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Quantum spectroscopy with biphotons: Lyapunov-based input-output dynamics
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We develop a Lyapunov-based framework to model the evolution of entangled biphotons interacting with
cavity and material modes. Using Gaussian-preserving dynamics and Mgller operators, we map input joint
spectral amplitudes to experimentally measurable joint spectral intensities. Our model reproduces key features
of observed spectra and reveals off-diagonal correlations arising from cavity decay, providing a scalable and

tractable tool for quantum spectroscopic analysis.
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I. INTRODUCTION

Recent advances in quantum light spectroscopy have re-
vealed that quantum correlations in light can serve as powerful
probes of electronic and vibrational dynamics in condensed-
phase systems [1-18]. By operating in the few-photon regime,
these techniques minimize sample perturbation and access in-
formation encoded in many-body correlations—features that
are often masked in classical measurements. This sensitivity
becomes essential when probing ultrafast energy-conversion
processes in photovoltaic materials or fragile quantum coher-
ence in biological and molecular systems.

A central thrust in this field now focuses on how entan-
gled photons evolve upon interacting with complex matter.
Specifically, several theoretical [19,20] and experimental
[21-25] efforts are focused on the research of entangled
two-photon absorption (ETPA), establishing it as an actively
growing research area in spectroscopy [17,26-33]. In this,
the light-matter interaction imprints signatures of the ma-
terial’s internal correlations onto the joint properties of the
light field [34-38]. Specifically, spectroscopic protocols that
employ time-frequency entangled photon pairs generated via
spontaneous parametric downconversion (SPDC) offer new
pathways to interrogate material dynamics with high spec-
tral and temporal resolution [39—41]. In SPDC, a single
pump photon generates a correlated pair—signal and idler—
distributed over a continuum of frequencies while conserving
energy and momentum. The two-photon state is characterized
by the joint spectral amplitude (JSA), which encodes both
amplitude and phase correlations between the pair.

In practice, time-resolved coincidence counting introduces
integration over the detection delay, effectively collapsing the
measurement to the joint spectral intensity (JSI)—the squared
modulus of the JSA. This object, accessible in experiment,
captures the frequency-domain correlations shaped by both
the quantum state of the probe and its interaction with the
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material system. As we demonstrate below, the structure of
the JSI encodes key features of the underlying light-matter
dynamics and provides a versatile platform for extracting
coherence and correlation information beyond the reach of
classical spectroscopy.

To overcome the intrinsically low probability of light-
matter interactions at the single-photon level, quantum
spectroscopic protocols often require operation in the strong-
coupling regime. This regime is realized by embedding
materials within optical microcavities, which enhance the in-
teraction strength by both amplifying the local electric fields
and quantizing the electromagnetic (EM) modes that couple
to material excitations. These discrete EM modes not only
mediate efficient coupling between light and matter, but they
also enable access to dynamics involving multiple excitons,
thereby revealing the structure of many-body correlations that
govern material response.

When the coupling strength exceeds the dissipative losses,
light and matter hybridize to form polaritons—quasiparticles
that inherit characteristics of both photons and material ex-
citations. Polaritons serve as a robust platform for exploring
collective quantum phenomena, including Bose-Einstein con-
densation [42—44], superfluid transport and vortex formation
[45,46], and nonlinear optical behavior such as bistabil-
ity [47,48], four-wave mixing [49], and soliton propagation
[50,51]. In suitably engineered photonic lattices, polari-
tons can acquire topological properties, exhibiting chiral
edge modes and disorder-immune transport analogous to the
quantum Hall effect and topological insulators [52,53]. Fur-
thermore, in two-dimensional van der Waals materials such
as MoO3 and graphite, phonon-polaritons exhibit hyperbolic
dispersion [54-56], enabling deep subwavelength confine-
ment and directional energy flow. These strongly coupled
light-matter systems present an ideal testbed for quantum
spectroscopy. By probing their response with single- and
biphoton sources, one can extract signatures of many-body
interactions, quantum correlations, and nonclassical dynamics
that remain hidden in conventional optical measurements.

Interpreting experimental results in quantum spectroscopy
demands a rigorous theoretical framework, and several
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such approaches have recently emerged. Bittner et al. [34]
demonstrated that biphoton scattering and radiative cascade
processes in coupled molecular dimers can generate entan-
glement entropy in the outgoing biphoton state. Modeling
the dimer as a pair of anharmonically interacting excitons
embedded in a photonic continuum, they employed diagram-
matic techniques to show that the output entropy correlates
with both the interaction strength and the repulsive coupling.
Specifically, they show that if the biphotons affected a Raman
scattering off the biexcitons in such a way that the second
photon excitation occurs in the regime of slow modulation,
the transition moments of the two photon excitation processes
can be correlated. This scenario gives rise to an entanglement
entropy in the outgoing state of the biphotons and generates
entanglement entropy. However, this is not true if the second
photon excitation occurs within the homogeneous lifetime of
the bright polariton state. Complementary work by Li et al.
[35,36] developed a related framework using the Dicke model
and input-output theory [57,58] to analyze photon-photon cor-
relations in a Hong-Ou-Mandel (HOM) configuration [59]. In
this scheme, only one photon from a time-frequency entangled
pair interacts with a resonant medium, and its output state is
shaped by a transmission function that encodes the system’s
spectral response. The poles of this function define the under-
lying polariton branches and reveal the many-body dynamics
of the medium.

While these models successfully capture nonlinear pho-
tophysics and many-body correlations, they often involve
Hilbert spaces that scale exponentially with photon number
and mode discretization. For instance, modeling a biphoton
interacting with a cavity polariton via the Jaynes-Cummings
Hamiltonian yields a Hilbert space dimension of order
0(2?N+2), where N is the number of signal and idler photon
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modes. This exponential growth poses significant challenges
for numerical simulation and data interpretation. Moreover,
directly mapping the input JSA to the output JSI—the ex-
perimentally accessible observable—remains a nontrivial task
in many of these models. Developing a reduced, yet physi-
cally accurate, framework that captures this mapping while
remaining computationally tractable would provide a robust
foundation for extending quantum spectroscopy to more com-
plex and strongly correlated systems.

We employ Mgller operators to connect the input, interact-
ing, and output states of the system, thereby eliminating the
need for discrete-time gating and establishing a framework
directly aligned with experimental practice. These operators
provide a natural mechanism for linking the input and out-
put covariance matrices, with the transformation governed by
Lyapunov equations [60]. This formalism enables the direct
extraction of key observables, such as the purity of the output
biphoton state, from the Wigner function expressed in terms
of the covariance matrix. Importantly, the same framework
generalizes naturally to the Tavis-Cummings limit, allowing
for systematic exploration of collective light-matter interac-
tions in many-body systems. Within this approach, we show
that the predicted output JSI reproduces key features observed
in experiments involving biphoton interactions with an empty
microcavity, underscoring the consistency and applicability of
our model.

II. THEORETICAL FRAMEWORK

A. Hamiltonian

Consider a coupled-oscillator model of frequency-
entangled bath photons interacting with cavity modes and
material excitations according to the following Hamiltonian:
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where &, a' are the cavity modes, lss/i(a)), lsz/i(a)) are the

biphoton signal/idler operators, and the S‘f S; are operators of
the material modes that are assumed to be bosonic. The first
three terms of Eq. (1) are the free Hamiltonians of the cavity,
signal/idler photons, and the material, respectively. The fourth
term describes the bilinear coupling between the signal/idler
modes of the photons, and the last term describes the cou-
pling between the cavity and material modes. The coupling
terms obey the first Markov and rotating-wave approximations
(RWAs). The former assumes a uniform coupling strength,
and the latter removes rapid counter-rotating terms. These
approximations are common practices in the quantum optics
literature. The implication of the Markov approximation is
that the bandwidth of the SPDC produced photons has to be
very small so that it has little room for frequency-dependent
coupling. On the other hand, if we neglect the RWA, it leads
us to the Dicke model of quantum optics which exhibit other
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interesting physics such as superradiant phase transition and
lasing instability [61] and can be extended to the generalized
Dicke model.

We assume that the signal and idler photons begin in an
entangled state given by

W = / / doydwr Fun(ws, onbl (@51 @)|0)m: (2)

where Fin(wy, ;) =in (016! (w;)b]. (,)]0);n is the joint spec-
tral amplitude (JSA) of the input photons, and the subscript
“in” in the operators by, B}n acts on the input vacuum
|0)in. This two-dimensional correlation function quantifies the
degree of entanglement between the signal and idler photon
states.

Figure 1 shows an example of an experimental input and
output biphoton JSI for empty microcavities. The input JSA
represents a spectrally entangled state that is generated in
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FIG. 1. Experimental input and output JSI through an empty
microcavity. The input is a normalized state generated using SPDC
as described in Ref. [39]. Data reproduced from Malatesta et al. [39].

a type-I B-barium borate (BBO) crystal phase-matched for
SPDC with a pump wavelength of 343 nm [39]. This dictates
the signal/idler dispersion in Eq. (1). Several different input
states have also been experimentally produced as demon-
strated in Ref. [40].

The input biphoton state in Eq. (2) describes a pure bipho-
ton state. However, the corresponding output state need not
remain pure and therefore cannot be written in the same form.
To overcome this limitation, we take the Weyl transform of
the input state and represent it using its Wigner function [62],

—L@—a) O~ (a—a)
2r)'V10]

Here o € C?"*2" m, n are the dimensions of the biparti-
tioned subspaces, and © is the correlation matrix of modes
from Eq. (1). We take & = 0 since local transformations do
not change the entanglement structure. Equation (3) is now
only a function of the correlation matrix, and it allows us to
represent the output state via the correlation matrix and the
Wigner function.

According to the input-output formalism [57,58], the out-
put and the input operators are related to the coupled cavity
mode as

Wipl(a) = 3)

bow(t) = bin(t) + Vxa(t). 4

This form of the input-output relation assumes the trans-
mission of the input photons completely onto the output
without reflections back to the input vacuum. Since these
modes admit asymptotic solutions in time as the initial and
final states, we can relate the freely evolving input and output
modes from Egs. (4) with the interacting modes using Mgller
operators [63],

Q. = lim €M it (@)
t—Foo
Qubiou(t) = b(2), (©6)

where Hy and H are the free and interacting Hamiltonians, and
biniout (1), b() are the free and interacting modes, respectively.
More generally, we can define a vector of modes as

X(t) = (by(t), bi(t), a(t), $(t))" (7)

and define the Mgller operators for these modes as

A /i s/i s/i s/:

QY = lim M+l =il 8

£ =, m (@)

Q¢ = lim Al il ©)
t—F0o0

Qn = lim Y il (10)
t—F0o0

X(1) = diag(Q2}, Q. Q5 Q) ivours (11)

where the specified Hamiltonians are marked in Eq. (1).

B. Governing equation of the model

We note that all the operators in the system Hamiltonian
(1) are bilinear. As a result, the unitary operator e~ " is a
Gaussian-preserving map, allowing us to reflect all the dy-
namics of our system in the first moments and covariances
[62]. We can also use Wick’s theorem to contract higher-order
moments into these first- and second-order moments. This is
useful since we can perform our dynamics with finite-matrix
theory without dealing with an exponentially growing Hilbert
space. The equation of motion for the operators can then be
written in a linearized form as

x_ —i[H, x] + L(x), (12)

dt
where L is the Lindbladian. Assuming a high cavity quality
factor (Q-factor) such that the Markov approximation is well
motivated, we shall ignore the dissipative dynamics, and con-
sequently the Lindbladian from Eq. (12) in this study [L(x) =
0]. The QO-factor fixes the linewidth of the cavity’s power
spectrum and constrains the photonic bandwidth required
for resonant interactions. More specifically, if the free-cavity
Hamiltonian is defined as

H = h(w, — ik)a'a, (13)
then this implies a leaky cavity with rate k and sets the scale of
the biphoton frequencies necessary for resonant interactions.
Since the Q-factor is defined as Q = ’5"7“0, the photonic band-
width is bounded by [0, %] for a given range of Q-factors.
The theory outlined in this paper assumes a lossless cavity
which requires approximately Q > 103 and consequently sets
the scale for the photonic bandwidth to be produced by SPDC
for resonant interactions to Awy; € [0, 1.809 meV]. We see
that our experiment readily covers this bandwidth in Fig. 1
and motivates our lossless cavity assumption.

We can now use the Heisenberg equations of motion to
simplify the equation

dx

i W -x, (14)
where W is called the dynamical matrix. For one pair of
signal and idler photons coupled to the cavity and material
excitation, the dynamical matrix, W, takes the form

—iw; 0 —ig 0

_ 0 —iw; —ig 0
W= —ig —ig —iw. —Ak| (a5)

0 0 -k —iQ

053715-3



DAMBAL, KANDADA, AND BITTNER

PHYSICAL REVIEW A 112, 053715 (2025)

For the second moments, we can define the covariance
matrix as

O = (x-x") — (x) - (xT) (16)

and the equation of motion for the covariances can be derived
to be

dO(t) <dx + de>
=(— -x X —
dr dr dr
dx i dxt
—<Z>(X ) — (x)<?>, (17)
d(zt(t) —W.00) +00) W, (18)

where Eq. (14) has been used. Equation (18) is known as the
Sylvester differential equation, and its stationary form is the
well-known Lyapunov equation used in the study of chaos
[60]. Solving the Sylvester equation allows us to understand
the evolution of signal-idler correlations as they interact with
a microcavity. In solving this, we must ensure that it is consis-
tent with the boundary conditions of the correlation matrix. To
establish this, we convert it into its respective input and output
forms as follows:

d®in(t) T
ar = Q@) - W'+ W .- 0,@), (19)
dOgy (1
d—t‘() = Oou(t) - W + W' Ogu(1). (20)

Since the output correlation matrix evolves back in time,
we reflect that by switching the Hermitian conjugated dynam-
ical matrices in the two terms. Taking the Laplace transform
of Egs. (19) and (20), we get

20in(2) — Oin(t — —00) = O(2) - W+ W - Bin(2), (21)

200ut(2) — Oou(t = +00) = Oou(z) - W + W - Bou(2),
(22)

where O, (f — +00) is the correlation matrix of the output.
We take z = 0 so that ©(z = 0) = [ ©(¢)dt is the integration
of correlations over all time. Since the biphotons are taken to
be noninteracting at asymptotic times and interacting at finite
times, this time-integrated quantity effectively captures the
experiment’s dynamics. It evolves under the full Hamiltonian
and is useful in setting up our boundary conditions. Fixing
z = 0, we obtain

O (0) - W + W - 01,(0) + O (r — —00) =0, (23)
Oout(0) - W + W Oou(0) + Opu(t — +00) = 0. (24)
Solving for these equations, we get

Oout(t — +00) = Op(z=0)- W' + W - Bi,(z = 0)

— Bz =0)- W = W' Oz = 0) + Oyt — —00).
(25)

To find the output correlation function after all interactions
have died out, we need to express Oou(z = 0) in terms of
Oin(z = 0). For this, we go back to Eq. (14) and take its
Laplace transform

2X(2) = xin(f = —00) = WinX(2), (26)

where Wi, = W is the dynamical matrix responsible for propa-
gating the vector of moments forward in time from t — —oo.
To connect this to the moments at t — +oo, we define W, =
W7 and propagate the moments backward in time using the
Laplace transform

2X(2) = Xou(t = +00) = WouX(2), 27)

where we can eliminate the intermediate vector of operators
and obtain

Xout(2) = —(Wour — 2)(Wiy — Z)_lxin(Z)~ (28)

Let us assign (Woy — 2)(Wiy — 2)~! = S. This matrix takes
the form of Mgller operators as defined in Eqgs. (8)—(10).
Equation (28) physically says that the input modes are prop-
agated forward in time and the output modes are propagated
backward in time under the interacting Hamiltonian. In doing
s0, both modes must meet at a common point in time, ¢, to
maintain continuity. This forms the essence of the connection
between the input and output Heisenberg operators. Since the
covariance matrix is defined as

F(@injout - ¥ 0w = Otnsout (2), 29)

we can write the transformation between the input and output
covariance matrices as

Oout(z = 0) = —SO;,(z = 0)S". (30)

Now we substitute Eq. (30) in (25) to obtain the connection
between the input and output covariance matrices as

Ouut(t = +00) = Ouu(z=0)- W' + W - Bi(z = 0)
+ 8Oz =0)S"- W+ W'
28Oz =0)S" + Ot > —00). (31)

Thus, Eq. (31) establishes the connection between the input
correlations at t — —oo with the output correlations at ¢t —
00 and becomes the governing equation of our method.

In the absence of the signal/idler photon interactions with
the cavity, the dynamical matrix represents a free-evolution,
W =W, where the off-diagonal signal/idler-cavity coupling
g = 0. The signal/idler subspace of W, is then diagonal. Con-
sequently, these photons do not interact with the material
degrees of freedom. In this case, the first four terms of Eq. (31)
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FIG. 2. Broad overview of the spectroscopic apparatus and the theoretical framework. (a) Schematic of the experimental setup demon-
strated by the theoretical framework developed in this work. (b) Schematic of the boundary conditions connecting the input to the output

mediated by interactions with a cavity.

do not contribute to the signal/idler subspace of the output
covariance matrix, ®q,(f — +00), and thus the output JSA
is identical to the input JSA contained in the initial covariance
matrix, i, (r — —o0). When g # 0, the first four terms make
anondiagonal contribution to the subspace of Oy (f — +00),
and we obtain a mapping from O;,(f - —00) = Oy (t —
+00) under interactions.

This model is also robust to the number of material degrees
of freedom present in the cavity as long as the Hamiltonian
in Eq. (1) generates a Gaussian-preserving map. This means
that it can be applied equally well to monomeric, dimeric,
and other polymeric systems under the two-level approxima-
tion. An illustration of such an experimental setup and the

J

theoretical boundary conditions that we described earlier is
shown in Figs. 2(a) and 2(b).

C. Extension to the continuous spectrum

Having laid the theoretical groundwork to describe the ex-
periment, we can now trivially extend this model and create a
continuous spectrum of frequency-entangled biphotons. Rec-
ognizing that the JSA is a correlation between the signal and
idler frequencies, we enter this into the off-diagonal elements
of the signal/idler subspace in the extended covariance matrix.
The extended dynamical and covariance matrices now look
like

—iwy) 0 0 0 0 0 —ig 0
0 —iwyg 0 0 0 0 —ig 0
0 0 —iwgy, 0 0 0 —ig 0
_ 0 0 0 —iwj] 0 0 —ig 0
=1 0 - 0 0 —iwp 0  —ig 0 | (32)
0 0 0 0 0 cee o —lwy,  —Ig 0
—ig —ig —ig —ig —ig —ig  —iw, —Ai/Kk
0 0 0 0 0 0 —Vk =i
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2 0 0 F(ws1, wi1)  F(ws1, o) F(wg,wy) 0 0
0 % 0 F(wg, wir) F(wgp,wy) 0 0
: : 0 : : : .
0 O % F(a)sny a)il) F(a)m, wiZ) F(wsn’ win) O O
i
Ot — —00) = F(wst, wi1)  Flwg, wp) F (g1, 0i) ! 0 0 0 0
F(CL)SQ, wil) F(wﬂ’ a)in) 0 % e 0 0
F(wg, wi1)  F(wg, wp) F(wg, Win) 0 0 % 0 0
(33)

These matrices can now be input in Eq. (31) to obtain the
output biphoton correlations. Note that the presence of off-
diagonal terms in the correlation matrix contributes towards
quantum correlations when expressed in the Wigner function
in Eq. (3). These purely quantum correlations can be calcu-
lated using the quantum discord between two subsystems, and
they are realized as entangled-photon pairs.

D. Entanglement entropy

The formalism we work out in this paper also allows us to
calculate some important quantities of interest with ease using
the Wigner function described in Eq. (3). For example, to find
the entanglement of the output biphoton states, we perform a
Schmidt decomposition of the output JSA,

Foulwr, 02) = Y ryUn(@1)Vp(@2), (34)

n

where r,, are the singular values, and U, (w1), V,(w,) are the
left and right eigenvalues of the JSA. The von Neumann
entropy can then be calculated as

S=-Y rinr;. (35)

Since purity is defined as i = Tr(p?), we observe that for
any operator Oy that admits a well-defined Wigner function,
Wi (o), we can use the overlap property between Wigner func-
tions and write

wOF — +00)] = / d*"XW*(X) (36)

1
= (37

V184t = +00)[’

where |®/;| refers to the correlation matrix obtained by trac-
ing out the material and cavity degrees of freedom. This
correlation matrix lives in the reduced subspace of the sig-
nal/idler photon channels. Equation (37) can now be used to
understand the output purity of the biphotons at asymptotic
time.

This framework, aided by the Wigner function using corre-
lation matrices, provides a strong theoretical tool to calculate
many other observables. Providing an exhaustive discussion

(

to find such observables is beyond the scope of this work, and
we encourage the readers to refer to Ref. [62].

III. RESULTS
A. Gaussian initial JSI

To further illustrate our theoretical framework, we begin
by considering an input JSI that is an antisymmetric Gaussian
state centered at any arbitrary point along the diagonal. The
correlation matrix can be trivially written for this state, and
the resulting output correlation matrix can be obtained using
Eq. (31). In Fig. 3, we observe that this does not cause a
significant change in the output JSI. This is because an anti-
symmetric Gaussian JSI corresponds to a state of low entropy.
As aresult, this leaves little room for an observable change in
the final JSI from any information transfer into the cavity.

B. Experimental initial JSI

To benchmark the model, we take an experimental input
JSI and estimate the dynamics. In Fig. 4, we see that the
JSI shifts towards higher idler and lower signal wavelengths.
Since the system is set up such that the cavity and material
dispersions are nearly in resonance with the idler wavelength
(=681 nm), these energies are preferentially absorbed by the
cavity and material with a higher probability as compared
to the signal photons. As a result, we see a shift in the JSI

700

Signal Wavelength (nm)
Normalized JSI

675 680 685 690 695 675 680 685 690 695 700
Idler Wavelength (nm) Idler Wavelength (nm)

FIG. 3. Initial and final JSI for a theoretical squeezed Gaussian.
The final JSI is simulated at /k = 488 meV(2540.7 nm). Other
parameters of the model are w, = 2 = 1809 meV(685.4 nm), and
the peak of the squeezed Gaussian in the above plot in frequency is
at w; = 1819 meV(681.6 nm), w, = 1790 meV(692.7 nm).
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FIG. 4. Joint spectral intensity (JSI) for different cavity-material coupling strengths /k. In (a), we take the experimental input JSI; (b)—
(d) show the final JSI of the output state at several cavity-material coupling strengths. We observe the squeezing of the JSI resembling the
filtering effect known to occur due to cavities. In addition to the expected shift in the peak of the JSI towards higher idler wavelengths, we
also see the emergence of off-diagonal peaks. This can be ascribed to the irreversible decay of cavity-material excitations to the output quasi-
signal/idler continua in a Lorentzian shape centered at the resonant frequency.

towards higher idler wavelengths (lower frequencies). For
higher coupling strengths, this process occurs at a much faster
time scale because of an increase in the Rabi frequency. As a
result, for asymptotic output times, the JSI tends to saturate
toward higher (lower) idler (signal) wavelengths for higher
values of the coupling /k. The reciprocal behavior between
the signal and idler shifts is due to the conservation of energy.
We also see a squeezing of the map, indicating the filtering
effect of cavities. This result is in close agreement with the
experimental study conducted in empty microcavities [39] as
seen in Fig. 1.

Figure 4 reveals the emergence of peaks along the
off-diagonal, indicating an amplification of signal-idler corre-
lations between specific frequency modes. This behavior can
be understood by recognizing that our system comprises two
discrete modes—the cavity and material excitations—and two
continua of states: the signal and idler modes. Bittner et al.
[34] also proved that by measuring the change in the photon
entanglement entropy, one can find a direct measure of mate-
rial correlations. To quantify this, we study its von Neumann
entropy given in Eqgs. (34) and (35). In Fig. 6, we see that
the output entanglement entropy decreases monotonically as a
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FIG. 5. Emergence of peaks along the off-diagonal. The levels “c” and “m” correspond to the cavity and material resonances. The idler
and signal continua are discretized in the formalism and presented here as energy levels with constant spacing. The quasicontinua are the states
resulting from the coupling of the cavity-material modes with the signal/idler modes. The yellow curves correspond to the initial correlations
present in the JSI, while the blue curves denote the overlap of the discrete cavity/material states with the quasicontinua. These blue curves are
symmetric with respect to the signal and idler channels and thus contribute to the off-diagonal correlations emerging in the output JSI.

function of the coupling strength, /k. This occurs because the
relatively preferential absorption of the idler photons by the
cavity and material modes degrades the correlations between
the signal and idler photons. For dimers, the rate of decrease
is higher than that for monomers, as seen by the red curve.
This is because excitations can explore a higher Hilbert space
and delocalize into these modes faster in the same amount
of time. An intriguing aspect of this plot is that the entropy
increases after a certain value of the coupling strength. This
points toward a revival of strong correlations in the output
signal and idler photons.

To capture the dynamics of a discrete mode coupled to
a continuum, one typically discretizes the continuum, com-
putes the transition amplitudes, and then takes the continuum
limit by letting the discretization spacing approach zero. This
procedure enables the calculation of physically relevant quan-
tities, such as level shifts, decay rates, cross sections, and
more. A detailed account of this formalism is provided in
Ref. [64]. When a discrete mode couples to multiple discrete
states that are well isolated from other states in the system,

0.48 —— Monomer

—— Dimer
0.47
0.46

0.45 A

Sout

0.44 -

0.43 A

0.42 A

106 213

VK (meV)

319

FIG. 6. Von Neumann entropy of output for a monomer vs dimer
placed within a cavity. We observe a faster decay of entropy for a
dimer as compared to that of a monomer.

the resulting transition amplitude becomes a superposition of
Rabi oscillations with varying frequencies and amplitudes. In
the continuum limit, these superpositions lead to an effective
irreversible decay of the discrete mode into the continuum,
forming a quasicontinuum. The resulting overlap of the dis-
crete state with the quasicontinuum forms a Lorentzian line
shape centered at the discrete state energy with a width Al",
where I" denotes the decay rate of the mode. These features
are not due to open quantum system dynamics, rather are
purely closed system effects.

In our setup, when the discrete cavity mode couples to the
signal-idler continua, the cavity excitations decay equally into
both continua for the same values of signal-idler frequencies.
Since the initial correlations are antisymmetric with respect
to the signal and idler, and lie along the diagonal, this decay
process leads to the emergence of off-diagonal correlations,
manifesting as peaks in Fig. 4, and schematically illustrated
in Fig. 5. The JSI plotted here is obtained by tracing out the
signal-idler submatrix from the final correlation matrix of the
complete system, and thus reflects the excitations that have
decayed into the quasicontinuum.

Additionally, if the material were coupled to the continua in
such a way that the ratio of its couplings did not lie in limiting
regimes, the resulting output states would exhibit features
characteristic of Fano-type line shapes. In such a scenario, the
JSA line shapes developed in the output would be asymmetric
about the cavity resonance. When applied to both the signal
and idler channels, and depending on the detuning between
the cavity and material, we expect a superposition of each of
these asymmetric line shapes to appear in the off-diagonal
region of the output JSI. These observations would then
be characteristic of many-body interactions occuring in our
material-cavity system. The trends observed above highlight
the capability of photon entanglement to serve as a sensitive
probe for exploring many-body interactions and correlations
in quantum spectroscopy.

The simplified structure of our model offers significant
analytical tractability and a framework to connect input and
output observables. Despite its simplicity, it successfully re-
produces the experimentally obtained JSI, and establishes a
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practical baseline for interpreting the role of entanglement
in quantum spectroscopic signals. That said, the formalism
inherently excludes certain physical processes, such as pure
dephasing, which are typically modeled by 6*-type jump op-
erators within the Lindbladian. By assuming the Hamiltonian
to be in a bilinear form, we preclude the description of non-
Markovian dynamics, intermode crosstalk, and multiphoton
interactions. These effects may arise from energetic disorder,
spatial inhomogeneity, or cascaded transitions [36]. We plan
to use the present formalism as a robust foundation and incor-
porate these complexities in our future investigation.

IV. SUMMARY

Recent advancements in quantum light spectroscopy have
revealed exciting possibilities of using entangled photons as
sensitive probes of many-body dynamics and correlations in
materials. Although experimental and theoretical efforts con-
tinue to evolve in parallel, the literature still lacks a framework
that accurately explains observed phenomena. The exponen-
tial growth of the Hilbert space and the presence of nonlinear
and many-body effects make direct simulations computation-
ally prohibitive. To address this, we reformulated the problem
using a finite-sized correlation matrix based on a bilinear
bosonic Hamiltonian, leading to Gaussian-preserving time
evolutions. This approach allows us to retain the essential
physical dynamics that occur in bipolaritonic systems.

We applied our model to an experimentally measured JSI
of frequency-entangled biphotons generated through sponta-
neous parametric downconversion. Our simulations predict
a shift in the output JSI that is consistent with the experi-
mental observations. Moreover, we observed the emergence

of off-diagonal peaks in the JSI, which indicate enhanced
correlations between specific signal-idler frequency pairs. We
interpret these features as signatures of a discrete cavity mode
decaying into the continua of signal and idler modes. This
decay redistributes the spectral amplitudes and gives rise to
interference effects similar to Fano resonances.

These results underscore the sensitivity of biphoton en-
tanglement to serve as a probe in quantum spectroscopic
experiments. Finally, we plan to use this as a theoretical base-
line to extend and incorporate more complex interactions in
our future work.
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