 2,
3, and 5, model fits are displayed as solid lines with a
95% confidence internal.

N Recovery =

(Cumulative N addition — Cumulative gaseous N losses)
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REsuLTs
Total N Retention

Total ecosystem N pools were highly variable across
the experiment, ranging from 71.8 ¢ N m 2 to
245.8 ¢ N m 2 (Figure 2), with an average of
119.27 g N m™? across all treatments. However, we
found no relationship between annual N addition
rate and total N pools (Rn” = 0.06, RZ = 0.46,
p = 0.18; Supplemental Table 2). Plot-scale plant
biomass %N increased with increasing N addition,
with the highest %N values (averaged across
aboveground and belowground plant biomass, lit-
ter, and soil) in the N10 treatment (Figure 2; Sup-
plemental Table 2). Nitrogen addition, on average,
increased net N accumulation by 24.7 ¢ N m?
compared to Control, but there was no difference
in net N accumulation among the N addition
treatments (Ry,> = 0.02, R = 0.83, p = 0.29) (Fig-
ure 3a). When regressed against cumulative N
addition over the entire experimental duration, the

change in N pools (AN) declined with increasing
cumulative N added (Figure 3b; R,,> = 0.26, R =
0.88, p = 0.0004); on average, the N10 treatment
only retained 34 ¢ N m™? of the 130 g of cumula-
tive N added, and the N5 treatment only 26.9 g N
m ™2 of the 65 g of cumulative N added over the 13-
year experiment (Supplemental Table 3). However,
AN in the N1 treatment was 0.8 g N m ™2 more than
cumulative inputs, or approximately 106% of
cumulative N inputs, indicating that there may
have been small N gains beyond the experimentally
added N. Conversely, the N5 treatment retained an
average of 40% of inputs, and the N10 treatment
retained an average of 26% of inputs (Figure 4),
most of which was in the soil pool. However,
variances within the replicate plots for each of the
three N addition treatments differed; N1 had more
variability in N recovery than both N5
(Faq=13.94, p=0.03) and N10 (F,4 = 83.97,
p =0.0008); N5 and N10 had similar variances
(Fq,4 = 6.023, p=0.11) (Supplemental Table 4).
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Similarly, we found a large range in net N accu-
mulation among treatments (Table 1), from
152.9 g m~2 of N lost to 96.8 g m~ 2 of N gained,
which suggested unmanipulated variables were
driving N accumulation, in part. To better under-
stand how N was being lost from the system, we
first assessed which other factors drove N accu-
mulation or loss. We then assessed pathways for N
gain (increase in pool N concentration, increase in
total pool mass, and increase in total N pools) and N
loss (herbivory, leaching, and gaseous losses) across
the N gradient.

Effect of Covariates on Total Ecosystem N

Total soil %C was the strongest (positive) deter-
minant of total ecosystem N (Supplemental Ta-
ble 5). Litter mass had a small, but significant,

negative effect on total N, and soil pH had a small
negative effect on total N (SI Table 4). In the
model, total C had the largest standardized effect
size (1.03), and litter mass and soil pH had similarly
sized standardized effect sizes (-0.15 and -0.10,
respectively) (SI Figure 2).

N Gains

Nitrogen addition did not increase total N in
aboveground biomass (F; ;5 = 1.1, p = 0.31), litter
(F118 = 0.45, p=0.51), belowground biomass
(F]/]g = 0.01, p = 092), or soil (F]/]g =1.15,
p = 0.30) pools, despite 13 years of fertilization
(Supplemental Tables 6-8). Aboveground biomass
N concentration increased with N addition
(F1,18 = 13.82 p =0.0016), as did root percent N
(Fy18 = 25.36, p < 0.0001; Figure 5a, b). Neither
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Figure 4. Percent of N recovery, defined as net N accumulation (NpoolSieatment — NPOOIScontrol) divided by cumulative N
inputs (annual N addition rate times length of the experiment) in each N addition treatment. The colored bars represent
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Table 1. Net N Accumulation (Ecosystem N eatment—ECOsystem Neonirol) in Each N Addition Treatment

Treatment N accumulation range N accumulation (mean + 1 SE)
N1 — 68.1-89.0 g Nm™? 0.83 £26.7gNm?

N5 —105.2-96.8 g N m > —389+358gNm?

N10 —152.9-52 g Nm 2 —96.04+29.2gNm 2

The second column is the range between the lowest and highest amount of N accumulation among replicates within a treatment, with negative values indicating that the
Control plot in a block had more total N than the N addition treatment plot; the third column lists the average N pool size and one standard error

litter percent N (F;,3 = 0.49, p = 0.49) nor soil
percent N (Fy 15 = 1.15, p = 0.30) was affected by N
addition (Supplemental Tables 7 and 8). Within all
plant functional groups, aboveground biomass
percent N increased with N addition (Figure 5a),
and forbs had higher biomass percent N (1.36%)
compared to Cs (1.14%) and Cy4 (0.995%) grasses
(Supplemental Table 6). Similarly, N addition in-
creased biomass percent N for both shallow (0-10)
and deeper (10-20 cm) roots (Figure 5b). As pre-
viously reported (Wilcots and others 2022),
aboveground biomass peaked at low rates of N
addition, and belowground biomass decreased with
N addition (Supplemental Table 6). Litter mass was
not affected by N addition (F; 3 = 0.95, p = 0.34)
(SI Table 6).

Potential for N Losses

The total inorganic N accumulated on soil ion-ex-
change resins (IER) over 125 days increased with N
addition (NH,": F,,5=7.20, p = 0.0006; NOs™:
Fi1s=12.66, p=0.0022; Figure 6). IER-NH,"
concentration was twenty times higher in the N10
treatment compared to the Control, and IER-NO5~
concentration was over fifty times higher in N10
compared to Control, indicating higher potential
for nitrate leaching with N addition. There were
negligible N,O losses via denitrification, and nei-
ther rates of N,O nor NH; emissions differed based
on N fertilization rate (SI Figure S1). Leaf damage
by insects increased slightly with N addition for Cs
grasses, but the effect of N was not significant
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Figure 5. Biomass, N concentrations, and total N pools in aboveground plant, root, and litter biomass, and N
concentration and total N pool in soil (to 20 cm). Litter biomass did not change across the N gradient (a); root biomass
decreased and AGB increased at low rates of N only (a; as previously reported in Wilcots and others 2022). N concentration
increased in roots and AGB (b), but not in litter (b) or soil (c). Total N pools did not increase across the N gradient in any
category (d and e). For all panels, filled points represent plot-level measures of biomass, %N, and N pool sizes. Solid lines
represent lines of best fit for significant regressions between N added to plot and biomass, %N, or total N, respectively.
Dashed lines represent lines of best fit for regressions with p > 0.05. Shaded areas represent 95% confidence intervals

(Rm> = 0.05, RZ =0.35, p=0.28 Supplemental
Fig. 3).

In E2 (see Experimental Design in Materials and
Methods), we compared aboveground biomass
offtake by large mammalian herbivores (Fenced—
Unfenced plots) between the unfertilized and fer-
tilized (with N, P, K, and p) treatments. Averaged
across time, fencing without fertilization caused a
greater difference in biomass (Fenced—Unfenced)
compared to the effect of fencing in fertilized plots
(t =2.78, p = 0.006; Supplemental Figure 4). Her-
bivore effects in unfertilized conditions (Fenced—
Unfenced) reduced biomass by 78 g more than
under fertilized conditions.

Climatic conditions.

DiscussioN

After 13 years of chronic N addition, ecosystem N
pools did not increase, regardless of N addition rate.
Rather, all treatments maintained similarly sized N
pools, and thus, plots subjected to the higher rates
of N addition became saturated and were not able
to retain all the experimentally added inputs. These
findings indicate that for ecosystems with similar
characteristics to those at our site (for example,
well-drained, low-fertility soils), higher rates of N
deposition may lead to increased N losses. Within
each ecosystem pool (aboveground plant biomass,
plant litter, belowground plant biomass, and soil),
total N was similar across treatments, despite in-
creased percent N in plant aboveground biomass
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and roots at elevated N supply. Our results suggest
greater potential for leaching at high rates of N
addition; both soil IER-NH," and IER-NO5~ levels
increased with N addition rates. Nitrate is particu-
larly susceptible to leaching in soils that have high
cation exchange capacity (but low anion adsorption
capacity; see Grigal and others 1974).

In this study, multiple lines of evidence suggest
that increasing N addition may not lead to more
ecosystem N storage, and that increasing N addition
increases N losses. First, AN, net N accumulation
minus cumulative N addition, decreased signifi-
cantly with N addition, with cumulative N addi-
tions being nearly 100 g m~2 higher than the total
ecosystem N pool in the N10 treatment. Nitrogen
addition rate was not included in the multi-model
average predicting total ecosystem N. Total C was
the strongest determinant of total ecosystem N; the
majority of ecosystem N was contained in the soil
pool in all treatments. As laid out conceptually by

Lovett and Goodale (2011), SOM, and soil C con-
tent generally, seem to provide a key mechanism
for N retention in this ecosystem, potentially via
stoichiometric relationships or N-induced shifts in
species composition. Past work has indicated that N
addition on its own may not change soil C stocks
(Keller and others 2021; Wilcots and others 2022),
and thus, if N retention depends on soil C, an in-
creased soil N sink in grasslands may not be possible
without concurrent changes in soil C stocks. The
soil C stock could also depend on non-N nutrients,
such as K, Mg, Ca, and other micronutrients that
control C accumulation in soils (Crowther and
others 2019; Seabloom and others 2021).

Soil C accumulation in response to N addition
also can be tied strongly to mean annual precipi-
tation and soil texture, with soils with higher silt or
clay content accumulating more C (Dungait and
others 2012; for example, Cai and others 2016;
Egan and others 2018), which, in turn, could in-
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crease N accumulation. In this study, we only
measured roots and soil C to a depth of 20 cm, but
increased N storage at greater depths than this is
unlikely, given that past work from nearby fields
(Knops and Bradley 2009) found the majority of
the soil C and N pool was contained in the top
20 cm of the soil; however, this distribution of soil
C and N can be related to shallow-rooted, non-
native plant dominance and a loss of legumes after
old field abandonment (Yang and Knops 2023).
Thus, decreased N recovery with increased N inputs
could be expected if total N (numerator) is limited
in size but N addition (denominator) increases. We
found that four of the 20 experimental plots (two
N1 and one each N5 and N10) had a AN value
higher than 0, indicating a net gain of N to the plot,
and per gram of N added, N1 had the highest pro-
portion of N recovery (1.06), though this was not
significantly different than 1. This indicates that N
inputs into the system could be possible, due to
increased waste inputs from herbivores from bio-
mass consumed outside the plot, or that the plants
were able to access soil N from depths deeper than
20 cm and redistribute that N into the top layers of
soil or into plant or microbial tissues. Increased
rates of biological N fixation (BNF) are unlikely
given the rarity of legumes at this site (see Mate-
rials and Methods); fertilization can also decrease
rates of BNF (Keuter and others 2014).

Second, concentrations of inorganic soil N (NH,*
and NO; ) accumulated on ion-exchange resins
increased significantly with N addition. Concen-
trations of both NH," and NOs ™ in the Control plots
were essentially zero, indicating that combined,
microbial N immobilization and plant N uptake
match N mineralization in this ecosystem, and
thus, leaching is likely not a significant N loss
pathway under ambient conditions. Importantly,
the small inorganic N pools in the Control plots
indicate that the current rate of N deposition at our
site (0.9 ¢ N m™2 year ') likely has not signifi-
cantly impacted aqueous N losses, at least during
the growing season. This N deposition rate is
approximately the same as our lowest experimental
addition rate (1 g N m~?year '), and thus, our
findings suggest that this ecosystem could absorb a
doubling of N deposition rates without increases in
N losses. Given that N deposition rates are
decreasing in the Upper Midwestern USA region
(for example, the US states of Minnesota, Wiscon-
sin, Michigan, as well as parts of Canada) (Benish
and others 2022), and are flat or declining at our
site specifically (NADP 2022), N deposition may not
increase future leaching rates in this area. How-
ever, leaching of dissolved organic N (DON), which

we did not measure in this study and which may be
less influenced by plant and microbial demand
(Perakis and Hedin 2002), may comprise a large
component of N leaching (for example, Phoenix
and others 2003), though past work near our study
site indicates that dissolved inorganic N losses are
larger than DON by an order of magnitude (Dijkstra
and others 2006, 2007). We measured IER-soil
NOs™~ concentration at a depth of 5 cm during the
summer months, often the time of year with the
lowest leaching losses (Cameron and others 2013).
Inorganic N pools might have responded more to N
treatment than measured here, if non-growing
season months were considered, which would im-
ply greater N-induced leaching of N at those times.

Plant tissue percent N increased both above-
ground and belowground, but that did not translate
to increases in total N pools because increases in
tissue %N were offset by decreases in biomass. This
suggests that N accumulation in biomass in this
ecosystem happens via a stoichiometric sink
(Lovett and Goodale 2011), wherein N accumulates
without concurrent increases in C, which may re-
sult from low stoichiometric plasticity in certain
species, or limitations in growth due to light or
water (Lovett and Goodale 2011); mean growing
season precipitation was typical during the years of
our study (Supplemental Figure 1), but soil mois-
ture retention is low at our site given the sandy soil
texture (Grigal and others 1974). Within each plant
functional group (C; and C, grasses and non-
leguminous forbs), N supply increased tissue N
concentration, and tissue %N also increased at both
depths (0-10 cm and 10-20 cm) of belowground
biomass. However, increases in N concentrations
did not lead to increases in the total plant N pool
due to decreases in biomass, perhaps because of
increased herbivory, particularly belowground.
This may indicate that shifts in species composition
could lead to changes in N pools in the future as N
addition shifts communities toward domination by
more palatable species with N-rich leaves (Chapin
and others 1987; Tilman 1987; Wedin and Tilman
1996) (but see Schmitz 1994). However, fast-cy-
cling herbaceous plant pools are not necessarily
long-term sinks for N (for example, Clark and
others 2009), and an increase in N-rich above-
ground tissues may lead to more N-rich litter (for
example, Parton and others 2007). More N-rich
litter releases N more rapidly (for example, Clark
and others 2009) in early stages of decomposition
(Parton and others 2007; Gill and others 2022), and
could increase rates of N cycling without neces-
sarily changing the size of the N pool and may lead
to N loss.
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Relative to the amount of cumulative N added,
the change in N pools (AN) decreased across the
experimental gradient, which could be due to a
combination of leaching (as discussed above) and
herbivory at higher rates of N addition. We found
slight increases in rates of aboveground insect
herbivory in C5 grasses only, a trend similar to past
studies that found N effects on insect herbivory or
density (Lind and others 2017; Ebeling and others
2021). However, we found no evidence that mul-
tiple nutrient enrichment increased large mam-
malian herbivory at our site, which, given the
importance of nutrient co-limitation at our site
(Wilcots and others 2025), would indicated that N
addition alone would likely have a similar or
smaller effect on N retention. Though we could not
measure the rate of N input by herbivores (Ca-
meron and others 2013), any increase in inputs of
herbivore-derived N would further exacerbate the
extent to which N recovery decreased with N
addition. Furthermore, recent work from a nearby
field showed that effects of large mammalian her-
bivores, arthropods, and fungal pathogens together
on plant aboveground biomass were three times
higher when multiple nutrients were added (Zaret
and others 2023). Therefore, the decrease in N
recovery observed at higher N addition levels could
be due to increased consumption. When consider-
ing the change in total N (AN) across all treatments,
only the N1 treatment retained more N than the
total cumulative N added across the 13 years of the
experiment: after 13 g of total N inputs, the N1
treatment had, on average 13.8 g of N more than
the Control treatment, a 0.8 g N gain, whereas the
N5 treatment only had 26.1 g N more than Control
despite 65 g of cumulative N inputs (a 34.9 gNm ™2
loss), and the N10 treatment had 34 g N more than
Control despite 130 g of cumulative added N, a
96 g N m ™2 loss. Thus, the two highest N addition
treatments lost N when compared to what was
added, likely a direct result of increased herbivory,
leaching, or both. Though we did not measure ni-
tric oxide (NO) flux rate, research from a neigh-
boring field has shown NO fluxes 1-2 orders of
magnitude lower than the N,O fluxes we mea-
sured, which were negligible (Clark 2007). Areas
with less sandy soils with lower rates of leaching, or
areas with lower herbivory pressure, may, there-
fore, see less of a discrepancy in AN if conditions are
more favorable for N retention.

After 13 years of N addition, we found no dif-
ference in total ecosystem N pools across a gradient
of N addition in a temperate grassland. We found
evidence of decreasing proportional N retention
and increased potential for N loss via leaching as N

addition increased, and increases in tissue %N were
offset by losses in total mass, particularly below-
ground. This implies a mechanism through which
net N retention decreases with increasing N addi-
tion, either biotically (through changes in mass
driven by altered species composition, herbivory, or
root:shoot ratios; see Cleland and others 2019;
Borer and others 2020; Wilcots and others 2021,
2022) or through changes in stoichiometry due to
water or other resource limitation (for example,
Lovett and Goodale 2011). Here, we find clear
linear increases in N losses and decreases in AN in
response to N addition, and despite increases in
plant tissue %N, no response in the overall plant or
soil N pool. Ultimately, these findings suggest that
N-induced tissue N increases may not increase the
total ecosystem N pool if there are concurrent de-
creases in biomass. These results may differ in areas
with less sandy, leaching-prone soils, or wetter
areas where herbivores remove a smaller percent-
age of biomass compared to Control (Borer and
others 2020). The context of our work is particu-
larly relevant to grassland restoration efforts, be-
cause most restoration efforts are aimed at marginal
cropland (De and others 2020) that may not
accumulate C at rates necessary for climate change
mitigation efforts (for example, Knops and Tilman
2000). In these key areas for restoration, increasing
N deposition might exacerbate environmental
stresses via leaching or groundwater contamina-
tion, especially in areas with sandy soils. Taken
together, we find evidence that small rates of N
addition, similar to rates of N deposition across
much of the globe (Bebber 2021), may neither in-
crease N pools nor increase N losses. However,
higher rates of N addition, similar to rate of N
deposition in the most polluted areas of the world
or to agricultural fertilizer runoff, may lead to in-
creased ecosystem N losses through leaching.
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