

1

2 **Fecal Biomarkers in Soils Record Landscape-Scale Wild Herbivore Abundance**

3

4 **A. Tyler Karp^{1,2,3*}, James M. Russell³, Joel O. Abraham⁴, Tertia Strydom⁵, A. Carla Staver^{2,4}**

5 ¹Department of Geophysical Sciences, University of Chicago, Chicago IL USA

6 ²Department of Ecology and Evolutionary Biology, Yale University, New Haven CT USA

7 ³Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence RI
8 USA

9 ⁴Department of Ecology and Evolutionary Biology, Princeton University, Princeton NJ USA

10 ⁵Scientific Services, Kruger National Park, Skukuza, South Africa

11 ^{*}Corresponding author: A. Tyler Karp (atkarp@uchicago.edu)

12 **Key Points:**

- 13 • Fecal stanols, but not sterols, were more concentrated in soils where herbivores were
14 present than absent
- 15 • Compound distributions are related to herbivore community, but overall herbivore
16 abundance most strongly controlled biomarker patterns
- 17 • Fecal stanol ratios increased with herbivore dung counts and have promising potential
18 as a proxy for paleo-herbivore abundance

19

20 **Abstract**

21 In Earth history, our understanding of how large-bodied herbivores shape a variety of
22 ecosystem processes is limited by the quality of paleoecological proxies for herbivore
23 composition and abundance. Fecal stanols are lipids that can be produced by microbes within
24 animal digestive systems and that could remedy this dearth of proxies. We use two multi-
25 decadal herbivore exclosures in Kruger National Park, South Africa, to constrain whether and
26 how biomarker signatures preserve signals of herbivore abundance. Soil samples and dung
27 counts were collected along transects across crest, mid-slope, and sodic sites inside and outside
28 exclosures. Soils were analyzed for steroid (sterols and stanols) concentrations and
29 distributions. We found that stanol concentrations were significantly greater in sodic soils
30 outside exclosures, where herbivore dung densities were greatest. By contrast, sterol
31 concentrations did not differ between treatments. Ratios of stanol isomers to sterols, which
32 account for both compound degradation and source, increased strongly with herbivore dung
33 counts. Finally, while herbivore species compositions influenced steroid distributions, total
34 herbivore abundance was their strongest predictor. Further calibration is needed, but this work
35 provides strong preliminary evidence that wild herbivore populations are quantitatively
36 recorded by fecal biomarker distributions.

37

38 **1 Introduction**

39 Reconstructions of terrestrial paleoecological processes have rapidly advanced through the
40 development of lipid biomarker proxies that enable empirical reconstructions of temperature,
41 vegetation communities, hydroclimate, and fire activity through time from marine and lake
42 sediment cores (Inglis et al., 2022). Because lipid proxies share a generally similar taphonomy,
43 they allow fine-scale cross-comparison of a range of ecosystem processes at a single site in a
44 single core. However, we lack lipid proxies for many ecological processes that are known to be
45 important in modern time and are likely important in the past – specifically, herbivory by large
46 mammalian herbivores.

47 Today, large-bodied herbivores can have significant impacts on ecosystems, changing
48 vegetation structure and composition, fire activity, and carbon cycling (Forbes et al., 2019; Karp
49 et al., 2024; Pringle et al., 2023; Staver et al., 2021; Trepel et al., 2024). In the past, large-bodied
50 mammals were much more diverse and likely more abundant than they are today (Manzano et
51 al., 2023; Rowan & Faith, 2019; Smith et al., 2018) and may also have had substantial impacts
52 on ecosystems (Karp et al., 2021), but these potential impacts are poorly characterized and
53 have not been incorporated into most evaluations of vegetation and fire activity changes.
54 Currently, our best sources of information about past herbivore abundances come from sites
55 preserving mammalian fossils (Davis & Pineda Munoz, 2016), but these sites tend to be spatially
56 and temporally disconnected from sediment archives that preserve information about past
57 changes in terrestrial climate and vegetation. Thus, linking information about herbivore
58 communities derived from fossils to changes in fire, vegetation, and nutrient cycling remains a
59 challenge (Bobe et al., 2007; Du & Behrensmeyer, 2018; Faith & Lyman, 2019).

60 Biomarker proxies for herbivory could be a solution to these issues. Steroids are a suite
61 of compounds that are produced by plants, animals, and decomposers in ecosystems. Sterols
62 are primarily synthesized by plants and animals, and, though sterols can pass through the gut
63 unaltered and are present in animal dung (Kemp et al., 2021), they are not uniquely produced
64 by large-bodied herbivores (Prost et al., 2017). Stanols, however, are produced through the
65 alteration of sterols either by environmental or animal gut microbiota (Bull et al., 2002). 5β -
66 stanol isomers are mainly reduced via gut microbes (Bull et al., 2002), and to a lesser extent via
67 microbial degradation in the environment (Gaskell & Eglinton, 1975). In contrast, 5α -stanol
68 isomers are thought to be mainly produced via microbial degradation in the environment
69 (particularly anaerobic environments) (Bull et al., 2002), but have also been found in dung
70 samples in elevated quantities (Harrault et al., 2019; Kemp et al., 2021). In addition, 5β - and 5α -
71 stanols in the environment may be modified by the secondary alteration (or epimerization)
72 from 3β to 3α isomers. Overall, 5β -stanols are generally considered diagnostic markers of fecal
73 inputs into ecosystems, while 5α -stanol are a more ambiguous marker. Because fecal stanols
74 can be preserved in soils and sediments for thousands of years (Arnold et al., 2021; Gallant et
75 al., 2024), they are promising candidates for use as herbivore abundance biomarkers in the
76 Quaternary.

77 Calibration work in agricultural settings has shown that these compounds can serve as
 78 proxies for the presence of domesticated herbivores (Evershed & Bethell, 1996; Prost et al.,
 79 2017; Vázquez et al., 2021; Zocatelli et al., 2017). Fecal steroids distributions in dung from both
 80 domestic and wild species can vary with functional traits like diet and digestive system (Gill et
 81 al., 2010; Harrault et al., 2019; Kemp et al., 2021). Wild herbivore communities are more
 82 diverse and include species that are functionally distinct from domesticates (including, e.g.,
 83 non-ruminant megaherbivores; Hempson et al., 2017; Ripple et al., 2015), so we cannot assume
 84 that calibrations of these compounds based on agricultural contexts are accurate analogs for
 85 past settings dominated by non-domesticates. Today, the most diverse wild herbivore
 86 communities are found in subtropical African savannas (Pringle et al., 2023; Ripple et al., 2015),
 87 making them the best available modern analogs for past environments with high herbivore
 88 abundances. However, there is a strong geographical bias towards fecal sterol calibration in
 89 North American and European settings (Bull et al., 1998; Davies et al., 2022; Evershed & Bethell,
 90 1996; Harrault et al., 2019; Prost et al., 2017; Wendt et al., 2024). To gain fecal biomarker
 91 insights about paleo herbivore abundances, we must examine the concentrations and ratios of
 92 these compounds in modern settings where intact, functionally diverse, and abundant wild
 93 herbivores are present.

94 Here, we evaluate whether and how biomarker signatures preserve herbivore land-use
 95 patterns in natural settings. We measured fecal sterols and stanols from soils from two multi-
 96 decadal herbivore exclosure experiments (Hlangwini and Nkuhlu) in Kruger National Park,
 97 South Africa. If fecal stanols record wild herbivore abundance, then we expect 1) that fecal
 98 stanol concentrations will be higher in plots where herbivores are present (controls) than plots
 99 where herbivores were excluded (exclosures), and 2) that fecal stanol concentrations will be
 100 correlated with dung counts where soil samples were collected. In contrast, we do not expect
 101 sterols to be strongly related to herbivore presence, because, while they found in significant
 102 quantities in herbivore dung, phytosterols mainly derive directly from plants and cholesterol
 103 from all animals—including soil macrofauna, birds and insects (Albro et al., 1992; Jing &
 104 Behmer, 2025; Prost et al., 2017)—which were not excluded from plots.

105 **2 Methods**

106 **2.1 Experimental design and soil sampling**

107 The herbivore community in Kruger National Park (KNP), South Africa, is highly diverse, with 29
 108 species of large-bodied mammalian herbivores (Pienaar, 1963). The community is dominated by
 109 impala and elephant, but includes five species of megaherbivores (Pienaar, 1963; Staver et al.,
 110 2017). We sampled soils from two longstanding herbivore exclosure experiments in KNP: the
 111 Hlangwini and Nkuhlu exclosures (Wigley-Coetsee et al., 2022). The Hlangwini exclosure was
 112 established in 1971 (making it 51 years old at the time of sampling) (Holdo & Mack, 2014;
 113 Wigley-Coetsee et al., 2022) in the Pretoriuskop region on sandy, low nutrient soils receiving ~
 114 750 mm of rainfall/yr. The Nkuhlu exclosure was established in 2002 (making it 20 years old at
 115 the time of sampling) (van Coller et al., 2013; Wigley-Coetsee et al., 2022) in the Lower Sabie
 116 region, adjacent to the Sabie River and receiving ~ 550 mm of rainfall/yr (Jacobs & Naiman,

117 2008). Both exclosures are on soils derived from granitic bedrock in KNP and characterized by
118 catenas, variations in soil character down hillslopes (Khomoo & Rogers, 2005). The sodic zone of
119 the Nkhuhlu site has historically had a higher abundance of large-bodied herbivores due to its
120 relative nutrient richness and proximity to permanent water (Jacobs & Naiman, 2008; L. M.
121 Khomoo & Rogers, 2005; Scogings et al., 2011).

122 Samples were collected in a nested sampling design across the two exclosures
123 (Hlangwini=HLG and Nkhuhlu=NKH) and across two herbivore treatments (Herbivores
124 present=CON and Herbivores excluded=EX). For each experiment and treatment, soil samples
125 were collected at three catenal positions: crest, mid-slope, and sodic. We placed two replicate
126 50 m transects laterally along the catenal position for each unique combination of experiment,
127 treatment, and catenal position. We collected two composite depth samples (0-1 cm and 0-5
128 cm) every 10 m along the transect. We homogenized and subsampled soils along the transect
129 such that we produced two samples per transect, one for each depth. Soils were then dried at
130 40°C in a drying oven for 24 hours. This resulted in a total of 48 samples (Fig. 1).

131 2.2 Dung Counts

132 In parallel to soil sampling, we surveyed herbivore dung along the same transects. Dung counts
133 are a widely used proxy for herbivore land use intensity (Abraham et al., 2019; Cromsigt et al.,
134 2009; Pfeffer et al., 2018) though they are not a perfect correlate of local herbivore abundances
135 (due, e.g., to differences in defecation rates between species) (Cromsigt et al., 2009; Pfeffer et
136 al., 2018). Because fences require regular maintenance, dung counts also serve as a secondary
137 confirmation of the effectiveness of exclusion treatments.

138 All dung piles within 2 meters on either side of the soil sampling transects were counted
139 and identified. The herbivores in KNP have unique dung morphologies (Stuart & Stuart, 2015),
140 such that it was possible to identify the herbivore species from which each dung pile (though
141 species identifications based on dung morphology alone are subject to error; Spitzer et al.,
142 2019). Where dung piles overlapped (such as in latrines or middens), the number of dung piles
143 was estimated from the quantity of dung in a standard pile for that species. This methodology
144 resulted in species-specific counts of herbivore dung piles along each soil sampling transect.
145 The “total herbivores dung counts” (Fig. 2b) include small animals that are technically not
146 excluded based on experimental design because they can fit through small holes in the fence or
147 burrow under exclosures such as hare, porcupine, and duikers. Carnivore and omnivore dung
148 was also counted.

149 2.3 Fecal steroid analysis

150 Sample processing generally followed Curtin et al. (2021). We ground dried soils with a mortar
151 and pestle and weighed ~10g of sample. We extracted soluble lipids using an Accelerated
152 Solvent Extraction System (ASE 350 ThermoScientific). Samples were flushed with 9:1
153 Dichloromethane:Methanol solvent at 120 °C for three 10-minute cycles. Total lipid extracts
154 were dried and saponified with a 1 M KOH solution in Methanol:H₂O (95:5) for 3 hours at 65 °C.
155 Neutral fractions were extracted with a 3x liquid-liquid extraction. We then ran neutral

156 fractions over a short NaSO_4 column to remove residual water from the liquid-liquid extraction.
 157 We separated the neutral fraction further into N1 “Aliphatic,” N2 “Aromatic” and N3 “Polar”
 158 fractions using silica gel column chromatography with Hexane (N1), Dichloromethane (N2), and
 159 Methanol (N3). We added a cholestan internal standard to the Polar fraction, which was then
 160 analyzed for sterols and stanols. Since abundant material was extracted, samples had very high
 161 absolute amounts of steroids ($\sim 10^3\text{-}10^4$ ng). Before quantification, N3 fractions were split
 162 (typically 2:1) and a split was injected from a diluted volume (typically 1 μl from 1 ml).

163 We identified and quantified sterols and stanols using Gas Chromatography Mass
 164 Spectrometry (GC-MS Agilent 5977B, 30 m x 250 μm x 0.25 μm TG-5MS column). We
 165 derivatized N3 Polar fractions with an on-line BSTFA derivatization modified from Wu et al.
 166 (2009), where 1:2 volume of sample to BSTFA-10% TMS were co-injected into the GC inlet at
 167 325 °C in splitless mode. We derivatized a standard suite of cholestan, 4 sterols and 3 stanols
 168 (see Table S1; LGC Standards and Sigma-Aldrich) and ran it with this same method to establish a
 169 calibration curve each day samples were analyzed. We ran samples in SIM/Scan mode (see
 170 Table S1 for SIM ions). The initial oven temperature was set to 80°C, the oven was then ramped
 171 12°C/min to 265°C then ramped 0.6°C/min to 288°C finally ramped 10°C/min to 300°C for a 5
 172 min hold time. All sample concentrations were normalized to ng/g soil based on dilution, split,
 173 and grams extracted for each individual sample.

174 2.4 Fecal steroid ratios

175 Epimerization ratios are based on relative amounts of $5\beta 3\alpha$ - and $5\beta 3\beta$ -isomers. Dominance of
 176 $5\beta 3\alpha$ -isomers has been interpreted as a signal of potential secondary degradation in the
 177 literature (Bull et al., 2002; Vázquez et al., 2021). We calculated this ratio for the coprostanol
 178 ($5\beta 3\beta$) and epicoprostanol ($5\beta 3\alpha$) isomers:

179 (1)

$$\frac{5\beta,3\beta\text{-cholestanol}}{5\beta,3\beta\text{-cholestanol}+5\beta,3\alpha\text{-cholestanol}}$$

180 as well as for the stigmastanol ($5\beta 3\beta$) and epistigmastanol ($5\beta 3\alpha$) isomers:

181 (2)

$$\frac{5\beta,3\beta\text{-stigmastanol}}{5\beta,3\beta\text{-stigmastanol}+5\beta,3\alpha\text{-stigmastanol}}$$

182

183 We calculated two other commonly derived ratios of plant fecal steroids and assessed them as
 184 potential proxies related to herbivore abundance. The $5\beta 3(\alpha+\beta)/5\alpha 3\beta+5\beta 3(\alpha+\beta)$ stigmastanol
 185 ratio (henceforth ‘ $5\beta/5\beta+\alpha$ stigma’) has often been proposed to examine herbivore (usually
 186 domesticate) fecal inputs to soils and sediments (Bull et al., 2002; Prost et al., 2017)

187 (3)

$$\frac{5\beta,3\alpha\text{-stigmastanol} + 5\beta,3\beta\text{-stigmastanol}}{5\beta,3\alpha\text{-stigmastanol} + 5\beta,3\beta\text{-stigmastanol} + 5\alpha,3\beta\text{-stigmastanol}}$$

188 As a point of comparison, we also calculated the equivalent coprostanol ratio, which is not
 189 thought to be a proxy for herbivore abundance, but rather human presence or sewage (Bull et
 190 al., 2002):

191 (4)

$$\frac{5\beta,3\alpha\text{-cholestanol} + 5\beta,3\beta\text{-cholestanol}}{5\beta,3\alpha\text{-cholestanol} + 5\beta,3\beta\text{-cholestanol} + 5\alpha,3\beta\text{-cholestanol}}$$

192 Finally, we developed two new isomer ratios based on the compounds that had significant
 193 differences between enclosure treatments as potential “herbivore abundance” proxies. First,
 194 the plant stanol to plant sterol or “PS” ratio (for ‘Plant Steroid’), which was defined as

195 (5)

$$\frac{5\beta,3\alpha\text{-stigmastanol} + 5\beta,3\beta\text{-stigmastanol} + 5\alpha,3\beta\text{-stigmastanol} + 5\alpha,3\beta\text{-campestanol}}{5\beta,3\alpha\text{-stigmastanol} + 5\beta,3\beta\text{-stigmastanol} + 5\alpha,3\beta\text{-stigmastanol} + 5\alpha,3\beta\text{-campestanol} + \text{stigmasterol} + \beta\text{-sitosterol} + \text{Campestanol}}$$

196 and second, the ratio of all stigmastanol isomers to 5α -stigmastanol + stigmasterol + sitosterol
 197 or the “PU” ratio, defined as

198 (6)

$$\frac{5\beta,3\alpha\text{-stigmastanol} + 5\beta,3\beta\text{-stigmastanol} + 5\alpha,3\beta\text{-stigmastanol}}{5\alpha,3\beta\text{-stigmastanol} + \text{stigmasterol} + \beta\text{-sitosterol}}$$

199 2.5 Statistical analysis

200 All statistical analyses were conducted in R (Core, 2020). We analyzed differences in sterol and
 201 stanol concentrations, dung counts, and ratios between treatments using analysis of variance
 202 (ANOVA). We examined nested models with soil depth nested in replicate, catenal position, and
 203 treatment. Akaike Information Criterion (AICc) was used to select between combinations of
 204 nested predictor variable structure. The least complex model with $\Delta\text{AICc} \leq 2$ was selected as
 205 “best” model for the purposes of interpretation (Table S2). We used Tukey’s Significance Test to
 206 evaluate differences between enclosure treatments.

207 We modelled the relationship between fecal biomarkers (concentrations and ratios) and
 208 dung counts using linear regression. To meet normality assumptions, we log-transformed dung
 209 counts and concentrations of all compounds and ratios, except for the $5\beta/5\beta+\alpha$ stigma ratio,
 210 which met normality assumptions without transformation. AICc was used to select between
 211 linear regression and linear mixed-effects regression (Bates et al., 2015) with the experimental
 212 design (experiment | treatment | catenal position | soil depth) modeled as nested random

213 predictor variables and log-transformed large herbivore dung counts modeled as the fixed
 214 predictor variable. As described above, the simplest model with $\Delta\text{AICc} \leq 2$ was selected as
 215 “best” model (Table S3).

216 We tested the relationships between sterol and stanol distributions and species-specific
 217 dung counts using Canonical Correspondence Analysis (CCA) algorithms in the ‘vegan’ R
 218 package (Oksanen et al., 2018). This method utilizes paired multivariate data collected from
 219 each sample (*i.e.*, transect). Multivariate data on dung counts were compared with fecal
 220 biomarker multivariate data. The variance of a matrix of the fecal steroid concentrations was
 221 constrained using a matrix of dung counts for each herbivore species (Ter Braak, 1986;
 222 Legendre et al., 2011; Oksanen et al., 2018). Fecal steroid concentrations and dung counts were
 223 normalized using the Hellinger square-root transformation of proportional data (Legendre &
 224 Gallagher, 2001).

225 We examined whether experimental variables (*i.e.*, experiment, treatment, etc.) were
 226 also related to ordination structure using ‘envfit’. We color and symbol coded samples in
 227 ordination plots by the two variables (treatment and catenal position) that were significantly
 228 correlated to the ordination ($\alpha=0.995$) (Fig. 9a; Table S6). To further examine if overall
 229 community diversity and abundance metrics were related to the ordination structure, we
 230 calculated the Simpson and Shannon Diversity indices, as well as the total abundance from the
 231 dung count data for each sample. We also calculated the proportion of the dung that was from
 232 different feeding guilds (grazer, browser, mixed feeder) and digestive systems (ruminant, non-
 233 ruminant). These variables were likewise fit to the ordination using ‘envfit’. Correlation vectors
 234 for the variables with correlations with $p < 0.01$ are plotted in ordination space (Fig. 9b).

235 **2.6 Application of ratios to a previously published historical steroid dataset**

236 To examine the applicability of the newly proposed fecal steroid ratios to sedimentary archives,
 237 we applied these metrics to a newly published fecal steroid dataset from Buffalo Ford Lake in
 238 Yellowstone National Park, USA (Wendt et al., 2024). This study includes historical elk + bison
 239 biomass estimates, which allows us to compare our new ratios and metrics to herbivore
 240 biomass through time. While these samples are not from the same location as our field
 241 calibration, re-analyzing this data with these new metrics allows us to test 1) if the relationship
 242 between ratios and herbivore abundance holds up through time rather than just across space,
 243 and 2) if ratios have the potential to be applied across a range of environmental contexts. First,
 244 after Wendt et al. (2024), we calculated bison and elk biomass the year of each historical
 245 sedimentary sample ($N=11$), using the same average species mass estimates and population
 246 data (Cook et al., 2004; Martin et al., 2018; Wendt et al., 2024). We then calculated the
 247 $5\beta/5\beta+\alpha$ stigma ratio via EQ 4 and the PU ratio by applying EQ 6. However, since Wendt et al.
 248 (2024) did not measure $5\alpha3\beta$ -campestanol, we applied a modified PS ratio (EQ 5) that excluded
 249 that compound.

250 We used Pearson’s Product and a Kendall test to check for significant correlations. Since
 251 a relationship between fecal stanol concentrations and herbivore biomass was previously only
 252 observed during the 50 years between 1920-1970 (Wendt et al., 2024), when herbivores were

253 restricted to the valley around the lake in the winter, we followed the methodology in the
 254 original publication and split the datasets into two intervals (1920-1970 and 1971-2020) and
 255 analyzed them separately. For the earlier interval (1920-1970), we modelled the relationship
 256 between fecal biomarkers (concentrations and ratios) and historical herbivore biomass
 257 estimates using linear regression. We compared the AICc values between log-log and
 258 untransformed linear regressions and used the lower value to select the “best” model.

259 **3. Results**

260 Herbivore dung counts were higher outside than inside herbivore exclosures in Nkhuhlu and
 261 were highest in the sodic zone (Fig. 2; Table S4; Table S5; N=48, NKH:CON, p<0.0001;
 262 NKH:CON:Sod, p<0.0001), consistent with expectations. Carnivore dung was rare (only found on
 263 20% of transects), with counts more than an order of magnitude lower than herbivore counts
 264 (total herbivore dung = 738, total carnivore/omnivore dung = 10).

265 We found no significant difference between total sterol and plant sterol concentrations
 266 in control and exclosure treatments (Fig. 3c-d; Table S5). However, total stanols, plant stanols,
 267 5 β 3(β + α)-stanols and 5 α 3 β -stanols were all higher in sodic zone of the control treatment
 268 relative to the other catenal positions in the controls and all catenal position in the exclosures
 269 (Fig. 3a-b; Fig. 4c-d; Table S4; N=48, p<0.01; see Table S5 for full report of significance for all
 270 response variables). Additionally, 5 β - stanols (5 β 3(β + α)) concentrations were elevated in the
 271 Nkhuhlu control sodic zone samples (Fig. 4a-b; Table S4; Table S5; N=48, p<0.0001).

272
 273 We found that the epimerization ratios, which can be influenced by steroid degradation,
 274 were higher in control plots where herbivores were present (Fig. 5a; Table S4; Table S5; N=48,
 275 p=0.001) and that the ratio between 5 β 3 β -cholestanol and 5 β 3 α -cholestanol ratio was slightly
 276 higher in top soil samples (Fig. 5b; Table S4; Table S5; N=48, p<0.005). No other compound
 277 concentration or ratio examined had a significant relationship to depth (Table S2).

278
 279 The 5 β /5 β + α stigma ratio was higher in the sodic samples (Fig. 6a; Table S4; Table S5;
 280 N=48, p<0.015), and, though the ratio was slightly higher in control plots (N=48, p=0.01),
 281 treatment was not included as a predictor in the best ANOVA (Table S2). We note that the
 282 equivalent coprostanol ratio, which has been used to indicate human (or carnivore) sewage
 283 inputs, was not significantly different between any of the treatments (Fig. 6b; Table S4; Table
 284 S5; N=48, p<0.1), which suggests the stigmastanol isomer concentrations and ratios may be
 285 more robust records of herbivore abundance.

286
 287 The PU ratio was defined based on the observation that, although the β -stanols may be
 288 more specific in their relationship with herbivore presence (these compounds and dung counts
 289 were an order of magnitude higher in the Nkhuhlu sodic control plots), the 5 α -stanols were
 290 elevated in control sodic zone treatment where large herbivores were present. We found that
 291 PS and PU ratios were elevated in the Nkhuhlu control plots relative to exclosures and were
 292 highest in the sodic zone samples (Fig. 6c-d; Table S4; Table S5, N=48, all p<0.0001). This
 293 pattern was also present in the dung counts (Fig. 2) and differs from the 5 β /5 β + α stigma ratio,

294 which was only higher in controls and sodic samples (Fig. 6a). This may indicate that the two
 295 new ratios better reflect dung inputs than ratios currently suggested in the literature.
 296

297 We explicitly tested the performance of the PS and PU ratios using regressions to
 298 examine if dung counts predict fecal steroid concentrations and ratios. For all response
 299 variables examined, the models without random effects were best (Table S3). There was no
 300 relationship between sterol concentrations and dung counts (Table S3). The plant stanol
 301 concentrations ($R^2 = 0.26, N=48, p<0.001$) and $5\beta 3(\alpha+\beta)$ -stigmastanol concentrations ($R^2 = 0.20$,
 302 $N=48, p<0.001$) increased exponentially as dung count increased exponentially (Fig. 7), as did
 303 the PS ($R^2 = 0.59, N=48, p<0.001$) and the PU ($R^2 = 0.62, N=48, p<0.001$) ratios (Fig. 8a-b) (Table
 304 S3). The $5\beta/5\beta+\alpha$ stigma ratio increased exponentially as dung counts increased linearly ($R^2 =$
 305 $0.19, N=48, p<0.01$) (Fig. 8c). The variance explained was higher for the PS ($R^2 = 0.59, N=48$,
 306 $p<0.001$) and PU ($R^2 = 0.62, N=48, p<0.001$) models than the $5\beta/5\beta+\alpha$ stigma ratio ($R^2 = 0.19$,
 307 $N=48, p<0.01$) model.
 308

309 Constrained correspondence analysis (CCA) between fecal compound concentrations
 310 and dung counts indicated that ~ 67% of the variance in the compound concentrations was
 311 constrained by the species dung counts (adjusted $R^2=0.44, N=48, p<0.001$) (Fig. 9; Table S6). A
 312 permutation test (with 999 runs) indicated that the CCA model was significant ($F= 3.2926, N =$
 313 $48, p<0.001$). Only treatment ($R^2= 0.16, N=48, p<0.001$) and catenal position ($R^2= 0.13, N=48$,
 314 $p<0.01$) were correlated to ordination structure, and CCA1 differentiated samples most strongly
 315 by treatment (Fig. 9a). Clear separation of compound classes and sources was apparent along
 316 CCA1 and CCA2 (Fig. 9b). CCA1 separated sterols, 5β -stanols, and 5α -stanols. CCA1 values were
 317 positive for the 5β -stanols, close to zero for the 5α -stanols, and negative for the sterols. CCA2
 318 differentiated between plant and animal sources of 5β -stanols. CCA2 values were positive for
 319 the coprostanols and negative for the 5β -stigmastanols. We found that overall community
 320 functional characteristics were weakly correlated to ordination structure (ruminants, $R^2= 0.19$,
 321 $N=48, p<0.01$; browsers, $R^2= 0.2, N=48, p<0.05$; mixed feeders, $R^2= 0.27, N=48, p<0.001$), and
 322 diversity metrics were not correlated to ordination structure (Table S6). However, total
 323 abundance was highly correlated to the ordination structure ($R^2=0.64, N=48, p<0.001$). The
 324 strong correlation between total dung abundance plotted in the same magnitude and direction
 325 of $5\beta 3\beta$ -stigmastanol CCA scores (Fig. 9b).
 326

327 We found that the PS and PU in lake sediments were strongly related to historical
 328 herbivore biomass between 1920-1970 (Fig. 10c, 10e; PS $r=0.96, N=6, p=0.002$; PU $r=0.94, N=6$,
 329 $p=0.005$). The relationship between biomass and ratio metrics was stronger than that of stanol
 330 concentrations originally observed (Fig. 10a; $r=0.69, N=6, p=0.13$). We did not find a correlation
 331 between the $5\beta/5\beta+\alpha$ stigma and 1920-1970 herbivore biomass (Fig. S2; $r=0.39, N=6, p=0.45$).
 332 Neither concentrations, nor ratios, were significantly correlated with herbivore biomass
 333 between 1971-2020 (Fig. 10; Fig. S2), consistent with findings from the original study. Log-log
 334 regression models were selected over untransformed linear regressions for models with stanol
 335 concentration, PU and PS ratios as the response variables (Fig. 10d, 10f; PS $r^2=0.94, N=6$,
 336 $p<0.001$, RMSE = 0.006; PU $r^2=0.91, N=6, p=0.002$, RMSE = 0.007).

337

338 **4 Discussion**

339 Fecal stanols (derived from plants but modified by herbivore gut passage; Bull et al., 2002) in
340 soils from KNP captured important information about wild herbivore abundance. Our results
341 support key expectations (1) that fecal stanols were more concentrated in soils where
342 herbivores were present than where herbivores were excluded, and (2) that fecal stanol
343 concentrations increased with herbivore dung counts, a proxy for herbivore abundance. In
344 contrast, sterols, which can be derived directly from plants or herbivores (Bull et al., 2002) were
345 unrelated to experimental treatment or dung counts (Fig. 3c-d). This study is one of the first to
346 examine fecal sterols and stanols in a natural setting with abundant and diverse wild
347 herbivores, and our findings lend confidence to the use of fecal stanols as a proxy for herbivore
348 abundance.

349

350 In the following discussion, we compare our findings with previous work on these lipids
351 in anthropogenic settings dominated by domesticates. We explore if and how ratios capture
352 patterns in wild herbivore abundances in time, in addition to space, by applying these ratios to
353 a previously published fecal stanol sedimentary record from Yellowstone National Park. We
354 discuss promising relationships between newly defined fecal biomarker ratios and wild
355 herbivore densities to highlight pathways to build quantitative proxies for herbivores. We finish
356 by examining limitations and uncertainties that should be addressed before these metrics can
357 be properly implemented to reconstruct herbivore abundances.

358 **4.1 Comparisons to other studies**

359 Our results indicate that ambient concentrations of stanols in soils from a wild herbivore-rich
360 environment are comparable or higher than in soils with added manure or sewage inputs
361 examined in previous studies (Fig. 3a-b; Fig. 4). While differences in laboratory procedures can
362 impact total concentrations, high fecal stanol concentrations in this study are consistent with a
363 sustained high density of wild herbivores.

364

365 Stanol concentrations do not always differ between settings with and without
366 herbivores. Previous work examining fecal biomarkers in sheep grazed and un-grazed
367 temperate peats found no difference in 5β -stanol concentrations (Davies et al., 2022). This
368 could reflect preservation of these compounds, which may be affected by differences in
369 climate, herbivore community, density and soil characteristics. For example, 5α -stanols can be
370 produced *in situ* via anaerobic degradation in peat (Naafs et al., 2019), and in tropical
371 vegetation-rich soils, 5β -stanols may be more depleted relative to 5α -stanols and sterol (Birk et
372 al., 2011). These differences highlight the need for modern calibrations using appropriate
373 analogs for past herbivore communities in diverse geographic and depositional settings. Indeed,
374 the relationships defined by our work may be appropriate for reconstructing past wild
375 herbivore abundances where they are abundant but should not be extended to reconstructing
376 past domesticate herbivore abundances without further study.

377

378 We found that ratios of $5\beta 3\beta$ -stanols to $5\beta 3\alpha$ -stanols (Fig. 5) and 5β -stanols to 5α -stanols (Fig. 6a-b), lower values of which are generally used to indicate potential degradation, 379 were much lower in KNP soils than in latrines or manured fields (Elhmmali et al., 2000; Prost et 380 al., 2017; Zocatelli et al., 2017). One potential explanation for the lower ratios is differences in 381 the physical and chemical properties of soil, which can impact degradation processes. Soils with 382 high clay content and negatively charged minerals tend to stabilize organic matter and result in 383 better preservation (Wiseman & Püttmann, 2005), whereas soils in Hlangwini and Nkhuhlu are 384 granite-derived and sandy (Holdo & Mack, 2014; Jacobs & Naiman, 2008; Staver et al., 2017), 385 except on sodic patches that tend to be enriched in clay relative to catena crests (L. Khomo, 386 2008) but which nonetheless shared similar 5β to $5\beta 3(\alpha+\beta)$ stanol ratios with other catenal 387 positions (Fig. 5; Table S2). Therefore, although soil mineralogy likely affects preservation 388 across very different environments, it had little to no effect on stanol preservation within the 389 range of KNP soils examined in this study. Another explanation is that these preservational 390 differences actually reflect different land-use histories. Our study site is a savanna that has not 391 been used for agricultural purposes for over a century and on which large-bodied wild 392 herbivores have been continuously present in high densities (Pienaar, 2012). Given this long 393 history of herbivore presence, a more likely explanation for these lower isomer ratios is that the 394 KNP the soils represent a mixture of newly deposited stanols and older, more degraded stanols. 395

396 We found the environmentally altered $5\alpha 3\beta$ -stigmastanol in higher overall 397 concentrations than 5β -stigmastanol isomers in all soils examined here, including those where 398 herbivores were present (Fig. 4; Fig. 6a). Although the magnitude of these isomer ratios 399 indicates higher potential for degradation of 5β -isomers and sterols compared to the published 400 literature (Vázquez et al., 2021), we note that 5α -stanols concentrations were still significantly 401 elevated in soils where herbivores were present (Fig. 4c-d). Various stanol compounds had 402 elevated levels in KNP sodic soils of herbivore-present controls versus herbivores exclusions, 403 including total stanols, plant stanols, the 5α - and 5β -isomers of all stanols, and the 5α - and 5β - 404 isomers of stigmastanol (Fig. 3a-b; Fig. 4). While the 5α -isomer has been tied to aerobic 405 degradation of sterols in the environment (Bull et al., 2002), 5α -stanols are also found in dung 406 samples of herbivores (specifically wild herbivores) in significant quantities (Kemp et al., 2021; 407 Prost et al., 2017). We propose that these 5α -isomers are sensitive signals of herbivore 408 abundance even though their reduction takes place outside the gut. It is possible that dung 409 itself creates a microenvironment for increased production of 5α -stigmastanol from sterols, 410 either due to the high concentration of nutrients or the unique microbial community living on 411 and in the dung itself (Bol et al., 2000; Sukhum et al., 2021; Sun et al., 2024). 412

413 Previous studies have suggested that the $5\beta/5\beta+\alpha$ stigma ratio (EQ. 3), or minor 414 variations of this ratio, may be applied as a proxy for shifts in herbivore (mostly domesticate) 415 presence in sedimentary records (Li et al., 2024; Prost et al., 2017; Vázquez et al., 2021). 416 Although we found that this ratio to be elevated in sodic soils where herbivores were present 417 (Fig. 5a), our results indicate that this may not be the best way to capture signals of herbivore 418 abundance. We found the relationship between the $5\beta/5\beta+\alpha$ stigma ratio and dung counts was 419 linear-log (Fig. 8c; $R^2 = 0.19$, $p < 0.005$). Since dung counts are a widely accepted proxy for 420

421 herbivore abundance (Ahrestani et al., 2018; Hema et al., 2017; Pfeffer et al., 2018), this
 422 relationship indicates that the sensitivity of the ratio decreases as herbivore abundance
 423 increases. Additionally, we found no relationship between the sedimentary $5\beta/5\beta+\alpha$ stigma
 424 ratio and historical herbivore biomass in the Yellowstone dataset (Fig. S2). Thus, alternative
 425 ratios might better capture the relationship between stanols, dung counts, and herbivore
 426 abundance.

427 **4.2 New proxy ratios**

428 We used the differences in sterol and stanol distributions observed in control and enclosure
 429 plots to define two new ratios and used regressions with dung counts to evaluate the responses
 430 of these new ratios to herbivore abundances. First, we proposed the PS ratio (EQ 5), based on
 431 the observation that places where herbivores were present versus where they were absent had
 432 similar plant sterol concentrations but had higher plant stanols concentrations. Second, we
 433 proposed the PU ratio (EQ 6), which includes $5\alpha3\beta$ -stigmastanol in both the numerator and the
 434 denominator to account for its being elevated where herbivores are present, but with a
 435 potential for a more general aerobic environmental origin noted by other studies (Bull et al.,
 436 2002; Evershed et al., 1997; Vázquez et al., 2021)(Bull et al., 2002; Evershed et al., 1997;
 437 Vázquez et al., 2021). Our results indicate that both the PS ($R^2 = 0.59$, $p < 0.0001$) and the PU (R^2
 438 = 0.62, $p < 0.0001$) ratios have potential as a proxy for wild herbivore abundance (Fig. 8a-b). A
 439 log-log model accurately described the relationship between fecal steroid ratios and herbivore
 440 dung counts.

441

442 We evaluated whether biomarkers captured spatial heterogeneity in herbivore
 443 abundance at scale finer than treatment. Herbivore spatial patterns can vary substantially. For
 444 example, herbivores tend to aggregate in high densities around permanent water sources like
 445 rivers and watering holes, particularly during the dry season (Pringle et al., 2023). Additionally,
 446 grazing lawns and high nutrient sites provide preferred fodder and thus tend to be more
 447 intensely used (van Coller et al., 2013; Hempson et al., 2015; McNaughton, 1984). This
 448 heterogeneity was reflected in both dung counts and in biomarkers: dung abundances differed
 449 by several orders of magnitude across transects, with the highest dung densities on nutrient-
 450 rich sodic soils (Fig. 2). Thus, herbivore abundances are not evenly distributed across landscapes
 451 but are instead highly skewed. Order-of-magnitude differences in herbivore land-use across
 452 landscapes require a ratio and model that can accurately capture this right-skewed distribution.
 453 We find that the PU and PS ratios (Fig. 8a-b), as well as stanol concentrations generally (Fig. 7),
 454 accurately captured both the spatial heterogeneity of and order of magnitude (*i.e.*, log-log)
 455 differences in herbivore abundance at the landscape scale.

456

457 Notably, we find this relationship not only across both space in South African soils (Fig.
 458 8), but also across time recorded in sediments from a North American Lake (Fig. 10). However,
 459 there is less variance in the sedimentary dataset. This suggests that some of the heterogeneity
 460 in herbivore abundance observed between soils sampled within a landscape may be integrated
 461 across space and time in sedimentary records. Indeed, the log-log models between sedimentary
 462 ratios and historical herbivore densities (Fig. 10d,f; PS $r^2=0.94$, $N=6$, $p < 0.001$, RMSE = 0.006; PU

463 $r^2=0.91$, $N=6$, $p=0.002$, RMSE = 0.007) capture more of the variance than the landscape scale
 464 models between soil ratios and dung counts (Fig. 8a-b; PS $r^2=0.59$, $N=48$, $p<0.0001$, RMSE =
 465 0.10; PU $r^2=0.62$, $N=48$, $p<0.0001$, RMSE = 0.06). It is possible that the tighter relationship in
 466 the lake sediments is in part due to the smaller number of measurements compared to the soils
 467 ($N=6$ versus $N=48$).

468

469 The distribution of specific herbivore species may also impact fecal biomarker
 470 distributions and ratios. Relative amounts of sterols and stanols in wild herbivore dung are
 471 related to differences in both diet as well as the digestive systems of specific species, among
 472 other factors (Gill et al., 2010; Kemp et al., 2021; Prost et al., 2017). Ratios between different
 473 compounds have been used to differentiate between pigs, cattle, and horses in archeological
 474 settings (Prost et al., 2017; Shah et al., 2007; Vázquez et al., 2021). For example, non-ruminant
 475 horses could be distinguished from ruminant sheep and cows and omnivorous pigs could be
 476 distinguished from other herbivore domesticates based on their steroid distributions (Harrault
 477 et al., 2019; Prost et al., 2017). Notably, previous work indicated that digestive system strongly
 478 influenced fecal steroid distributions in dung (Kemp et al., 2021). We therefore evaluated the
 479 potential for fecal steroid distributions to provide information about the species composition of
 480 herbivore communities (Fig. 9). We found that wild herbivore community composition and
 481 compound distributions were related (Fig. 9a; $R^2=0.44$; $p<0.001$). Herbivore functional traits
 482 were also related to steroid distributions (Fig. 9b; ruminants, $R^2=0.19$, $p<0.01$; browsers, $R^2=$
 483 0.2, $p<0.05$; mixed feeders, $R^2=0.27$, $p=0.001$), but these relationships explained relatively little
 484 variance. Instead, we found the sites with the greatest overall abundance of herbivores were
 485 dominated by β -stanols, specifically $5\beta3\beta$ -stigmastanol (Fig. 9b; $R^2=0.64$, $p<0.001$). We note
 486 that the sites that have the highest overall herbivore abundance and $5\beta3\beta$ -stigmastanol
 487 concentrations were dominated by impala (mixed feeding ruminants), which all plot together in
 488 ordination space (Fig. 9). This makes it difficult to determine if the dominance of stigmastanol
 489 isomers in these samples is truly related to animal functional traits or just due to the high
 490 overall dung inputs.

491

492 While our results do not rule out the possibility that fecal steroid distributions preserve
 493 information about past herbivore functional communities, the overall abundance of herbivores
 494 may have a stronger impact on steroid distributions than which herbivores are present in
 495 depositional settings with order of magnitude differences in herbivore landscape-use. The
 496 interpretation that the PU and PS ratio mainly track overall herbivore abundance rather than
 497 species composition is also supported by the strong relationship observed between these ratios
 498 in historical sediments from Yellowstone National Park and records of historical herbivore
 499 biomass (Fig. 10d, Fig. 10f). Both archives capture dung inputs from wild herbivores, but the
 500 species in communities in Kruger and Yellowstone are completely distinct. Together, this data
 501 strongly suggests that the PU and PS ratios have utility as an herbivore abundance proxy across
 502 multiple geologic archives, communities, and environmental contexts.

503

4.3 Limitations and future work

504 Our work supports the use of stanols to infer wild animal abundances in natural settings and
505 especially for use of the PU and PS ratios as a proxy for herbivore abundance. Nevertheless, we
506 caution that more work is needed before these metrics can be quantitatively applied to
507 reconstruct herbivore abundance from sediments without independent estimates.

508

509 First, this study only examines fecal steroids across two similar sites that do not capture the
510 full extent of herbivore variability across KNP, much less other savannas or other biomes with
511 different environmental conditions and herbivore densities. Although our application of the
512 proxy to Yellowstone sediments suggests promise, to fully constrain how herbivore abundance,
513 community composition, and other factors influence steroids in mixed sedimentary records, it
514 would be helpful to expand this calibration to measure fecal biomarkers in soils across sites
515 with a wider range of herbivore abundances and community compositions.

516

517 Second, we only sampled these sites once. Although soils likely represent a temporally
518 integrated record of herbivore populations (though probably biased towards more recent
519 inputs), dung counts do not capture the inter- or even intra-annual variability of herbivore-
520 landscape use (Hema et al., 2017; Pfeffer et al., 2018). Repeated surveys of both dung and fecal
521 steroids would help to resolve temporal variability in signals of herbivores. Studies that
522 experimentally spike a setting with dung or herbivores (Bull et al., 1998; Mutillod et al., 2024)
523 may also be helpful to test how competing fecal steroid fluxes of additions and degradation
524 balance through time.

525

526 Third, additional geochemical and ecological information may improve the use of fecal lipids
527 to characterize shifts in herbivore abundances or community composition. For this study, we
528 focused on eleven compounds that are most commonly measured in sedimentary records and
529 modern dung samples (Bull et al., 2002; Kemp et al., 2021; Prost et al., 2017). However, many
530 studies of dung samples advocate for measuring more compounds, such as bile acids, to
531 increase statistical power to differentiate between herbivore species and functional
532 characteristics (Harrault et al., 2019; Kemp et al., 2021; Prost et al., 2017). Additionally,
533 measuring fecal steroids alongside other proxies for paleo-herbivore shifts, such as dung fungus
534 spores or ancient DNA (Baker et al., 2016; Curtin et al., 2021; Davies et al., 2022; Ekblom &
535 Gillson, 2010), may yield insights into potential biases of each proxy and provide a greater
536 understanding of changing herbivore communities and abundances through time.

537

538 Fourth, understanding the mechanism by which steroids are transported into sediments will
539 be critical to accurately interpreting PU and PS ratios as an herbivore abundance proxies.
540 Recent work on lake surface sediments from China indicates the spatial variability of wild and
541 domesticate fecal steroid signals can be recorded in sedimentary records (Li et al., 2024).
542 However, in Yellowstone sediments, strong relationships between steroid concentrations,
543 ratios, and herbivore abundance were only present during the 1920-1970 interval when
544 herbivore populations were in greater proximity to the lake in the winter (Coughenour &
545 Singer, 1996; Meagher, 1989; Wendt et al., 2024). This suggests that records may reflect shifts
546 in herbivore landscape use patterns, rather than absolute abundances. For example, in a
547 subtropical setting such as Kruger, an increase in aridity or seasonality could result in herbivore

548 populations aggregating around water sources (i.e., lakes and rivers), which could give the
549 appearance of increasing herbivore abundance that only reflects local densities in the dry
550 season or during dry periods. Explicit source-to-sink studies and experiments are needed to test
551 hypotheses for different transport mechanisms and biases, and these should be conducted
552 across a wide range of environmental contexts.

553

554 Finally, more work is needed to understand how degradation and other taphonomic
555 processes may alter steroid concentrations and distributions between their soil source and
556 proxy archives such as lake sediments. While our work indicates stanol-to-sterol ratios can
557 distinguish between herbivore inputs at the landscape level, there is a large body of evidence
558 showing that these ratios are sensitive to redox conditions in sediments (Li et al., 2024;
559 Nishimura & Koyama, 1977; Wakeham, 1989). Additionally, different thermodynamic stabilities
560 of the isomers may lead to lower preservation potential of β -stanols in tropical environments
561 (Birk et al., 2011; Mackenzie et al., 1982). Though sedimentary conditions may impact these
562 ratios, additional metrics or analyses may be able to correct for alterations to these ratios
563 associated with in-situ production of stanols, and our application of PU and PS ratios to
564 sediments in Yellowstone indicates that at least under some circumstances these issues are not
565 insurmountable.

566 **5 Conclusion**

567 This work provides a foundation for the use of fecal steroids as a geochemical proxy for
568 wild animal abundances in natural settings. We found that stanols were more concentrated in
569 plots where herbivores were present and in areas where herbivores were abundant. We also
570 found that, although wildlife species composition did impact compound distributions, the main
571 determinant of compound distributions was total herbivore abundance. We defined two new
572 stanol-to-sterol ratios based on our observations of compound concentrations and found that
573 both were strongly predicted by large herbivore dung counts, a common proxy for herbivore
574 abundance. These ratios may thus serve as a relative or even a quantitative proxy for paleo-
575 herbivore abundance, though we caution that more calibration work is needed to address
576 several taphonomic factors before they can be applied with confidence to sediments.
577 Altogether, fecal steroids may provide a means to examine herbivore abundance and ecological
578 impacts when used alongside other proxies in the same sediment records. Ultimately, fecal
579 steroids may promote an improved understanding of ecosystem processes, disturbances, and
580 feedbacks in past ecosystems and their response to past climate changes.

581 **Global Research Collaboration Statement**

582 We thank SANParks and Kruger National Park, South Africa for their partnership support and
583 use of research infrastructure. This research was conducted under SANParks research project
584 SS861 and removal permit 389546.

585 **Acknowledgments**

586 This work was supported by NSF EAR-220447 (to ATK). We would like to thank members of the
 587 Staver and Russell lab groups for constructive feedback. ATK thanks Kojo Baidoo and Velly
 588 Ndlovu for assistance in the field and Marcelo Alexandre and Mikayla Pressley for assistance in
 589 the lab.

590

591 **Open Research**

592 The biomarker and dung count data used for in this study are available in Dryad for reviewers at
 593 the following link:

594 http://datadryad.org/stash/share/RndQi_YKC0GxS3aSHiKQXwq7SH1xkEnlfB_WF23rd98

595 If the manuscript is accepted for publication: Data will be available at:

596 <https://doi.org/10.5061/dryad.5x69p8dfw>

597

598

599 **References**

600 Abraham, J. O., Hempson, G. P., & Staver, A. C. (2019). Drought-response strategies of savanna herbivores. *Ecology and Evolution*, 9(12), 7047–7056. <https://doi.org/10.1002/ece3.5270>

602 Ahrestani, F. S., Kumar, N. S., Vaidyanathan, S., Hiby, L., Jathanna, D., & Karanth, K. U. (2018). Estimating densities
 603 of large herbivores in tropical forests: Rigorous evaluation of a dung-based method. *Ecology and Evolution*,
 604 8(15), 7312–7322. <https://doi.org/10.1002/ECE3.4227>

605 Albro, P. W., Schroeder, J. L., & Corbett, J. T. (1992). Lipids of the earthworm *Lumbricus terrestris*. *Lipids*, 27(2),
 606 136–143. <https://doi.org/10.1007/BF02535813>

607 Arnold, T. E., Hillman, A. L., McGrath, S. J., Abbott, M. B., Werne, J. P., Hutchings, J., & Arkush, E. N. (2021). Fecal
 608 stanol ratios indicate shifts in camelid pastoralism in the highlands of Peru across a 4,000-year lacustrine
 609 sequence. *Quaternary Science Reviews*, 270. <https://doi.org/10.1016/j.quascirev.2021.107193>

610 Baker, A. G., Cornelissen, P., Bhagwat, S. A., Vera, F. W. M., & Willis, K. J. (2016). Quantification of population sizes
 611 of large herbivores and their long-term functional role in ecosystems using dung fungal spores. *Methods in
 612 Ecology and Evolution*, 7(11), 1273–1281. <https://doi.org/10.1111/2041-210X.12580>

613 Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. *Journal of
 614 Statistical Software*, 67(1), 1–48. <https://doi.org/10.18637/jss.v067.i01>.

615 Birk, J. J., Teixeira, W. G., Neves, E. G., & Glaser, B. (2011). Faeces deposition on Amazonian Anthrosols as assessed
 616 from 5 β -stanols. *Journal of Archaeological Science*, 38(6), 1209–1220.
 617 <https://doi.org/10.1016/j.jas.2010.12.015>

618 Bobe, R., Alemseged, Z., & Behrensmeyer, A. K. (2007). Approaches to the analysis of faunal change during the East
 619 African Pliocene. In *Hominin Environments in the East African Pliocene: An Assessment of the Faunal
 620 Evidence*. *Vertebrate Paleobiology and Paleoanthropology Series*. Dordrecht: Springer.

621 Bol, R., Amelung, W., Friedrich, C., & Ostle, N. (2000). Tracing dung-derived carbon in temperate grassland using
 622 13C natural abundance measurements. *Soil Biology and Biochemistry*, 32(10), 1337–1343.
 623 [https://doi.org/10.1016/S0038-0717\(00\)00022-5](https://doi.org/10.1016/S0038-0717(00)00022-5)

624 Ter Braak, C. J. F. (1986). Canonical Correspondence Analysis : A New Eigenvector Technique for Multivariate
 625 Direct Gradient Analysis. *Ecology*, 67(5), 1167–1179.

626 Bull, I. D., Van Bergen, P. F., R. Poulton, P., & Evershed, R. P. (1998). Organic geochemical studies of soils from the
 627 Rothamsted classical experiments - II, soils from the Hoosfield Spring Barley experiment treated with
 628 different quantities of manure. *Organic Geochemistry*, 28(1–2), 11–26. [https://doi.org/10.1016/S0146-6380\(97\)00114-9](https://doi.org/10.1016/S0146-6380(97)00114-9)

629 Bull, I. D., Lockheart, M. J., Elhmmali, M. M., Roberts, D. J., & Evershed, R. P. (2002). The origin of faeces by means
 630 of biomarker detection. *Environment International*, 27(8), 647–654. [https://doi.org/10.1016/S0160-4120\(01\)00124-6](https://doi.org/10.1016/S0160-4120(01)00124-6)

633 van Coller, H., Siebert, F., & Siebert, S. J. (2013). Herbaceous species diversity patterns across various treatments of
 634 herbivory and fire along the sodic zone of the Nkuhlu exclosures , Kruger National Park. *Koedoe*, 55(1), 1–6.
 635 <https://doi.org/10.4102/koedoe.v55i1.1112>

636 Cook, R. C., Cook, J. G., & Mech, L. D. (2004). NUTRITIONAL CONDITION OF NORTHERN YELLOWSTONE ELK. *Journal*
 637 *of Mammology*, 85(4), 714722. Retrieved from
 638 <https://academic.oup.com/jmammal/article/85/4/714/865588>

639 Core, T. R. (2020). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for
 640 Statistical Computing.

641 Coughenour, M. B., & Singer, F. J. (1996). elk population processes in yellowstone national park under the policy of
 642 natural regulation. *Ecological Applications*, 6(2), 573–593. <https://doi.org/10.2307/2269393>

643 Cromsigt, J. P. G. M., Van Rensburg, S. J., Etienne, R. S., & Olff, H. (2009). Monitoring large herbivore diversity at
 644 different scales: Comparing direct and indirect methods. *Biodiversity and Conservation*, 18(5), 1219–1231.
 645 <https://doi.org/10.1007/S10531-008-9506-1/FIGURES/5>

646 Curtin, L., D'Andrea, W. J., Balascio, N. L., Shirazi, S., Shapiro, B., de Wet, G. A., et al. (2021). Sedimentary DNA and
 647 molecular evidence for early human occupation of the Faroe Islands. *Communications Earth and*
 648 *Environment*, 2(1), 1–7. <https://doi.org/10.1038/s43247-021-00318-0>

649 Davies, A. L., Harrault, L., Milek, K., McClymont, E. L., Dallimer, M., Hamilton, A., & Warburton, J. (2022). A
 650 multiproxy approach to long-term herbivore grazing dynamics in peatlands based on pollen, coprophilous
 651 fungi and faecal biomarkers. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 598, 111032.
 652 <https://doi.org/10.1016/J.PALAEO.2022.111032>

653 Davis, M., & Pineda Munoz, S. (2016). The temporal scale of diet and dietary proxies. *Ecology and Evolution*, 6(6),
 654 1883–1897. <https://doi.org/10.1002/ece3.2054>

655 Du, A., & Behrensmeyer, A. K. (2018). Spatial, temporal and taxonomic scaling of richness in an eastern African
 656 large mammal community. *Global Ecology and Biogeography*, 27(9), 1031–1042.
 657 <https://doi.org/10.1111/geb.12762>

658 Ekbom, A., & Gillson, L. (2010). Dung fungi as indicators of past herbivore abundance, Kruger and Limpopo
 659 National Park. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 296(1–2), 14–27.
 660 <https://doi.org/10.1016/J.PALAEO.2010.06.009>

661 Elhmmali, M. M., Roberts, D. J., & Evershed, R. P. (2000). Combined analysis of bile acids and sterols/stanols from
 662 riverine particulates to assess sewage discharges and other fecal sources. *Environmental Science and*
 663 *Technology*, 34(1), 39–46. <https://doi.org/10.1021/es990076z>

664 Evershed, R. P., & Bethell, P. H. (1996). Application of Multimolecular Biomarker Techniques to the Identification of
 665 Fecal Material in Archaeological Soils and Sediments. *ACS Symposium Series*, 625, 157–172.
 666 <https://doi.org/10.1021/BK-1996-0625.CH013>

667 Evershed, R. P., Bethell, P. H., Reynolds, P. J., & Walsh, N. J. (1997). 5 β -stigmastanol and related 5 β -stanols as
 668 biomarkers of manuring: Analysis of modern experimental material and assessment of the archaeological
 669 potential. *Journal of Archaeological Science*, 24(6), 485–495. <https://doi.org/10.1006/JASC.1996.0132>

670 Faith, J. T., & Lyman, R. L. (2019). *Paleozoology and Paleoenvironments: Fundamentals, Assumptions, Techniques*.
 671 Cambridge University Press.

672 Forbes, E. S., Cushman, J. H., Burkepile, D. E., Young, T. P., Klope, M., & Young, H. S. (2019). Synthesizing the effects
 673 of large, wild herbivore exclusion on ecosystem function. *Functional Ecology*, 33(9), 1597–1610.
 674 <https://doi.org/10.1111/1365-2435.13376>

675 Gallant, L. R., Hargan, K. E., Kimpe, L. E., Michelutti, N., Grooms, C., Savelle, J. M., et al. (2024). Sedimentary
 676 biomarkers and bone specimens reveal a history of prehistoric occupation on Somerset Island (Arctic
 677 Canada). *Proceedings of the Royal Society B: Biological Sciences*, 291(2026).
 678 <https://doi.org/10.1098/rspb.2023.2915>

679 Gaskell, S. J., & Eglinton, G. (1975). Rapid hydrogenation of sterols in a contemporary lacustrine sediment. *Nature*,
 680 254.

681 Gill, F. L., Dewhurst, R. J., Dungait, J. A. J., Evershed, R. P., Ives, L., Li, C. Sen, et al. (2010). Archaeol - a biomarker for
 682 foregut fermentation in modern and ancient herbivorous mammals? *Organic Geochemistry*, 41(5), 467–472.
 683 <https://doi.org/10.1016/j.orggeochem.2010.02.001>

684 Harrault, L., Milek, K., Jardé, E., Jeanneau, L., Derrien, M., & Anderson, D. G. (2019). Faecal biomarkers can
 685 distinguish specific mammalian species in modern and past environments. *PLoS ONE*, 14(2), 1–26.
 686 <https://doi.org/10.1371/journal.pone.0211119>

687 Hema, E. M., Di Vittorio, M., Barnes, R. F. W., Guenda, W., & Luiselli, L. (2017). Detection of interannual population
 688 trends in seven herbivores from a West African savannah: a comparison between dung counts and direct
 689 counts of individuals. *African Journal of Ecology*, 55(4), 609–617. <https://doi.org/10.1111/AJE.12397>

690 Hempson, G. P., Archibald, S., Bond, W. J., Ellis, R. P., Grant, C. C., Kruger, F. J., et al. (2015). Ecology of grazing
 691 lawns in Africa. *Biological Reviews*, 90(3), 979–994. <https://doi.org/10.1111/brv.12145>

692 Hempson, G. P., Archibald, S., & Bond, W. J. (2017). The consequences of replacing wildlife with livestock in Africa.
 693 *Scientific Reports*, 7(1), 1–10. <https://doi.org/10.1038/s41598-017-17348-4>

694 Holdo, R. M., & Mack, M. C. (2014). Functional attributes of savanna soils: contrasting effects of tree canopies and
 695 herbivores on bulk density, nutrients and moisture dynamics. <https://doi.org/10.1111/1365-2745.12290>

696 Ibañez, E., Borrós, S., & Comellas, L. (2000). Quantification of sterols, 5 α - and 5 β -stanols in sewage sludge, manure
 697 and soils amended with these both potential fertilizers. *Fresenius' Journal of Analytical Chemistry*, 366(1),
 698 102–105. <https://doi.org/10.1007/S002160050018/METRICS>

699 Inglis, G. N., Bhattacharya, T., Hemingway, J. D., Hollingsworth, E. H., Feakins, S. J., & Tierney, J. E. (2022).
 700 Biomarker Approaches for Reconstructing Terrestrial Environmental Change. *Annual Review of Earth and
 701 Planetary Sciences*, 50(Volume 50, 2022), 369–394. <https://doi.org/10.1146/ANNUREV-EARTH-032320-095943/CITE/REFWORKS>

702 Jacobs, S. M., & Naiman, R. J. (2008). Large African herbivores decrease herbaceous plant biomass while increasing
 703 plant species richness in a semi-arid savanna toposequence. *Journal of Arid Environments*, 72(6), 891–903.
 704 <https://doi.org/10.1016/j.jaridenv.2007.11.015>

705 Jing, X., & Behmer, S. T. (2025). Annual Review of Entomology Insect Sterol Nutrition: Physiological Mechanisms,
 706 Ecology, and Applications. <https://doi.org/10.1146/annurev-ento-011019>

707 Karp, A. T., Faith, J. T., Marlon, J. R., & Staver, A. C. (2021). Global response of fire activity to late Quaternary grazer
 708 extinctions. *Science*.

709 Karp, A. T., Koerner, S. E., Hempson, G. P., Abraham, J. O., Anderson, T. M., Bond, W. J., et al. (2024). Grazing
 710 herbivores reduce herbaceous biomass and fire activity across African savannas. *Ecology Letters*, 27(6).
 711 <https://doi.org/10.1111/ele.14450>

712 Kemp, A. C., Vane, C. H., Kim, A. W., Dutton, C. L., Subalusky, A. L., Kemp, S. K., & Parnell, A. C. (2021). Fecal
 713 steroids as a potential tool for conservation paleobiology in East Africa. *Biodiversity and Conservation*,
 714 (0123456789). <https://doi.org/10.1007/s10531-021-02328-y>

715 Khomo, L. (2008). *WEATHERING AND SOIL PROPERTIES ON OLD GRANITIC CATENAS ALONG CLIMO-TOPOGRAPHIC
 716 GRADIENTS IN KRUGER NATIONAL PARK*. University of the Witwatersrand, Johannesburg.

717 Khomo, L. M., & Rogers, K. H. (2005). Proposed mechanism for the origin of sodic patches in Kruger National Park,
 718 South Africa. *African Journal of Ecology*, 43(1), 29–34. <https://doi.org/10.1111/J.1365-2028.2004.00532.X>

719 Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data.
 720 *Oecologia*, 129(2), 271–280. <https://doi.org/10.1007/S004420100716/METRICS>

721 Legendre, P., Oksanen, J., & ter Braak, C. J. F. (2011). Testing the significance of canonical axes in redundancy
 722 analysis. *Methods in Ecology and Evolution*, 2(3), 269–277. [https://doi.org/10.1111/j.2041-210X.2010.00078.x](https://doi.org/10.1111/j.2041-

 723 210X.2010.00078.x)

724 Li, C., Zhu, L., Ju, J., Ma, Q., Wang, J., & Kou, Q. (2024). Impacts of human and herbivorous feces on lake surface
 725 sediments of the Tibetan Plateau based on fecal stanol proxies. *Ecological Indicators*, 158, 111487.
 726 <https://doi.org/10.1016/J.ECOLIND.2023.111487>

727 Mackenzie, A. S., Brassell, S. C., Eglinton, G., & Maxwell, J. R. (1982). Chemical Fossils: The Geological Fate of
 728 Steroids. *Science*, 217(4559), 491–504. <https://doi.org/10.1126/science.217.4559.491>

729 Manzano, P., Pardo, G., Itani, M. A., & del Prado, A. (2023). Underrated past herbivore densities could lead to
 730 misoriented sustainability policies. *Npj Biodiversity* 2023 2:1, 2(1), 1–6. [https://doi.org/10.1038/s44185-022-00005-z](https://doi.org/10.1038/s44185-022-

 731 00005-z)

732 Martin, J. M., Mead, J. I., & Barboza, P. S. (2018). Bison body size and climate change. *Ecology and Evolution*, 8(9),
 733 4564–4574. <https://doi.org/10.1002/ece3.4019>

734 McNaughton, S. J. (1984). Grazing Lawns : Animals in Herds , Plant Form , and Coevolution. *The American
 735 Naturalist*, 124(6), 863–886.

736

737 Meagher, M. (1989). *Range Expansion by Bison of Yellowstone National Park. Source: Journal of Mammalogy* (Vol.
 738 70).

739 Mutillod, C., Buisson, É., Mahy, G., Jaunatre, R., Bullock, J. M., Tatin, L., & Dutoit, T. (2024). Ecological restoration
 740 and rewilding: two approaches with complementary goals? *Biological Reviews*, 99(3), 820–836.
 741 <https://doi.org/10.1111/BRV.13046>

742 Naafs, B. D. A., Inglis, G. N., Blewett, J., McClymont, E. L., Lauretano, V., Xie, S., et al. (2019). The potential of
 743 biomarker proxies to trace climate, vegetation, and biogeochemical processes in peat: A review. *Global and*
 744 *Planetary Change*, 179(October 2018), 57–79. <https://doi.org/10.1016/j.gloplacha.2019.05.006>

745 Nishimura, M., & Koyama, T. (1977). The occurrence of stanols in various living organisms and the behavior of
 746 sterols in contemporary sediments. *Geochimica et Cosmochimica Acta*, 41(3), 379–385.
 747 [https://doi.org/10.1016/0016-7037\(77\)90265-4](https://doi.org/10.1016/0016-7037(77)90265-4)

748 Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., et al. (2018). Vegan. R.
 749 Pfeffer, S. E., Spitzer, R., Allen, A. M., Hofmeester, T. R., Ericsson, G., Widemo, F., et al. (2018). Pictures or pellets?
 750 Comparing camera trapping and dung counts as methods for estimating population densities of ungulates.
 751 *Remote Sensing in Ecology and Conservation*, 4(2), 173–183. <https://doi.org/10.1002/RSE2.67>

752 Pienaar, U. D. V. (1963). The large mammals of the Kruger National Park - Their distribution and present-day status.
 753 *Koedoe*, 6(1), 1–37. <https://doi.org/10.4102/KOEDOE.V6I1.810>

754 Pienaar, U. de V. . (2012). *A cameo from the past : the prehistory and early history of the Kruger National Park*.
 755 Protea Book House.

756 Pringle, R. M., Abraham, J. O., Anderson, T. M., Coverdale, T. C., Davies, A. B., Dutton, C. L., et al. (2023). Impacts of
 757 large herbivores on terrestrial ecosystems. *Current Biology*, 33(11), R584–R610.
 758 <https://doi.org/10.1016/j.cub.2023.04.024>

759 Prost, K., Birk, J. J., Lehndorff, E., Gerlach, R., & Amelung, W. (2017). Steroid biomarkers revisited - Improved
 760 source identification of faecal remains in archaeological soil material. *PLoS ONE*, 12(1), 1–30.
 761 <https://doi.org/10.1371/journal.pone.0164882>

762 Ripple, W. J., Newsome, T. M., Wolf, C., Dirzo, R., Everett, K. T., Galetti, M., et al. (2015). Collapse of the world 's
 763 largest herbivores. *Science Advances*, 1(May), e1400103. <https://doi.org/10.1126/sciadv.1400103>

764 Rowan, J., & Faith, J. T. (2019). The Paleoecological Impact of Grazing and Browsing: Consequences of the Late
 765 Quaternary Large Herbivore Extinctions. In I. J. Gordon & H. H. T. Prins (Eds.), *The Ecology of Browsing and*
 766 *Grazing II* (pp. 61–79). Switzerland: Springer Nature. https://doi.org/10.1007/978-3-030-25865-8_3

767 Scogings, P. F., Hjältén, J., & Skarpe, C. (2011). Secondary metabolites and nutrients of woody plants in relation to
 768 browsing intensity in African savannas. *Oecologia*, 167(4), 1063–1073. <https://doi.org/10.1007/S00442-011-2042-9/FIGURES/4>

769 Shah, V. G., Hugh Dunstan, R., Geary, P. M., Coombes, P., Roberts, T. K., & Von Nagy-Felsobuki, E. (2007).
 770 Evaluating potential applications of faecal sterols in distinguishing sources of faecal contamination from
 771 mixed faecal samples. *Water Research*, 41(16), 3691–3700. <https://doi.org/10.1016/J.WATRES.2007.04.006>

772 Smith, F. A., Smith, R. E. E., Lyons, S. K., & Payne, J. L. (2018). Body size downgrading of mammals over the late
 773 Quaternary. *Science*, 313(April), 310–313. <https://doi.org/10.1126/science.aaq5987>

774 Spitzer, R., Churski, M., Felton, A., Heurich, M., Kuijper, D. P. J., Landman, M., et al. (2019). Doubting dung: eDNA
 775 reveals high rates of misidentification in diverse European ungulate communities. *European Journal of*
 776 *Wildlife Research*, 65(2), 1–14. <https://doi.org/10.1007/S10344-019-1264-8/FIGURES/5>

777 Staver, A. C., Botha, J., & Hedin, L. (2017). Soils and fire jointly determine vegetation structure in an African
 778 savanna. *New Phytologist*, 216(4), 1151–1160. <https://doi.org/10.1111/nph.14738>

779 Staver, A. C., Abraham, J. O., Hempson, G. P., Karp, A. T., & Faith, J. T. (2021). The past, present, and future of
 780 herbivore impacts on savanna vegetation. *Journal of Ecology*, 109(8), 2804–2822.
 781 <https://doi.org/10.1111/1365-2745.13685>

782 Stuart, Chris., & Stuart, Tilde. (2015). *Stuarts' field guide to the tracks & signs of southern, central & East African*
 783 *wildlife*. Johannesburg South Africa: Penguin Random House South Africa.

784 Sukhum, K. V., Vargas, R. C., Boolchandani, M., D'souza, A. W., Patel, S., Kesari, A., et al. (2021). Manure
 785 Microbial Communities and Resistance Profiles Reconfigure after Transition to Manure Pits and Differ from
 786 Those in Fertilized Field Soil. <https://doi.org/10.1128/mBio.00798-21>

787

788 Sun, X., Sitters, J., Ruytinx, J., Wassen, M. J., & Olde Venterink, H. (2024). Microbial community composition in the
789 dung of five sympatric European herbivore species. *Ecology and Evolution*, 14(3).
790 <https://doi.org/10.1002/ECE3.11071>

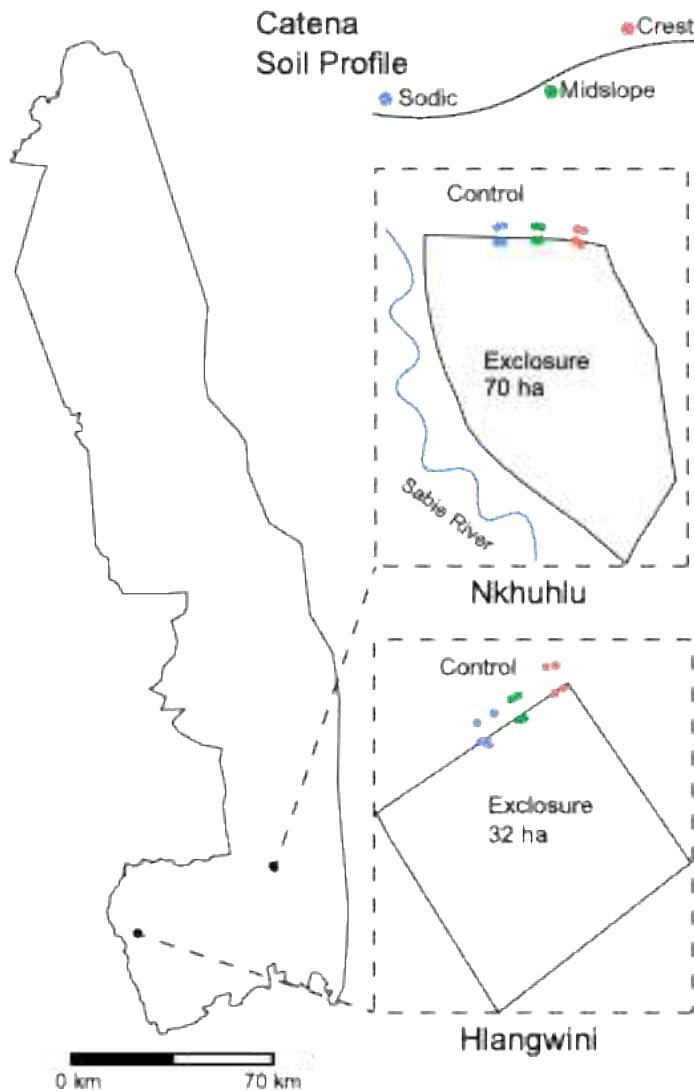
791 Trepel, J., Roux, E., Abraham, A. J., Buitenwerf, R., Kamp, J., Kristensen, J. A., et al. (2024). Meta-analysis shows that
792 wild large herbivores shape ecosystem properties and promote spatial heterogeneity, 0–7.
793 <https://doi.org/10.1038/s41559-024-02327-6>

794 Vázquez, C., Vallejo, A., Vergès, J. M., & Barrio, R. J. (2021). Livestock activity biomarkers: Estimating domestication
795 and diet of livestock in ancient samples. *Journal of Archaeological Science: Reports*, 40, 103220.
796 <https://doi.org/10.1016/J.JASREP.2021.103220>

797 Wakeham, S. G. (1989). Reduction of sterols to stanols in particulate matter at oxic–anoxic boundaries in sea
798 water. *Nature* 1989 342:6251, 342(6251), 787–790. <https://doi.org/10.1038/342787a0>

799 Wendt, J. A. F., Argiriadis, E., Whitlock, C., Bortolini, M., Battistel, D., & McWethy, D. B. (2024). A 2000-year record
800 of fecal biomarkers reveals past herbivore presence and impacts in a catchment in northern Yellowstone
801 National Park, USA. *PLoS ONE*, 19(10 October). <https://doi.org/10.1371/JOURNAL.PONE.0311950>

802 Wigley-Coetsee, C., Strydom, T., Govender, D., Thompson, D. I., Govender, N., Botha, J., et al. (2022). Reflecting on
803 research produced after more than 60 years of exclosures in the Kruger National Park. *Koedoe*, 64(1).
804 <https://doi.org/10.4102/koedoe.v64i1.1674>

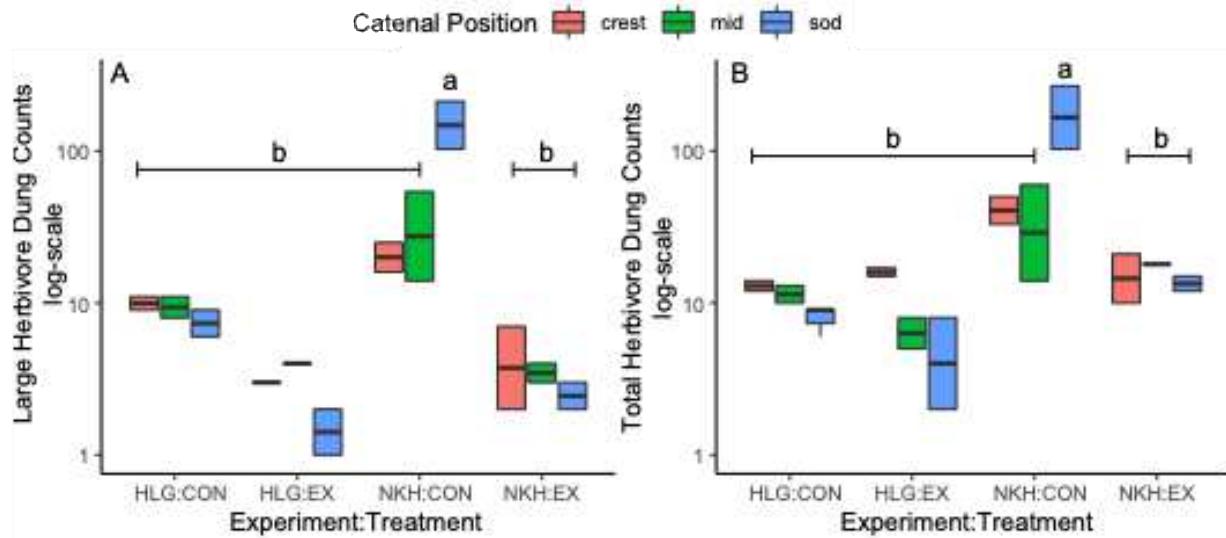

805 Wiseman, C. L. S., & Püttmann, W. (2005). Soil organic carbon and its sorptive preservation in central Germany.
806 *European Journal of Soil Science*, 56(1), 65–76. <https://doi.org/10.1111/J.1351-0754.2004.00655.X>

807 Wu, J., Hu, R., Yue, J., Yang, Z., & Zhang, L. (2009). Determination of fecal sterols by gas chromatography-mass
808 spectrometry with solid-phase extraction and injection-port derivatization. *Journal of Chromatography A*,
809 1216(7), 1053–1058. <https://doi.org/10.1016/j.chroma.2008.12.054>

810 Zocatelli, R., Lavrieux, M., Guillemot, T., Chassiot, L., Le Milbeau, C., & Jacob, J. (2017). Fecal biomarker imprints as
811 indicators of past human land uses: Source distinction and preservation potential in archaeological and
812 natural archives. *Journal of Archaeological Science*, 81, 79–89. <https://doi.org/10.1016/j.jas.2017.03.010>

813

814

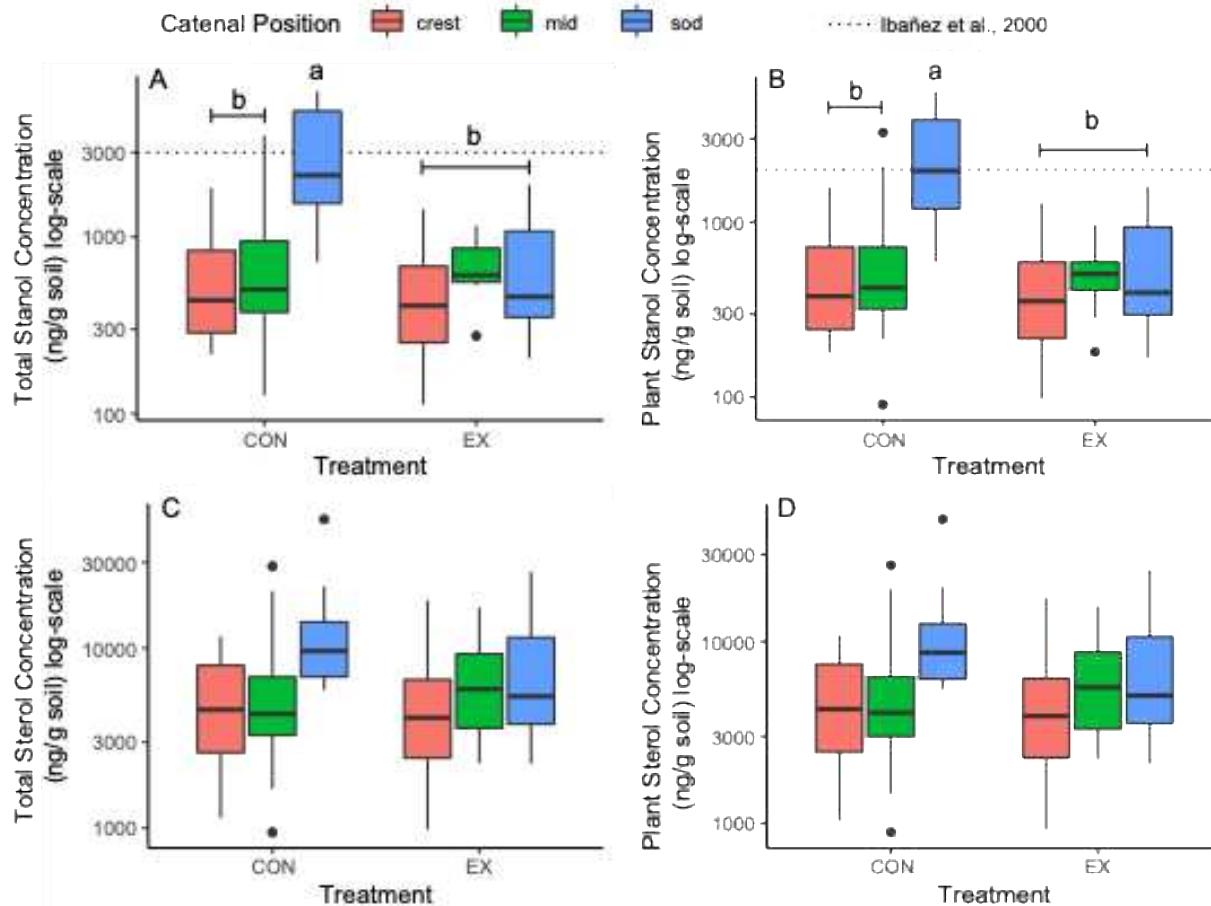


815

816

Figure 1: Experimental and sampling design. Locations of exclosures are shown on map of Kruger National Park. Samples were collected from 24 transects in a nested design arranged as shown in the figure. Two replicate transects were sampled for each region of the catenal position, each treatment, and each experiment. Samples were collected at two depths per transect 0-1 cm and 0-5 cm, resulting in a total of 48 samples. The catenal position is shown from the side indicating the general landscape relief. The two exclosure experiments are shown in the insets and the location of sampling transects are indicated by the points.

824


825
826 **Figure 2:** Dung counts across experiment, treatments, and catenal position. For all boxplots, “a”
827
828
829
830
831

and “b” notation indicate significance at lowest nested level. a) Dung counts of large (>10 kg)
827
828
829
830
831

herbivores only. Tukey’s Significance Test (NKH-HLG, $p= 2.8e-06$; NKH:CON-all, $p<0.0001$;
827
828
829
830
831

NKH:CON:Sod-all, $p<0.0001$). b) Dung counts of all herbivores. Tukey’s Significance Test (NKH-
827
828
829
830
831

HLG, $p= 1.21e-05$; NKH:CON-all, $p<0.0001$; NKH:CON:Sod-all, $p<0.0001$).

Figure 3: Stanol and Sterol concentrations across treatments and catenal position. For all boxplots, "a" and "b" notation indicate significance at lowest nested level. Dotted line shows the values for manured soils reported in (Ibañez et al., 2000). a) Total stanol concentrations. Tukey's Significance Test (CON-EX, $p=0.005$; CON:Sod- CON:Mid, $p<0.01$; CON:Sod- EX:Sod $p=0.002$; CON:Sod- all else, $p<0.0001$). b) Plant stanol concentrations. Tukey's Significance Test (CON-EX, $p= 0.005$; CON:Sod- CON:Mid, $p=0.015$; CON:Sod- EX:Sod $p=0.003$; CON:Sod- all else, $p<0.0001$). c) Total sterol concentrations, no significant difference ($p>0.2$) between any variables. d) Plant sterol concentrations, no significant difference ($p>0.2$) between any variables.

832

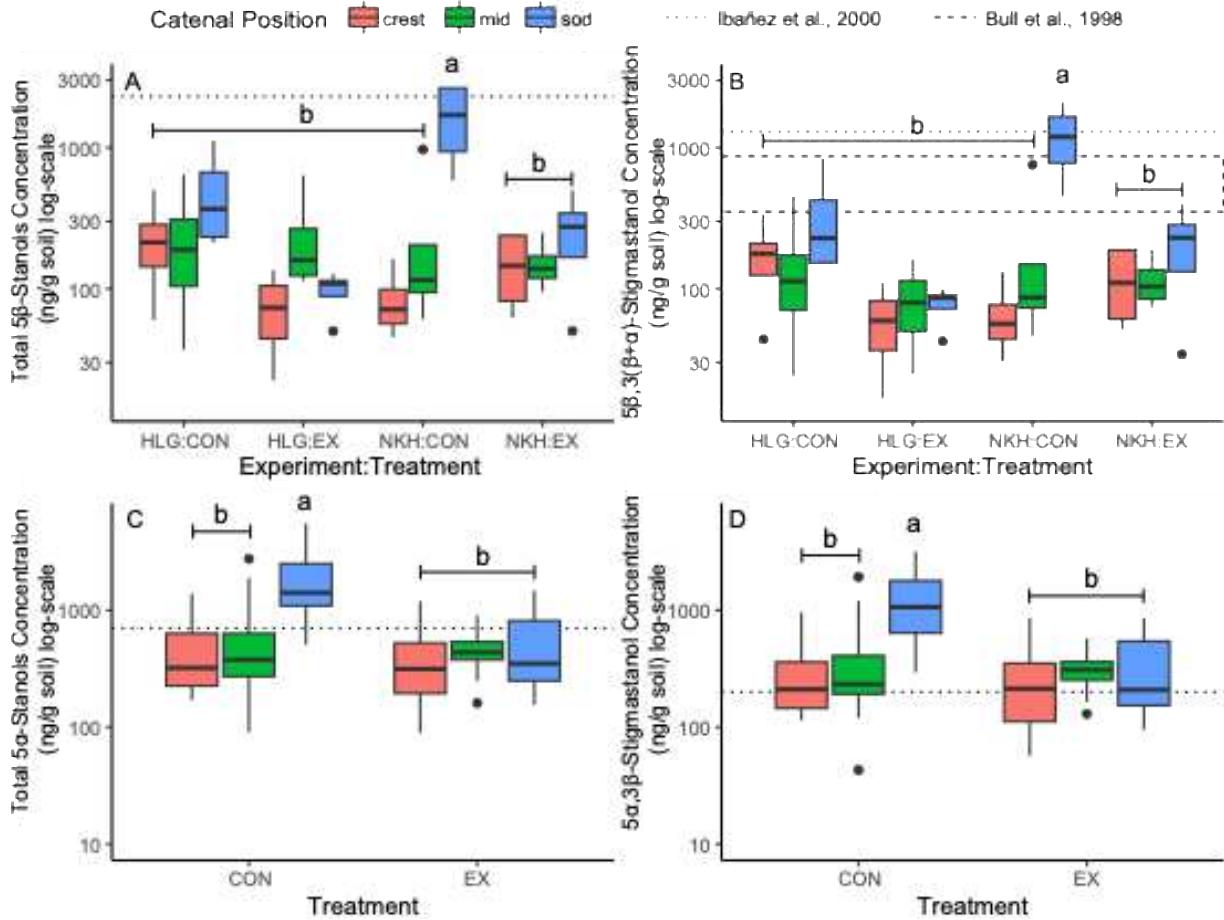
833

834

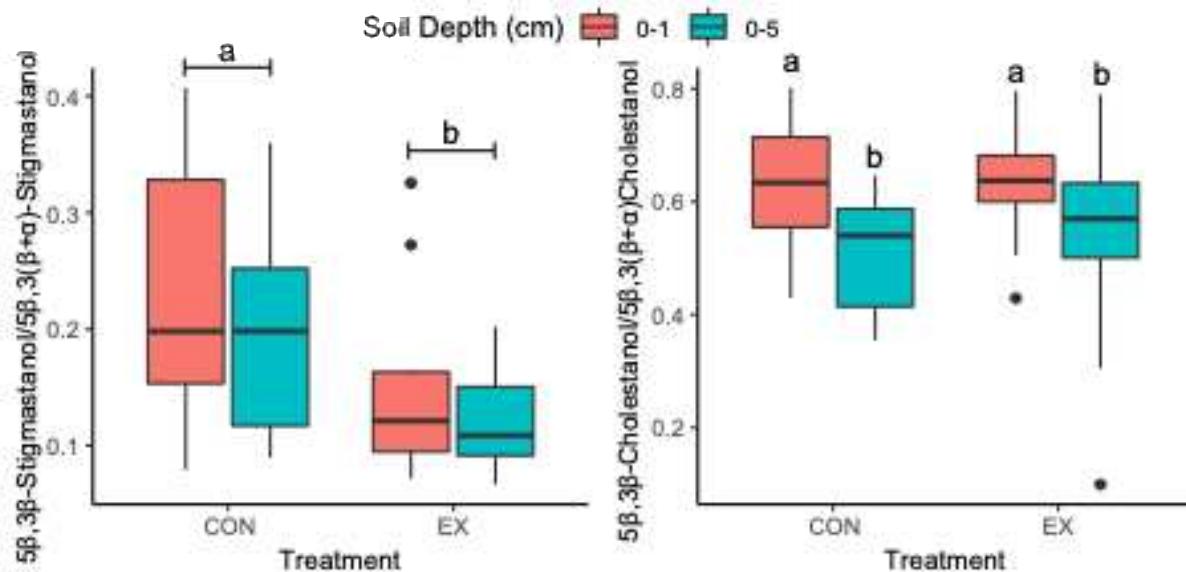
835

836

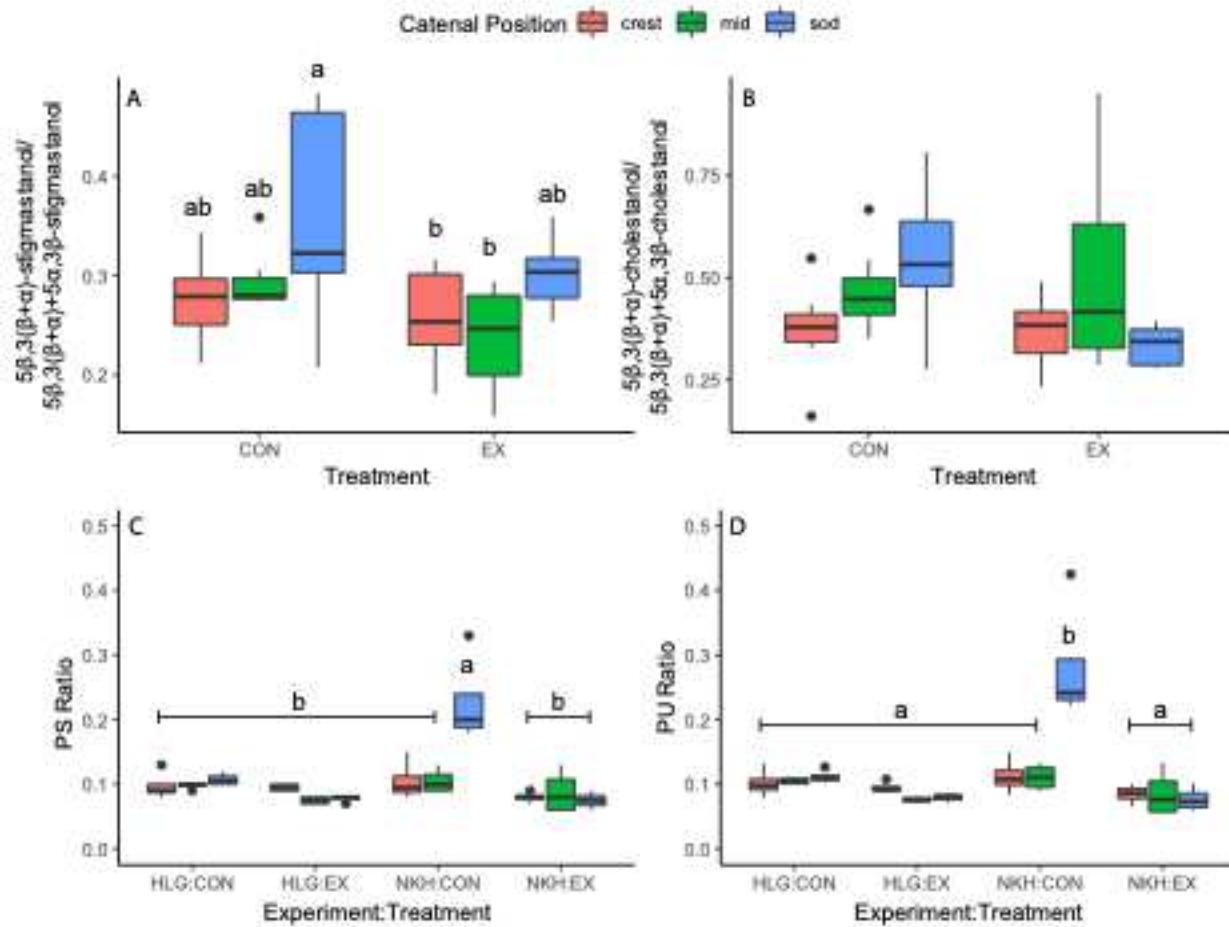
837


838

839


840

841


842

843
 844 **Figure 4.** Stanol isomer concentrations across experiments, treatments, and catenal position.
 845 For all boxplots, "a" and "b" notation indicate significance at lowest nested level. Dotted line
 846 shows the values for manured soils reported in (Bull et al., 1998; Ibañez et al., 2000). a) Total
 847 5β -stanol concentrations. Tukey's Significance Test (NKH:EX-NKH:CON, $p=0.009$, HLG:EX-NKH:
 848 CON, $p=0.004$, NKH: CON:sod-all, $p<0.001$). b) Total 5β -stigmastanol concentrations. Tukey's
 849 Significance Test (NKH-HLG, $p=0.02$; NKH:EX-NKH: CON, $p=0.008$, HLG:EX-NKH: CON, $p=0.001$,
 850 NKH: CON:sod-all, $p<0.001$). c) Total 5α -stanol concentrations. Tukey's Significance Test (EX-
 851 CON, $p=0.01$; CON:sod-all, $p<0.01$). d) Total 5α -stigmastanol concentrations. Tukey's
 852 Significance Test (EX-CON, $p=0.01$; CON:sod-all, $p<0.007$)
 853

854
855 **Figure 5.** $5\beta,3\beta$ to $5\beta,3(\alpha+\beta)$ epimerization stanol isomer ratios across soil depths. For all
856 boxplots, "a" and "b" notation indicate significance. a) $5\beta,3\beta\text{-stigmastanol}$ to $5\beta,3(\alpha+\beta)\text{-}$
857 stigmastanol . (Tukey's Significance Test, con-ex=0.00; 0-1 cm – 0-5 cm $p>0.2$). b) $5\beta,3\beta\text{-}$
858 cholestanol to $5\beta,3(\alpha+\beta)\text{-cholestanol}$ (Tukey's Significance Test, 0-1 cm – 0-5 cm $p=0.005$)
859

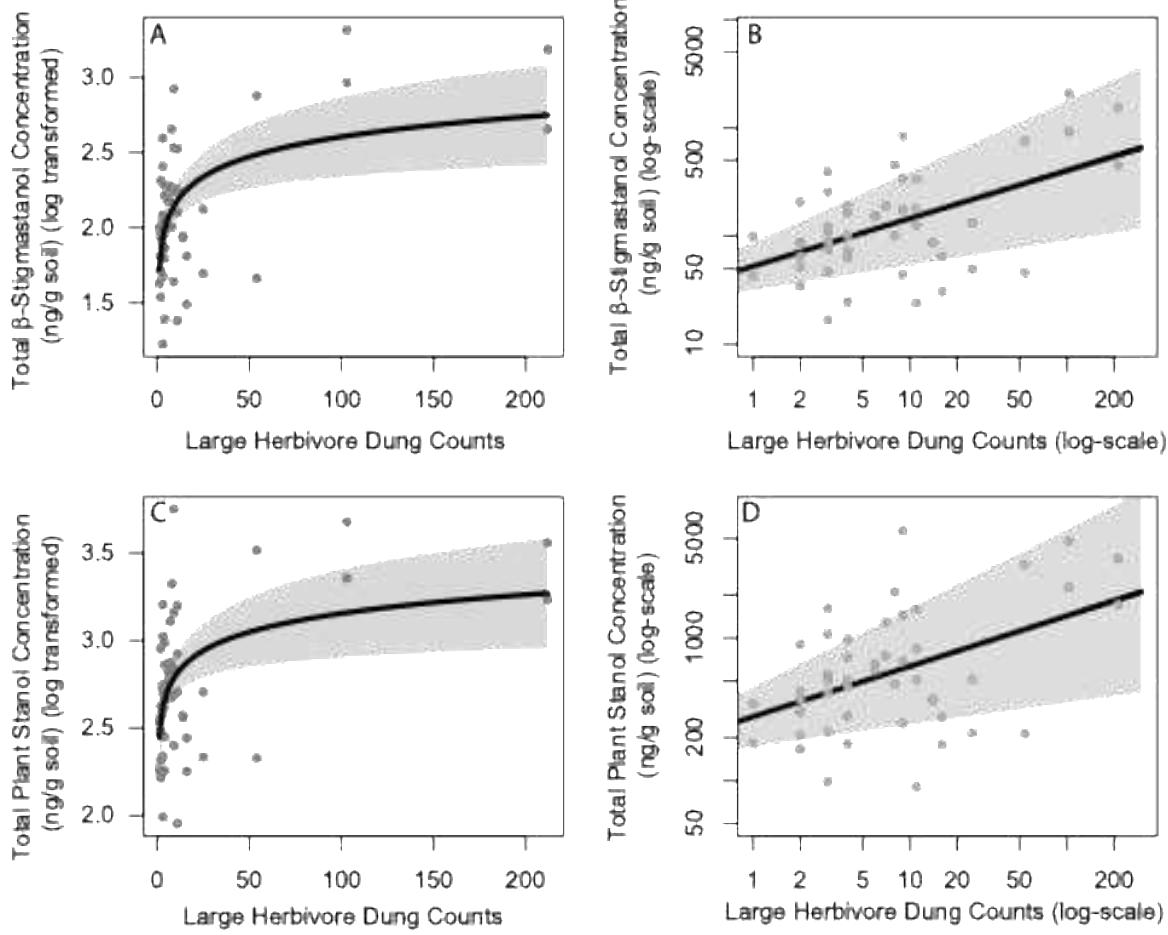
Figure 6. Stanol isomer ratios with proxy potential across experiments, treatments, and catenal position. For all boxplots, "a" and "b" notation indicate significance at lowest nested level. a) $5\beta3(\alpha+\beta)/5\alpha3\beta+5\beta3(\alpha+\beta)$ -stigmastanol ratio. Tukey's Significance Test (Sod-all, $p<0.015$). b) $5\beta3(\alpha+\beta)/5\alpha3\beta+5\beta3(\alpha+\beta)$ -cholestanol ratio. No significant difference between any variables ($p>0.1$). c) PS Ratio. Tukey's Significance Test (NKH-HLG, $p= 0.007$; NKH:CON-all, $p<0.0001$; NKH:CON:Sod-all, $p<0.0001$). d) PU Ratio. Tukey's Significance Test (NKH-HLG, $p= 0.003$; NKH:CON-all, $p<0.0001$; NKH:CON:Sod-all, $p<0.0001$).

860

861

862

863


864

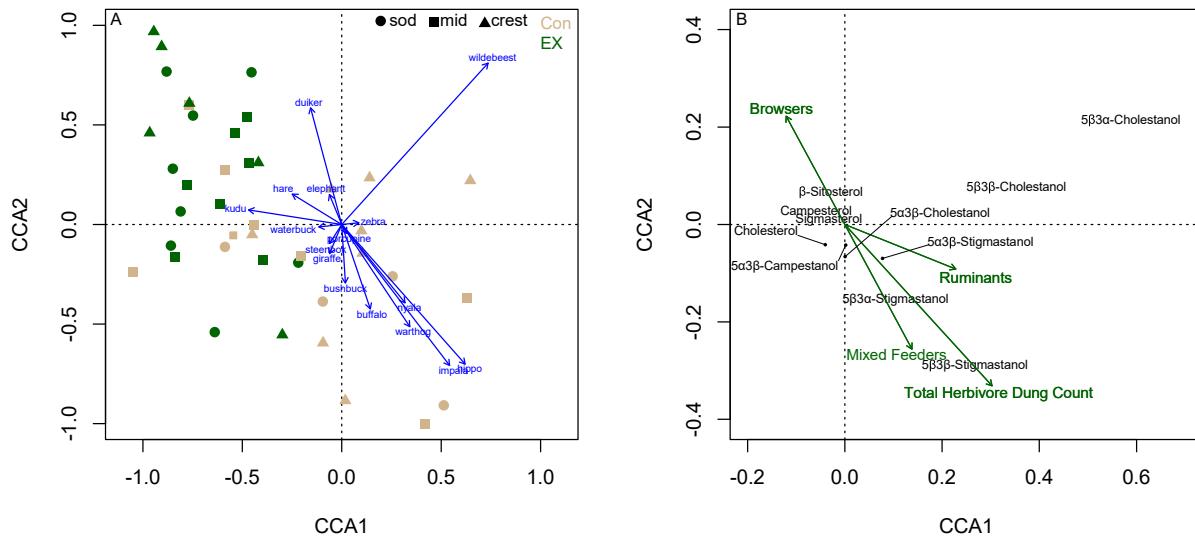
865

866

867

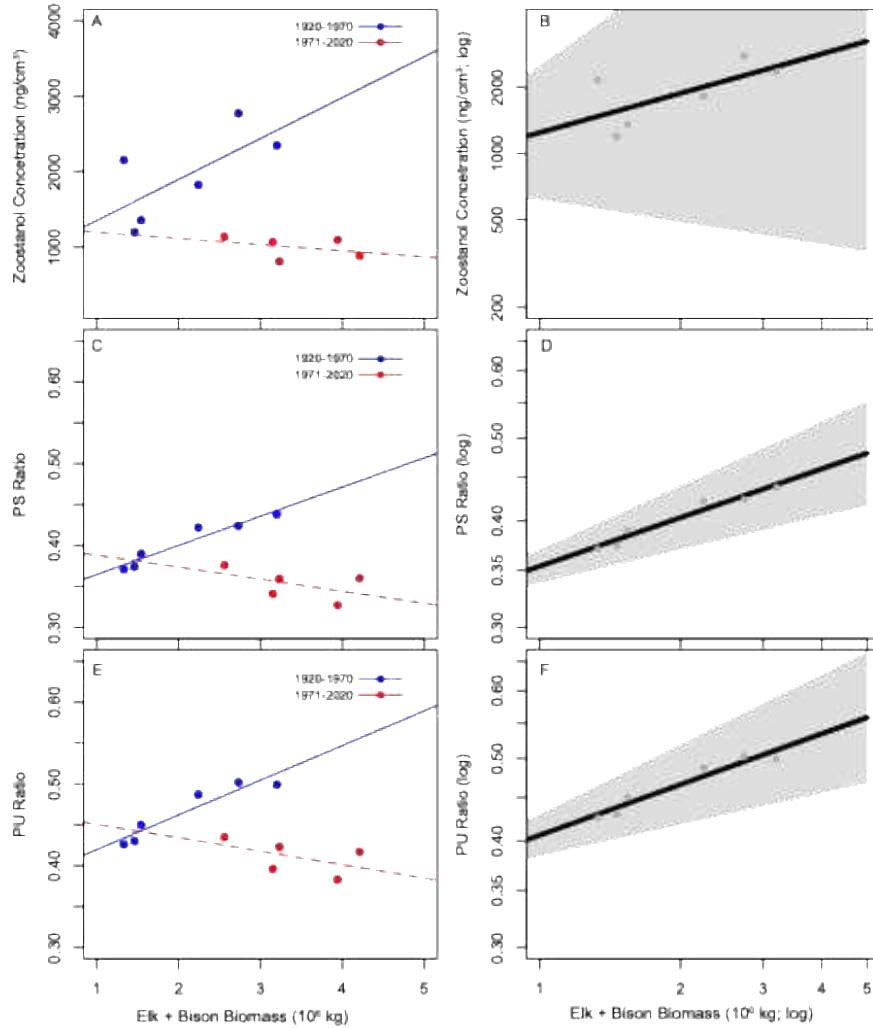
868

869


870 **Figure 7.** Response of stanol concentrations to dung counts. a-b and c-d show the same data, but
 871 are different graphical representation of the log-log relationships. a) Linear plot of log
 872 transformed total 5β -stigmastanol concentrations \sim large herbivore dung counts. b) Log-Log plot
 873 of total 5β -stigmastanol concentrations \sim large herbivore dung counts: $y = 52.4x^{0.442}$. Adjusted
 874 $R^2 = 0.26$, $p=0.0001$. RMSE=0.40 c) Linear plot of log transformed total plant stanol
 875 concentrations \sim large herbivore dung counts. d) Log-Log plot of total plant stanol
 876 concentrations \sim large herbivore dung counts: $y = 280.7x^{0.354}$. Adjusted $R^2 = 0.20$, $p= 0.0009$.
 877 RMSE=0.38.

878

879 **Figure 8.** Response of potential herbivore proxy stanol ratios to dung counts. a) Log-Log plot of
 880 PS Ratio ~ large herbivore dung counts: $y=0.0645x^{0.198}$ Adjusted $R^2 = 0.59$, $p= 1.274e-10$. RMSE= 0.09.
 881 b) Log-Log plot of PU Ratio ~ large herbivore dung counts: $y= 0.0625x^{0.237}$. Adjusted $R^2 = 0.62$, $p= 1.755e-11$. RMSE= 0.10. c) Linear-Log plot of $5\beta/5\beta+\alpha$ -Stigmastanol Ratio ~ large
 882 herbivore dung counts: $y=x^{0.053} + 0.241$. Adjusted $R^2 = 0.19$, $p= 0.001258$. RMSE= 0.06.
 883


884

885

886 **Figure 9.** Canonical Correspondence Analysis of fecal steroid relative abundances and species
 887 relative dung counts. Note compound scores are smaller than sample scores, so we zoom in
 888 and plot a smaller axes range for B to emphasize how the compounds operate out on CCA1 and
 889 CCA2. a) Sample scores and biplot arrows for species from the dung count dataset. Symbols
 890 represent the catena position the sample is from and colors represent if the sample was a
 891 control (herbivores) or enclosure (no herbivores). b) Compound scores and 'envfit' correlation
 892 of the total herbivore dung counts, proportion browser dung, proportion mixed feeder dung,
 893 proportion ruminant dung for each sample.

894

Figure 10. Application of PU and PS ratios to previously published sedimentary steroid record from Buffalo Ford Lake (Yellowstone National Park, USA) compared to historical Yellowstone herbivore biomass data. Steroid concentrations and biomass estimates are from Wendt et al. (2024). Blue series are samples with from 1920-1970. Red series are samples from 1971-2020. Panel A is reproduced from Wendt et al. (2024) Figure S3. a) Zoostanol ($5\beta 3(\beta+\alpha)$ -stigmastanol+ $5\beta 3(\beta+\alpha)$ -cholestanol) concentrations ~ historical Yellowstone herbivore biomass: Blue $r=0.69$, $p=0.13$, Red: $r=-0.37$, $p=0.54$ b) Log-Log plot of Zoostanol ($5\beta 3(\beta+\alpha)$ -stigmastanol+ $5\beta 3(\beta+\alpha)$ -cholestanol) concentrations ~ historical Yellowstone herbivore biomass from 1920-1970: $y= 1242x^{0.595}$ Adjusted $R^2=0.30$, $p=0.15$. RMSE= 0.10. c) Log-Log plot of PS Ratio ~ historical Yellowstone herbivore biomass: Blue $r=0.96$, $p=0.002$, Red: $r=-0.52$, $p=0.36$ d) Log-Log plot of PS Ratio ~ historical Yellowstone herbivore biomass: $y= 0.353x^{0.190}$ Adjusted $R^2=0.94$, $p=0.0009$. RMSE= 0.006. c) Log-Log plot of PU Ratio ~ historical Yellowstone herbivore biomass: Blue $r=0.94$, $p=0.005$, Red $r=-0.52$, $p=0.37$ f) Log-Log plot of PU Ratio ~ historical Yellowstone herbivore biomass: $y= 0.406x^{0.198}$. Adjusted $R^2=0.91$, $p=0.002$. RMSE= 0.008.

Figure 1.

Catena Soil Profile

● Sodic

● Crest

● Midslope

Control

Exclosure
70 ha

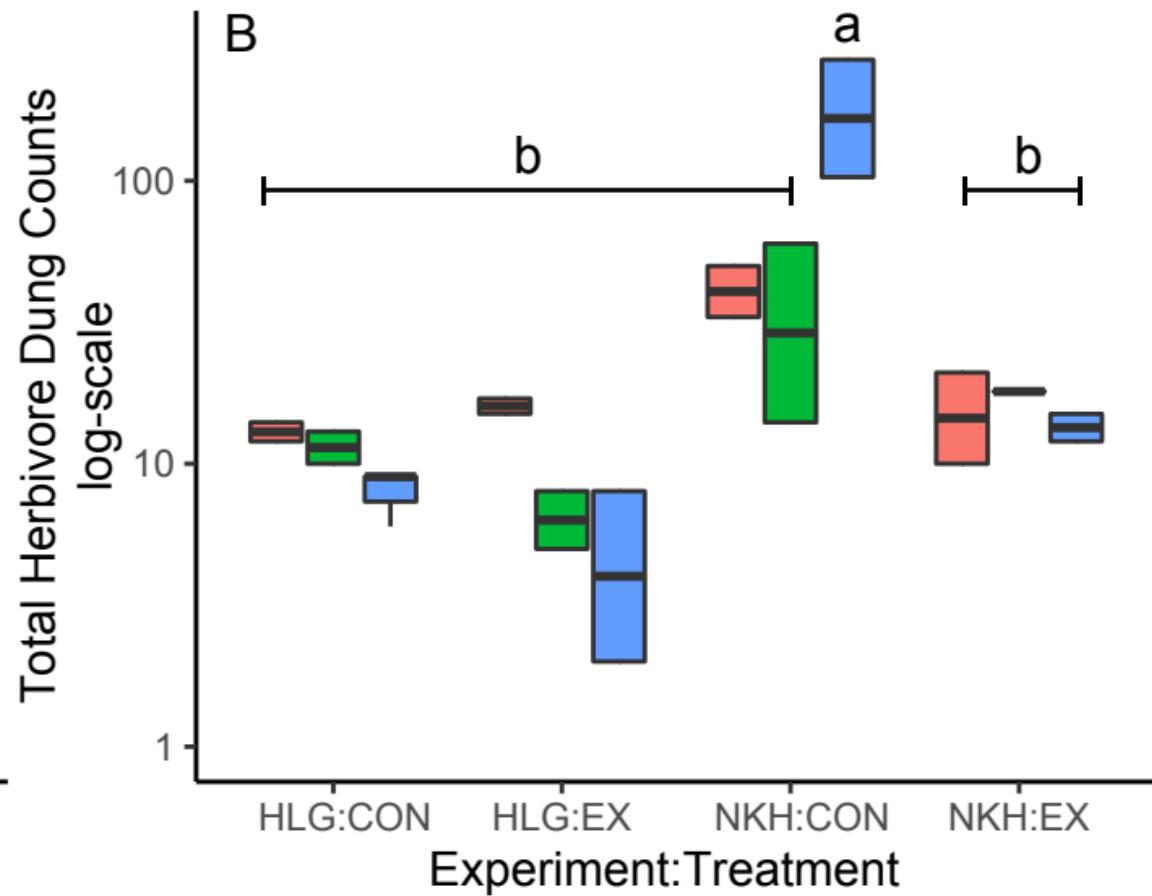
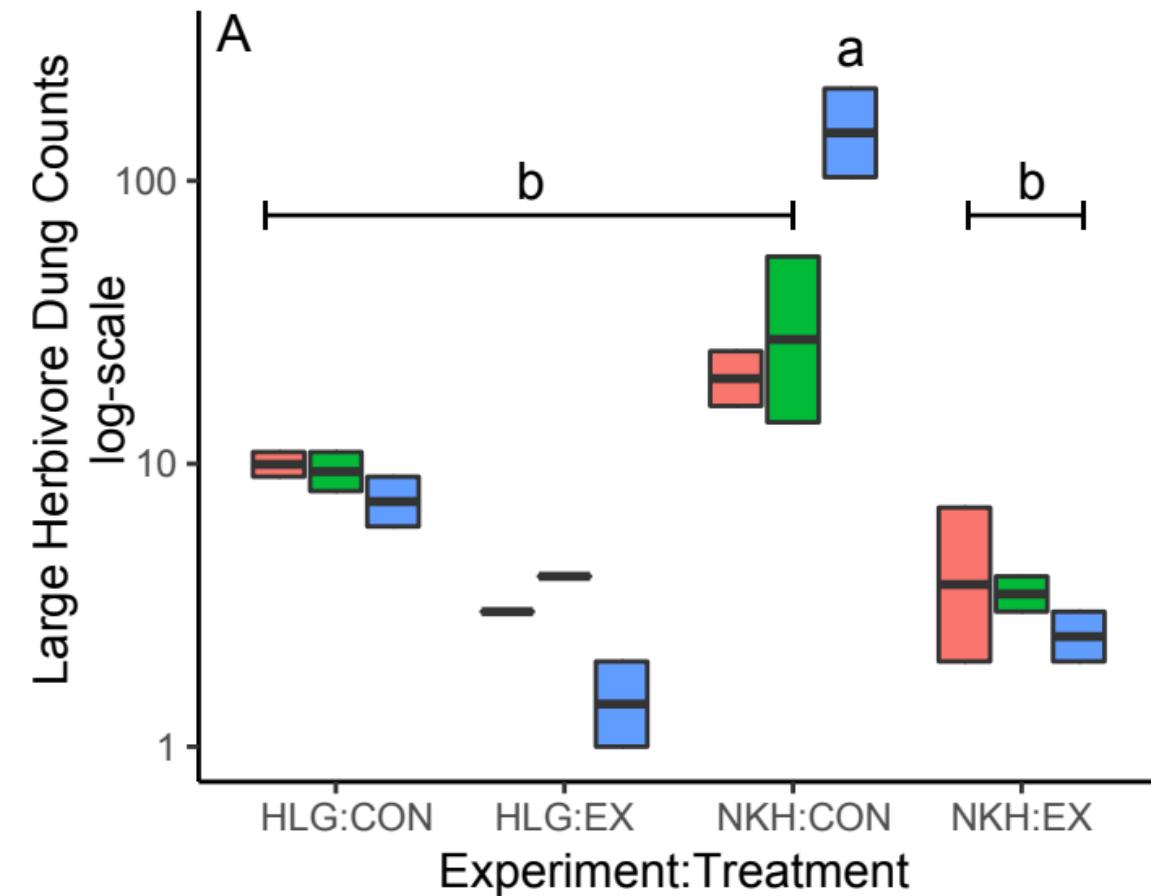
Sable River

Nkhuhlu

Control

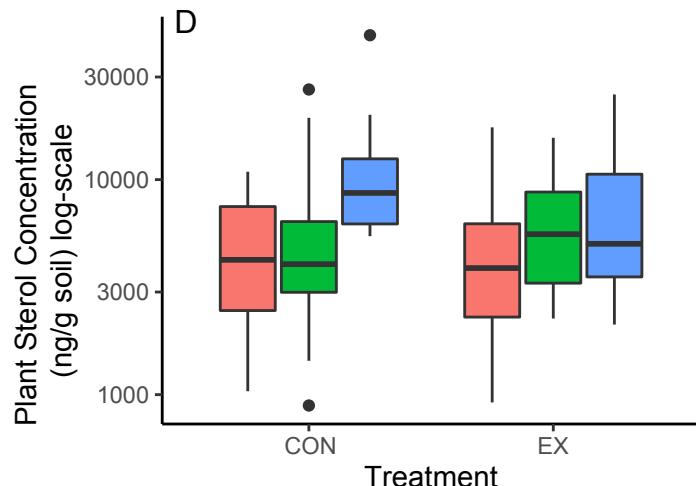
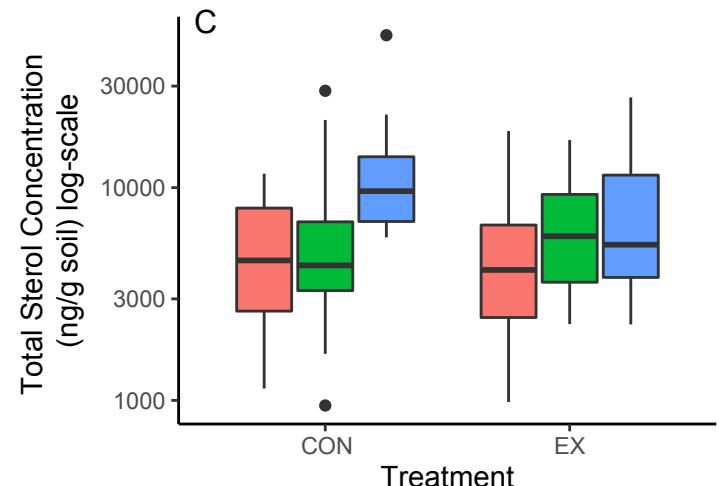
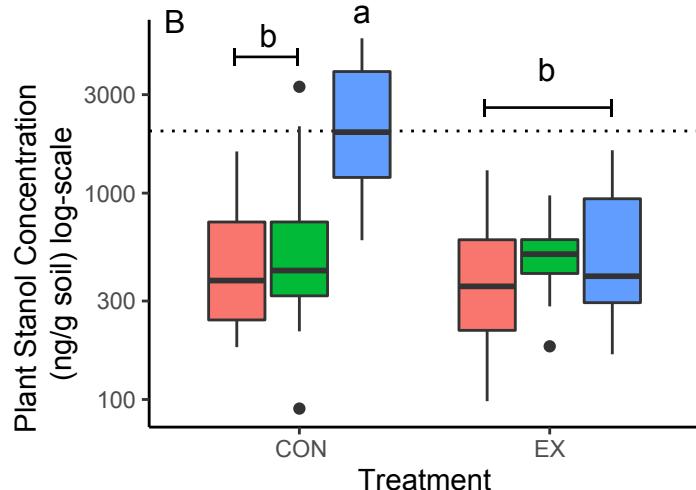
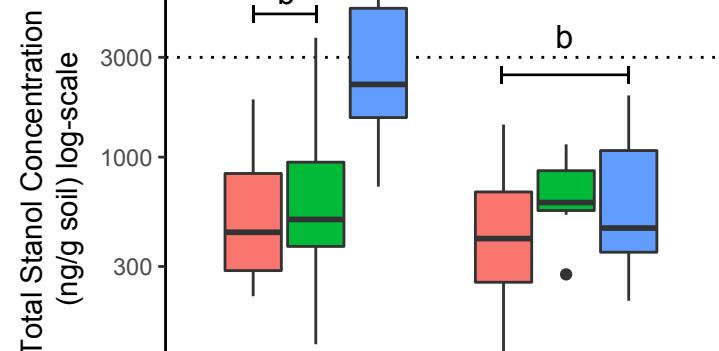
Exclosure
32 ha

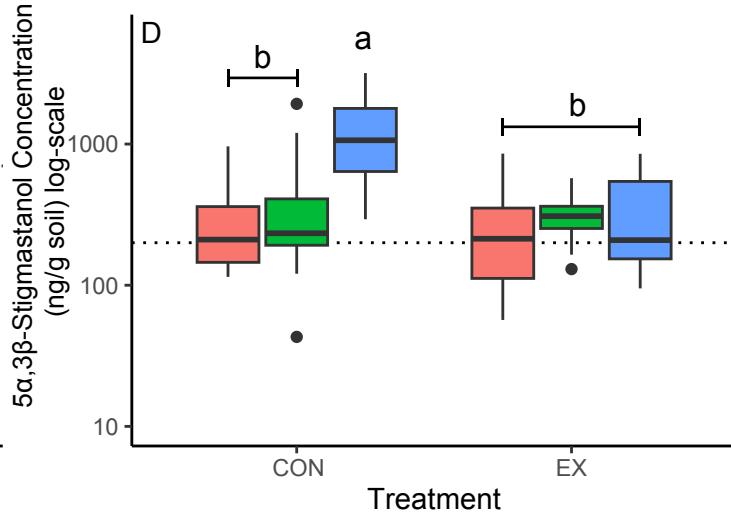
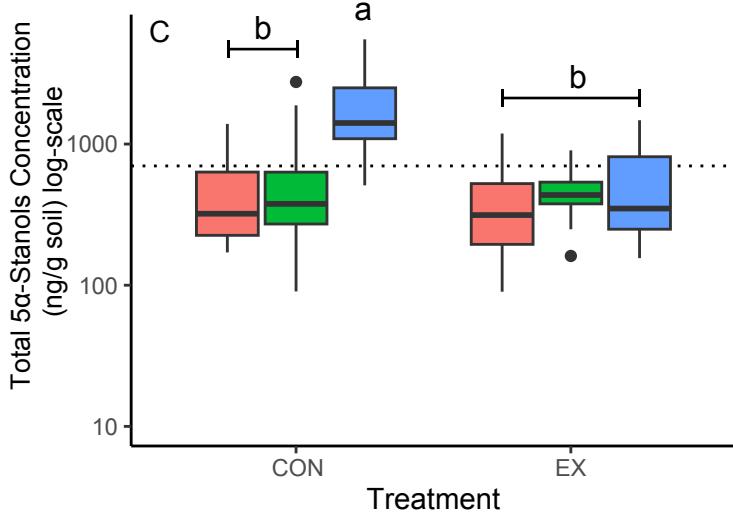
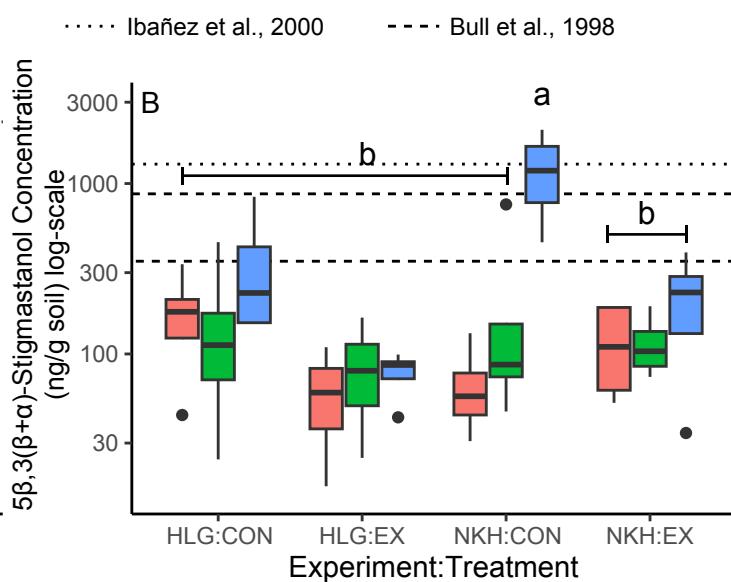
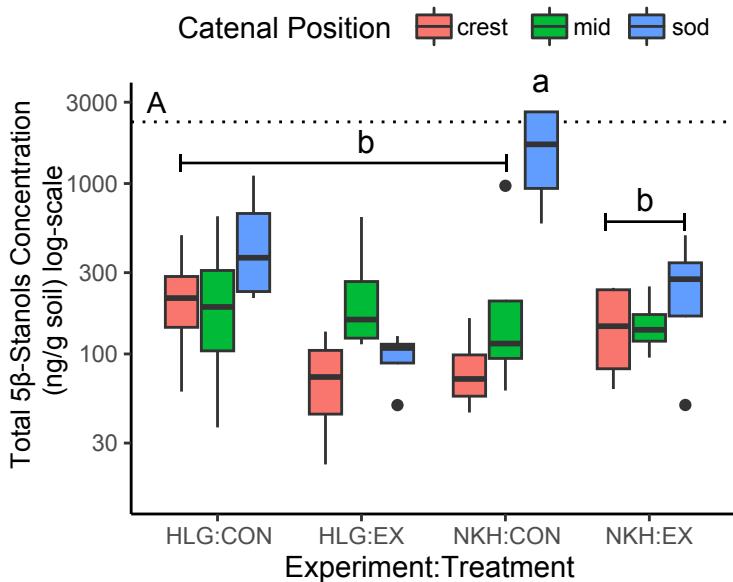
Hlangwini



0 km

70 km

Figure 2.





Catenal Position crest mid sod





Figure 3.

Catenal Position crest mid sod

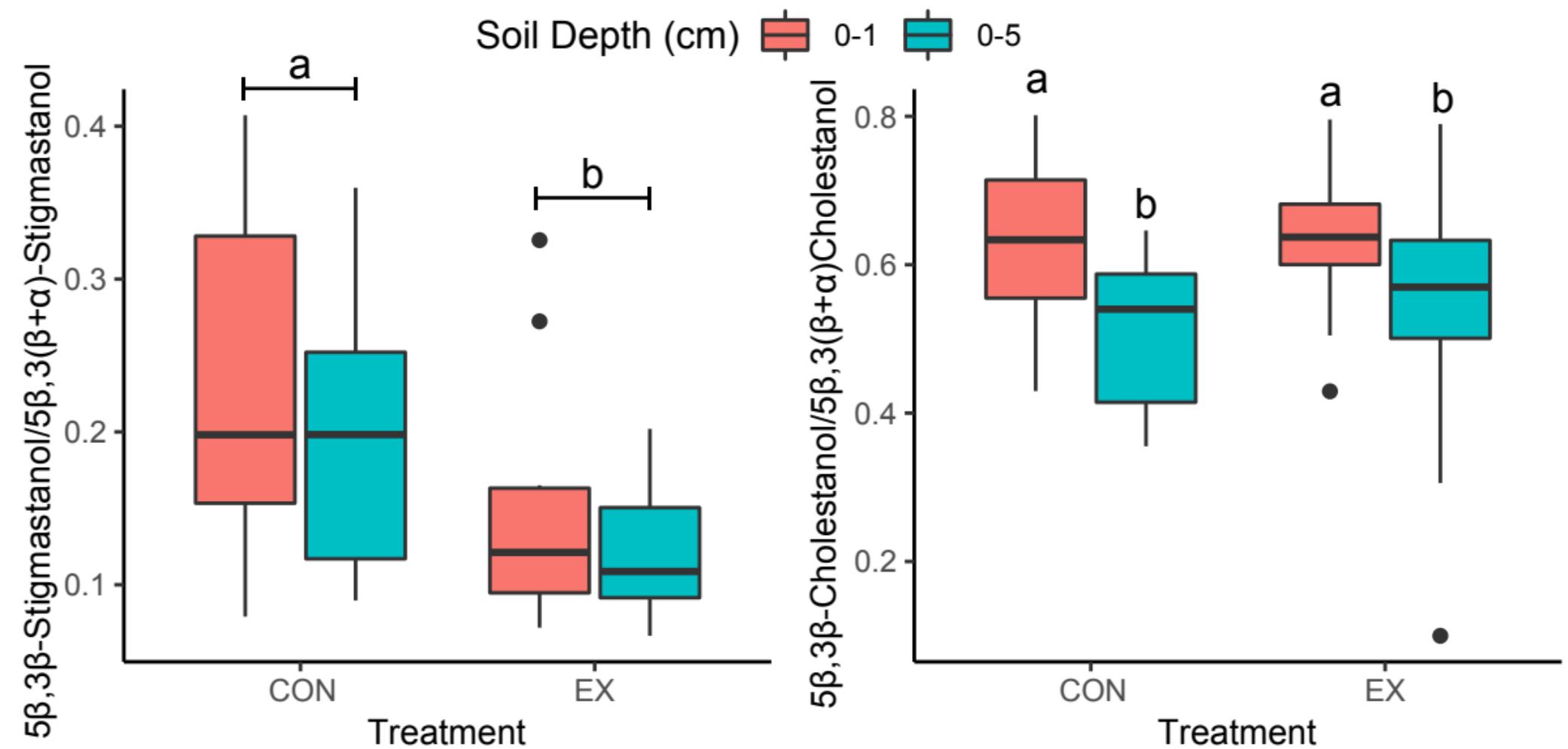

..... Ibañez et al., 2000

Figure 4.

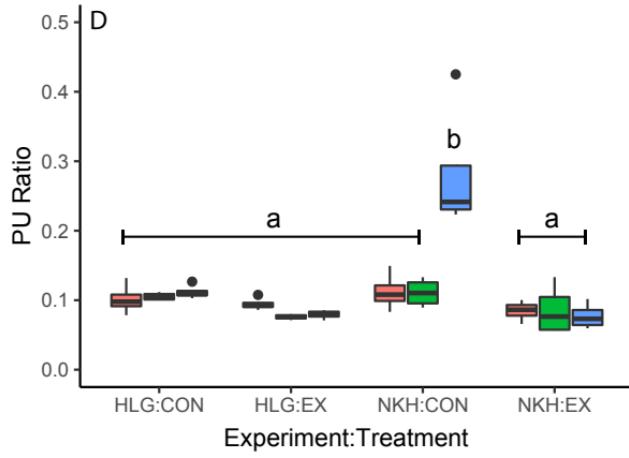
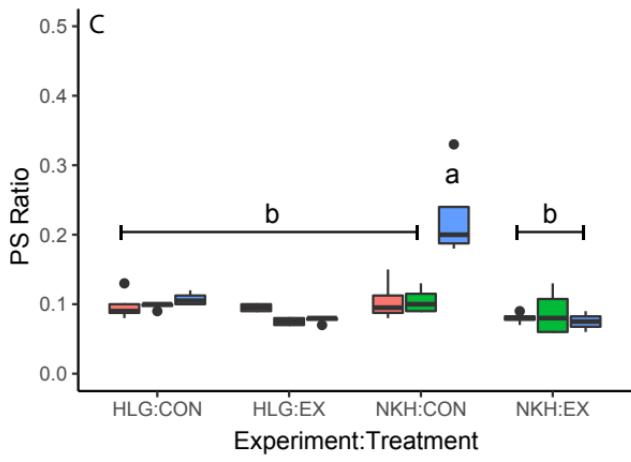
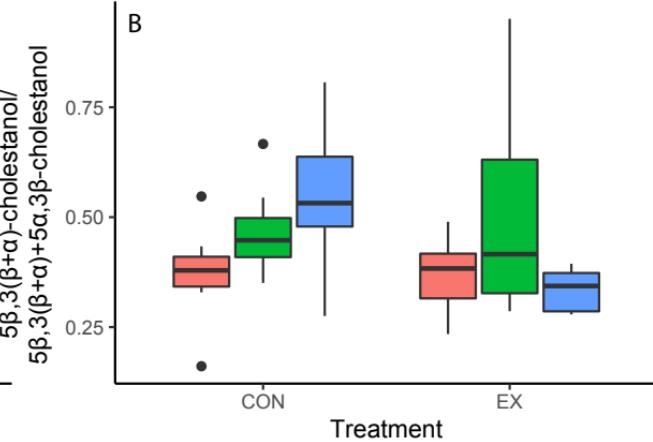
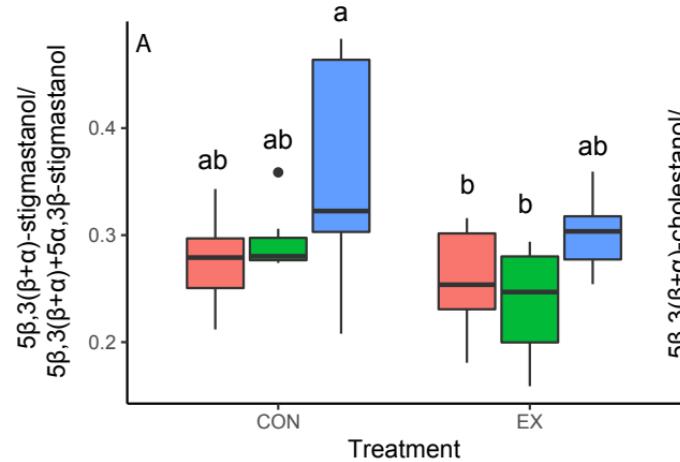





Figure 5.

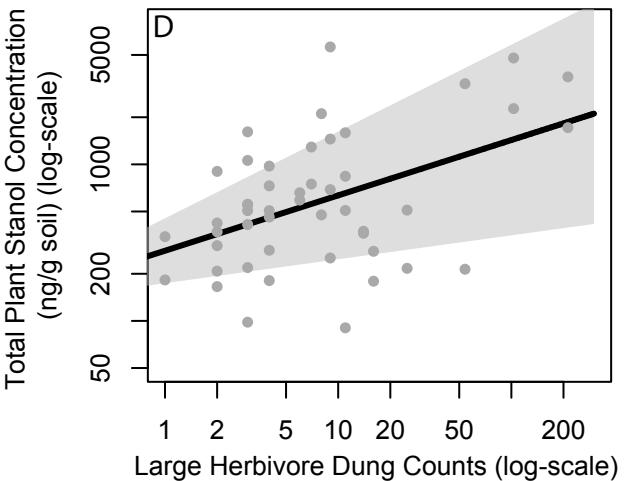
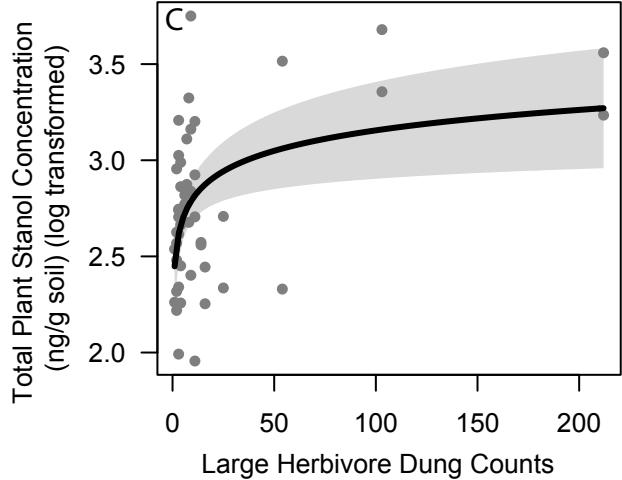
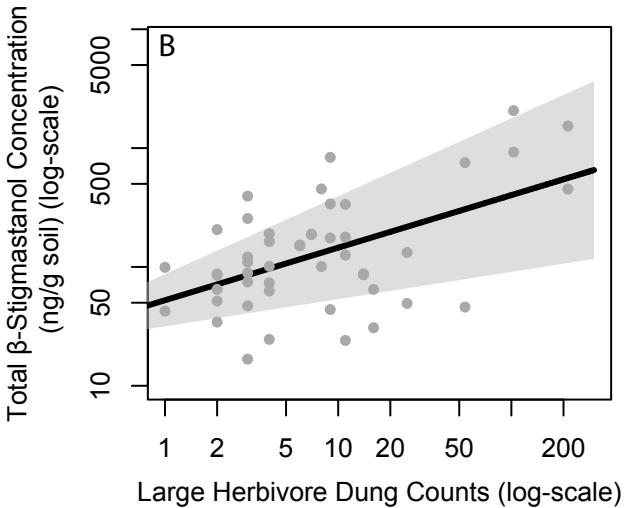
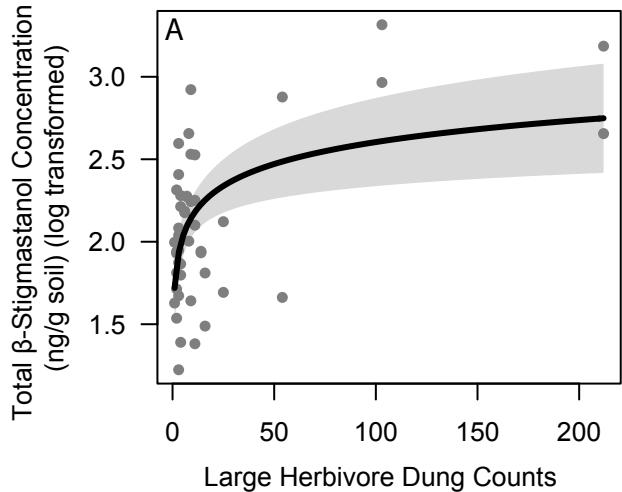
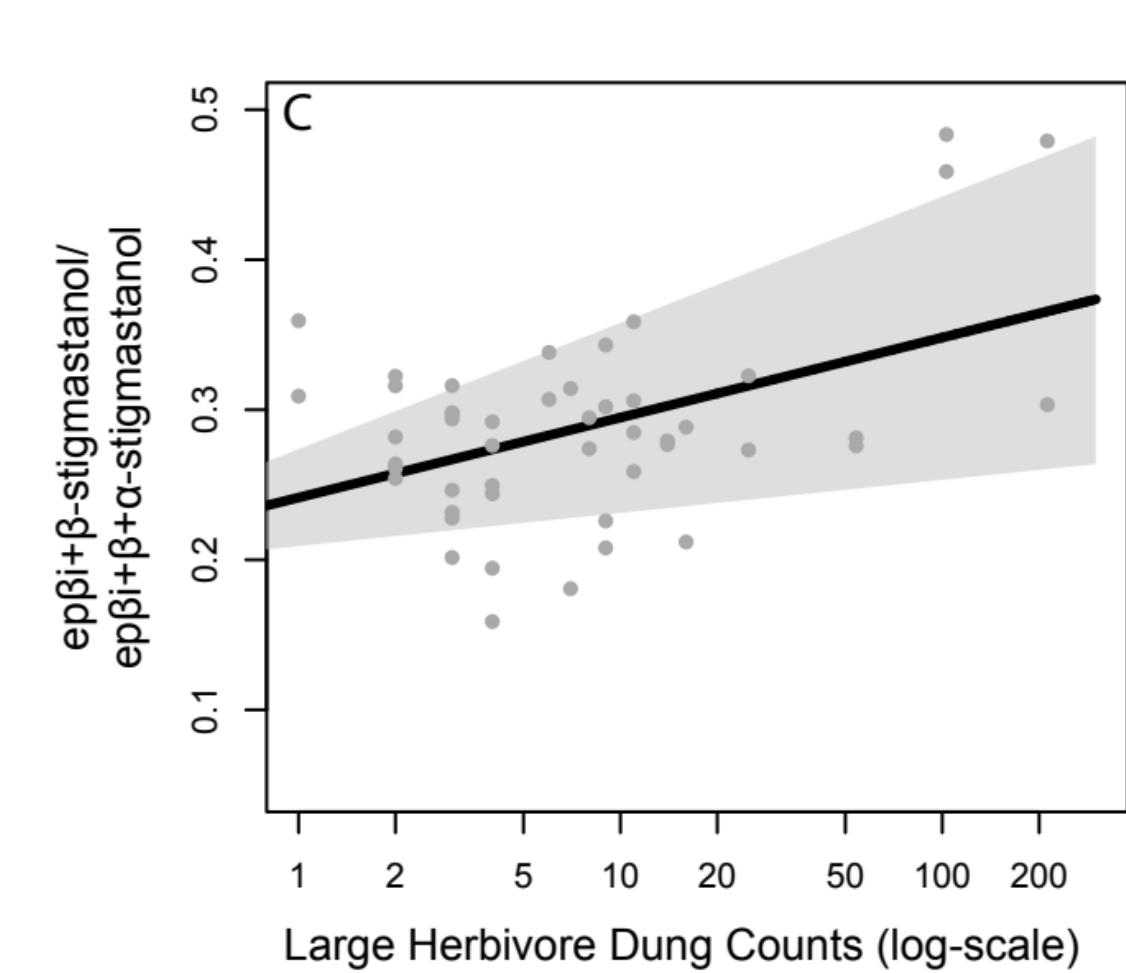
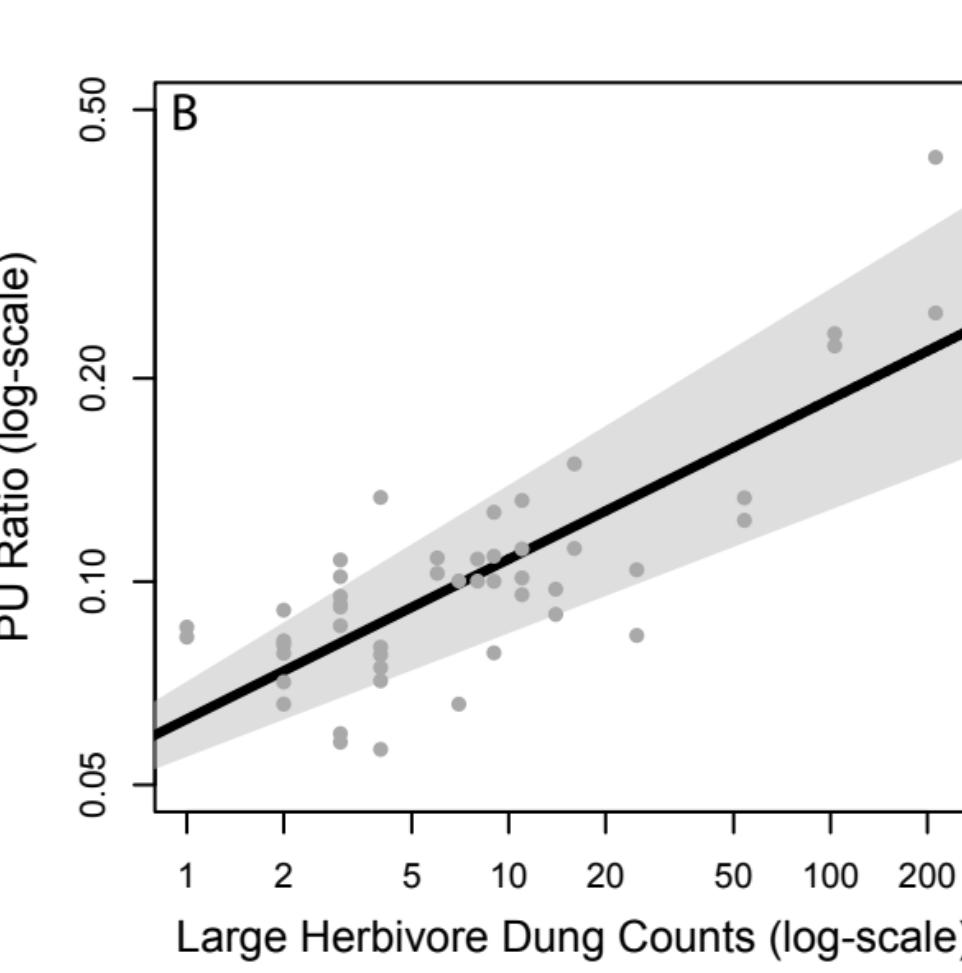
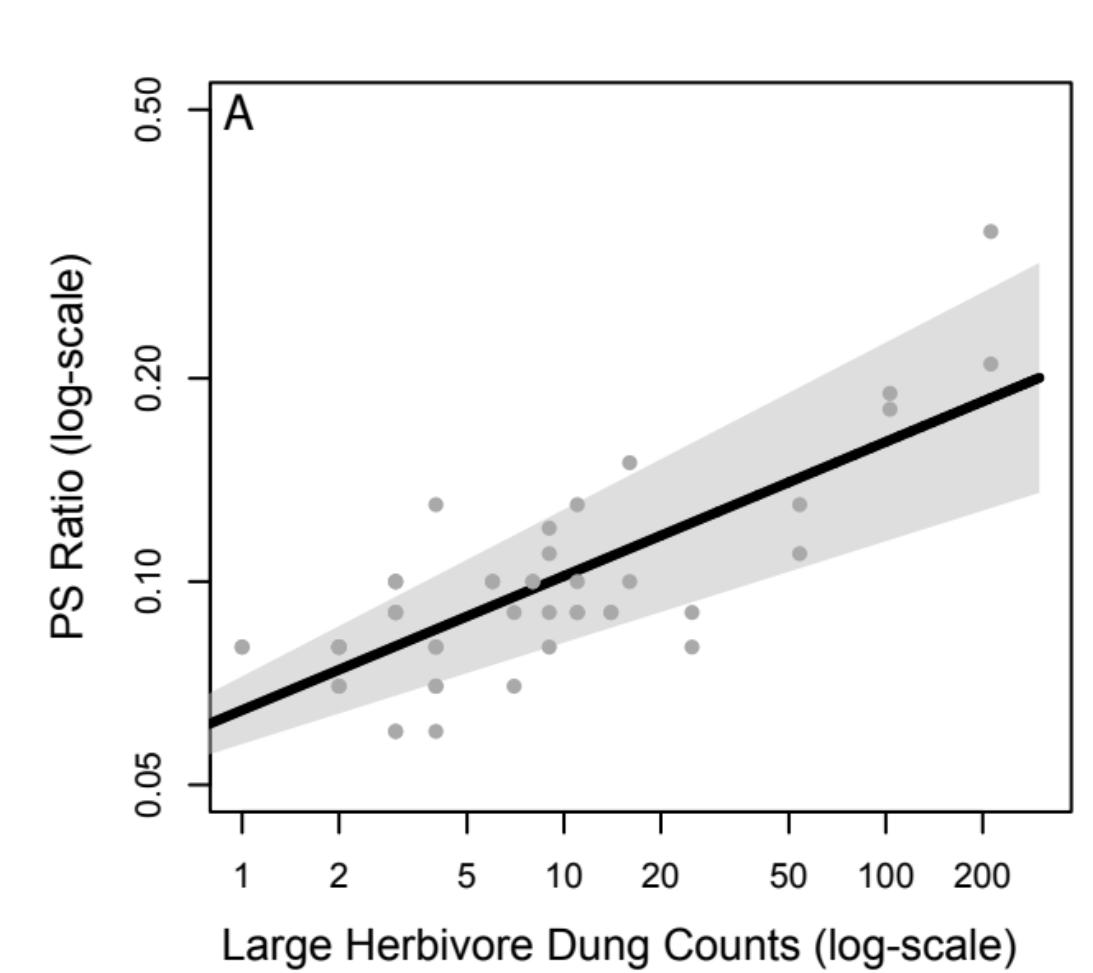
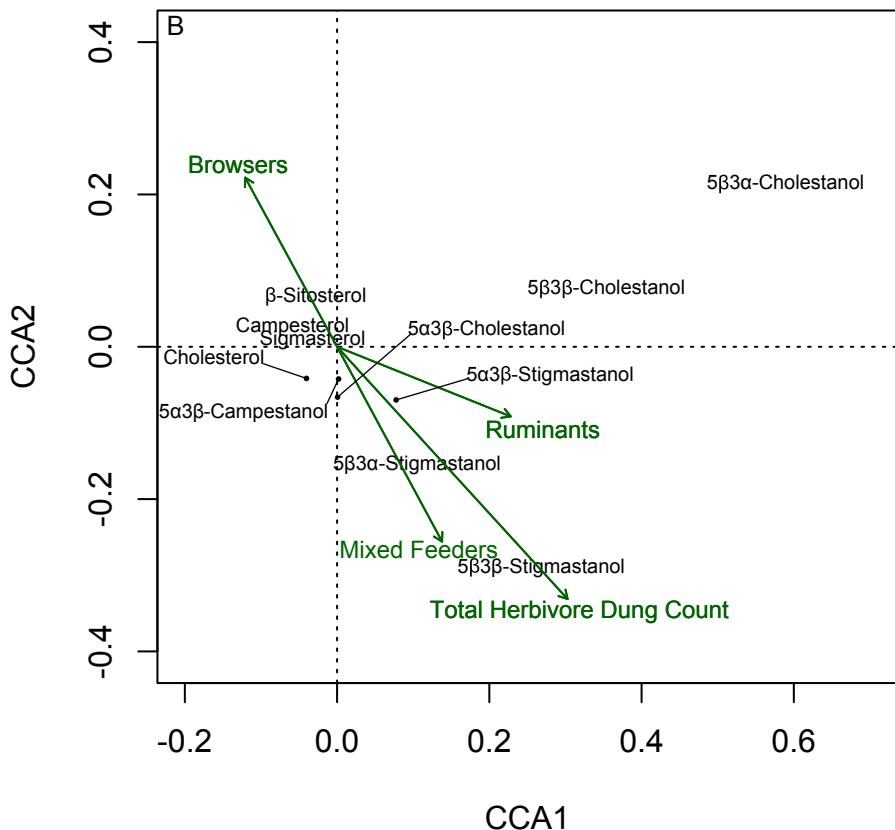
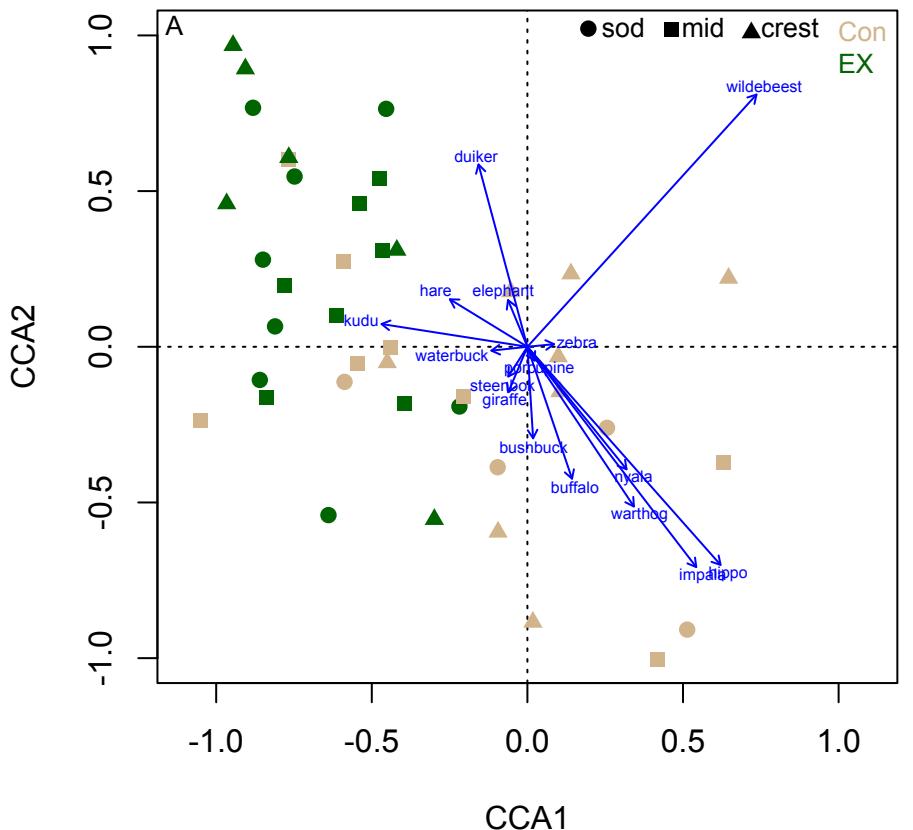





Figure 6.




Catenal Position crest mid sod



Figure 7.

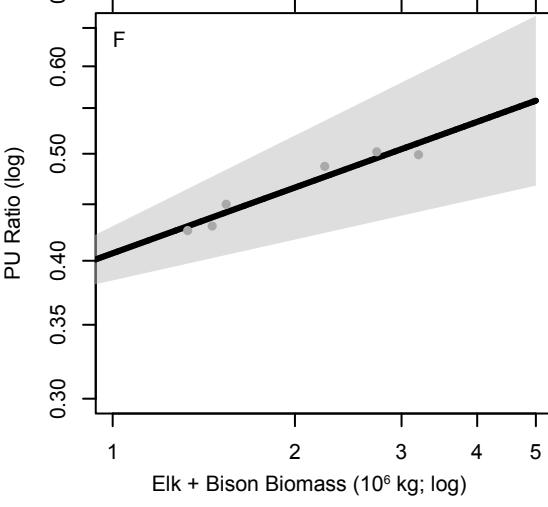
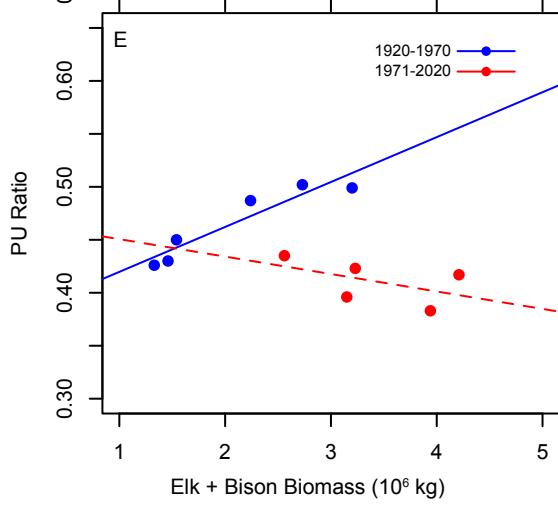
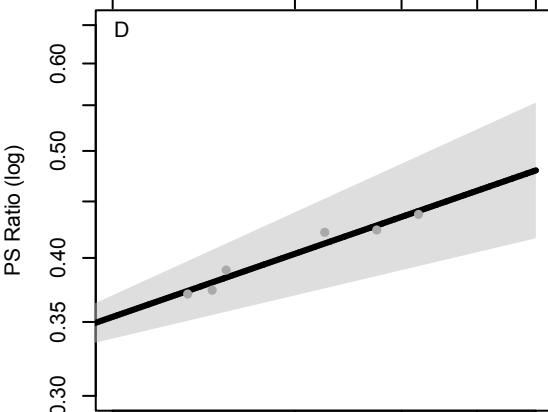
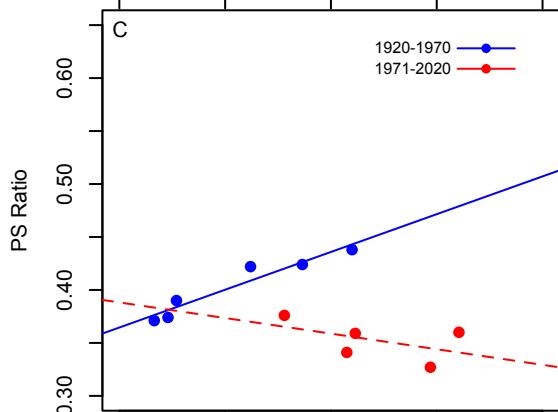
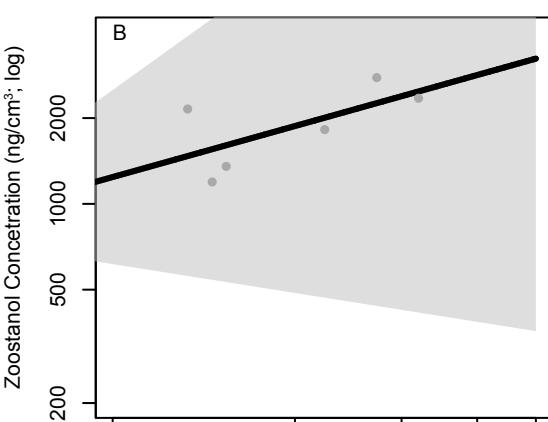
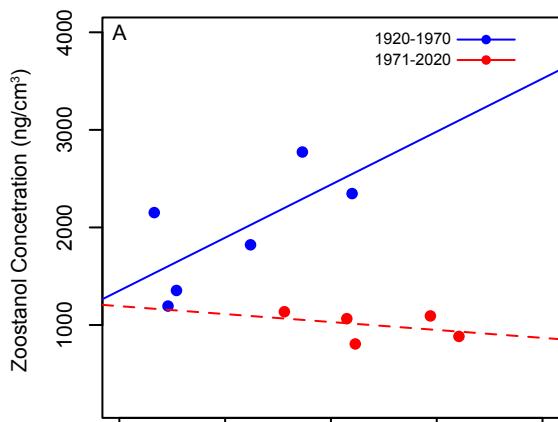






Figure 8.

Figure 9.

Figure 10.

