

Universal Perfect Samplers for Incremental Streams*

Seth Pettie
 University of Michigan
 pettie@umich.edu

Dingyu Wang
 University of Michigan
 wangdy@umich.edu

Abstract

Given $G: \mathbb{R}_+ \rightarrow \mathbb{R}_+$, the G -moment of a vector $\mathbf{x} \in \mathbb{R}_+^n$ is $G(\mathbf{x}) \stackrel{\text{def}}{=} \sum_{v \in [n]} G(\mathbf{x}(v))$ and the G -sampling problem is to select an index $v_* \in [n]$ according to its contribution to the G -moment, i.e., such that $\mathbb{P}(v_* = v) = G(\mathbf{x}(v))/G(\mathbf{x})$. Approximate G -samplers may introduce multiplicative and/or additive errors to this probability, and some have a non-trivial probability of failure.

In this paper we focus on the *exact* G -sampling problem, where G is selected from the following class of functions.

$$\mathcal{G} = \left\{ G(z) = c \mathbb{1}[z > 0] + \gamma_0 z + \int_0^\infty (1 - e^{-rz}) \nu(dr) \mid c, \gamma_0 \geq 0, \nu \text{ is positive and } \int_0^\infty \min\{1, r\} \nu(dr) < \infty \right\}.$$

The class \mathcal{G} is perhaps more natural than it looks. It captures all Laplace exponents of non-negative, one-dimensional Lévy processes, and includes several well studied classes such as p th moments $G(z) = z^p$, $p \in [0, 1]$, logarithms $G(z) = \log(1 + z)$, Cohen and Geri's [6] soft concave sublinear functions, which are used to approximate concave sublinear functions, including cap statistics.

We develop G -samplers for a vector $\mathbf{x} \in \mathbb{R}_+^n$ that is presented as an incremental stream of positive updates. In particular:

- For any $G \in \mathcal{G}$, we give a very simple G -sampler that uses 2 words of memory and stores at all times a $v_* \in [n]$, such that $\mathbb{P}(v_* = v)$ is *exactly* $G(\mathbf{x}(v))/G(\mathbf{x})$.
- We give a “universal” G -sampler that uses $O(\log n)$ words of memory w.h.p., and given any $G \in \mathcal{G}$ at query time, produces an exact G -sample.

With an overhead of a factor of k , both samplers can be used to G -sample a sequence of k indices with or without replacement.

Our sampling framework is simple and versatile, and can easily be generalized to sampling from more complex objects like graphs and hypergraphs.

1 Introduction

We consider a vector $\mathbf{x} \in \mathbb{R}_+^n$, initially zero, that is subject to a stream of incremental (positive) updates¹

$\text{Update}(v, \Delta)$: Set $\mathbf{x}(v) \leftarrow \mathbf{x}(v) + \Delta$, where $v \in [n], \Delta > 0$.

The G -moment of \mathbf{x} is $G(\mathbf{x}) = \sum_{v \in [n]} G(\mathbf{x}(v))$ and a G -sampler is a data structure that returns an index v_* with probability proportional to its contribution to the G -moment.

DEFINITION 1.1. (APPROXIMATE/PERFECT/TRULY PERFECT G -SAMPLERS [9, 10, 8]) Let $G: \mathbb{R}_+ \rightarrow \mathbb{R}_+$ be a function. An *approximate G -sampler* with parameters (ϵ, η, δ) is a sketch of \mathbf{x} that can produce an index $v_* \in [n] \cup \{\perp\}$ such that $\mathbb{P}(v_* = \perp) \leq \delta$ ($v_* = \perp$ is failure) and

$$\mathbb{P}(v_* = v \mid v_* \neq \perp) \in (1 \pm \epsilon)G(\mathbf{x}(v))/G(\mathbf{x}) \pm \eta.$$

If $(\epsilon, \eta) = (0, 1/\text{poly}(n))$ we say the sampler is *perfect* and if $(\epsilon, \eta) = (0, 0)$ it is *truly perfect*.

In this paper we work in the *random oracle* model and assume we have access to a uniformly random hash function $H: [n] \rightarrow [0, 1]$.

*This work was supported by NSF Grant CCF-2221980.

¹ \mathbb{R}_+ is the set of non-negative reals.

1.1 Prior Work Much of the prior work on this problem considered L_p -samplers, $p \in [0, 2]$, in the more general turnstile model, i.e., \mathbf{x} is subject to positive and negative updates and $G(z) = |z|^p$. We survey this line of work, then review G -samplers in incremental streams.

L_p -Sampling from Turnstile Streams. Monemizadeh and Woodruff [12] introduced the first $\text{poly}(\epsilon^{-1}, \log n)$ -space L_p -sampler. (Unless stated otherwise, $\eta = 1/\text{poly}(n)$.) These bounds were improved by Andoni, Krauthgamer, and Onak [1] and then Jowhari, Sağlam, and Tardos [11], who established an upper bound of $O(\epsilon^{-\max\{1,p\}} \log^2 n \log \delta^{-1})$ bits, and an $\Omega(\log^2 n)$ -bit lower bound whenever $\epsilon, \delta < 1$. Jayaram and Woodruff [9] proved that efficient L_p -samplers need not be approximate, and that there are *perfect* L_p samplers occupying $O(\log^2 n \log \delta^{-1})$ bits when $p \in [0, 2)$ and $O(\log^3 n \log \delta^{-1})$ bits when $p = 2$. By concatenating k independent L_p -samplers one gets, in expectation, $(1 - \delta)k$ independent samples *with replacement*. Cohen, Pagh, and Woodruff [7] gave an $O(k \cdot \text{poly}(\log n))$ -bit sketch that perfectly samples k indices *without replacement*. Jayaram, Woodruff, and Zhou [10] studied the distinction between *perfect* and *truly perfect* samplers, proving that in turnstile streams, perfect samplers require $\Omega(\min\{n, \log \eta^{-1}\})$ -bits, i.e., truly perfect sampling with non-trivial space is impossible.

G -Sampling from Incremental Streams. In incremental streams it is straightforward to sample according to the F_0 or F_1 frequency moments (i.e., G -sampling with $G(z) = \mathbb{1}[z > 0]$ and $G(z) = z$, resp.²) with a Min-sketch [2] or reservoir sampling [15], respectively. Jayaram, Woodruff, and Zhou [10] gave truly perfect G -samplers for any monotonically increasing $G: \mathbb{N} \rightarrow \mathbb{R}_+$ with $G(0) = 0$, though the space used is $\Omega(\frac{\|\mathbf{x}\|_1}{G(\mathbf{x})} \log \delta^{-1})$, which in many situations is $\Omega(\text{poly}(n) \log \delta^{-1})$.³

Cohen and Geri [6] were interested in G -samplers for the class of concave sublinear functions (CSF), which are those that can be expressed as

$$\text{CSF} = \left\{ G(z) = \int_0^\infty \min\{1, zt\} \nu(dt) \mid \text{non-negative } \nu \right\}.$$

This class can be approximated up to a constant factor by the *soft concave sublinear* functions (SoftCSF), namely those of the form

$$\text{SoftCSF} = \left\{ G(z) = \int_0^\infty (1 - e^{-zt}) \nu(dt) \mid \text{non-negative } \nu \right\}.$$

Cohen and Geri [6] developed *approximate* G -samplers for $G \in \text{SoftCSF}$, a class that includes F_p moments ($G(z) = z^p$), for $p \in (0, 1)$, and $G(z) = \log(1 + z)$. In their scheme there is a linear tradeoff between accuracy and update time. Refer to Cohen [5] for a comprehensive survey of sampling from data streams and applications.

1.2 New Results In this paper we build *truly perfect* G -samplers with $(\epsilon, \eta, \delta) = (0, 0, 0)$ for any $G \in \mathcal{G}$.

$$\mathcal{G} = \left\{ G(z) = c\mathbb{1}[z > 0] + \gamma_0 z + \int_0^\infty (1 - e^{-rz}) \nu(dr) \right\},$$

such that $c, \gamma_0 \geq 0$, ν is non-negative, and $\int_0^\infty \min\{t, 1\} \nu(dt) < \infty$.

The class \mathcal{G} is essentially the same as SoftCSF, but it is, in a sense, the “right” definition. According to the Lévy-Khintchine representation of Lévy processes, there is a bijection between the functions of \mathcal{G} and the Laplace exponents of non-negative, one-dimensional Lévy processes, aka *subordinators*, where the parameters c, γ_0, ν are referred to as the *killing rate*, the *drift*, and the *Lévy measure*, respectively. (Lévy processes and the Lévy-Khintchine representation are reviewed in §2.)

The connection between \mathcal{G} and non-negative Lévy processes allows us to build simple, truly perfect samplers. Given a $G \in \mathcal{G}$, let $(X_t)_{t \geq 0}$, $X_t \in \mathbb{R}_+$, be the corresponding Lévy process. We define the *Lévy-induced level function* $\ell_G: \mathbb{R}_+ \times [0, 1] \rightarrow \mathbb{R}_+$ to be

$$(1.1) \quad \ell_G(a, b) = \inf\{t \mid \mathbb{P}(X_t \geq a) \geq b\}.$$

² $\mathbb{1}[\mathcal{E}] \in \{0, 1\}$ is the indicator variable for the event/predicate \mathcal{E} .

³For example, take $G(z) = \sqrt{z}$ and $\mathbf{x}(1) = \dots = \mathbf{x}(n) = n$, then $\frac{\|\mathbf{x}\|_1}{G(\mathbf{x})} = n^2/n^{3/2} = \sqrt{n}$.

Algorithm 1 Generic Perfect G -Sampler

Specifications: The only state is a pair $(v_*, h_*) \in [n] \cup \{\perp\} \times \mathbb{R}_+ \cup \{\infty\}$. Initially $(v_*, h_*) = (\perp, \infty)$ and (implicitly) $\mathbf{x} = 0^n$. After processing a stream of vector updates $\{(v_i, \Delta_i)\}_i$, $(v_i, \Delta_i) \in [n] \times \mathbb{R}_+$, $\mathbb{P}(v_* = v) = G(\mathbf{x}(v))/G(\mathbf{x})$. $H: [n] \rightarrow [0, 1]$ is a hash function. We use $\text{Exp}(\lambda)$ to denote the exponential distribution with rate λ .

```

1: procedure UPDATE( $v, \Delta$ ) ▷  $\mathbf{x}(v) \leftarrow \mathbf{x}(v) + \Delta$ 
2:   Generate fresh  $Y \sim \text{Exp}(1)$ .
3:    $h \leftarrow \ell_G(Y/\Delta, H(v))$  ▷  $\ell_G$  is level function of  $G$ 
4:   if  $h < h_*$  then
5:      $(v_*, h_*) \leftarrow (v, h)$ 
6: end procedure

```

The generic G -Sampler (Algorithm 1) uses ℓ_G to sample an index v proportional to $G(\mathbf{x}(v))$ with just 2 words⁴ of memory.

THEOREM 1.1. (*G-SAMPLER*) *Fix any $G \in \mathcal{G}$. The generic G -Sampler stores a pair $(v_*, h_*) \in [n] \times \mathbb{R}_+$ such that at all times, $\mathbb{P}(v_* = v) = G(\mathbf{x}(v))/G(\mathbf{x})$, i.e., it is a truly perfect G -sampler with zero probability of failure.*

Since $\ell_G(a, b)$ is increasing in both arguments, among all updates $\{(v_i, \Delta_i)\}$ to the generic G -Sampler, the stored sample must correspond to a point on the (minimum) Pareto frontier of $\{(Y_i/\Delta_i, H(v_i))\}$. Thus, it is possible to produce a G -sample for any $G \in \mathcal{G}$ simply by storing the Pareto frontier. (This observation was also used by Cohen [4] in her approximate samplers.) The size of the Pareto frontier is a random variable that is less than $\ln n + 1$ in expectation and $O(\log n)$ with high probability.

THEOREM 1.2. *Suppose ParetoSampler processes a stream of $\text{poly}(n)$ updates to \mathbf{x} . The maximum space used is $O(\log n)$ words with probability $1 - 1/\text{poly}(n)$. At any time, given a $G \in \mathcal{G}$, it can produce a $v_* \in [n]$ such that $\mathbb{P}(v_* = v) = G(\mathbf{x}(v))/G(\mathbf{x})$.*

Algorithm 2 ParetoSampler

Specifications: The state is a set $S \subset \mathbb{R}_+ \times [0, 1] \times [n]$, initially empty. The function **Pareto**(L) returns the (minimum) Pareto frontier of the tuples L w.r.t. their first two coordinates.

```

1: procedure UPDATE( $v, \Delta$ ) ▷  $\mathbf{x}(v) \leftarrow \mathbf{x}(v) + \Delta$ 
2:   Generate fresh  $Y \sim \text{Exp}(1)$ .
3:    $S \leftarrow \text{Pareto}(S \cup \{(Y/\Delta, H(v), v)\})$ 
4: end procedure

5: procedure SAMPLE( $G$ ) ▷  $G \in \mathcal{G}$ 
6:   Let  $\ell_G: \mathbb{R}_+ \times [0, 1] \rightarrow \mathbb{R}_+$  be the level function of  $G$ 
7:    $(a_*, b_*, v_*) \leftarrow \text{argmin}_{(a, b, v) \in S} \{\ell_G(a, b)\}$ 
8:   Return( $v_*$ ) ▷  $v_* = v$  sampled with probability  $G(\mathbf{x}(v))/G(\mathbf{x})$ .
9: end procedure

```

In Appendix A, we show that both G -Sampler and ParetoSampler can be modified to sample *without replacement* as well. One minor drawback of the generic G -Sampler is that we have to compute the level function for G . For specific functions G of interest, we would like to have explicit, hardwired expressions for the level function. An example of this is a new, simple $F_{1/2}$ -Sampler presented in Algorithm 3. Why Line 3 effects sampling according to the weight function $G(z) = z^{1/2}$ is explained in §4. (Here erf^{-1} is the inverse Gauss error function, which is available as `scipy.special.erfinv` in Python.)

⁴We assume a word stores an index in $[n]$ or a value in \mathbb{R}_+ . See Remark 3.1 in §3 for a discussion of bounded-precision implementations.

Algorithm 3 $F_{1/2}$ -Sampler

Specifications: The state is $(v_*, h_*) \in [n] \cup \{\perp\} \times \mathbb{R}_+ \cup \{\infty\}$, initially (\perp, ∞) . After processing a stream of updates, $\mathbb{P}(v_* = v) = \sqrt{\mathbf{x}(v)} / \sum_{u \in [n]} \sqrt{\mathbf{x}(u)}$.

```

1: procedure UPDATE( $v, \Delta$ )  $\triangleright \mathbf{x}(v) \leftarrow \mathbf{x}(v) + \Delta$ 
2:   Generate fresh  $Y \sim \text{Exp}(1)$ .
3:    $h \leftarrow \sqrt{2Y/\Delta} \cdot \text{erf}^{-1}(H(v))$   $\triangleright \text{erf}$  : Gauss error function
4:   if  $h < h_*$  then
5:      $(v_*, h_*) \leftarrow (v, h)$ 
6: end procedure

```

Lemma 1.1 is the key that unlocks all of our results. It shows that for any $\lambda > 0$, Lévy-induced level functions can be used to generate variables distributed according to $\text{Exp}(G(\lambda))$, which are directly useful for truly perfect G -sampling and even G -moment estimation.

LEMMA 1.1. (LEVEL FUNCTIONS) *For any function $G \in \mathcal{G}$, there exists a (deterministic) function $\ell_G: (0, \infty) \times (0, 1) \rightarrow \mathbb{R}_+$ satisfying:*

2D-monotonicity. *for any $a, a' \in \mathbb{R}_+$ and $b, b' \in [0, 1]$, $a \leq a'$ and $b \leq b'$ implies $\ell_G(a, b) \leq \ell_G(a', b')$;*

G -transformation. *if $Y \sim \text{Exp}(\lambda)$ and $U \sim \text{Uniform}(0, 1)$, then $\ell_G(Y, U) \sim \text{Exp}(G(\lambda))$.*

REMARK 1.1. The construction of ℓ_G is already given in Equation (1.1), or more formally in Definition 2.2.

Lemma 1.1 is a powerful tool. It can be used to build samplers for objects more complex than vectors. To illustrate one example situation, suppose $H = ([n], E)$ is a fixed graph (say a large grid) whose vector of vertex weights $\mathbf{x} \in \mathbb{R}_+^n$ are subject to a stream of incremental updates. We would like to sample an edge $(u, v) \in E(H)$ proportional to its G -weight $G(\mathbf{x}(u), \mathbf{x}(v))$. We build G using a *stochastic sampling circuit*, whose constituent parts correspond to addition, scalar multiplication, and evaluating \mathcal{G} -functions. For example, in §5 we show how to sample an edge according to the edge weight $G(a, b) = \log(1 + \sqrt{a} + \sqrt{b}) + 2(1 - e^{-a-b})$, which is constructed from \mathcal{G} -functions \sqrt{x} , $1 - e^{-x}$, and $\log(1 + x)$. This approach can trivially be extended to G -sampling edges from hypergraphs, and to *heterogenous* sampling, where we want each edge (u, v) to be sampled proportional to $G_{(u,v)}(\mathbf{x}(u), \mathbf{x}(v))$, where the \mathcal{G} -functions $\{G_{(u,v)}\}$ could all be different.

1.3 Organization In §2 we review non-negative Lévy processes and the specialization of the Lévy-Khintchine representation theorem to non-negative processes. In §3 we prove Lemma 1.1 and Theorem 1.1, 1.2 on the correctness of the generic G -Sampler and ParetoSampler. In §4 we give explicit formulae for the level functions of a variety of \mathcal{G} -functions, including $G(z) = z^{1/2}$ (the $F_{1/2}$ -Sampler), the soft-cap sampler, $G(z) = 1 - e^{\tau z}$, and the log sampler, $G(z) = \log(1 + z)$. §5 introduces stochastic sampling circuits, one application of which is G -edge-sampling from (hyper)graphs. §6 concludes with some remarks and open problems. See Appendix A for adaptations of our algorithms to sampling k indices *without* replacement.

2 Lévy Processes and Lévy-Khintchine Representation

Lévy processes are stochastic processes with independent, stationary increments. In this paper we consider only one-dimensional, *non-negative* Lévy processes. This class excludes some natural processes such as Wiener processes (Brownian motion).

DEFINITION 2.1. (NON-NEGATIVE LÉVY PROCESSES [14]) A random process $X = (X_t)_{t \geq 0}$ is a non-negative Lévy process if it satisfies:

Non-negativity. $X_t \in \mathbb{R}_+ \cup \{\infty\}$ for all $t \in \mathbb{R}_+$ ⁵

⁵We do allow the random process to take on the value ∞ , which turns out to be meaningful and often useful for designing algorithms.

Stationary Increments. $(X_{t+s} - X_t) \sim X_s$ for all $t, s \in \mathbb{R}_+$.

Independent Increments. For any $0 \leq t_1 < t_2 \dots < t_k$, $X_{t_1}, X_{t_2} - X_{t_1}, \dots, X_{t_k} - X_{t_{k-1}}$ are mutually independent.

Stochastic Continuity. $X_0 = 0$ almost surely and $\lim_{t \searrow 0} \mathbb{P}(X_t > \epsilon) = 0$ for any $\epsilon > 0$.

The bijection between \mathcal{G} and non-negative Lévy processes is a consequence of the general Lévy-Khintchine representation theorem [14].

THEOREM 2.1. (LÉVY-KHINTCHINE REPRESENTATION FOR NON-NEGATIVE LÉVY PROCESSES. [14, PAGE 153]) *Any non-negative Lévy process $X = (X_t)_{t \geq 0}$ can be identified by a triple (c, γ_0, ν) where $c, \gamma_0 \in \mathbb{R}_+$ and ν is a measure on $(0, \infty)$ such that*

$$(2.2) \quad \int_0^\infty \min\{r, 1\} \nu(dr) < \infty.$$

The identification is through the Laplace transform. For any $t, z \in \mathbb{R}_+$

$$(2.3) \quad \mathbb{E}e^{-zX_t} = \exp\left(-t\left(c\mathbb{1}[z > 0] + \gamma_0 z + \int_0^\infty (1 - e^{-rz}) \nu(dr)\right)\right).$$

Conversely, any triple (c, γ_0, ν) with $c, \gamma_0 \in \mathbb{R}_+$ and ν satisfying (2.2) corresponds to a non-negative Lévy process (X_t) satisfying (2.3).⁶

The parameters (c, γ_0, ν) of a Lévy process $(X_t)_{t \geq 0}$ are called the *killing rate*, the *drift*, and the *Lévy measure*. We associate with each $G \in \mathcal{G}$ a *Lévy-induced level function*.

DEFINITION 2.2. (LÉVY INDUCED LEVEL FUNCTION) Let $G \in \mathcal{G}$ and $X = (X_t)_{t \geq 0}$ be the corresponding non-negative Lévy process, i.e., for any $t, z \in \mathbb{R}_+$,

$$\mathbb{E}e^{-zX_t} = e^{-tG(z)}.$$

The *induced level function* $\ell_G: (0, \infty) \times (0, 1) \rightarrow \mathbb{R}_+$ is, for $a \in (0, \infty)$ and $b \in (0, 1)$, defined to be

$$\ell_G(a, b) = \inf\{t \mid \mathbb{P}(X_t \geq a) \geq b\}.$$

3 Proofs of Lemma 1.1 and Theorem 1.1, 1.2

In this section we prove the key lemma stated in the introduction, Lemma 1.1, as well as Theorem 1.1, 1.2 concerning the correctness of the generic *G-Sampler* and the \mathcal{G} -universal *ParetoSampler*.

Proof. [Proof of Lemma 1.1] Recall that $G \in \mathcal{G}$, $Y \sim \text{Exp}(\lambda)$, and $U \sim \text{Uniform}(0, 1)$. We argue that $\ell_G(Y, U)$ (Definition 2.2) is monotonic in both arguments and analyze its distribution.

By Lévy-Khintchine, G has a corresponding non-negative Lévy process $X = (X_t)_{t \geq 0}$ for which $\mathbb{E}e^{-zX_t} = e^{-tG(z)}$. Note that since Lévy processes are memoryless, a non-negative Lévy process is also *non-decreasing*. Therefore $\mathbb{P}(X_t \geq a)$ is increasing in t and decreasing in a , and as a consequence, $\ell_G(a, b) = \inf\{t \mid \mathbb{P}(X_t \geq a) \geq b\}$ is 2D-monotonic. We now analyze the distribution of $\ell_G(Y, U)$. For any $w > 0$, we have

$$\mathbb{P}(\ell_G(Y, U) \geq w) = \mathbb{P}(\inf\{t : \mathbb{P}(X_t \geq Y) \geq U\} \geq w) \quad \text{definition of } \ell_G$$

⁶Sato's book [14] did not consider killed processes but it is a routine patch to the formulation to add a kill rate. See, e.g., §3 in [16] for a reference of killed processes.

Note that by the definition of Lévy process, $\mathbb{P}(X_t \geq Y)$ is a continuous function in t and therefore $\inf\{t : \mathbb{P}(X_t \geq Y) \geq U\} \geq w$ is equivalent to $\mathbb{P}(X_w \geq Y) \leq U$. Thus, this is equal to

$$\begin{aligned}
 &= \mathbb{P}(\mathbb{P}(X_w \geq Y) \leq U) \\
 &= 1 - \mathbb{P}(X_w \geq Y) && U \sim \text{Uniform}(0, 1) \\
 &= \mathbb{P}(X_w < Y) \\
 &= \mathbb{E}(\mathbb{P}(X_w < Y) | X_w) \\
 &= \mathbb{E}(e^{-\lambda X_w} | X_w) && Y \sim \text{Exp}(\lambda) \\
 &= \mathbb{E}e^{-\lambda X_w} \\
 &= e^{-wG(\lambda)} && \text{by Lévy-Khintchine (Theorem 2.1).}
 \end{aligned}$$

Since the CDF of $\text{Exp}(\lambda)$ is $1 - e^{-\lambda x}$, we conclude that $\ell_G(Y, U) \sim \text{Exp}(G(\lambda))$. \square

We can now prove the correctness of the generic G -Sampler (Theorem 1.1, Algorithm 1) and the ParetoSampler (Theorem 1.2, Algorithm 2).

Proof. [Proof of Theorem 1.1 (G -Sampler)] Let $\mathbf{x} \in \mathbb{R}_+^n$ be the final vector after all updates, and (v_*, h_*) the final memory state of G -Sampler. We will prove that

- $h_* \sim \text{Exp}(G(\mathbf{x}))$, and
- for any $v \in [n]$, $\mathbb{P}(v_* = v) = G(\mathbf{x}(v))/G(\mathbf{x})$.

For $v \in [n]$, let h_v be the smallest value produced by the k updates $(v, \Delta_i)_{i \in [k]}$ to index v , so $\mathbf{x}(v) = \sum_{i=1}^k \Delta_i$. Let Y_1, \dots, Y_k be the i.i.d. $\text{Exp}(1)$ random variables generated during those updates. Then

$$h_v \sim \min \{ \ell_G(Y_1/\Delta_1, H(v)), \dots, \ell_G(Y_k/\Delta_k, H(v)) \}$$

and by the 2D-monotonicity property of Lemma 1.1, this is equal to

$$= \ell_G \left(\min \{Y_1/\Delta_1, \dots, Y_k/\Delta_k\}, H(v) \right).$$

Note that $\min\{Y_1/\Delta_1, \dots, Y_k/\Delta_k\} \sim \text{Exp}(\sum_i \Delta_i) = \text{Exp}(\mathbf{x}(v))$ and $H(v) \sim \text{Uniform}(0, 1)$. By the G -transformation property of Lemma 1.1, this is distributed as

$$\sim \text{Exp}(G(\mathbf{x}(v))).$$

By properties of the exponential distribution, we have $h_* = \min_{v \in [n]} h_v \sim \min_{v \in [n]} \text{Exp}(G(\mathbf{x}(v))) \sim \text{Exp}(G(\mathbf{x}))$ and the probability that $v_* = v$ is sampled is exactly $G(\mathbf{x}(v))/G(\mathbf{x})$. \square

REMARK 3.1. The proof of Theorem 1.1 shows that G -Sampler is truly perfect with zero probability of failure, according to Definition 1.1, assuming the the value h_* can be stored in a word. On a discrete computer, where the value h_* can only be stored discretely, there is no hope to have h_* to distribute as $\text{Exp}(G(\mathbf{x}))$ perfectly. Nevertheless, a truly perfect sample can still be returned on discrete computers, because one does not have to compute the exact $\ell_G(x, y)$ values but just correctly *compare them*. We now discuss such a scheme. Let $\|\mathbf{x}\|_\infty = \text{poly}(n)$. Supposing that we only stored h_* to $O(\log n)$ bits of precision, we may not be able to correctly ascertain whether $h < h_*$ in Line 4 of G -Sampler (Algorithm 1). This event occurs with probability $1/\text{poly}(n)$,⁷ which induces an additive error in the sampling probability, i.e., $(\epsilon, \eta, \delta) = (0, 1/\text{poly}(n), 0)$. We cannot regard this event as a *failure* (with $(\epsilon, \eta, \delta) = (0, 0, 1/\text{poly}(n))$) because the sampling distribution, *conditioned on non-failure*,

⁷To see this, consider two independent random variables $Y_1 \sim \text{Exp}(\lambda_1)$ and $Y_2 \sim \text{Exp}(\lambda_2)$. By the properties of exponential random variables, conditioning on $Y_1 < Y_2$, then $|Y_1 - Y_2| \sim \text{Exp}(\lambda_2)$; conditioning on $Y_1 > Y_2$, then $|Y_1 - Y_2| \sim \text{Exp}(\lambda_1)$. This suggests $\mathbb{P}(|Y_1 - Y_2| \geq z) \geq e^{-\max(\lambda_1, \lambda_2)z}$. Thus if both λ_1 and λ_2 are $O(\text{poly}(n))$, then with $|Y_1 - Y_2| = \Omega(1/\text{poly}(n))$ with probability $e^{-O(1/\text{poly}(n))} \geq 1 - O(1/\text{poly}(n))$. Now let $\lambda_1 = \mathbf{x}(v'_*)$ and $\lambda_1 = \mathbf{x}(v_*)$, where v'_* is the sample selected by the $O(\log n)$ -bit sketch and v_* is the sample selected by the infinite precision sketch (the first $O(\log n)$ bits are the same with the former one). If $v'_* \neq v_*$ then it implies $|Y_2 - Y_1| < O(1/\text{poly}(n))$, which happens only with probability $O(1/\text{poly}(n))$.

would in general not be the same as the truly perfect distribution. There are ways to implement a truly perfect sampler $((\epsilon, \eta, \delta) = (0, 0, 0))$ which affect the space bound. Suppose update (v, Δ) is issued at (integer) time k . We could store (v, k) and generate Y from k via the random oracle. Thus, in a stream of m updates, the space would be $O(\log(n+m))$ bits. Another option is to generate more precise estimates of Y (and $H(v)$) on the fly. Rather than store a tuple (v, h) , $h = \ell_G(Y/\Delta, H(v))$, we store (v, R, Δ) , where $R \sim \text{Uniform}(0, 1)$ is dynamically generated to the precision necessary to execute Line 4 of G -Sampler (Algorithm 1). Specifically, $Y = -\ln R \sim \text{Exp}(1)$ is derived from R , and if we cannot determine if $h < h_*$, where $h = \ell_G(Y/\Delta, H(v))$, $h_* = \ell_G(Y_*/\Delta_*, H(v_*))$, we append additional random bits to R, R_* until the outcome of the comparison is certain.

Proof. [Proof of Theorem 1.2 (ParetoSampler)] Let T be the set of *all* tuples $(Y_i/\Delta_i, H(v_i), v_i)$ generated during updates, and S be the minimum Pareto frontier of T w.r.t. the first two coordinates in each tuple. Fix any query function $G \in \mathcal{G}$. Imagine that we ran G -Sampler (Algorithm 1) on the same update sequence with the same randomness. By the 2D-monotonicity property of Lemma 1.1, the output of G -Sampler, $(v_i, h_* = \ell_G(Y_i/\Delta_i, H(v_i)))$ must correspond to a tuple $(Y_i/\Delta_i, H(v_i), v_i) \in S$ on the minimum Pareto frontier. Thus, the SAMPLE(G) function of ParetoSampler would return the same index v_i as G -Sampler.

We now analyze the space bound of ParetoSampler. Suppose that $h_v = \min\{Y_i/\Delta_i\}$, where the minimum is over all updates (v, Δ_i) to $\mathbf{x}(v)$. (When $\mathbf{x}(v) = 0$, $h_v = \infty$.) We shall condition on *arbitrary* values $\{h_v\}$ and only consider the randomness introduced by the hash function H , which effects a random permutation on $\{h_v\}$. Let $L = (h_{v_1}, \dots, h_{v_n})$ be the permutation of the h -values that is sorted in increasing order by $H(v_i)$. Then $|S|$ is exactly the number of distinct prefix-minima of L . Define $X_i = \mathbb{1}[h_{v_i} = \min\{h_{v_1}, \dots, h_{v_i}\}]$ to be the indicator that h_{v_i} is a prefix-minimum and v_i is included in a tuple of S . Then

$$\mathbb{E}(|S|) = \mathbb{E} \left(\sum_{i \in [n]} X_i \right) = \sum_{i \in [n]} 1/i = H_n < \ln n + 1,$$

where H_n is the n th harmonic number. Note that X_i s are independent. By Chernoff bounds, for any $c \geq 2$, $\mathbb{P}(|S| > cH_n) < n^{-\Omega(c)}$. Since there are only $\text{poly}(n)$ updates, by a union bound, $|S| = O(\log n)$ at all times, with probability $1 - 1/\text{poly}(n)$. \square

REMARK 3.2. The $O(\log n)$ -word space bound holds even under some exponentially long update sequences. Suppose all updates have magnitude at least 1, i.e., $\Delta_i \geq 1$. Then the same argument shows that the expected number of times h_v changes is at most $\ln \mathbf{x}(v) + 1$ and by Chernoff bounds, the total number of times any of $\{h_v\}$ changes is $M = O(n \ln \|\mathbf{x}\|_\infty)$ with probability $1 - \exp(-\Omega(M))$. Thus, we can invoke a union bound over M states of the data structure and conclude $|S| = O(\log M)$ with probability $1 - 1/\text{poly}(M)$. This is $O(\log n)$ when $\|\mathbf{x}\|_\infty < \exp(\text{poly}(n))$.

4 Deriving the Level Functions

The generic G -Sampler and \mathcal{G} -universal ParetoSampler refer to the Lévy-induced level function ℓ_G . In this section we illustrate how to derive expressions for ℓ_G in a variety of cases.

We begin by showing how G -Sampler (Algorithm 1) “reconstructs” the known F_0 - and F_1 -samplers, then consider a sample of non-trivial weight functions, $G(z) = z^{1/2}$ (used in the $F_{1/2}$ -Sampler, Algorithm 3), $G(z) = 1 - e^{-\tau z}$ (corresponding to a Poisson process), and $G(z) = \log(1 + z)$ (corresponding to a Gamma process).

EXAMPLE 4.1. (F_0 -SAMPLER \mapsto MIN SKETCH [2]) The weight function for F_0 -sampling is $G(z) = \mathbb{1}[z > 0]$. By Lévy-Khintchine (Theorem 2.1), this function corresponds to a “pure-killed process” $(X_t)_{t \geq 0}$ which can be simulated as follows.

- Sample a *kill time* $Y \sim \text{Exp}(1)$.

- Set $X_t = \begin{cases} 0 & \text{if } t < Y, \\ \infty & \text{if } t \geq Y. \end{cases}$

The induced level function (Definition 2.2) is, for $a \in (0, \infty)$ and $b \in (0, 1)$,

$$\ell_G(a, b) = \inf\{z \mid \mathbb{P}(X_z \geq a) \geq b\}$$

By definition, $X_z \geq a > 0$ if and only if X has been killed by time z , i.e., $z \geq Y$. Continuing,

$$\begin{aligned} &= \inf\{z \mid \mathbb{P}(z \geq Y) \geq b\} \\ &= \inf\{z \mid 1 - e^{-z} \geq b\} \\ &= -\log(1 - b). \end{aligned}$$

Thus, by inserting this ℓ_G into *G-Sampler* (Algorithm 1), it stores (v_*, h_*) where v_* has the smallest hash value and $h_* \sim \text{Exp}(F_0)$,⁸ thereby essentially reproducing Cohen's 2 Min sketch.

EXAMPLE 4.2. (F_1 -SAMPLER \mapsto MIN-BASED RESERVOIR SAMPLING [15]) The weight function for an F_1 -sampler is $G(z) = z$. By Lévy-Khintchine, this corresponds to a deterministic drift process $(X_t)_{t \geq 0}$, where $X_t = t$. The induced level function is,

$$\ell_G(a, b) = \inf\{z \mid \mathbb{P}(X_z \geq a) \geq b\}$$

and since $X_z = z$, $\mathbb{P}(X_z \geq x) = \mathbb{1}[z \geq x]$,

$$\begin{aligned} &= \inf\{z \mid \mathbb{1}[z \geq a] \geq b\} \\ &= a. \end{aligned} \quad \text{Note that } b \in (0, 1)$$

Thus the corresponding *G-sampler* does not use the hash function H , and recreates reservoir sampling [15] with the choice of replacement implemented by taking the minimum random value.

Next, we demonstrate a non-trivial application: the construction of the $F_{1/2}$ -Sampler presented in Algorithm 3.

EXAMPLE 4.3. ($F_{1/2}$ -SAMPLER) For $F_{1/2}$, the weight function is $G(z) = \sqrt{z}$, which corresponds to the non-negative 1/2-stable process $(X_t)_{t \geq 0}$. The induced level function is

$$\ell_G(a, b) = \inf\{z \mid \mathbb{P}(X_z \geq a) \geq b\}$$

and since X is 1/2-stable, we have $X_z \sim z^2 X_1$. Continuing,

$$= \inf\{z \mid \mathbb{P}(z^2 X_1 \geq a) \geq b\}.$$

It is known that the 1/2-stable X_1 distributes identically with $1/Z^2$ where Z is a standard Gaussian [14, page 29]. Thus, we have $\mathbb{P}(X_1 \geq r) = \mathbb{P}(|Z| \leq \sqrt{1/r}) = \text{erf}(\sqrt{\frac{1}{2r}})$, where $\text{erf}(s) = \frac{2}{\sqrt{\pi}} \int_0^s e^{-x^2} dx$ is the *Gauss error function*. As $\mathbb{P}(z^2 X_1 \geq a) = \mathbb{P}(X_1 \geq a/z^2) = \text{erf}(z/\sqrt{2a})$, this is equal to

$$= \sqrt{2a} \cdot \text{erf}^{-1}(b).$$

Plugging the expression $\ell_G(a, b) = \sqrt{2a} \cdot \text{erf}^{-1}(b)$ into *G-Sampler*, we arrive at the $F_{1/2}$ -Sampler of Algorithm 3, and thereby establish its correctness.

The 1/2-stable distribution has a clean form, which yields a closed-form expression for the corresponding level function. Refer to Penson and Górska [13] for explicit formulae for one-sided k/l -stable distributions, where $k, l \in \mathbb{Z}_+$ and $k \leq l$, which can be used to write $F_{k/l}$ -samplers with explicit level functions.

Previously, approximate “soft cap”-samplers were used by Cohen to estimate cap-statistics [4]. The weight function for a soft cap sampler is parameterized by $\tau > 0$, where $G_\tau(z) = 1 - e^{-\tau z}$. We now compute the level functions needed to build soft cap samplers with precisely correct sampling probabilities.

⁸Recall that for a frequency vector $\mathbf{x} \in \mathbb{R}_+^n$, $F_0 = \sum_{v \in [n]} \mathbb{1}[\mathbf{x}(v) > 0]$ is the number of distinct elements present in the stream.

EXAMPLE 4.4. (“SOFT CAP”-SAMPLER) The weight function is $G_\tau(z) = 1 - e^{-\tau z}$. By Lévy-Khintchine, G_τ corresponds to a unit-rate Poisson counting process $(X_t)_{t \geq 0}$ with jump size τ , where $X_t/\tau \sim \text{Poisson}(t)$. By Definition 2.2,

$$\ell_{G_\tau}(a, b) = \inf\{z \mid \mathbb{P}(X_z \geq a) \geq b\}$$

Since $X_z/\tau \sim \text{Poisson}(z)$, $\mathbb{P}(X_z \geq a) = e^{-z} \sum_{j=\lceil a\tau \rceil}^{\infty} \frac{z^j}{j!}$. Continuing,

$$= \inf \left\{ z \left| e^{-z} \sum_{j=\lceil a\tau \rceil}^{\infty} \frac{z^j}{j!} \geq b \right. \right\}.$$

Thus $\ell_{G_\tau}(a, b) = w_{\lceil a\tau \rceil, b}$ where $w_{k,b}$ is the unique solution to the equation $e^{-w} \sum_{j=k}^{\infty} \frac{w^j}{j!} = b$. Note that for any $k \in \mathbb{Z}_+$, the function $g(w) = e^{-w} \sum_{j=k}^{\infty} \frac{w^j}{j!} = \mathbb{P}(\text{Poisson}(w) \geq k)$ is increasing from 0 to ∞ as w increases from 0 to ∞ , by a simple coupling argument. Therefore, $w_{k,b}$, as the solution of $g(w) = b$, can be computed with a binary search.

EXAMPLE 4.5. (LOG-SAMPLER) Consider the weight function $G(z) = \log(1 + z)$. By Lévy-Khintchine, the corresponding process is a Gamma process $(X_t)_{t \geq 0}$, where $X_t \sim \text{Gamma}(t, 1)$. The PDF of $\text{Gamma}(t, 1)$ is $f(r) = r^{t-1} e^{-r} / \Gamma(t)$. By Definition 2.2,

$$\ell_{G_\tau}(a, b) = \inf\{z \mid \mathbb{P}(X_z \geq a) \geq b\}$$

Since $X_z \sim \text{Gamma}(z, 1)$, $\mathbb{P}(X_z \geq a) = \Gamma(z)^{-1} \int_a^\infty r^{z-1} e^{-r} dr$. Continuing,

$$= \inf \left\{ z \left| \Gamma(z)^{-1} \int_a^\infty r^{z-1} e^{-r} dr \geq b \right. \right\}.$$

Thus $\ell_G(a, b) = w'_{a,b}$ which is the unique solution of the equation $\Gamma(w)^{-1} \int_a^\infty r^{w-1} e^{-r} dr = b$. Once again the left hand side is monotonic in w and therefore $w'_{a,b}$ can be found with a binary search.

As discussed in Remark 3.1, there is no need to compute the level functions exactly, which is impossible to do so in the practical finite-precision model anyway. We only need to evaluate level functions to tell which index v has the smallest $\ell_G(x, y)$ value. Such samples are still truly perfect, even though the finite-precision value h_* is not a perfect $\text{Exp}(G(\mathbf{x}))$ random variable. For a generic G , in practice one may pre-compute the level function of G on a geometrically spaced lattice and cache it as a read-only table. Such a table can be shared and read simultaneously by an unbounded number of G -samplers for different applications and therefore the amortized space overhead is typically small.

5 Stochastic Sampling Circuits

We demonstrate how sampling via level functions ℓ_G can be used in a more general context. Just as currents and voltages can represent signals/numbers, one may consider an exponential random variable $\sim \text{Exp}(\lambda)$ as a *signal* carrying information about its rate λ . These signals can be summed, scaled, and transformed as follows.

Summation. Given $Y_1 \sim \text{Exp}(\lambda_1)$, $Y_2 \sim \text{Exp}(\lambda_2)$, $\min(Y_1, Y_2) \sim \text{Exp}(\lambda_1 + \lambda_2)$.

Scaling. Fix a scalar $\alpha > 0$. Given $Y \sim \text{Exp}(\lambda)$, $Y/\alpha \sim \text{Exp}(\alpha\lambda)$.

G -transformation. Given $Z \sim \text{Exp}(\lambda)$ and $Y \sim \text{Uniform}(0, 1)$, $\ell_G(Z, Y) \sim \text{Exp}(G(\lambda))$.

A *stochastic sampling circuit* is an object that uses *summation*, *scaling*, and *G -transformation* gates to sample according to functions with potentially many inputs. Such a circuit is represented by a directed acyclic graph (V, E) where V is the set of *gates* and $E \subset V \times V$ is a set of *wires*. There are four types of gates.

- An *input-gate* u receives a stream of incremental updates. Whenever it receives $\Delta > 0$, it generates, for each outgoing edge (u, v) , a freshly sampled i.i.d. $Y \sim \text{Exp}(1)$ random variable and sends Y/Δ to v .

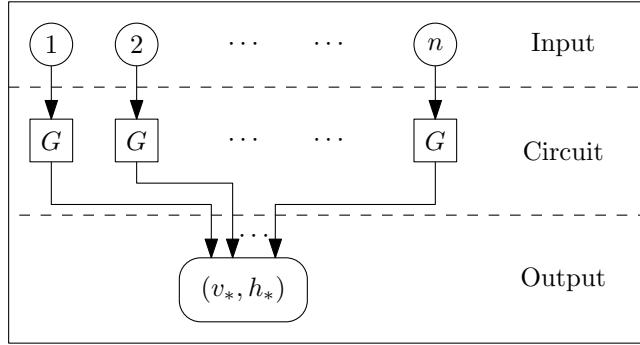


Figure 1: The flat stochastic sampling circuit corresponding to the generic G -Sampler (Algorithm 1).

- A *scalar-gate* v is parameterized by a fixed $\alpha > 0$, and has a unique predecessor v' and successor v'' , $(v', v), (v, v'') \in E$. Whenever v receives a $y \in \mathbb{R}_+$ from v' it sends y/α to v'' .
- A *G-gate* v has a unique successor v' , $(v, v') \in E$. It is initialized with a random seed $U \sim \text{Uniform}(0, 1)$. Whenever v receives a number $y \in \mathbb{R}_+$ from a predecessor u , it sends $\ell_G(y, U)$ to v' , where ℓ_G is the Lévy-induced level function of $G \in \mathcal{G}$.
- An *output-gate* stores a pair (v_*, h_*) , initialized as (\perp, ∞) . Whenever an output-gate receives a number $y \in \mathbb{R}_+$ from a predecessor with id $v \in V$, if $y < h_*$, then it sets $(v_*, h_*) \leftarrow (v, y)$.

The restriction that G -gates and scalar-gates have only one successor guarantees that the numbers received by one gate from different wires are independent. The generic G -Sampler (Algorithm 1) can be viewed as a *flat* stochastic sampling circuit (Fig. 1), where each element $v \in [n]$ has its own input-gate and G -gate. We could just as easily assign each input gate v to a G_v -gate, $G_v \in \mathcal{G}$, which would result in a *heterogeneous* sampler, where v is sampled with probability $G_v(\mathbf{x}(v))/\sum_u G_u(\mathbf{x}(u))$.

We illustrate how stochastic sampling circuits can be used to sample an edge from a graph with probability proportional to its weight. Let $H = ([n], E)$ be a fixed graph and $\mathbf{x} \in \mathbb{R}_+^n$ be a vector of vertex weights subject to incremental updates. For a fixed edge-weight function $G: \mathbb{R}_+^2 \rightarrow \mathbb{R}_+$, where the weight of (u, v) is $G(\mathbf{x}(u), \mathbf{x}(v))$, we would like to select an edge (u_*, v_*) with probability exactly $G(\mathbf{x}(u_*), \mathbf{x}(v_*))/\sum_{(u,v) \in E} G(\mathbf{x}(u), \mathbf{x}(v))$. Our running example is a symmetric weight function that exhibits summation, scalar multiplication, and a variety of \mathcal{G} -functions.

$$G(a, b) = \log(1 + \sqrt{a} + \sqrt{b}) + 2(1 - e^{-(a+b)}).$$

The stochastic sampling circuit corresponding to G is depicted in Fig. 2. It uses the following level and hash functions.

- ℓ_1 , level function for $G_1(x) = \sqrt{x}$. See Example 4.3.
- ℓ_2 , level function for $G_2(x) = 1 - e^{-x}$. See Example 4.4.
- ℓ_3 , level function for $G_3(x) = \log(1 + x)$. See Example 4.5.
- $H_1: V \rightarrow (0, 1)$ uniformly at random.
- $H_2, H_3: E \rightarrow (0, 1)$ uniformly at random.

The implementation of this circuit as a G -Edge-Sampler is given in Algorithm 4. Note that since G is symmetric, we can regard H as an undirected graph and let $\text{UPDATE}(v, \Delta)$ treat all edges incident to v in the same way. If G were not symmetric, the code for G -Edge-Sampler would have two **for** loops, one for outgoing edges $(v, u) \in E$, and one for incoming edges $(u, v) \in E$.

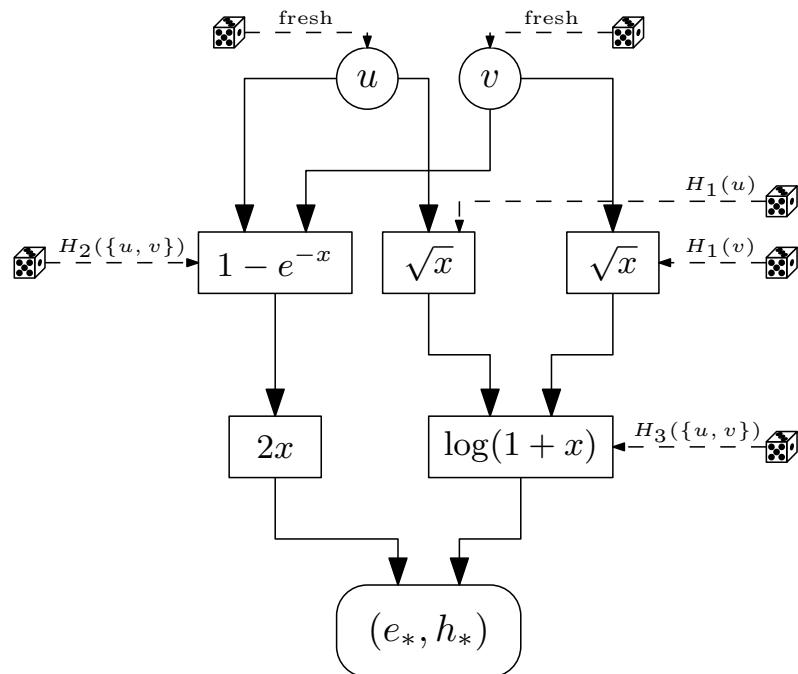


Figure 2: Circuit diagram for *G-Edge-Sampler* (Algorithm 4) with $G(a, b) = \log(1 + \sqrt{a} + \sqrt{b}) + 2(1 - e^{-(a+b)})$. Depicted are two of the inputs gates (u and v), the unique output gate, and all gates related to the sampling of edge $\{u, v\}$. The symbol \boxtimes indicates the random seed $U \sim \text{Uniform}(0, 1)$ used by each G -gate, as well as the “fresh” exponential random variables $Y \sim \text{Exp}(1)$ generated by the input gates for each update and each output wire. The “ $2x$ ”-gate is a deterministic scalar gate with $\alpha = 2$.

Algorithm 4 *G*-Edge-Sampler for $G(a, b) = \log(1 + \sqrt{a} + \sqrt{b}) + 2(1 - e^{-(a+b)})$

Specifications: $H = ([n], E)$ is a fixed graph. The state is $(e_*, h_*) \in \binom{[n]}{2} \cup \{\perp\} \times \mathbb{R}_+ \cup \{\infty\}$, initially (\perp, ∞) . After processing a stream of updates, $\mathbb{P}(e_* = \{u_*, v_*\}) = G(\mathbf{x}(u_*), \mathbf{x}(v_*)) / \sum_{\{u,v\} \in E} G(\mathbf{x}(u), \mathbf{x}(v))$.

```

1: procedure UPDATE( $v, \Delta$ )  $\triangleright \mathbf{x}(v) \leftarrow \mathbf{x}(v) + \Delta$ 
2:   for each edge  $\{u, v\}$  adjacent to  $v$  do
3:     Generate fresh, independent  $Y_1, Y_2 \sim \text{Exp}(1)$ 
4:      $h \leftarrow \min\{\ell_3(\ell_1(Y_1/\Delta, H_1(v)), H_3(\{u, v\})), \ell_2(Y_2/\Delta, H_2(\{u, v\}))/2\}$ 
5:     if  $h < h_*$  then
6:        $(e_*, h_*) \leftarrow (\{u, v\}, h)$ 
7:     end for
8: end procedure

```

6 Conclusion

In this paper we developed very simple sketches for perfect G -sampling using $O(\log n)$ bits and universal perfect G -sampling using $O(\log^2 n)$ bits. (See Remark 3.1 in §3 for a discussion of *truly perfect* implementations.) They were made possible by the explicit connection between the class \mathcal{G} and the Laplace exponents of non-negative Lévy processes via the Lévy-Khintchine representation theorem (Theorem 2.1). To our knowledge this is the first explicit use of the Lévy-Khintchine theorem in algorithm design, though the class \mathcal{G} was investigated without using this connection, by Cohen [3, 4, 5] and Cohen and Geri [6]. A natural question is whether \mathcal{G} captures all functions that have minimal-size $O(\log n)$ -bit perfect samplers.

CONJECTURE 6.1. *Suppose $\mathbf{x} \in \mathbb{R}_+^n$ is updated by an incremental stream. If there is an $O(\log n)$ -bit perfect G -sampler in the random oracle model (i.e., an index $v \in [n]$ is sampled with probability $G(\mathbf{x}(v))/G(\mathbf{x}) \pm 1/\text{poly}(n)$), then $G \in \mathcal{G}$.*

Recall that \mathcal{G} is in correspondence with *non-negative*, one-dimensional Lévy processes, which is just a small subset of all Lévy processes. It leaves out processes over \mathbb{R}^d , compound Poisson processes whose jump distribution includes positive and negative jumps, and p -stable processes for $p \in [1, 2]$, among others. Exploring the connection between general Lévy processes, Lévy-Khintchine representation, and data sketches is a promising direction for future research.

References

- [1] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algorithms via precision sampling. In *Proceedings 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS)*, pages 363–372, 2011.
- [2] Edith Cohen. Size-estimation framework with applications to transitive closure and reachability. *Journal of Computer and System Sciences*, 55(3):441–453, 1997.
- [3] Edith Cohen. HyperLogLog hyperextended: Sketches for concave sublinear frequency statistics. In *Proceedings 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)*, pages 105–114, 2017.
- [4] Edith Cohen. Stream sampling framework and application for frequency cap statistics. *ACM Trans. Algorithms*, 14(4):52:1–52:40, 2018.
- [5] Edith Cohen. Sampling big ideas in query optimization. In *Proceedings 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS)*, pages 361–371, 2023.
- [6] Edith Cohen and Ofir Geri. Sampling sketches for concave sublinear functions of frequencies. In *Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS)*, pages 1361–1371, 2019.
- [7] Edith Cohen, Rasmus Pagh, and David P. Woodruff. WOR and p 's: Sketches for ℓ_p -sampling without replacement. In *Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS)*, 2020.
- [8] Rajesh Jayaram. *Sketching and Sampling Algorithms for High-Dimensional Data*. PhD thesis, Carnegie Mellon University Pittsburgh, PA, 2021.
- [9] Rajesh Jayaram and David P. Woodruff. Perfect L_p sampling in a data stream. *SIAM J. Comput.*, 50(2):382–439, 2021.

- [10] Rajesh Jayaram, David P. Woodruff, and Samson Zhou. Truly perfect samplers for data streams and sliding windows. In *Proceedings 41st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS)*, pages 29–40, 2022.
- [11] Hossein Jowhari, Mert Sağlam, and Gábor Tardos. Tight bounds for L_p samplers, finding duplicates in streams, and related problems. In *Proceedings 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS)*, pages 49–58, 2011.
- [12] Morteza Monemizadeh and David P. Woodruff. 1-pass relative-error L_p -sampling with applications. In *Proceedings 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages 1143–1160, 2010.
- [13] Karol A. Penson and Katarzyna Górska. Exact and explicit probability densities for one-sided Lévy stable distributions. *Physical Review Letters*, 105(21):210604.1–210604.4, 2010.
- [14] Ken-Iti Sato. *Lévy processes and infinitely divisible distributions*, volume 68 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, 1999.
- [15] Jeffrey S. Vitter. Random sampling with a reservoir. *ACM Transactions on Mathematical Software (TOMS)*, 11(1):37–57, 1985.
- [16] Yuri Yakubovich. A simple proof of the levy–khintchine formula for subordinators. *Statistics & Probability Letters*, 176:109136, 2021.

A Sampling Without Replacement

We can take k independent copies of the G -Sampler or ParetoSampler sketches to sample k indices from the $(G(\mathbf{x}(v))/G(\mathbf{x}))_{v \in [n]}$ distribution *with* replacement. A small change to these algorithms will sample k indices *without* replacement. See Cohen, Pagh, and Woodruff [7] for an extensive discussion of why WOR (without replacement) samplers are often more desirable in practice. The algorithm (G, k) -Sampler-WOR(Algorithm 5) samples k (distinct) indices without replacement.

Algorithm 5 (G, k) -Sampler-WOR

Specifications: The state is a set $S \subset [n] \times \mathbb{R}_+$, initially empty. The function $k\text{-Min}(L)$ takes a list $L \subset [n] \times \mathbb{R}_+$, discards any $(v, h) \in L$ if there is a $(v, h') \in L$ with $h' < h$, then returns the k elements with the smallest second coordinate.

```

1: procedure UPDATE( $v, \Delta$ ) ▷  $\mathbf{x}(v) \leftarrow \mathbf{x}(v) + \Delta$ 
2:   Generate fresh  $Y \sim \text{Exp}(1)$ .
3:    $h \leftarrow \ell_G(Y/\Delta, H(v))$  ▷  $\ell_G$  is level function of  $G$ 
4:    $S \leftarrow k\text{-Min}(S \cup \{(v, h)\})$ 
5: end procedure

```

In a similar fashion, one can define a sketch k -ParetoSampler-WOR analogous to (G, k) -Sampler-WOR, that maintains the minimum k -Pareto frontier, defined by discarding any tuple (a, b, v) if there is another (a', b, v) with $a' < a$, then retaining only those tuples that are dominated by at most $k - 1$ other tuples.

THEOREM A.1. *Consider a stream of $\text{poly}(n)$ incremental updates to a vector $\mathbf{x} \in \mathbb{R}_+^n$. The (G, k) -Sampler-WOR occupies $2k$ words of memory, and can report an ordered tuple $(v_*^1, \dots, v_*^k) \in [n]^k$ such that*

$$(A.1) \quad \mathbb{P}((v_*^1, \dots, v_*^k) = (v^1, \dots, v^k)) = \prod_{i=1}^k \frac{G(\mathbf{x}(v^i))}{G(\mathbf{x}) - \sum_{j=1}^{i-1} G(\mathbf{x}(v^j))}.$$

The k -ParetoSampler occupies $O(k \log n)$ words w.h.p. and for any $G \in \mathcal{G}$ at query time, can report a tuple $(v_^1, \dots, v_*^k) \in [n]^k$ distributed according to Eq. (A.1).*

Proof. The proof of Theorem 1.1 shows that $h_v \sim \text{Exp}(G(\mathbf{x}(v)))$ and if v_*^1 minimizes $h_{v_*^1}$, that $h_{v_*^1} \sim \text{Exp}(G(\mathbf{x}))$. It follows that $\mathbb{P}(v_*^1 = v) = G(\mathbf{x}(v))/G(\mathbf{x})$. By the memoryless property of the exponential distribution, for any $v \neq v_*^1$, $h_v - h_{v_*^1} \sim \text{Exp}(G(\mathbf{x}(v)))$, hence $h_{v_*^2} - h_{v_*^1} \sim \text{Exp}(G(\mathbf{x}) - G(\mathbf{x}(v_*^1)))$ and $\mathbb{P}(v_*^2 = v \mid v_*^1, v \neq v_*^1) = G(\mathbf{x}(v))/(G(\mathbf{x}) - G(\mathbf{x}(v_*^1)))$. The distribution of v_*^3, \dots, v_*^k is analyzed in the same way.

By the 2D-monotonicity property, the k -Pareto frontier contains all the points that would be returned by (G, k) -Sampler-WOR, hence the output distribution of k -ParetoSampler-WOR is identical. The analysis of the

space bound follows the same lines, except that X_i is the indicator for the event that h_{v_i} is among the k -smallest elements of $\{h_{v_1}, \dots, h_{v_i}\}$, so $\mathbb{E}(X_i) = \min\{k/i, 1\}$, $\mathbb{E}(|S|) < kH_n$, and by a Chernoff bound, $|S| = O(k \log n)$ with high probability. \square