Downloaded 11/26/25 to 107.221.198.215 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Universal Perfect Samplers for Incremental Streams*

Seth Pettie Dingyu Wang
University of Michigan University of Michigan
pettieQumich.edu wangdy@Qumich.edu
Abstract

Given G: Ry — Ry, the G-moment of a vector x € R} is G(x) def > vein G(x(v)) and the G-sampling

problem is to select an index v. € [n] according to its contribution to the G-moment, i.e., such that
P(v. = v) = G(x(v))/G(x). Approzimate G-samplers may introduce multiplicative and/or additive errors
to this probability, and some have a non-trivial probability of failure.

In this paper we focus on the exact G-sampling problem, where G is selected from the following class of
functions.

G = {G(z) =cl[z> 0]+ 72 —|—/ (1—e"")v(dr) | ¢,70 > 0,v is positive and / min{1,r} v(dr) < oo} :
0 0

The class G is perhaps more natural than it looks. It captures all Laplace exponents of non-negative, one-
dimensional Lévy processes, and includes several well studied classes such as pth moments G(z) = 2P, p € [0, 1],
logarithms G(z) = log(l + z), Cohen and Geri’s [6] soft concave sublinear functions, which are used to
approximate concave sublinear functions, including cap statistics.

We develop G-samplers for a vector x € R} that is presented as an incremental stream of positive updates.
In particular:

e For any G € G, we give a very simple G-sampler that uses 2 words of memory and stores at all times a
vx € [n], such that P(v. = v) is ezactly G(x(v))/G(x).

e We give a “universal” G-sampler that uses O(logn) words of memory w.h.p., and given any G € G at
query time, produces an exact G-sample.

With an overhead of a factor of k, both samplers can be used to G-sample a sequence of k indices with or
without replacement.

Our sampling framework is simple and versatile, and can easily be generalized to sampling from more
complex objects like graphs and hypergraphs.

1 Introduction
We consider a vector x € R" | initially zero, that is subject to a stream of incremental (positive) updates
Update(v, A) : Set x(v) + x(v) + A, where v € [n], A > 0.

The G-moment of x is G(x) = 3¢, G(x(v)) and a G-sampler is a data structure that returns an index v,
with probability proportional to its contribution to the G-moment.

DEFINITION 1.1. (APPROXIMATE/PERFECT/TRULY PERFECT G-SAMPLERS [9, [10, [8]) Let G: Ry — R, be

a function. An approzimate G-sampler with parameters (e,7,0) is a sketch of x that can produce an index
vx € [n] U {L} such that P(v, =1) <§ (v, =L is failure) and

Plo.=v|v. #1L) e (1+e)G(x(v))/G(x)£n.
If (e,n) = (0,1/poly(n)) we say the sampler is perfect and if (e¢,7) = (0,0) it is truly perfect.

In this paper we work in the random oracle model and assume we have access to a uniformly random hash
function H: [n] — [0, 1].

*This work was supported by NSF Grant CCF-2221980.
IR, is the set of non-negative reals.

Copyright (© 2025 by SIAM
Unauthorized reproduction of this article is prohibited

3409

Downloaded 11/26/25 to 107.221.198.215 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1.1 Prior Work Much of the prior work on this problem considered L,-samplers, p € [0, 2], in the more general
turnstile model, i.e., x is subject to positive and negative updates and G(z) = |z|P. We survey this line of work,
then review G-samplers in incremental streams.

L,-Sampling from Turnstile Streams. Monemizadeh and Woodruff [12] introduced the first
poly(e~1,logn)-space L,-sampler. (Unless stated otherwise, n = 1/poly(n).) These bounds were improved
by Andoni, Krauthgamer, and Onak [1] and then Jowhari, Saglam, and Tardos [11], who established an upper
bound of O(e~ ™>{1.P} log? nlog6=1) bits, and an Q(log? n)-bit lower bound whenever ¢,§ < 1. Jayaram and
Woodruff [9] proved that efficient L,-samplers need not be approximate, and that there are perfect L, samplers
occupying O(log® nlogd~1!) bits when p € [0,2) and O(log®nlogé—') bits when p = 2. By concatenating k
independent L,-samplers one gets, in expectation, (1 — d)k independent samples with replacement. Cohen, Pagh,
and Woodruff [7] gave an O(k - poly(logn))-bit sketch that perfectly samples k indices without replacement. Ja-
yaram, Woodruff, and Zhou [10] studied the distinction between perfect and truly perfect samplers, proving that
in turnstile streams, perfect samplers require Q(min{n,logn~'})-bits, i.e., truly perfect sampling with non-trivial
space is impossible.

G-Sampling from Incremental Streams. In incremental streams it is straightforward to sample according
to the Fy or Fy frequency moments (i.e., G-sampling with G(z) = 1[z > 0] and G(z) = z, resp with a Min-
sketch [2] or reservoir sampling [15], respectively. Jayaram, Woodruff, and Zhou [10] gave truly perfect G-samplers
for any monotonically increasing G: N — R} with G(0) = 0, though the space used is Q(% log 6~1), which in
many situations is Q(poly(n) log (5_1)

Cohen and Geri [6] were interested in G-samplers for the class of concave sublinear functions (CSF), which
are those that can be expressed as

CSF = {G(z) - /O " i1, 2t}u(dt)

non-negative 1/} .

This class can be approximated up to a constant factor by the soft concave sublinear functions (SoftCSF), namely
those of the form

SoftCSF — {G(z) - /000(1 e u(dt)

non-negative 1/} .

Cohen and Geri [6] developed approzimate G-samplers for G € SoftCSF, a class that includes F), moments
(G(z) = 2zP), for p € (0,1), and G(z) = log(1 + z). In their scheme there is a linear tradeoff between accuracy and
update time. Refer to Cohen [5] for a comprehensive survey of sampling from data streams and applications.

1.2 New Results In this paper we build truly perfect G-samplers with (e, n,d) = (0,0,0) for any G € G.
G = {G(z) =cl[z> 0]+ vz —|—/ (I—e7"%) l/(d’f‘)} ,
0

such that ¢,7o > 0, v is non-negative, and [, min{t, 1} v(dt) < occ.

The class G is essentially the same as SoftCSF, but it is, in a sense, the “right” definition. According to
the Lévy-Khintchine representation of Lévy processes, there is a bijection between the functions of G and the
Laplace exponents of non-negative, one-dimensional Lévy processes, aka subordinators, where the parameters
¢, Yo, v are referred to as the killing rate, the drift, and the Lévy measure, respectively. (Lévy processes and the
Lévy-Khintchine representation are reviewed in)

The connection between G and non-negative Lévy processes allows us to build simple, truly perfect samplers.
Given a G € G, let (X;)i>0, Xi € R4, be the corresponding Lévy process. We define the Lévy-induced level
function £g: Ry x [0,1] = R4 to be

(1.1) le(a,b) = inf{t | P(X; > a) > b}.

21 [€] € {0,1} is the indicator variable for the event/predicate .

3For example, take G(z) = 1/z and x(1) = - -- = x(n) = n, then g’zll) =n?/n3/2 = \/n.

Copyright (© 2025 by SIAM
Unauthorized reproduction of this article is prohibited

3410

Downloaded 11/26/25 to 107.221.198.215 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Algorithm 1 Generic Perfect G-Sampler

Specifications: The only state is a pair (v., hs) € [JU{L}xR;U{oco}. Initially (v, h.) = (L, 00) and (implicitly)
x = 0™. After processing a stream of vector updates {(v;, A;) }i, (vi, A;) € [n] x Ry, P(ve = v) = G(x(v))/G(x).
H: [n] — [0,1] is a hash function. We use Exp()) to denote the exponential distribution with rate A.

1: procedure UPDATE(v, A) > x(v) « x(v) + A
2 Generate fresh Y ~ Exp(1).

3 h <+ La(Y/A, H(v)) > {¢ is level function of G
4: if h < h, then

5 (Vs, ha) (v, h)

6:

end procedure

The generic G-Sampler (Algorithm uses ¢ to sample an index v proportional to G(x(v)) with just 2 wordsﬂ
of memory.

THEOREM 1.1. (G-SAMPLER) Fiz any G € G. The generic G-Sampler stores a pair (v., hs) € [n] x Ry such that
at all times, P(v, =v) = G(x(v))/G (%), i.e., it is a truly perfect G-sampler with zero probability of failure.

Since ¢ (a,b) is increasing in both arguments, among all updates {(v;, A;)} to the generic G-Sampler, the
stored sample must correspond to a point on the (minimum) Pareto frontier of {(Y;/A;, H(v;))}. Thus, it is
possible to produce a G-sample for any G € G simply by storing the Pareto frontier. (This observation was also
used by Cohen [4] in her approximate samplers.) The size of the Pareto frontier is a random variable that is less
than Inn + 1 in expectation and O(logn) with high probability.

THEOREM 1.2. Suppose ParetoSampler processes a stream of poly(n) updates to x. The mazimum space used is
O(logn) words with probability 1 — 1/poly(n). At any time, given a G € G, it can produce a v, € [n] such that
P(v, =v) = G(x(v))/G(x).

Algorithm 2 ParetoSampler

Specifications: The state is a set S C Ry x [0,1] x [n], initially empty. The function Pareto(L) returns the
(minimum) Pareto frontier of the tuples L w.r.t. their first two coordinates.

1: procedure UPDATE(v, A) > x(v) < x(v) + A
2: Generate fresh Y ~ Exp(1).

3: S < Pareto(SU{(Y/A,H(v),v)})

4: end procedure

5. procedure SAMPLE(G) >Geg
6 Let {g: Ry x [0,1] — Ry be the level function of G

7: (s by vi) <= argming, ;) es{flc(a, b)}

8 Return(v,) > v, = v sampled with probability G(x(v))/G(x).
9: end procedure

In Appendix [A] we show that both G-Sampler and ParetoSampler can be modified to sample without
replacement as well. One minor drawback of the generic G-Sampler is that we have to compute the level function
for G. For specific functions G of interest, we would like to have explicit, hardwired expressions for the level
function. An example of this is a new, simple F}/p-Sampler presented in Algorithm Why Line 3 effects
sampling according to the weight function G(z) = z'/? is explained in (Here erf™! is the inverse Gauss error
function, which is available as scipy.special.erfinv in Python.)

4We assume a word stores an index in [n] or a value in Ry. See Remark in QE for a discussion of bounded-precision
implementations.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

3411

Downloaded 11/26/25 to 107.221.198.215 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Algorithm 3 F}/p-Sampler

Specifications: The state is (vs, hs) € [n] U {L} x Ry U {oo}, initially (L,o00). After processing a stream of
updates, P(v, =v) = /x(v)/ 3 e VX (W)

1: procedure UPDATE(v, A) > x(v) « x(v) + A
2 Generate fresh Y ~ Exp(1).

3 h+ \/2Y/A -erf ' (H(v)) > erf : Gauss error function
4: if h < h, then

5 (Vs, ha) (v, h)

6:

end procedure

Lemma is the key that unlocks all of our results. It shows that for any A > 0, Lévy-induced level functions
can be used to generate variables distributed according to Exp(G(A)), which are directly useful for truly perfect
G-sampling and even G-moment estimation.

LEMMA 1.1. (LEVEL FUNCTIONS) For any function G € G, there exists a (deterministic) function £g: (0,00) x
(0,1) = R satisfying:

2D-monotonicity. for any a,a’ € Ry and b,b’ € [0,1], a < a’ and b < b implies bg(a,b) < bg(a’,b);
G-transformation. if Y ~ Exp(A\) and U ~ Uniform(0, 1), then {c(Y,U) ~ Exp(G(X)).
REMARK 1.1. The construction of ¢¢ is already given in Equation (1.1}, or more formally in Definition

Lemma [1.1]is a powerful tool. It can be used to build samplers for objects more complex than vectors. To
illustrate one example situation, suppose H = ([n], F) is a fixed graph (say a large grid) whose vector of vertex
weights x € R”} are subject to a stream of incremental updates. We would like to sample an edge (u,v) € E(H)
proportional to its G-weight G(x(u),x(v)). We build G using a stochastic sampling circuit, whose constituent
parts correspond to addition, scalar multiplication, and evaluating G-functions. For example, in §5| we show how
to sample an edge according to the edge weight G(a,b) = log(1 + v/a 4+ v/b) + 2(1 — e~%~?), which is constructed
from G-functions /z,1 — e~ *, and log(1 + z). This approach can trivially be extended to G-sampling edges
from hypergraphs, and to heterogenous sampling, where we want each edge (u,v) to be sampled proportional to
G (uw) (X(u), x(v)), where the G-functions {G, .} could all be different.

1.3 Organization In §2| we review non-negative Lévy processes and the specialization of the Lévy-Khintchine

representation theorem to non-negative processes. In we prove Lemma and Theorem on the

correctness of the generic G-Sampler and ParetoSampler. In §4] we give explicit formulae for the level functions

of a variety of G-functions, including G(z) = z'/2? (the Fy j5-Sampler), the soft-cap sampler, G(z) = 1 — €77,

and the log sampler, G(z) = log(1 + z). introduces stochastic sampling circuits, one application of which is
d

G-edge-sampling from (hyper)graphs. §6| concludes with some remarks and open problems. See Appendix |A] for
adaptations of our algorithms to sampling k indices without replacemenet.

2 Lévy Processes and Lévy-Khintchine Representation

Lévy processes are stochastic processes with independent, stationary increments. In this paper we consider
only one-dimensional, non-negative Lévy processes. This class excludes some natural processes such as Wiener
processes (Brownian motion).

DEFINITION 2.1. (NON-NEGATIVE LEVY PROCESSES [14]) A random process X = (X;);>0 is a non-negative
Lévy process if it satisfies:

Non-negativity. X; € Ry U {oo} for all t € R} [

5We do allow the random process to take on the value co, which turns out to be meaningful and often useful for designing
algorithms.

Copyright (© 2025 by SIAM
Unauthorized reproduction of this article is prohibited

3412

Downloaded 11/26/25 to 107.221.198.215 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Stationary Increments. (X;., — X;) ~ X for all t,s € R.

Independent Increments. For any 0 < ¢; < ta... < tg, X¢, Xy, — Xoy,..., Xe, — Xy, _, are mutually
independent.

Stochastic Continuity. X, = 0 almost surely and limy o P(X; > €) = 0 for any € > 0.

The bijection between G and non-negative Lévy processes is a consequence of the general Lévy-Khintchine
representation theorem [14].

THEOREM 2.1. (LEVY-KHINTCHINE REPRESENTATION FOR NON-NEGATIVE LEVY PROCESSES. [14, PAGE 153])
Any non-negative Lévy process X = (X;)i>0 can be identified by a triple (c,~o,v) where ¢,vo € Ry and v is a
measure on (0,00) such that

(2.2) /OOO min{r, 1} v(dr) < co.

The identification is through the Laplace transform. For any t,z € R

(2.3) Ee™*** = exp (—t (d [z > 0] + 02 + /000(1 —e ") V(dr))) .

Conversely, any triple (c,vo,v) with ¢,v0 € Ry and v satisfying (12.2) corresponds to a non-negative Lévy process

(Xy) satisfying @E

The parameters (c,7o,v) of a Lévy process (X;)¢>o are called the killing rate, the drift, and the Lévy measure.
We associate with each G € G a Lévy-induced level function.

DEFINITION 2.2. (LEVY INDUCED LEVEL FUNCTION) Let G € G and X = (X;);>0 be the corresponding non-
negative Lévy process, i.e., for any ¢,z € Ry,

Eeszt _ eftG(z).
The induced level function £g: (0,00) x (0,1) = Ry is, for a € (0,00) and b € (0, 1), defined to be
La(a,b) =inf{t | P(X; > a) > b}.

3 Proofs of Lemma and Theorem

In this section we prove the key lemma stated in the introduction, Lemma [T.1] as well as Theorem
concerning the correctness of the generic G-Sampler and the G-universal ParetoSampler.

Proof. [Proof of Lemma Recall that G € G, Y ~ Exp()), and U ~ Uniform(0,1). We argue that ¢z (Y,U)
(Definition is monotonic in both arguments and analyze its distribution.

By Lévy-Khintchine, G has a corresponding non-negative Lévy process X = (X;);>0 for which Ee=*%+ =
e G(*) Note that since Lévy processes are memoryless, a non-negative Lévy process is also non-decreasing.
Therefore P(X; > a) is increasing in ¢ and decreasing in a, and as a consequence, ¢¢(a,b) = inf{t | P(X; > a) > b}
is 2D-monotonic. We now analyze the distribution of ¢¢(Y,U). For any w > 0, we have

Plla(Y,U) > w) =P(inf{t : P(X; >Y) > U} > w) definition of /¢

6Sato’s book [14] did not consider killed processes but it is a routine patch to the formulation to add a kill rate. See, e.g., §3 in
[16] for a reference of killed processes.

Copyright (© 2025 by SIAM
Unauthorized reproduction of this article is prohibited

3413

Downloaded 11/26/25 to 107.221.198.215 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Note that by the definition of Lévy process, P(X; > Y) is a continuous function in ¢ and therefore inf{¢ : P(X; >
Y) > U} > w is equivalent to P(X,, > Y) < U. Thus, this is equal to

=P(P(X, >Y)<U)

=1-P(X, >Y) U ~ Uniform(0, 1)

=P(X, <Y)

=EP(X, <Y)| Xu)

=E(e " | X,) Y ~ Exp(\)

= RBe X

= wEW by Lévy-Khintchine (Theorem [2.1)).
Since the CDF of Exp(A) is 1 — e~ ** we conclude that ¢(Y,U) ~ Exp(G(\)). d

We can now prove the correctness of the generic G-Sampler (Theorem Algorithm and the ParetoSampler
(Theorem Algorithm [2)).

Proof. [Proof of Theorem (G-Sampler)] Let x € R} be the final vector after all updates, and (v, h,) the final
memory state of G-Sampler. We will prove that

e h, ~ Exp(G(x)), and
e for any v € [n], P(v. = v) = G(x(v))/G(x).

For v € [n], let h, be the smallest value produced by the k updates (v, A;);e[x to index v, so x(v) = Zle A
Let Y7,...,Y, be the i.i.d. Exp(1) random variables generated during those updates. Then

hy ~min {{c(Y1/A1, H€)), ... la(Yi/Ak, H(v))}
and by the 2D-monotonicity property of Lemma this is equal to
= Eg(min {H/Al, .. .,Yk/Ak},H(’U)).

Note that min{Y7/Aq,...,Yi/Ar} ~ Exp(}>;Ai) = Exp(x(v)) and H(v) ~ Uniform(0,1). By the G-
transformation property of Lemma [I.1] this is distributed as

~ Exp(G(x(v)))-

By properties of the exponential distribution, we have h., = min,cp, hy ~ min,ep,) Exp(G(x(v))) ~ Exp(G(x))
and the probability that v. = v is sampled is exactly G(x(v))/G(x). 0

REMARK 3.1. The proof of Theorem shows that G-Sampler is truly perfect with zero probability of failure,
according to Definition assuming the the value h, can be stored in a word. On a discrete computer, where
the value h, can only be stored discretely, there is no hope to have h, to distribute as Exp(G(x)) perfectly.
Nevertheless, a truly perfect sample can still be returned on discrete computers, because one does not have
to compute the exact {g(z,y) values but just correctly compare them. We now discuss such a scheme. Let
Ix|loc = poly(n). Supposing that we only stored h. to O(logn) bits of precision, we may not be able to correctly
ascertain whether h < h, in Line 4 of G-Sampler (Algorithm . This event occurs with probability l/poly(n)m
which induces an additive error in the sampling probability, i.e., (¢,7,0) = (0,1/poly(n),0). We cannot regard this
event as a failure (with (¢,7n,6) = (0,0, 1/poly(n))) because the sampling distribution, conditioned on non-failure,

"To see this, consider two independent random variables Y7 ~ Exp()\1) and Y2 ~ Exp()\2). By the properties of exponential random
variables, conditioning on Y7 < Y3, then |Y1 — Ya| ~ Exp(A2); conditioning on Y; > Ya, then |Y7 — Ya2| ~ Exp(A1). This suggests
P(|Y1 — Ya| > 2) > e~ max(A1:22)2 Thus if both A\; and A2 are O(poly(n)), then with |Y; — Ya| = Q(1/poly(n)) with probability
e~ O1/poly(n)) > 1 — O(1/poly(n)). Now let A\; = x(v.) and A\; = x(v.), where v/, is the sample selected by the O(logn)-bit sketch
and vy is the sample selected by the infinite precision sketch (the first O(logn) bits are the same with the former one). If v} # v,
then it implies |Y2 — Y1| < O(1/poly(n)), which happens only with probability O(1/poly(n)).

Copyright (© 2025 by SIAM
Unauthorized reproduction of this article is prohibited

3414

Downloaded 11/26/25 to 107.221.198.215 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

would in general not be the same as the truly perfect distribution. There are ways to implement a truly perfect
sampler ((e,n,6) = (0,0,0)) which affect the space bound. Suppose update (v, A) is issued at (integer) time k. We
could store (v, k) and generate Y from k via the random oracle. Thus, in a stream of m updates, the space would be
O(log(n+m)) bits. Another option is to generate more precise estimates of Y (and H(v)) on the fly. Rather than
store a tuple (v,h), h = Lg(Y/A, H(v)), we store (v, R,A), where R ~ Uniform(0, 1) is dynamically generated
to the precision necessary to execute Line 4 of G-Sampler (Algorithm . Specifically, Y = —In R ~ Exp(1) is
derived from R, and if we cannot determine if h < h,, where h = lg(Y/A, H(v)), hy = La(Yi/Ax, H(vy)), we
append additional random bits to R, R, until the outcome of the comparison is certain.

Proof. [Proof of Theorem (ParetoSampler)] Let T be the set of all tuples (Y;/A;, H(v;),v;) generated during
updates, and S be the minimum Pareto frontier of 7" w.r.t. the first two coordinates in each tuple. Fix
any query function G € G. Imagine that we ran G-Sampler (Algorithm on the same update sequence
with the same randomness. By the 2D-monotonicity property of Lemma the output of G-Sampler,
(vi, he = La(Yi/ Ay, H(v;))) must correspond to a tuple (Y;/A;, H(v;),v;) € S on the minimum Pareto frontier.
Thus, the SAMPLE(G) function of ParetoSampler would return the same index v; as G-Sampler.

We now analyze the space bound of ParetoSampler. Suppose that h, = min{Y;/A;}, where the minimum is
over all updates (v, A;) to x(v). (When x(v) = 0, h, = c0.) We shall condition on arbitrary values {h,} and
only consider the randomness introduced by the hash function H, which effects a random permutation on {h,}.
Let L = (hy,,--.,hy,) be the permutation of the h-values that is sorted in increasing order by H(v;). Then |S]
is exactly the number of distinct prefix-minima of L. Define X; = 1 [h,, = min{h,,, ..., hy,}] to be the indicator
that h,, is a prefix-minimum and v; is included in a tuple of S. Then

E(S)=E | Y Xi| =Y 1/i=H,<ln+1,

i€[n] i€[n]

where H,, is the nth harmonic number. Note that X;s are independent. By Chernoff bounds, for any ¢ > 2
P(|S| > cH,) < n~). Since there are only poly(n) updates, by a union bound, |S| = O(logn) at all times, with
probability 1 — 1/poly(n). 0

REMARK 3.2. The O(logn)-word space bound holds even under some exponentially long update sequences.
Suppose all updates have magnitude at least 1, i.e., A; > 1. Then the same argument shows that the expected
number of times h, changes is at most Inx(v) 4+ 1 and by Chernoff bounds, the total number of times any of {h,}
changes is M = O(nln||x||s) with probability 1 — exp(—$(M)). Thus, we can invoke a union bound over M
states of the data structure and conclude |S| = O(log M) with probability 1 — 1/poly(M). This is O(logn) when

Ix|lco < exp(poly(n)).

4 Deriving the Level Functions
The generic G-Sampler and G-universal ParetoSampler refer to the Lévy-induced level function £g. In this section
we illustrate how to derive expressions for /¢ in a variety of cases.

We begin by showing how G-Sampler (Algorithm “reconstructs” the known Fy- and Fj-samplers, then
consider a sample of non-trivial weight functions, G(z) = 2'/? (used in the Fy j3-Sampler, Algorithm ,
G(z) = 1 — e ™* (corresponding to a Poisson process), and G(z) = log(1 + z) (corresponding to a Gamma
process).

EXAMPLE 4.1. (Fyp-SAMPLER — MIN SKETCH [2]) The weight function for Fy-sampling is G(z) = 1[z > 0].
By Lévy-Khintchine (Theorem , this function corresponds to a “pure-killed process” (X;)¢>o which can be
simulated as follows.

e Sample a kill time Y ~ Exp(1).

0 ift<Y,
oo ift>Y.

The induced level function (Definition is, for a € (0,00) and b € (0,1),
la(a,b) =inf{z | P(X, > a) > b}

.SetXt:{

Copyright (© 2025 by SIAM
Unauthorized reproduction of this article is prohibited

3415

Downloaded 11/26/25 to 107.221.198.215 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

By definition, X, > a > 0 if and only if X has been killed by time z, i.e., z > Y. Continuing,

=inf{z | P(z >Y) > b}
=inf{z | 1—e"* >}
= —log(l —b).

Thus, by inserting this ¢ into G-Sampler (Algorithm , it stores (v, h«) where v, has the smallest hash value
and h, ~ EXp(FO) thereby essentially reproducing Cohen’s [2] Min sketch.

EXAMPLE 4.2. (F;-SAMPLER — MIN-BASED RESERVOIR SAMPLING [15]) The weight function for an Fj-sampler
is G(#) = z. By Lévy-Khintchine, this corresponds to a deterministic drift process (X;);>0, where X; = t. The
induced level function is,

lg(a,b) =inf{z | P(X, >a) > b}
and since X, =z, P(X, > 2) =1[z > z],

=inf{z | 1[z > a] > b}
=a. Note that b € (0, 1)

Thus the corresponding G-sampler does not use the hash function H, and recreates reservoir sampling [15] with
the choice of replacement implemented by taking the minimum random value.

Next, we demonstrate a non-trivial application: the construction of the F; jo-Sampler presented in Algorithm

EXAMPLE 4.3. (Fy/2-SAMPLER) For F /5, the weight function is G(z) = /2, which corresponds to the non-
negative 1/2-stable process (X;)¢>0. The induced level function is

lg(a,b) =inf{z | P(X, >a) > b}

2

and since X is 1/2-stable, we have X, ~ 22 X;. Continuing,

=inf{z | P(2°X; >a) > b}.

It is known that the 1/2-stable X; distributes identically with 1/Z? where Z is a standard Gaussian [14, page 29].
Thus, we have P(X; > r) = P (|Z| < \/1/7’) = erf (\/%7,), where erf(s) = % IN e~*" dz is the Gauss error
function. As P(22X1 > a) = P(X; > a/z?) = erf(z/+/2a), this is equal to

=V2a-erf 71 (b).

Plugging the expression {g(a,b) = v/2a - erf ~*(b) into G-Sampler, we arrive at the F j5-Sampler of Algorithm
and thereby establish its correctness.

The 1/2-stable distribution has a clean form, which yields a closed-form expression for the corresponding
level function. Refer to Penson and Gérska [13] for explicit formulae for one-sided k/I-stable distributions, where
k,l € Z4 and k <, which can be used to write Fy /-samplers with explicit level functions.

Previously, approximate “soft cap”-samplers were used by Cohen to estimate cap-statistics [4]. The weight
function for a soft cap sampler is parameterized by 7 > 0, where G,(z) = 1 — e~ "*. We now compute the level
functions needed to build soft cap samplers with precisely correct sampling probabilities.

8Recall that for a frequency vector x € R?, Fy = Zue[n] 1 [x(v) > 0] is the number of distinct elements present in the stream.

Copyright (© 2025 by SIAM
Unauthorized reproduction of this article is prohibited

3416

Downloaded 11/26/25 to 107.221.198.215 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

EXAMPLE 4.4. (“SOFT CAP”-SAMPLER) The weight function is G,(z) = 1 — e""%. By Lévy-Khintchine, G-
corresponds to a unit-rate Poisson counting process (X;);>o with jump size 7, where X;/7 ~ Poisson(t). By

Definition
lg, (a,b) =inf{z | P(X, >a) > b}

Since X /7 ~ Poisson(z), P(X. > a) =e * 372, ;—], Continuing,

e J
=infdz|e ? Z Z,—'zb
i=Tar] J:

Thus {g, (a,b) = wrer,, Where wyp is the unique solution to the equation e™" Z;’;k ’;’—,] = b. Note that for any

k € Z., the function g(w) = e™" Zjoik % = P(Poisson(w) > k) is increasing from 0 to oo as w increases from
0 to oo, by a simple coupling argument. Therefore, wy, p, as the solution of g(w) = b, can be computed with a
binary search.

EXAMPLE 4.5. (LOG-SAMPLER) Consider the weight function G(z) = log(l + z). By Lévy-Khintchine, the
corresponding process is a Gamma process (X;);>0, where X; ~ Gamma(t,1). The PDF of Gammal(t,1) is

f(r) =rt"te="/T(t). By Definition
lg. (a,b) =inf{z | P(X, >a) > b}

Since X, ~ Gamma(z,1), P(X, > a) =T(2)~! [~ r*~le~"dr. Continuing,

a

= inf {z I‘(z)_l/ e ™" dr > b} .

Thus £ (a,b) = wy, , which is the unique solution of the equation D(w)™ [r*~te™"dr = b. Once again the left
hand side is monotonic in w and therefore w’mb can be found with a binary search.

As discussed in Remark there is no need to compute the level functions exactly, which is impossible to
do so in the practical finite-precision model anyway. We only need to evaluate level functions to tell which index
v has the smallest {(z,y) value. Such samples are still truly perfect, even though the finite-precision value h, is
not a perfect Exp(G(x)) random variable. For a generic G, in practice one may pre-compute the level function
of G on a geometrically spaced lattice and cache it as a read-only table. Such a table can be shared and read
simultaneously by an unbounded number of G-samplers for different applications and therefore the amortized
space overhead is typically small.

5 Stochastic Sampling Circuits

We demonstrate how sampling via level functions /¢ can be used in a more general context. Just as currents and
voltages can represent signals/numbers, one may consider an exponential random variable ~ Exp()) as a signal
carrying information about its rate A. These signals can be summed, scaled, and transformed as follows.

Summation. Given Y] ~ Exp(A1),Ys ~ Exp(A2), min(Y7,Ys) ~ Exp(A1 + A2).
Scaling. Fix a scalar a > 0. Given Y ~ Exp()), Y/a ~ Exp(al).
G-transformation. Given Z ~ Exp(\) and Y ~ Uniform(0,1), {¢(Z,Y) ~ Exp(G(N)).
A stochastic sampling circuit is an object that uses summation, scaling, and G-transformation gates to sample

according to functions with potentially many inputs. Such a circuit is represented by a directed acyclic graph
(V, E) where V is the set of gates and E C V x V is a set of wires. There are four types of gates.

e An input-gate u receives a stream of incremental updates. Whenever it receives A > 0, it generates, for
each outgoing edge (u,v), a freshly sampled i.i.d. Y ~ Exp(1) random variable and sends Y/A to v.

Copyright (© 2025 by SIAM
Unauthorized reproduction of this article is prohibited

3417

Downloaded 11/26/25 to 107.221.198.215 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Figure 1: The flat stochastic sampling circuit corresponding to the generic G-Sampler (Algorithm .

e A scalar-gate v is parameterized by a fixed o > 0, and has a unique predecessor v’ and successor v”,
(v',v), (v,v") € E. Whenever v receives a y € Ry from v’ is sends y/a to v”.

e A G-gate v has a unique successor v', (v,v’) € E. It is initialized with a random seed U ~ Uniform(0, 1).
Whenever v receives a number y € R from a predecessor u, it sends ¢g(y,U) to v/, where (g is the
Lévy-induced level function of G € G.

e An output-gate stores a pair (vy, hy), initialized as (L, 00). Whenever an output-gate receives a number
y € Ry from a predecessor with id v € V, if y < h,, then it sets (v, hy) < (v,y).

The restriction that G-gates and scalar-gates have only one successor guarantees that the numbers received
by one gate from different wires are independent. The generic G-Sampler (Algorithm (1)) can be viewed as a flat
stochastic sampling circuit (Fig. [I]), where each element v € [n] has its own input-gate and G-gate. We could just
as easily assign each input gate v to a G,-gate, G, € G, which would result in a heterogeneous sampler, where v
is sampled with probability G, (x(v))/>", Gu(x(u)).

We illustrate how stochastic sampling circuits can be used to sample an edge from a graph with probability
proportional to its weight. Let H = ([n], E) be a fixed graph and x € R} be a vector of vertex weights subject to
incremental updates. For a fixed edge-weight function G: R2 — R, where the weight of (u,v) is G(x(u),x(v)),
we would like to select an edge (u.,v.) with probability exactly G(x(u.),x(vs))/ >, p)ep G(%(u), x(v)). Our
running example is a symmetric weight function that exhibits summation, scalar multiplication, and a variety of
G-functions.

G(a,b) = log(1 + va + Vb) +2(1 — e~ (@*t)),

The stochastic sampling circuit corresponding to G is depicted in Fig. It uses the following level and hash
functions.

e {1, level function for G1(x) = y/x. See Example

5, level function for Go(x) =1 — e~ *. See Example

3, level function for G3(x) = log(1 + z). See Example

e Hy: V — (0,1) uniformly at random.

Hy, H3: E — (0,1) uniformly at random.

The implementation of this circuit as a G-Edge-Sampler is given in Algorithm Note that since G is
symmetric, we can regard H as an undirected graph and let UPDATE(v, A) treat all edges incident to v in the
same way. If G were not symmetric, the code for G-Edge-Sampler would have two for loops, one for outgoing
edges (v,u) € E, and one for incoming edges (u,v) € E.

Copyright (© 2025 by SIAM
Unauthorized reproduction of this article is prohibited

3418

Downloaded 11/26/25 to 107.221.198.215 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

fresh fresh

g2

vy

9 log(1 + z) ¥ g

(€x, h)

Figure 2: Circuit diagram for G-Edge-Sampler (Algorithm W) with G(a,b) = log(1 + v/a + Vb) + 2(1 — e~(@+0)),
Depicted are two of the inputs gates (u and v), the unique output gate, and all gates related to the sampling
of edge {u,v}. The symbol @ indicates the random seed U ~ Uniform(0, 1) used by each G-gate, as well as the
“fresh” exponential random variables Y ~ Exp(1) generated by the input gates for each update and each output
wire. The “2x”-gate is a deterministic scalar gate with o = 2.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

3419

Downloaded 11/26/25 to 107.221.198.215 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Algorithm 4 G-Edge-Sampler for G(a,b) = log(1 + v/a + Vb) + 2(1 — e~ (a11)

Specifications: H = ([n], F) is a fixed graph. The state is (e, hy) € ([g]) U{L} x Ry U{oc}, initially (L, c0).
After processing a stream of updates, P(ex = {us, v.}) = G(x(ux), x(v4))/ Dy vy e G(x(u), x(v)).

1: procedure UPDATE(v, A) > x(v) < x(v) + A
2 for each edge {u,v} adjacent to v do
3 Generate fresh, independent Y7, Ys ~ Exp(1)
1 b min{ts(04 (Vi /A, Hy (0), Ha({u, 0}), a(Ya/A, Ha({u, v}))/2}
5: if h < h, then
6 (0.) + ({u,0},)
7 end for
8: end procedure

6 Conclusion

In this paper we developed very simple sketches for perfect G-sampling using O(logn) bits and universal perfect
G-sampling using O(log® n) bits. (See Remark in §3|for a discussion of truly perfect implementations.) They
were made possible by the explicit connection between the class G and the Laplace exponents of non-negative
Lévy processes via the Lévy-Khintchine representation theorem (Theorem. To our knowledge this is the first
explicit use of the Lévy-Khintchine theorem in algorithm design, though the class G was investigated without
using this connection, by Cohen [3] 4, [5] and Cohen and Geri [6]. A natural question is whether G captures all
functions that have minimal-size O(log n)-bit perfect samplers.

CONJECTURE 6.1. Suppose x € R’} is updated by an incremental stream. If there is an O(logn)-bit perfect G-
sampler in the random oracle model (i.e., an index v € [n] is sampled with probability G(x(v))/G(x) £1/poly(n)),
then G € G.

Recall that G is in correspondence with non-negative, one-dimensional Lévy processes, which is just a small
subset of all Lévy processes. It leaves out processes over R?, compound Poisson processes whose jump distribution
includes positive and negative jumps, and p-stable processes for p € [1, 2], among others. Exploring the connection
between general Lévy processes, Lévy-Khintchine representation, and data sketches is a promising direction for
future research.

References

[1] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algorithms via precision sampling. In
Proceedings 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 363-372, 2011.

[2] Edith Cohen. Size-estimation framework with applications to transitive closure and reachability. Journal of Computer
and System Sciences, 55(3):441-453, 1997.

[3] Edith Cohen. HyperLogLog hyperextended: Sketches for concave sublinear frequency statistics. In Proceedings 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pages 105-114, 2017.

[4] Edith Cohen. Stream sampling framework and application for frequency cap statistics. ACM Trans. Algorithms,
14(4):52:1-52:40, 2018.

[5] Edith Cohen. Sampling big ideas in query optimization. In Proceedings 42nd ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems (PODS), pages 361-371, 2023.

[6] Edith Cohen and Ofir Geri. Sampling sketches for concave sublinear functions of frequencies. In Proceedings of the
Annual Conference on Neural Information Processing Systems (NeurIPS), pages 1361-1371, 2019.

[7] Edith Cohen, Rasmus Pagh, and David P. Woodruff. WOR and p’s: Sketches for £,-sampling without replacement.
In Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS), 2020.

[8] Rajesh Jayaram. Sketching and Sampling Algorithms for High-Dimensional Data. PhD thesis, Carnegie Mellon
University Pittsburgh, PA, 2021.

[9] Rajesh Jayaram and David P. Woodruff. Perfect L, sampling in a data stream. SIAM J. Comput., 50(2):382-439,
2021.

Copyright (© 2025 by SIAM
Unauthorized reproduction of this article is prohibited

3420

Downloaded 11/26/25 to 107.221.198.215 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

[10] Rajesh Jayaram, David P. Woodruff, and Samson Zhou. Truly perfect samplers for data streams and sliding windows.
In Proceedings 41st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS), pages
29-40, 2022.

[11] Hossein Jowhari, Mert Saglam, and Gabor Tardos. Tight bounds for L, samplers, finding duplicates in streams,
and related problems. In Proceedings 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS), pages 49-58, 2011.

[12] Morteza Monemizadeh and David P. Woodruff. 1-pass relative-error L,-sampling with applications. In Proceedings
21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1143-1160, 2010.

[13] Karol A. Penson and Katarzyna Goérska. Exact and explicit probability densities for one-sided Lévy stable
distributions. Physical Review Letters, 105(21):210604.1-210604.4, 2010.

[14] Ken-Iti Sato. Lévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 1999.

[15] Jeffrey S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software (TOMS),
11(1):37-57, 1985

[16] Yuri Yakubovich. A simple proof of the levy—khintchine formula for subordinators. Statistics & Probability Letters,
176:109136, 2021.

A Sampling Without Replacement

We can take k independent copies of the G-Sampler or ParetoSampler sketches to sample k indices from the
(G(x(v))/G(x))ve[n distribution with replacement. A small change to these algorithms will sample % indices
without replacement. See Cohen, Pagh, and Woodruff [7] for an extensive discussion of why WOR (without
replacement) samplers are often more desirable in practice. The algorithm (G, k)-Sampler-WOR(Algorithm
samples k (distinct) indices without replacement.

Algorithm 5 (G, k)-Sampler-WOR
Specifications: The state is a set S C [n] x R, initially empty. The function k-Min(L) takes a list L C [n] x Ry,

discards any (v, h) € L if there is a (v, k') € L with A’ < h, then returns the k elements with the smallest second
coordinate.

1: procedure UPDATE(v, A) > x(v) + x(v) + A
2: Generate fresh Y ~ Exp(1).
3: h <« la(Y/A, H(v)) > {¢ is level function of G

4 S k-Min(SU{(v,h)})
5: end procedure

In a similar fashion, one can define a sketch k-ParetoSampler-WOR analogous to (G, k)-Sampler-WOR, that
maintains the minimum k-Pareto frontier, defined by discarding any tuple (a, b, v) if there is another (a’, b, v) with
a’ < a, then retaining only those tuples that are dominated by at most k — 1 other tuples.

THEOREM A.1. Consider a stream of poly(n) incremental updates to a vector x € R'y. The (G, k)-Sampler-WOR
occupies 2k words of memory, and can report an ordered tuple (vl, ... vF) € [n]* such that

k [
(A.1) P((0l,..., o) = (v1,. HG Zl 7;2(s

The k-ParetoSampler occupies O(klogn) words w.h.p. and for any G € G at query time, can report a tuple
(vl,...,v%) € [n)* distributed according to Eq. (A.1).

Proof. The proof of Theorem shows that h, ~ Exp(G(x(v))) and if v; minimizes h,:1, that h,: ~ Exp(G(x)).
It follows that P(vl = v) = G(x(v))/G(x). By the memoryless property of the exponential distribution, for any
v # v}, hy — hyr ~ Exp(G(x(v))), hence hy2 — hyr ~ Exp(G(x) — G(x(v}))) and P(v2 = v | vy,v # vl) =
G(x(v))/(G(x) — G(x(v}))). The distribution of v2,...,v¥ is analyzed in the same way.

By the 2D-monotonicity property, the k-Pareto frontier contains all the points that would be returned by
(G, k)-Sampler-WOR, hence the output distribution of k-ParetoSampler-WOR is identical. The analysis of the

Copyright (© 2025 by SIAM
Unauthorized reproduction of this article is prohibited

3421

Downloaded 11/26/25 to 107.221.198.215 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

space bound follows the same lines, except that X; is the indicator for the event that h,, is among the k-smallest
elements of {hy,,...,hy,;}, so E(X;) = min{k/i,1}, E(|S|) < kH,, and by a Chernoff bound, |S| = O(klogn)
with high probability. 0

Copyright (© 2025 by SIAM
Unauthorized reproduction of this article is prohibited

3422

	Introduction
	Prior Work
	New Results
	Organization

	Lévy Processes and Lévy-Khintchine Representation
	Proofs of lem:level and Theorem 1.1, 1.2
	Deriving the Level Functions
	Stochastic Sampling Circuits
	Conclusion
	Sampling Without Replacement

