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mechanisms underlying tree growth and predicting their relative influence across

taxa and environments.

. Functional ecology posits that variation in tree growth is related to individual

differences in functional traits, which serve as proxies for resource acquisition
and investment strategies. However, studies of trait-growth relationships have
produced inconsistent results, likely due to unaccounted factors like interspecific
interactions, ontogeny, differing leaf habit strategies, and variation in resource

acquisition and allocation.

. We investigated the utility of key functional traits as predictors of tree height

growth rates in common garden experiments in the absence of interspecific inter-
actions. We posit that trait-growth relationships vary with age and between two
groups relating to leaf habit: deciduous and evergreen species.

. Using data from 38 tree species planted in monoculture plots across seven

sites of the International Diversity Experiment Network with Trees (IDENT) in
North America and Europe, we compiled height growth rates over 9 years post-
germination. We modelled growth using a Bayesian hierarchical generalized lin-
ear model incorporating four above-ground functional traits related to resource
acquisition and investment: specific leaf area (SLA), wood density (WD), leaf dry
matter content (LDMC) and seed mass (SM). Improvements in predictive power
due to the variation of trait effects with age and leaf habit were evaluated via al-
ternative hypothesis-driven models, using the Expected Log Pointwise Predictive

Density (ELPD) as a performance measure.
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1 | INTRODUCTION

Functional traits are useful indicators of the fundamental differences
in plant strategies related to resource acquisition and investment
(Reich, 2014; Wright et al., 2004). These traits—whether morpholog-
ical, physiological or phenological—serve as proxies for the under-
lying mechanisms driving plant growth and performance in specific
environments (Violle et al., 2007). Thus, trait-based approaches
have the power to shift community ecology from a descriptive to
a mechanism-oriented perspective (Chalmandrier et al., 2021;
Boulangeat et al., 2012). Leveraging functional traits to gain a mech-
anistic understanding of demographic rates could improve the pre-
dictive capabilities for plant performance across diverse spatial and
temporal contexts (Funk et al., 2017).

Despite the promise of functional traits to predict demographic
rates of trees, attempts to link traits to individual growth rates have
produced mixed results (Swenson et al., 2020; Yang et al., 2018).
For instance, a previous global study of juvenile trees found that a
combination of commonly measured functional traits accounted for
only 3% of the variation in growth, calling into question the utility of
traits for prediction (Paine et al., 2015). In contrast, similar combina-
tions of traits explained ~40% of the variation in tree growth within
neotropical permanent forest plots (Poorter et al., 2008). There are
several explanations for this lack of consistency among trait-growth
relationships observed in previous studies. First, prior assessments
of trait effects on growth were conducted in diverse environments,
such as experimental plots of varying species richness, as well as
unmanaged tropical forests, but failed to control for the influence of
neighbouring tree diversity on trait expression and growth, a factor
that could modulate trait-growth relationships in natural and man-
aged forests (Liang et al., 2016; Paquette & Messier, 2011) as well
as in diversity experiments where it is in fact expected (Williams
et al., 2020). Furthermore, questions about the reliability of traits as
predictors of growth often stem from the assumption that growth

5. Trait effects on growth varied with age and leaf habit, shifting between positive
and negative effects, reflecting changes in resource acquisition and investment
strategies. The relationships between traits and growth were strongest during
the first three growing seasons for deciduous species and during the seventh to
the ninth for evergreen species. Accounting for age and leaf habit substantially
improved predictive power.

6. Synthesis. Traits are not consistently associated with tree growth rates but in-
stead reflect dynamic resource acquisition and investment strategies over time
and between deciduous and evergreen species. Despite this variability, our find-
ings confirm the utility of functional traits to predict tree growth rates, especially

when trait effects are considered to vary with age and leaf habit.

common-garden experiment, functional ecology, hierarchical models, IDENT, plant
development and life-history traits, trait-growth relationships, tree age, tree growth

strategies remain unchanged throughout a tree's lifespan (Falster
et al., 2018). Inconsistencies between findings are often interpreted
as a limited predictive capacity of functional traits when, in fact,
they may reflect differences in whether studies focus on seedlings
or adult trees, which can exhibit distinct resource acquisition and
investment strategies. In line with this, studies have shown that tree
age, size and ontogenetic stage can introduce temporal variation in
the strength and direction of trait-growth relationships. This vari-
ation can sometimes result in contrasting effects, where positive
and negative associations between traits and growth at different
life stages effectively cancel each other out, reducing the overall
observed influence of traits (Gibert et al., 2016; lida et al., 2014;
Swenson, 2013; Visser et al.,, 2016; Yang et al., 2018). Similarly,
trait-growth relationships are almost always assumed to be consis-
tent across species, overlooking the role of leaf habit (whether de-
ciduous or evergreen) in driving differences in resource acquisition
and investment strategies (Kikuzawa, 1994; Lusk & Warton, 2007).
Deciduous species are typically more resource-exploitative, have
lower tissue construction costs, and have higher photosynthetic ca-
pacity and transpiration rates early in life, even when standardized
for leaf lifespans (Reich et al., 1992). They typically grow faster than
evergreen species, which tend to be more conservative, have lower
photosynthetic capacity and greater water-use efficiency (Chabot
& Hicks, 1982; Eamus, 1999). Given that deciduous and evergreen
species (and most especially deciduous angiosperms and evergreen
gymnosperms) are thought to use distinct mechanisms for resource
acquisition and investment (Givnish, 2002), and that these mech-
anisms most likely change over different stages of their life cycles
(Gibert et al., 2016), it is reasonable to expect that trait-growth re-
lationships would also differ both between these two groups and
over time.

This study aims to establish whether functional traits can be
useful predictors of tree height growth in the absence of interspe-
cific interactions. This analysis of trait-growth relationships focuses
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exclusively on monoculture plots within common garden experi-
ments, minimizing the influence of external abiotic and biotic factors,
such as competition and facilitation, that may introduce confound-
ing variability in previous research. We consider traits whose impor-
tance for growth has been previously shown to mediate resource
acquisition and investment and for which data is available for many
species: specific leaf area (SLA), wood density (WD), leaf dry mat-
ter content (LDMC) and seed mass (SM). We assess the contribution
of these traits in predicting variation in juvenile tree height growth
rates using Bayesian hierarchical generalized linear models while ex-
amining how much predictive power can be gained by considering
that trait-growth relationships vary with age and between decidu-
ous and evergreen species. We pose one overarching hypothesis for
each trait and further analyse how age and leaf habit influence their
validity. (1) We expect trees with higher SLA to grow faster since
they produce leaves with a larger light-capturing area per unit bio-
mass, thus exhibiting higher photosynthetic rates per unit dry matter
investment (Reich, 2014; Reich et al., 1997; Wright et al., 2004). (2)
Conversely, higher WD implies greater stem carbon investment per
unit wood volume, smaller cells with thick walls and lower hydraulic
conductance, which should translate to slower height growth rates
(Castro-Diez et al., 1998; Chave et al., 2009; Poorter et al., 2008).
(3) Trees exhibiting higher LDMC (i.e. higher ratio of leaf dry mass
to leaf saturated mass) have leaves with elevated carbon concentra-
tions, primarily due to higher proportions of cell walls and secondary
compounds. These characteristics result in higher tissue construc-
tion costs per unit volume, leading to slower growth rates (Polley
et al., 2020; Poorter & De Jong, 2002; Ryser, 1996). (4) Finally, we
hypothesize that larger SM may be associated with slower over-
all growth rates. Despite larger SM aiding in seedling establish-
ment and survival by minimizing size-dependent mortality (Rose &
Poorter, 2003), small-seeded species, often considered ‘pioneer’
species, need to compensate for their limited reserves by rapidly
developing roots and leaves to achieve independent resource acqui-
sition early on (Poorter et al., 2008; Turnbull et al., 2012). The above
hypotheses are consistent with Reich (2014) for resource abundant
conditions, such as weeded common garden tree experiments.

Our analysis is focused on juvenile trees of 38 species from
monoculture plots among seven sites of the International Diversity
Experiment Network with Trees (IDENT) across North America and
Europe (Tobner et al., 2014). We limited our study to juvenile trees,
drawing on a meta-analysis showing that shifts in trees' physiological
and structural priorities generally make trait-growth relationships
weaker at later ontogenetic stages (Gibert et al., 2016). Furthermore,
we posit that the early years of establishment, whether following
stand-replacing disturbances, gap dynamics or natural regeneration,
are critical in shaping forest succession and future forest composi-
tion. During this period, traits should theoretically align with species’
fundamental life-history strategies. We, therefore, focus on the first
9years following germination, examining the temporal dynamics of
trait-growth relationships across three distinct periods: from germi-
nation of the seed to the third growing season inclusively, from the
fourth through the sixth and from the seventh through the ninth.
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2 | MATERIALS AND METHODS
2.1 | Sites description and data selection

This study was undertaken as part of the IDENT, a collaborative ini-
tiative comprising common garden experiments aimed at evaluating
the impact of tree diversity on ecosystem functioning across North
America, Europe and Africa (Tobner et al., 2014). All experiments con-
ducted within IDENT include plots that were planted to represent dif-
ferent levels of tree species richness and functional diversity. Here,
we considered only monoculture plots to minimize the impact of in-
terspecific interactions. We used data from the seven oldest experi-
ments within IDENT, which had been established for at least 9 years.
Plots within the IDENT experiments were planted at uniform density,
with spacing between individuals ranging from 0.4 to 0.5m. All sites
were weeded at least until canopies were beginning to close. All ex-
periments follow a hierarchical design: trees are planted within plots,
nested within blocks. Blocks represent replicates of all tree community
compositions, and the spatial arrangement of plots within each block
is randomized. Across the seven IDENT experiments used here, three
included resource amendment treatments in addition to controls.
Specifically, a distinct sub-experiment in Freiburg, Germany, included
plots with added nitrogen, phosphorous or both (Wein et al., 2016);
in Macomer, Italy, and Sault-Ste-Marie, Canada, half of the blocks re-
ceived supplementary water (Belluau, Vitali, et al., 2021b; Van de Peer
et al., 2018). Since treatment and control plots within an experiment
were exposed to different environmental conditions, we treated each
combination of experiment and resource treatment (hereafter referred
to as a site) as an independent entity in statistical analyses, resulting in
12 sites encompassing a total of 38 species. These included 18 decidu-
ous species (16 angiosperms and 2 gymnosperms) and 20 evergreen
species (6 angiosperms and 14 gymnosperms) (Table S1). Some species

were assessed in multiple experiments (Table 1; Figures S1-S3).

2.2 | Growth calculations

We gathered height data of juvenile trees grown in monoculture
plots from the 12 sites. Measurement frequency varied among
sites, and in some cases, a few growing seasons elapsed between
two consecutive measurements. For each height measurement, we
recorded the number of growing seasons (i.e. number of summers
passed) since seed germination. Trees that died, showed dieback, or
were cut and resprouted were removed from the analysis. Individual
height growth rates were determined by calculating the difference
in height between two measurements and dividing it by the number
of growing seasons that elapsed between the measurements. We
compared three distinct time periods to assess the effect of age:
(1) from germination to after the third growing season inclusively
(referred to as ‘period 0-3’; n=9450), (2) from the fourth through
the sixth growing season (referred to as ‘period 4-6"; n=4615) and
(3) from the seventh through the ninth growing season (referred to
as ‘period 7-9’; n=5381). As trees were not consistently measured
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after every growing season, we selected these three periods to
maximize both the number of individual trees for which height
was recorded at both the beginning and end of the period. We also
aimed to maximize the number of species, thereby capturing the
greatest trait variability. These three periods also corresponded to
key stages in terms of intraspecific competition intensity. Period
0-3 and period 4-6 represented growth under mostly competition-
free conditions, reflecting nursery production and the initial
post-planting open-canopy stage. Period 7-9 coincided with the
early stages of canopy closure, where intraspecific competition
emerged. Differences in sample sizes across periods reflect the
fact that height measurements were not available for all years at all
sites, as well as tree mortality between periods. Trees at different
sites experienced varying conditions prior to plantation, either in
nurseries or outside the experimental plots, with conditions kept
constant within each site. This pre-plant period was included in the
analysis to capture the entire seedling stage.

2.3 | Traitdata

We opted to use mean trait values derived from individual meas-
urements in global trait databases and in the literature. This pro-
vided a ‘universal’ mean value for each species, aligning with the
broader objective of advancing functional ecology by leveraging
widely available trait data (Wright et al., 2004). Functional trait
data for SLA, WD, LDMC and SM were primarily obtained from a
comprehensive database that consolidates entries predominantly
derived from the TRY database of plant traits (Kattge et al., 2011,
2020). This database was meticulously curated to remove dupli-
cates and exclude measurements made on trees subjected to any
specific treatment, grown in laboratory settings or in pots (Belluau,
Bouchard, et al., 2021a). Missing trait data were provided by locally
measured values from IDENT-Montréal (Belluau & Mordacq, 2023)
and additional literature searches. For each trait, we initially calcu-
lated the mean value for each species within each dataset to ensure
equal weighting across datasets and then computed the overall

mean of these dataset-specific means for each species.

Yijkmn ~ Gamma (Mijkmnvajkmn)

In (ﬂijkmn)=70+
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2.4 | Analyses

To assess the relationship between individual growth and the four
functional traits, we fit a first Bayesian hierarchical model based on the
hypothesis that trait effects vary with both time period and leaf habit
(Main model; MH1). This Main model assumes that tree height growth
follows a Gamma distribution, parameterized by mean (u) and shape
() (Biirkner, 2024; Faraway, 2006). This modelling framework allowed
us to flexibly handle the complexities of our hierarchical model, which
involved correlated trait predictors and the need to jointly model x and
a, while providing uncertainty intervals for estimates across hierarchi-
cal levels. We opted for a Gamma distribution because height-growth
rates are strictly positive, exhibit variance that increases with the
mean, and the Gamma distribution is well suited to modelling tree-size
(and hence growth) data (e.g. Kelemen et al., 2024; Podlaski, 2017). In
our Main model, each parameter is modelled with a linear predictor,
using a logarithmic link function. For the mean parameter u, we in-
cluded population-level effects for the period in interaction with both
leaf habit and each trait. To account for and control background vari-
ation in climate and site quality across different sites and within site
replicates, we included group-level effects of the time period based on
site identity and replicated blocks nested within the sites. These were
meant to control for environmental differences specific to each site,
which vary between geographic locations. For the shape parameter a,
we included population-level effects for leaf habit and period in inter-
action, and group-level effects with the same structure as for the mean
parameter. Correlations between the two linear predictors (x and «)
were assumed for group-level effects based on the same group-
ing factor. Each parameter was assigned weakly informative priors
(Gelman et al., 2008): at the scale of the standardized predictors, we
used student-t priors with 3 degrees of freedom, centred on 0, and
with a standard deviation of 2.5. We used LKJ priors (Lewandowski
et al., 2009) with hyperparameter 5 equal to 1 to model correlations
between group-level effects. The structure of this Main model is pre-
sented below, where yj,, is the height growth rate for observation i,
with leaf habit j, over period k, originating from project site m and block
n. The Iverson bracket is denoted by [], y and § represent population-
level effects, y and ¢ represent group-level effects.
(a) Main model (MH1)

7001 SLA+7002 WD+ 003 LDMC + 7994 SM+

[i # Deciduous| (yo10 + 7011 SLA+ 7012 WD 47013 LDMC 47414 SM) +

[k # Period 0— 3] (7400 + 7 ko1 SLA+ 702 WD + 703 LDMC 4,04 SM) +

[i # Deciduous Ak # Period 0— 3] (410 +7k11 SLA+ 712 WD + 7413 LDMC + 741, SM) +

YmtWmnt [k #Period 0— 3] (V’km +l//kmn)

In(ajkmn) =60+

[j # Deciduous] 644 + [k # Period 0 — 3] 5,4 + [j # Deciduous Ak # Period 0— 3] 6, +

cm +Cmn + [k ?é Period O_ 3] (z:km +ckmn)
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We used the 10,000 posterior samples drawn from this Main
model to compute 90% equal-tailed uncertainty intervals (from
5% to 95%) for each coefficient estimate, with point estimates
based on the mean. We regard the evidence for the existence of
an effect as weak if the corresponding uncertainty interval in-
cludes zero. We also generated predictions for the differences
in coefficient estimate values between all combinations of time
period and leaf habit for each trait and their corresponding 90%
uncertainty intervals. This analysis allowed us to assess hypoth-
eses related to changes in the magnitude of every trait-growth
relationship over time and between deciduous and evergreen
species. Given the logarithmic link function for the mean, we
calculated a multiplicative factor for every coefficient estimate
to facilitate their interpretation and compare the strength of the
trait-growth relationship at each period and for each leaf habit
in each trait's original unit. This factor represents the value by
which individual growth changes with each unit increase in one
trait (akin to the slope of a regression) while the other traits are
maintained at their mean value. These factors were obtained by
back-transforming each standardized coefficient estimate into the
target trait's unit, followed by computing its exponential. To visu-
alize trait-growth relationships across age and leaf habit, we used
the Main model to predict growth within the observed range for
each trait, each period and each leaf habit, keeping other traits at
their mean value and excluding group-level variation. Lastly, we
conducted Bayesian hypothesis tests to assess differences in pre-
dicted growth rates from the Main model across time periods and
between deciduous and evergreen species within the same pe-
riod. Comparisons where the posterior probability exceeded 0.90
(equivalent to a 90% uncertainty interval that excludes zero) were
considered to have strong evidence for a difference.

The Main model was compared with three hypothesis-driven
sub-models to assess the predictive performance gained by consid-
ering trait effects to vary with time period and/or leaf habit. These
models were identical in structure to the Main model but excluded
either the interaction between traits and period (MH2), the interac-
tion between traits and leaf habit (MH3), or both interactions (MH4;
Table S2). We also parameterized three baseline models of increas-
ing complexity and without trait effects to evaluate the overall pre-
dictive power of the Main model. These baseline models ranged from
a simple intercept-only model to one that included experimental
structure and period (MB1 to MB3; Table S2). We quantified predic-
tive accuracy using Leave-One-Out Cross-Validation (LOO-CV) and
calculated the Expected Log Pointwise Predictive Density (ELPD)
for each model, where higher ELPD values indicate better perfor-
mance at predicting the response based on a new dataset (Birkner
et al., 2024; Vehtari et al., 2017). Pairwise comparisons of models
were based on differences in ELPD relative to their standard errors.
We calculated a Bayesian R-squared (Gelman et al., 2019) to assess
the portion of height growth variance explained by our Main model.

All models were fit and analysed using the brms package in
R version 4.3.0 (Burkner et al., 2024; R Core Team, 2024; Stan
Development Team, 2024). Prior to analysis, all trait data were

centred and scaled, and SM was log-transformed. Four Markov
chains were run for each model, with 7500 warmup and 2500 sam-
pling iterations, resulting in a total of 10,000 retained posterior sam-
ples. Additional sampler settings are detailed in the code. Models
were assessed for convergence and fit using trace plots, effective
sample sizes, R-hat values and posterior predictive checks (PPC)
plots implemented in the ShinyStan app (Gabry et al., 2022; Vehtari
et al., 2021). Visual inspection of quantile residuals showed no sign
of missing predictors. Dataset along with scripts are archived on
Zenodo (https://doi.org/10.5281/zenodo.16799185).

3 | RESULTS
3.1 | Model comparison

The Main model (MH1) accounted for 55% of the variation in height
growth (R?=0.55) and exhibited the best predictive performance
among all tested models, as indicated by its ELPD score (Figure 1,
Table S3). By incorporating interactions between period, leaf habit

and functional traits, the Main model clearly outperformed all other
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FIGURE 1 Model performance comparison based on differences
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models, with vertical lines showing standard error of differences.
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hypothesis-driven models in terms of predictive power, with ELPD
differences of 1396.1 (SE=52.4), 1637.4 (SE=51.5) and 2192.7
(SE=63.9) compared with MH2, MH3 and MH4. The Main model
also outperformed all baseline models, with an ELPD improvement
of 5137.3 (SE=92.4) over the most complex baseline model, which
included group-level effects for experimental structure and time
period as independent population-level effects (MB3) (Figure 1,
Table S3). Notably, a comparison of the simplest hypothesis-driven
model (MH4) with the most complex baseline model (MB3) revealed
an ELPD difference of 2944.6 (SE=73.8), indicating that even when
trait effects are not allowed to vary with period or leaf habit, traits
hold substantial predictive power for growth under our experimen-
tal setting where interactions with other tree species are absent
(Table S4). Based on the superior performance of the Main model,

only its output was retained for further analyses.

3.2 | Trait effects on growth

Coefficient estimates were almost all different from O (Table 2).
Growth was influenced by all combinations of trait, period and leaf
habit except for four cases: SLA did not influence growth of decidu-
ous species in period 7-9; WD did not influence growth of deciduous
species in periods 4-6 and 7-9; and WD did not influence growth of
evergreen species in period 7-9. Furthermore, the 90% uncertainty
intervals of the differences in coefficient estimates revealed that al-
most all trait effects varied between every combination of period
and leaf habit (Table S5). This shows that the relationship between
functional traits and growth is sensitive to the age of the tree and
leaf habit. The only exceptions were that there was no difference
between the effect of SLA on growth of evergreen species between
period 0-3 and period 7-9; the effect of WD on growth of decidu-
ous species did not differ between the three periods; and the effect
of WD did not differ between deciduous and evergreen species in
period 7-9 (Table S5).

The multiplicative factors (Table 2) and model prediction plots
(Figure 2) show that SLA had an early strong positive influence
on the growth of deciduous species during period 0-3, which de-
creased over time, becoming slightly negative during period 4-6. By
period 7-9, this effect was indistinguishable from zero, as the un-
certainty intervals included zero. For evergreen species, SLA had
a weak effect in all periods, fluctuating from positive to negative
and then back to positive. WD had a subtle, positive effect on the
growth of deciduous species during period 0-3 but had negligible
effects in subsequent periods, with uncertainty intervals, including
zero for both period 4-6 and period 7-9. For evergreen species, WD
showed a strong negative effect during the first two periods, peak-
ing at period 4-6 before becoming indistinguishable from zero in
period 7-9. LDMC initially had a strong positive influence on initial
growth of deciduous species, which weakened and became negative
in period 4-6 and returned to positive in period 7-9. For evergreen
species, LDMC followed the opposite trend, starting negative, then
becoming slightly positive, before returning negative again by period
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7-9. Finally, SM had a negative effect on the growth of deciduous
species, which stayed relatively stable throughout the three peri-
ods. There was more temporal variation in the relationship for the
evergreen species, with a strong positive effect of SM on growth in
period 0-3, which then stabilized in period 4-6 and became highly
positive again in period 7-9.

Overall, deciduous species grew faster than evergreen species
during the first two periods, peaking in period 4-6 and stabilizing
through period 7-9. Evergreen species maintained constant aver-
age growth rates during the first two periods and started growing
faster in period 7-9. By period 7-9, there was no difference between
growth rates of deciduous and evergreen species (Figure 3; Table S6).
Notably, stronger growth rates did not coincide with stronger trait-
growth relationships. Trait-growth relationships were generally
strongest in period 0-3 for deciduous species and in period 7-9 for
evergreen species. For both leaf habits, trait-growth relationships
weakened and approached zero during period 4-6 (Figure 2).

4 | DISCUSSION

Our study demonstrates that functional traits are highly predictive
of the height growth rates of juvenile trees. However, trait-growth
relationships differ markedly with age and between deciduous and
evergreen species, with relationships often reversing over time from
positive to negative, or vice versa. This observation is reinforced
by the fact that including interactions with both leaf habit and pe-
riod in our Main model greatly enhanced its predictive power com-
pared with all other hypothesis-driven models, including MH4, the
trait-based model that excluded these interactions. Trait-growth
relationships in deciduous species are strongest during early devel-
opment (period 0-3), with high SLA, high LDMC and low SM values
leading to faster growth. These trait-growth relationships, however,
lose strength as deciduous trees age. Therefore, for deciduous spe-
cies, only our hypotheses for SLA and SM were confirmed, but only
during period 0-3. In evergreen species, trait-growth relationships
are even more variable in time but are strongest later in develop-
ment (period 7-9). During this period, evergreen species exhibiting
high SLA and high SM grow faster, whereas species with high WD
and high LDMC grow slower. In evergreen species, our hypotheses
were thus confirmed for all traits except SM during period 7-9, and
for all traits except SLA and SM during period 0-3. This complex
interplay between traits and growth underscores the importance
of accounting for both time and leaf habit in studies of trait-driven

growth patterns across species.

4.1 | Ontogeny of trait-growth relationships

For deciduous species, our model indicates that the relationship
between SLA and growth is strongest during the first 3years of
development. During that period, high-SLA species exhibited rapid
growth, likely due to lower marginal costs of leaf construction and
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FIGURE 2 Predicted relationships between trait values and height growth rate (cm/year) for deciduous (purple) and evergreen (green)
tree species across the three time periods. Predictions for each trait were obtained from the Main model, with non-target traits held constant
at their mean values. Shaded areas correspond to 90% uncertainty intervals, and solid lines correspond to the mean point estimates.
Predictions were made on observed trait value ranges for either deciduous or evergreen species. The x-axis for SM is presented on a natural
log scale to reflect the transformation used in the model while improving interpretability.
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FIGURE 3 Predicted height growth rate (cm/year) across

the three time periods (0-3years, 4-6years and 7-9 years) for
deciduous and evergreen species. Points represent mean height
growth rate predictions from the Main model based on population-
level effects, with vertical lines indicating 90% uncertainty
intervals for the average growth per period. Violin plots display

the distribution of predicted mean growth rates, with the width of
each shape reflecting the proportion of predictions at a given value.
Results from Bayesian hypothesis tests comparing growth across
time periods and between leaf habits are summarized in Table Sé.

minimal investment in support structures (Cornelissen et al., 1996).
However, as trees age and increase in size, the benefit of reduced leaf
construction costs diminishes, as leaves represent a smaller fraction
of the total biomass. Simultaneously, the cost of wood construction
increases and the higher leaf turnover rate in high-SLA species
imposes additional energy demands (Falster et al., 2018). These
factors combined ultimately reduce the early growth advantage of
species exhibiting high SLA, weakening the relationship between
SLA and growth and causing it to become negative in later stages
(Gibert et al., 2016). Inversely, among evergreen species, height
growth is only very slightly related to SLA across the first 9 years of
age, which may in part be due to the narrower range of SLA values
in evergreen species (2.7-15mm?/mg) compared with deciduous
species (10-28mm?%/mg) (Figure S4). The weak relationships
may also reflect SLA measurement errors, which are particularly
common in narrow- or needle-leaved species like most evergreens
included in this study, due to the lack of a standardized protocol for
these specific leaf morphologies (Cornelissen et al., 2003; Wilson
et al., 1999). More generally, SLA is also a highly plastic trait both at
the population and individual level (Smart et al., 2017), which makes
it prone to intraspecific variation. Thus, using mean trait values
from individuals growing in different environments may have had
a stronger impact on the observed relationship between SLA and
growth compared with other traits.

The effects of WD differed markedly between deciduous and
evergreen species. In deciduous species, WD effects remained weak

throughout and became indistinguishable from zero after the third
growing season. In contrast, stronger relationships were found for
evergreen species, which remained negative across all periods. This
observation agrees with Falster et al. (2018), who predicted a consis-
tently negative relationship between WD and growth based on the
fact that trees allocate new biomass to their stems throughout their
lifespans. However, the fact that this was prominent only in evergreen
species suggests that WD may play a limited role in explaining growth
variations in deciduous species, which likely rely more on resource
acquisition strategies tied to other traits linked to hydraulic proper-
ties or photosynthetic capacity, such as stem hydraulic conductivity
and vessel diameter. Support for this comes from the observations
that SLA had a substantial effect on the growth of deciduous species,
especially in the first period, while the influence of SLA on the growth
of evergreen species was much weaker. Similarly, Qi et al. (2021) re-
ported a strong relationship between WD and height growth rates
in broadleaved evergreen species in a subtropical forest, whereas
WD showed no significant relationship with growth in broadleaved
deciduous species. They proposed that the growth of evergreen
species might be more closely associated with traits related to leaf
carbon assimilation and the construction costs of leaves and stems,
such as WD, while the growth of deciduous species appears to be
more strongly influenced by stem hydraulic conductivity and vessel
diameter. These hydraulic traits are strongly linked to photosynthetic
capacity by maintaining the leaf water supply needed to support high
rates of leaf gas exchange during a shorter growing season (Brodribb
& Feild, 2000; Kaproth et al., 2023). While not explicitly addressed
here, given that these traits are considered ‘hard’ traits and are thus
underrepresented in global databases, future research focusing on
these relationships could provide valuable insights into the mecha-
nisms driving growth differences across leaf habits.

The effects of LDMC on the growth of deciduous species were
similar, although slightly weaker, to those of SLA, especially during
the first 6 years of growth. LDMC is calculated by dividing the dry
mass of a leaf by its water-saturated fresh mass, whereas SLA is
the ratio of a leaf's one-sided area to its dry mass (Cornelissen
et al., 2003). LDMC is, as suggested in our hypothesis, typically
inversely related to SLA. Thus, the similar effects of SLA and
LDMC on the growth of deciduous species during the first 6 years
contradict our expectations. Upon further examination, these
unexpected results can be largely attributed to Betula papyrifera,
which exhibited much greater variability in growth rate compared
with all other species, particularly during period 0-3 (Figure S5).
To further explore this result, we conducted a supplementary
analysis by parameterizing an alternative model identical in struc-
ture to the Main model but excluding Betula papyrifera. In this new
model, results for period 0-3 aligned with expectations, showing
a positive relationship between SLA and growth, and a negative
relationship between LDMC and growth. However, the expected
contrast between these traits was still not observed during the
last two periods (Figure S6). A possible explanation is that Betula
papyrifera, a fast-growing, early successional species, may simul-
taneously maximize resource acquisition (high SLA) and resource
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conservation (high LDMC) in the short term. This dual strategy
likely results in exceptionally high growth rates that favour rapid
establishment and maximizes early competitive advantage, thus
showing atypical responses that do not align with the expected in-
verse SLA-LDMC relationship. When considering this, the effects
of LDMC were much more important for evergreen species. This
again supports Qi et al. (2021), that the growth of evergreen spe-
cies depends more on leaf carbon assimilation and investment in
the production of leaves and stems.

The contrasting observations between SM and growth in de-
ciduous versus evergreen species could be interpreted through
the lens of the well-established r-K continuum. The negative rela-
tionship observed in deciduous species across all three periods is
consistent with an r-strategy, where small-seeded species exhibit
higher initial growth rates. This aligns with our initial hypothesis
that small-seeded species need to grow rapidly and become pho-
tosynthetically competent before seed reserves are exhausted.
The predicted trend also parallels observations by Turnbull
et al. (2012), who showed that this relationship tends to weaken
over time as smaller trees, by virtue of their size, exhibit rapid
early growth. In contrast, evergreen species align more closely
with a K-strategy, where larger seeds are associated with faster
growth, likely due to the greater reserves that enhance seedling
establishment and promote subsequent growth. In our study, the
two evergreen oaks (Quercus suber and Quercus ilex) also exhib-
ited this trend with high SM values (Figure S4) and relatively high
early growth rates compared with the other evergreen species.
This pattern aligns with broader findings in oaks, where SM gener-
ally predicts absolute growth rates but not relative growth rates in
juveniles (Cavender-Bares et al., 2004).

4.2 | Investigating leaf habit trends along the fast-
slow continuum

The deciduous and evergreen species considered in our analysis ap-
pear to follow a fast-slow continuum of resource acquisition and
investment, as described in prior studies (Chave et al., 2009; Diaz
et al., 2016; Reich, 2014; Wright et al., 2004). Deciduous species
displayed faster growth than evergreen species during the first two
periods. This faster growth is consistent with deciduous species'
typical categorization at the fast-growing end of the continuum, with
high photosynthesis rates, rapid resource acquisition and low tissue
construction costs. In contrast, evergreen species grew at a slower
rate during the first two periods, and started growing faster after the
seventh growing season, which aligns with a resource-conserving,
slow-growth strategy. Over time, the growth advantage linked to
the deciduous leaf habit declined, suggesting that the rapid growth
of deciduous species during the seedling stage is not sustained as
trees age. After the seventh growing season, growth rates of decidu-
ous and evergreen species appeared to converge, possibly due to
ontogenetic patterns of foliage age structure within the canopy or
increasing intraspecific competition, which may have been stronger
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in deciduous species after their initially faster growth. During the
seedling stage, the productivity per leaf (i.e. photosynthesis) and the
proportion of total plant biomass in leaves are higher in deciduous
than evergreen species, which tend to exhibit lower photosynthetic
capacity and lower biomass allocation to leaves. However, as ever-
green species grow, the accumulation of multiple-year foliage co-
horts compensates for lower annual investment in leaf biomass, and
growth rates increase. This makes the differences in growth rates
between deciduous and evergreen species gradually diminish over
the trees' lifespans. Ultimately, large mature trees, regardless of
their leaf habit, should grow at similar rates, since deciduous species
have much higher productivity per leaf but have less proportional
biomass in leaves, while evergreen species have lower productivity
per leaf but by that time have accumulated a higher proportional bio-
mass in leaves (Reich, 1998; Reich et al., 1992, 1995). This aligns with
findings by Archambault et al. (2019), who observed that seedling-
stage evergreen gymnosperms at the IDENT Montreal site allocated
a relatively greater proportion of biomass to roots rather than to
above-ground structures.

Not only do differences in growth rates of species of both leaf
habits diminish as trees age, but we can also expect that overall
growth rates of all trees will decline with time, independently of
leaf habit. Height growth rates generally slow down continuously
as trees get taller, due to a decreasing proportion of total biomass
allocated to foliage relative to reproductive structures (Falster
et al., 2018). We therefore expect that height growth rates of ever-
green species will also decline as trees become taller, following the
same hump-shaped relationship with age as in deciduous species,
first increasing then decreasing. Thus, while species likely retain
their relative positions along the fast-slow continuum regardless of
time or size, as observed by Zhu et al. (2018), our expectation that
growth rates slow down over time and converge between deciduous
and evergreen species necessarily implies a reduction in growth rate
variation between these species over time. Consequently, we antic-
ipate that trait-growth relationships will weaken over time, with de-
creasing variation in their direction as height growth rates level off
near maximum height. Nevertheless, a comparison of species' max-
imum height estimates from the TRY database (Kattge et al., 2011,
2020) with the observed mean height after the ninth growing season
shows that trees in our study are still far from reaching their poten-
tial maximum, so these predictions have yet to be confirmed.

It is also important to consider that leaf habit conveys infor-
mation on contrasting life strategies linked to entire syndromes
of traits (Reich et al., 1992). In this study, where almost all spe-
cies belong to temperate biomes (except for species from the
Mediterranean IDENT Macomer site), this information can be cap-
tured by a binary leaf habit variable. Indeed, there was no overlap
in leaf longevity between the two phenological groups for the spe-
cies considered here (Figure S7). This is consistent with the gener-
alization that species with short-lived leaves are mostly deciduous,
while species with relatively long leaf longevity are mostly ever-
green (Hikosaka et al., 2021; Reich, 1998). Although this dichot-
omy should be applied with caution, as links between phenology
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and leaf structure are not always consistent (Reich, 1995; Reich

et al., 1995), the deciduous species considered here all had a leaf
longevity shorter than 12 months, and evergreen species all had a
leaf longevity of 14 months or more (Figure S7; Kattge et al., 2011,
2020). While using the leaf habit dichotomy was sufficient to cap-
ture the contrasting strategies of the species considered here,
future studies, including a larger gradient of growing conditions
(where leaf longevity values may overlap between deciduous and
evergreen species), might benefit from grouping species by func-
tional groups based on differing leaf longevities. In such contexts,
leaf longevity could offer a more nuanced and informative gradi-
ent of strategies compared with the simplified dichotomy of leaf
habit (Reich et al., 1995).

At a broader level, it is worth reiterating that the trait values
used in this study were sourced from global databases and repre-
sent species-level means. We show that these values remain highly
relevant and offer strong predictive power for growth in managed
field settings, where interspecific competition is absent. This con-
tributes to a clearer picture of intrinsic trait-growth relationships,
establishing a baseline understanding that is not confounded by en-
vironmental filtering. However, we could not directly account for in-
traspecific trait variation, which could play a key role in determining
individual and population performance across environmental gradi-
ents and developmental stages (Westerband et al., 2021; Williams
et al., 2021). Future work incorporating in-situ trait measurements
would help refine these patterns and improve our understanding of
how functional traits influence tree growth rates in more variable

ecological contexts.

5 | CONCLUSIONS

Our analysis is to our knowledge the first to examine trait-growth
relationships of trees across both age and leaf habit while con-
trolling for interspecific competition. A central goal of functional
ecology is to reliably predict life history, demographic rates and
ecosystem functioning using a few easily measurable traits. Using
widely available trait data, we observed that the strength and di-
rection of trait-growth relationships vary with tree age and leaf
habit, providing evidence against the idea that species follow
fixed growth strategies throughout development. Our findings
contribute to a growing body of research showing that resource
acquisition and investment strategies change with ontogeny and
leaf habit, influencing trait-growth relationships. We show that
accounting for simple, easily measurable variables, such as age
and leaf habit allows functional trait data from global databases to
capture these dynamics, highly increasing their capacity to predict
demographic rates, such as growth.
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SUPPORTING INFORMATION

Additional supporting information can be found online in the
Supporting Information section at the end of this article.

Figure S1. Upset plot representing the distribution and overlapping
of tree species present among the different IDENT experiments
considered for period 0-3. Numbers in parentheses next to each
species indicate the number of individuals (n) sampled across
sites. Each intersection on the horizontal axis represents a unique
combination of sites where specific species are present, as indicated
by filled circles. The number on top of each bar reflects the number
of species shared across these site combinations, with species code
names displayed on each bar. Species are categorized as deciduous
or evergreens.

Figure S2. Upset plot representing the distribution and overlapping
of tree species present among the different IDENT experiments
considered for period 4-6. (Interpretation as in Figure S1).

Figure S3. Upset plot representing the distribution and overlapping
of tree species present among the different IDENT experiments
considered for period 7-9. (Interpretation as in Figure S1).

Figure S4. Trait values used to model growth for all species
considered, ordered by value and identified as belonging to a
deciduous or evergreen species.

Figure S5. Influence of Betula papyrifera on the relationship
between height growth rate and functional traits (SLA and LDMC)
for deciduous trees in period 0-3. Panels (a) and (b) show the
relationships between height growth and SLA and when Betula
papyrifera is included and excluded, respectively. Linear regression
lines illustrate that including Betula papyrifera shifts the direction
of the relationship between growth and LDMC. In the absence of
Betula papyrifera, the relationship between growth and SLA shows
an inverse pattern to that between growth and LDMC, consistent
with theoretical expectations.

Figure S6. Predictions from the supplementary model parameterized
without the inclusion of Betula papyrifera in the data. This figure
focuses on the relationships between height growth rate, SLA
and LDMC, as the associations with WD and SM were consistent
with those observed in the original trait-based model. The primary
finding here is the inverse relationship between SLA and LDMC for
deciduous tree growth during period 0-3, which aligns with the

discussion in the paper. This model helps to clarify the influence
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of Betula papyrifera on the trait-growth dynamics observed in the
primary analysis.

Figure S7. Leaf longevity values for all species considered, ordered.
Table S1. Species included in analysis and their associated code.
Table S2. Description and formulas of alternative models. Models
are divided into Hypothesis-driven and Baseline categories. Null
hypotheses for Hypothesis-driven models are tested by comparing
ELPD. Group-level effects are represented in grey.

Table $3. Model performance compared to the Main model based on
ELPD differences and their standard error.

Table S4. Model performance compared to MH4 based on ELPD
differences and their standard error.

Table S5. Prediction intervals of the differences between every
combination of period and leaf habit, 5% and 95% percentiles.
Absences of substantial differences are marked with . Focal
comparisons indicate the compared effects considered. For example,
‘LDMC, Period 0-3, Deciduous vs. Evergreen’ can be read as the
difference between the LDMC trait effect on deciduous growth and
the LDMC trait effect on evergreen growth for period 0-3; ‘LDMC,
Evergreen, Period 0-3 vs. Period 4-6’ can be read as the difference
between the LDMC trait effect on evergreen growth at period 0-3
and the LDMC trait effect on evergreen growth at period 4-6.
Table Sé. Bayesian hypothesis testing of growth differences across
time periods and leaf Habits: Hypotheses were tested using the
posterior distribution of regression coefficients from the Main
model. A hypothesis was considered supported if the posterior
probability exceeded 0.95 (equivalent to a 90% uncertainty interval

that excludes zero).
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