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Abstract

Given G : R+ ! R+, the G-moment of a vector x 2 Rn

+ is G(x)
def
=

P
v2[n] G(x(v)) and the G-sampling

problem is to select an index v⇤ 2 [n] according to its contribution to the G-moment, i.e., such that
P(v⇤ = v) = G(x(v))/G(x). Approximate G-samplers may introduce multiplicative and/or additive errors
to this probability, and some have a non-trivial probability of failure.

In this paper we focus on the exact G-sampling problem, where G is selected from the following class of
functions.

G =

⇢
G(z) = c [z > 0] + �0z +

Z 1

0

(1� e
�rz) ⌫(dr)

���� c, �0 � 0, ⌫ is positive and

Z 1

0

min{1, r} ⌫(dr) < 1
�
.

The class G is perhaps more natural than it looks. It captures all Laplace exponents of non-negative, one-
dimensional Lévy processes, and includes several well studied classes such as pth moments G(z) = z

p, p 2 [0, 1],
logarithms G(z) = log(1 + z), Cohen and Geri’s [6] soft concave sublinear functions, which are used to
approximate concave sublinear functions, including cap statistics.

We develop G-samplers for a vector x 2 Rn

+ that is presented as an incremental stream of positive updates.
In particular:

• For any G 2 G, we give a very simple G-sampler that uses 2 words of memory and stores at all times a
v⇤ 2 [n], such that P(v⇤ = v) is exactly G(x(v))/G(x).

• We give a “universal” G-sampler that uses O(log n) words of memory w.h.p., and given any G 2 G at
query time, produces an exact G-sample.

With an overhead of a factor of k, both samplers can be used to G-sample a sequence of k indices with or
without replacement.

Our sampling framework is simple and versatile, and can easily be generalized to sampling from more
complex objects like graphs and hypergraphs.

1 Introduction

We consider a vector x 2 Rn
+, initially zero, that is subject to a stream of incremental (positive) updates:1

Update(v,�) : Set x(v) x(v) +�, where v 2 [n],� > 0.

The G-moment of x is G(x) =
P

v2[n] G(x(v)) and a G-sampler is a data structure that returns an index v⇤
with probability proportional to its contribution to the G-moment.

Definition 1.1. (Approximate/Perfect/Truly Perfect G-samplers [9, 10, 8]) Let G : R+ ! R+ be
a function. An approximate G-sampler with parameters (✏, ⌘, �) is a sketch of x that can produce an index
v⇤ 2 [n] [ {?} such that P(v⇤ =?)  � (v⇤ =? is failure) and

P(v⇤ = v | v⇤ 6=?) 2 (1± ✏)G(x(v))/G(x)± ⌘.

If (✏, ⌘) = (0, 1/poly(n)) we say the sampler is perfect and if (✏, ⌘) = (0, 0) it is truly perfect.

In this paper we work in the random oracle model and assume we have access to a uniformly random hash
function H : [n]! [0, 1].

∗This work was supported by NSF Grant CCF-2221980.
1R+ is the set of non-negative reals.
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1.1 Prior Work Much of the prior work on this problem considered Lp-samplers, p 2 [0, 2], in the more general
turnstile model, i.e., x is subject to positive and negative updates and G(z) = |z|p. We survey this line of work,
then review G-samplers in incremental streams.

Lp-Sampling from Turnstile Streams. Monemizadeh and Woodru↵ [12] introduced the first
poly(✏�1, log n)-space Lp-sampler. (Unless stated otherwise, ⌘ = 1/poly(n).) These bounds were improved
by Andoni, Krauthgamer, and Onak [1] and then Jowhari, Saǧlam, and Tardos [11], who established an upper
bound of O(✏�max{1,p} log2 n log ��1) bits, and an ⌦(log2 n)-bit lower bound whenever ✏, � < 1. Jayaram and
Woodru↵ [9] proved that e�cient Lp-samplers need not be approximate, and that there are perfect Lp samplers
occupying O(log2 n log ��1) bits when p 2 [0, 2) and O(log3 n log ��1) bits when p = 2. By concatenating k
independent Lp-samplers one gets, in expectation, (1� �)k independent samples with replacement. Cohen, Pagh,
and Woodru↵ [7] gave an O(k · poly(log n))-bit sketch that perfectly samples k indices without replacement. Ja-
yaram, Woodru↵, and Zhou [10] studied the distinction between perfect and truly perfect samplers, proving that
in turnstile streams, perfect samplers require ⌦(min{n, log ⌘�1})-bits, i.e., truly perfect sampling with non-trivial
space is impossible.

G-Sampling from Incremental Streams. In incremental streams it is straightforward to sample according
to the F0 or F1 frequency moments (i.e., G-sampling with G(z) = [z > 0] and G(z) = z, resp.2) with a Min-
sketch [2] or reservoir sampling [15], respectively. Jayaram, Woodru↵, and Zhou [10] gave truly perfect G-samplers

for any monotonically increasing G : N ! R+ with G(0) = 0, though the space used is ⌦( kxk1

G(x) log �
�1), which in

many situations is ⌦(poly(n) log ��1).3

Cohen and Geri [6] were interested in G-samplers for the class of concave sublinear functions (CSF), which
are those that can be expressed as

CSF =

⇢
G(z) =

Z 1

0
min{1, zt}⌫(dt)

���� non-negative ⌫

�
.

This class can be approximated up to a constant factor by the soft concave sublinear functions (SoftCSF), namely
those of the form

SoftCSF =

⇢
G(z) =

Z 1

0
(1� e�zt)⌫(dt)

���� non-negative ⌫

�
.

Cohen and Geri [6] developed approximate G-samplers for G 2 SoftCSF, a class that includes Fp moments
(G(z) = zp), for p 2 (0, 1), and G(z) = log(1+ z). In their scheme there is a linear tradeo↵ between accuracy and
update time. Refer to Cohen [5] for a comprehensive survey of sampling from data streams and applications.

1.2 New Results In this paper we build truly perfect G-samplers with (✏, ⌘, �) = (0, 0, 0) for any G 2 G.

G =

⇢
G(z) = c [z > 0] + �0z +

Z 1

0
(1� e�rz) ⌫(dr)

�
,

such that c, �0 � 0, ⌫ is non-negative, and
R1
0 min{t, 1} ⌫(dt) <1.

The class G is essentially the same as SoftCSF, but it is, in a sense, the “right” definition. According to
the Lévy-Khintchine representation of Lévy processes, there is a bijection between the functions of G and the
Laplace exponents of non-negative, one-dimensional Lévy processes, aka subordinators, where the parameters
c, �0, ⌫ are referred to as the killing rate, the drift, and the Lévy measure, respectively. (Lévy processes and the
Lévy-Khintchine representation are reviewed in §2.)

The connection between G and non-negative Lévy processes allows us to build simple, truly perfect samplers.
Given a G 2 G, let (Xt)t�0, Xt 2 R+, be the corresponding Lévy process. We define the Lévy-induced level
function `G : R+ ⇥ [0, 1]! R+ to be

`G(a, b) = inf{t | P(Xt � a) � b}.(1.1)

2 [E] 2 {0, 1} is the indicator variable for the event/predicate E.
3For example, take G(z) =

p
z and x(1) = · · · = x(n) = n, then kxk1

G(x) = n
2
/n

3/2 =
p
n.
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Algorithm 1 Generic Perfect G-Sampler

Specifications: The only state is a pair (v⇤, h⇤) 2 [n][{?}⇥R+[{1}. Initially (v⇤, h⇤) = (?,1) and (implicitly)
x = 0n. After processing a stream of vector updates {(vi,�i)}i, (vi,�i) 2 [n]⇥ R+, P(v⇤ = v) = G(x(v))/G(x).
H : [n]! [0, 1] is a hash function. We use Exp(�) to denote the exponential distribution with rate �.

1: procedure Update(v,�) . x(v) x(v) +�
2: Generate fresh Y ⇠ Exp(1).
3: h `G(Y/�, H(v)) . `G is level function of G
4: if h < h⇤ then

5: (v⇤, h⇤) (v, h)

6: end procedure

The generic G-Sampler (Algorithm 1) uses `G to sample an index v proportional to G(x(v)) with just 2 words4

of memory.

Theorem 1.1. (G-Sampler) Fix any G 2 G. The generic G-Sampler stores a pair (v⇤, h⇤) 2 [n]⇥R+ such that
at all times, P(v⇤ = v) = G(x(v))/G(x), i.e., it is a truly perfect G-sampler with zero probability of failure.

Since `G(a, b) is increasing in both arguments, among all updates {(vi,�i)} to the generic G-Sampler, the
stored sample must correspond to a point on the (minimum) Pareto frontier of {(Yi/�i, H(vi))}. Thus, it is
possible to produce a G-sample for any G 2 G simply by storing the Pareto frontier. (This observation was also
used by Cohen [4] in her approximate samplers.) The size of the Pareto frontier is a random variable that is less
than lnn+ 1 in expectation and O(log n) with high probability.

Theorem 1.2. Suppose ParetoSampler processes a stream of poly(n) updates to x. The maximum space used is
O(log n) words with probability 1 � 1/poly(n). At any time, given a G 2 G, it can produce a v⇤ 2 [n] such that
P(v⇤ = v) = G(x(v))/G(x).

Algorithm 2 ParetoSampler

Specifications: The state is a set S ⇢ R+ ⇥ [0, 1] ⇥ [n], initially empty. The function Pareto(L) returns the
(minimum) Pareto frontier of the tuples L w.r.t. their first two coordinates.

1: procedure Update(v,�) . x(v) x(v) +�
2: Generate fresh Y ⇠ Exp(1).
3: S  Pareto(S [ {(Y/�, H(v), v)})
4: end procedure

5: procedure Sample(G) . G 2 G
6: Let `G : R+ ⇥ [0, 1]! R+ be the level function of G
7: (a⇤, b⇤, v⇤) argmin(a,b,v)2S{`G(a, b)}
8: Return(v⇤) . v⇤ = v sampled with probability G(x(v))/G(x).
9: end procedure

In Appendix A, we show that both G-Sampler and ParetoSampler can be modified to sample without
replacement as well. One minor drawback of the generic G-Sampler is that we have to compute the level function
for G. For specific functions G of interest, we would like to have explicit, hardwired expressions for the level
function. An example of this is a new, simple F1/2-Sampler presented in Algorithm 3. Why Line 3 e↵ects

sampling according to the weight function G(z) = z1/2 is explained in §4. (Here erf�1 is the inverse Gauss error
function, which is available as scipy.special.erfinv in Python.)

4We assume a word stores an index in [n] or a value in R+. See Remark 3.1 in §3 for a discussion of bounded-precision
implementations.
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Algorithm 3 F1/2-Sampler

Specifications: The state is (v⇤, h⇤) 2 [n] [ {?} ⇥ R+ [ {1}, initially (?,1). After processing a stream of
updates, P(v⇤ = v) =

p
x(v)/

P
u2[n]

p
x(u).

1: procedure Update(v,�) . x(v) x(v) +�
2: Generate fresh Y ⇠ Exp(1).
3: h 

p
2Y/� · erf�1(H(v)) . erf : Gauss error function

4: if h < h⇤ then

5: (v⇤, h⇤) (v, h)

6: end procedure

Lemma 1.1 is the key that unlocks all of our results. It shows that for any � > 0, Lévy-induced level functions
can be used to generate variables distributed according to Exp(G(�)), which are directly useful for truly perfect
G-sampling and even G-moment estimation.

Lemma 1.1. (level functions) For any function G 2 G, there exists a (deterministic) function `G : (0,1) ⇥
(0, 1)! R+ satisfying:

2D-monotonicity. for any a, a0 2 R+ and b, b0 2 [0, 1], a  a0 and b  b0 implies `G(a, b)  `G(a0, b0);

G-transformation. if Y ⇠ Exp(�) and U ⇠ Uniform(0, 1), then `G(Y, U) ⇠ Exp(G(�)).

Remark 1.1. The construction of `G is already given in Equation (1.1), or more formally in Definition 2.2.

Lemma 1.1 is a powerful tool. It can be used to build samplers for objects more complex than vectors. To
illustrate one example situation, suppose H = ([n], E) is a fixed graph (say a large grid) whose vector of vertex
weights x 2 Rn

+ are subject to a stream of incremental updates. We would like to sample an edge (u, v) 2 E(H)
proportional to its G-weight G(x(u),x(v)). We build G using a stochastic sampling circuit, whose constituent
parts correspond to addition, scalar multiplication, and evaluating G-functions. For example, in §5 we show how
to sample an edge according to the edge weight G(a, b) = log(1 +

p
a+
p
b) + 2(1� e�a�b), which is constructed

from G-functions
p
x, 1 � e�x, and log(1 + x). This approach can trivially be extended to G-sampling edges

from hypergraphs, and to heterogenous sampling, where we want each edge (u, v) to be sampled proportional to
G(u,v)(x(u),x(v)), where the G-functions {G(u,v)} could all be di↵erent.

1.3 Organization In §2 we review non-negative Lévy processes and the specialization of the Lévy-Khintchine
representation theorem to non-negative processes. In §3 we prove Lemma 1.1 and Theorem 1.1, 1.2 on the
correctness of the generic G-Sampler and ParetoSampler. In §4 we give explicit formulae for the level functions
of a variety of G-functions, including G(z) = z1/2 (the F1/2-Sampler), the soft-cap sampler, G(z) = 1 � e⌧z,
and the log sampler, G(z) = log(1 + z). §5 introduces stochastic sampling circuits, one application of which is
G-edge-sampling from (hyper)graphs. §6 concludes with some remarks and open problems. See Appendix A for
adaptations of our algorithms to sampling k indices without replacemenet.

2 Lévy Processes and Lévy-Khintchine Representation

Lévy processes are stochastic processes with independent, stationary increments. In this paper we consider
only one-dimensional, non-negative Lévy processes. This class excludes some natural processes such as Wiener
processes (Brownian motion).

Definition 2.1. (non-negative Lévy processes [14]) A random process X = (Xt)t�0 is a non-negative
Lévy process if it satisfies:

Non-negativity. Xt 2 R+ [ {1} for all t 2 R+.5

5We do allow the random process to take on the value 1, which turns out to be meaningful and often useful for designing
algorithms.
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Stationary Increments. (Xt+s �Xt) ⇠ Xs for all t, s 2 R+.

Independent Increments. For any 0  t1 < t2 . . . < tk, Xt1 , Xt2 � Xt1 , . . . , Xtk � Xtk�1 are mutually
independent.

Stochastic Continuity. X0 = 0 almost surely and limt&0 P(Xt > ✏) = 0 for any ✏ > 0.

The bijection between G and non-negative Lévy processes is a consequence of the general Lévy-Khintchine
representation theorem [14].

Theorem 2.1. (Lévy-Khintchine representation for non-negative Lévy processes. [14, page 153])
Any non-negative Lévy process X = (Xt)t�0 can be identified by a triple (c, �0, ⌫) where c, �0 2 R+ and ⌫ is a
measure on (0,1) such that

Z 1

0
min{r, 1} ⌫(dr) <1.(2.2)

The identification is through the Laplace transform. For any t, z 2 R+

Ee�zXt = exp

✓
�t

✓
c [z > 0] + �0z +

Z 1

0
(1� e�rz) ⌫(dr)

◆◆
.(2.3)

Conversely, any triple (c, �0, ⌫) with c, �0 2 R+ and ⌫ satisfying (2.2) corresponds to a non-negative Lévy process
(Xt) satisfying (2.3).6

The parameters (c, �0, ⌫) of a Lévy process (Xt)t�0 are called the killing rate, the drift, and the Lévy measure.
We associate with each G 2 G a Lévy-induced level function.

Definition 2.2. (Lévy induced level function) Let G 2 G and X = (Xt)t�0 be the corresponding non-
negative Lévy process, i.e., for any t, z 2 R+,

Ee�zXt = e�tG(z).

The induced level function `G : (0,1)⇥ (0, 1)! R+ is, for a 2 (0,1) and b 2 (0, 1), defined to be

`G(a, b) = inf{t | P(Xt � a) � b}.

3 Proofs of Lemma 1.1 and Theorem 1.1, 1.2

In this section we prove the key lemma stated in the introduction, Lemma 1.1, as well as Theorem 1.1, 1.2
concerning the correctness of the generic G-Sampler and the G-universal ParetoSampler.

Proof. [Proof of Lemma 1.1] Recall that G 2 G, Y ⇠ Exp(�), and U ⇠ Uniform(0, 1). We argue that `G(Y, U)
(Definition 2.2) is monotonic in both arguments and analyze its distribution.

By Lévy-Khintchine, G has a corresponding non-negative Lévy process X = (Xt)t�0 for which Ee�zXt =
e�tG(z). Note that since Lévy processes are memoryless, a non-negative Lévy process is also non-decreasing.
Therefore P(Xt � a) is increasing in t and decreasing in a, and as a consequence, `G(a, b) = inf{t | P(Xt � a) � b}
is 2D-monotonic. We now analyze the distribution of `G(Y, U). For any w > 0, we have

P(`G(Y, U) � w) = P(inf{t : P(Xt � Y ) � U} � w) definition of `G

6Sato’s book [14] did not consider killed processes but it is a routine patch to the formulation to add a kill rate. See, e.g., §3 in
[16] for a reference of killed processes.
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Note that by the definition of Lévy process, P(Xt � Y ) is a continuous function in t and therefore inf{t : P(Xt �
Y ) � U} � w is equivalent to P(Xw � Y )  U . Thus, this is equal to

= P(P(Xw � Y )  U)

= 1� P(Xw � Y ) U ⇠ Uniform(0, 1)

= P(Xw < Y )

= E(P(Xw < Y ) | Xw)

= E(e��Xw | Xw) Y ⇠ Exp(�)

= Ee��Xw

= e�wG(�) by Lévy-Khintchine (Theorem 2.1).

Since the CDF of Exp(�) is 1� e��x, we conclude that `G(Y, U) ⇠ Exp(G(�)).

We can now prove the correctness of the generic G-Sampler (Theorem 1.1, Algorithm 1) and the ParetoSampler

(Theorem 1.2, Algorithm 2).

Proof. [Proof of Theorem 1.1 (G-Sampler)] Let x 2 Rn
+ be the final vector after all updates, and (v⇤, h⇤) the final

memory state of G-Sampler. We will prove that

• h⇤ ⇠ Exp(G(x)), and

• for any v 2 [n], P(v⇤ = v) = G(x(v))/G(x).

For v 2 [n], let hv be the smallest value produced by the k updates (v,�i)i2[k] to index v, so x(v) =
Pk

i=1 �i.
Let Y1, . . . , Yk be the i.i.d. Exp(1) random variables generated during those updates. Then

hv ⇠ min
�
`G(Y1/�1, H(v)), . . . `G(Yk/�k, H(v))

 

and by the 2D-monotonicity property of Lemma 1.1, this is equal to

= `G
�
min

�
Y1/�1, . . . , Yk/�k

 
, H(v)

�
.

Note that min{Y1/�1, . . . , Yk/�k} ⇠ Exp(
P

i �i) = Exp(x(v)) and H(v) ⇠ Uniform(0, 1). By the G-
transformation property of Lemma 1.1, this is distributed as

⇠ Exp(G(x(v))).

By properties of the exponential distribution, we have h⇤ = minv2[n] hv ⇠ minv2[n] Exp(G(x(v))) ⇠ Exp(G(x))
and the probability that v⇤ = v is sampled is exactly G(x(v))/G(x).

Remark 3.1. The proof of Theorem 1.1 shows that G-Sampler is truly perfect with zero probability of failure,
according to Definition 1.1, assuming the the value h⇤ can be stored in a word. On a discrete computer, where
the value h⇤ can only be stored discretely, there is no hope to have h⇤ to distribute as Exp(G(x)) perfectly.
Nevertheless, a truly perfect sample can still be returned on discrete computers, because one does not have
to compute the exact `G(x, y) values but just correctly compare them. We now discuss such a scheme. Let
kxk1 = poly(n). Supposing that we only stored h⇤ to O(log n) bits of precision, we may not be able to correctly
ascertain whether h < h⇤ in Line 4 of G-Sampler (Algorithm 1). This event occurs with probability 1/poly(n),7

which induces an additive error in the sampling probability, i.e., (✏, ⌘, �) = (0, 1/poly(n), 0). We cannot regard this
event as a failure (with (✏, ⌘, �) = (0, 0, 1/poly(n))) because the sampling distribution, conditioned on non-failure,

7To see this, consider two independent random variables Y1 ⇠ Exp(�1) and Y2 ⇠ Exp(�2). By the properties of exponential random
variables, conditioning on Y1 < Y2, then |Y1 � Y2| ⇠ Exp(�2); conditioning on Y1 > Y2, then |Y1 � Y2| ⇠ Exp(�1). This suggests
P(|Y1 � Y2| � z) � e

�max(�1,�2)z . Thus if both �1 and �2 are O(poly(n)), then with |Y1 � Y2| = ⌦(1/poly(n)) with probability
e
�O(1/poly(n)) � 1� O(1/poly(n)). Now let �1 = x(v0⇤) and �1 = x(v⇤), where v

0
⇤ is the sample selected by the O(logn)-bit sketch

and v⇤ is the sample selected by the infinite precision sketch (the first O(logn) bits are the same with the former one). If v0⇤ 6= v⇤
then it implies |Y2 � Y1| < O(1/poly(n)), which happens only with probability O(1/poly(n)).
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would in general not be the same as the truly perfect distribution. There are ways to implement a truly perfect
sampler ((✏, ⌘, �) = (0, 0, 0)) which a↵ect the space bound. Suppose update (v,�) is issued at (integer) time k. We
could store (v, k) and generate Y from k via the random oracle. Thus, in a stream ofm updates, the space would be
O(log(n+m)) bits. Another option is to generate more precise estimates of Y (and H(v)) on the fly. Rather than
store a tuple (v, h), h = `G(Y/�, H(v)), we store (v,R,�), where R ⇠ Uniform(0, 1) is dynamically generated
to the precision necessary to execute Line 4 of G-Sampler (Algorithm 1). Specifically, Y = � lnR ⇠ Exp(1) is
derived from R, and if we cannot determine if h < h⇤, where h = `G(Y/�, H(v)), h⇤ = `G(Y⇤/�⇤, H(v⇤)), we
append additional random bits to R,R⇤ until the outcome of the comparison is certain.

Proof. [Proof of Theorem 1.2 (ParetoSampler)] Let T be the set of all tuples (Yi/�i, H(vi), vi) generated during
updates, and S be the minimum Pareto frontier of T w.r.t. the first two coordinates in each tuple. Fix
any query function G 2 G. Imagine that we ran G-Sampler (Algorithm 1) on the same update sequence
with the same randomness. By the 2D-monotonicity property of Lemma 1.1, the output of G-Sampler,
(vi, h⇤ = `G(Yi/�i, H(vi))) must correspond to a tuple (Yi/�i, H(vi), vi) 2 S on the minimum Pareto frontier.
Thus, the Sample(G) function of ParetoSampler would return the same index vi as G-Sampler.

We now analyze the space bound of ParetoSampler. Suppose that hv = min{Yi/�i}, where the minimum is
over all updates (v,�i) to x(v). (When x(v) = 0, hv = 1.) We shall condition on arbitrary values {hv} and
only consider the randomness introduced by the hash function H, which e↵ects a random permutation on {hv}.
Let L = (hv1 , . . . , hvn) be the permutation of the h-values that is sorted in increasing order by H(vi). Then |S|
is exactly the number of distinct prefix-minima of L. Define Xi = [hvi = min{hv1 , . . . , hvi}] to be the indicator
that hvi is a prefix-minimum and vi is included in a tuple of S. Then

E(|S|) = E

0

@
X

i2[n]

Xi

1

A =
X

i2[n]

1/i = Hn < lnn+ 1,

where Hn is the nth harmonic number. Note that Xis are independent. By Cherno↵ bounds, for any c � 2,
P(|S| > cHn) < n�⌦(c). Since there are only poly(n) updates, by a union bound, |S| = O(log n) at all times, with
probability 1� 1/poly(n).

Remark 3.2. The O(log n)-word space bound holds even under some exponentially long update sequences.
Suppose all updates have magnitude at least 1, i.e., �i � 1. Then the same argument shows that the expected
number of times hv changes is at most lnx(v)+1 and by Cherno↵ bounds, the total number of times any of {hv}
changes is M = O(n ln kxk1) with probability 1 � exp(�⌦(M)). Thus, we can invoke a union bound over M
states of the data structure and conclude |S| = O(logM) with probability 1� 1/poly(M). This is O(log n) when
kxk1 < exp(poly(n)).

4 Deriving the Level Functions

The generic G-Sampler and G-universal ParetoSampler refer to the Lévy-induced level function `G. In this section
we illustrate how to derive expressions for `G in a variety of cases.

We begin by showing how G-Sampler (Algorithm 1) “reconstructs” the known F0- and F1-samplers, then
consider a sample of non-trivial weight functions, G(z) = z1/2 (used in the F1/2-Sampler, Algorithm 3),
G(z) = 1 � e�⌧z (corresponding to a Poisson process), and G(z) = log(1 + z) (corresponding to a Gamma
process).

Example 4.1. (F0-sampler 7! Min sketch [2]) The weight function for F0-sampling is G(z) = [z > 0].
By Lévy-Khintchine (Theorem 2.1), this function corresponds to a “pure-killed process” (Xt)t�0 which can be
simulated as follows.

• Sample a kill time Y ⇠ Exp(1).

• Set Xt =

⇢
0 if t < Y ,
1 if t � Y .

The induced level function (Definition 2.2) is, for a 2 (0,1) and b 2 (0, 1),

`G(a, b) = inf{z | P(Xz � a) � b}
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By definition, Xz � a > 0 if and only if X has been killed by time z, i.e., z � Y . Continuing,

= inf{z | P(z � Y ) � b}
= inf{z | 1� e�z � b}
= � log(1� b).

Thus, by inserting this `G into G-Sampler (Algorithm 1), it stores (v⇤, h⇤) where v⇤ has the smallest hash value
and h⇤ ⇠ Exp(F0),8 thereby essentially reproducing Cohen’s [2] Min sketch.

Example 4.2. (F1-sampler 7! min-based reservoir sampling [15]) The weight function for an F1-sampler
is G(z) = z. By Lévy-Khintchine, this corresponds to a deterministic drift process (Xt)t�0, where Xt = t. The
induced level function is,

`G(a, b) = inf{z | P(Xz � a) � b}

and since Xz = z, P(Xz � x) = [z � x],

= inf{z | [z � a] � b}
= a. Note that b 2 (0, 1)

Thus the corresponding G-sampler does not use the hash function H, and recreates reservoir sampling [15] with
the choice of replacement implemented by taking the minimum random value.

Next, we demonstrate a non-trivial application: the construction of the F1/2-Sampler presented in Algorithm 3.

Example 4.3. (F1/2-sampler) For F1/2, the weight function is G(z) =
p
z, which corresponds to the non-

negative 1/2-stable process (Xt)t�0. The induced level function is

`G(a, b) = inf{z | P(Xz � a) � b}

and since X is 1/2-stable, we have Xz ⇠ z2X1. Continuing,

= inf{z | P(z2X1 � a) � b}.

It is known that the 1/2-stable X1 distributes identically with 1/Z2 where Z is a standard Gaussian [14, page 29].

Thus, we have P(X1 � r) = P
⇣
|Z| 

p
1/r

⌘
= erf

⇣q
1
2r

⌘
, where erf(s) = 2p

⇡

R s
0 e�s2 dx is the Gauss error

function. As P(z2X1 � a) = P(X1 � a/z2) = erf(z/
p
2a), this is equal to

=
p
2a · erf�1(b).

Plugging the expression `G(a, b) =
p
2a · erf�1(b) into G-Sampler, we arrive at the F1/2-Sampler of Algorithm 3,

and thereby establish its correctness.

The 1/2-stable distribution has a clean form, which yields a closed-form expression for the corresponding
level function. Refer to Penson and Górska [13] for explicit formulae for one-sided k/l-stable distributions, where
k, l 2 Z+ and k  l, which can be used to write Fk/l-samplers with explicit level functions.

Previously, approximate “soft cap”-samplers were used by Cohen to estimate cap-statistics [4]. The weight
function for a soft cap sampler is parameterized by ⌧ > 0, where G⌧ (z) = 1 � e�⌧z. We now compute the level
functions needed to build soft cap samplers with precisely correct sampling probabilities.

8Recall that for a frequency vector x 2 Rn
+, F0 =

P
v2[n] [x(v) > 0] is the number of distinct elements present in the stream.
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Example 4.4. (“soft cap”-sampler) The weight function is G⌧ (z) = 1 � e�⌧z. By Lévy-Khintchine, G⌧

corresponds to a unit-rate Poisson counting process (Xt)t�0 with jump size ⌧ , where Xt/⌧ ⇠ Poisson(t). By
Definition 2.2,

`G⌧ (a, b) = inf{z | P(Xz � a) � b}

Since Xz/⌧ ⇠ Poisson(z), P(Xz � a) = e�z
P1

j=da⌧e
zj

j! . Continuing,

= inf

8
<

:z

������
e�z

1X

j=da⌧e

zj

j!
� b

9
=

; .

Thus `G⌧ (a, b) = wda⌧e,b where wk,b is the unique solution to the equation e�w
P1

j=k
wj

j! = b. Note that for any

k 2 Z+, the function g(w) = e�w
P1

j=k
wj

j! = P(Poisson(w) � k) is increasing from 0 to 1 as w increases from

0 to 1, by a simple coupling argument. Therefore, wk,b, as the solution of g(w) = b, can be computed with a
binary search.

Example 4.5. (log-sampler) Consider the weight function G(z) = log(1 + z). By Lévy-Khintchine, the
corresponding process is a Gamma process (Xt)t�0, where Xt ⇠ Gamma(t, 1). The PDF of Gamma(t, 1) is
f(r) = rt�1e�r/�(t). By Definition 2.2,

`G⌧ (a, b) = inf{z | P(Xz � a) � b}

Since Xz ⇠ Gamma(z, 1), P(Xz � a) = �(z)�1
R1
a rz�1e�r dr. Continuing,

= inf

⇢
z

���� �(z)
�1

Z 1

a
rz�1e�r dr � b

�
.

Thus `G(a, b) = w0
a,b which is the unique solution of the equation �(w)�1

R1
a rw�1e�r dr = b. Once again the left

hand side is monotonic in w and therefore w0
a,b can be found with a binary search.

As discussed in Remark 3.1, there is no need to compute the level functions exactly, which is impossible to
do so in the practical finite-precision model anyway. We only need to evaluate level functions to tell which index
v has the smallest `G(x, y) value. Such samples are still truly perfect, even though the finite-precision value h⇤ is
not a perfect Exp(G(x)) random variable. For a generic G, in practice one may pre-compute the level function
of G on a geometrically spaced lattice and cache it as a read-only table. Such a table can be shared and read
simultaneously by an unbounded number of G-samplers for di↵erent applications and therefore the amortized
space overhead is typically small.

5 Stochastic Sampling Circuits

We demonstrate how sampling via level functions `G can be used in a more general context. Just as currents and
voltages can represent signals/numbers, one may consider an exponential random variable ⇠ Exp(�) as a signal
carrying information about its rate �. These signals can be summed, scaled, and transformed as follows.

Summation. Given Y1 ⇠ Exp(�1), Y2 ⇠ Exp(�2), min(Y1, Y2) ⇠ Exp(�1 + �2).

Scaling. Fix a scalar ↵ > 0. Given Y ⇠ Exp(�), Y/↵ ⇠ Exp(↵�).

G-transformation. Given Z ⇠ Exp(�) and Y ⇠ Uniform(0, 1), `G(Z, Y ) ⇠ Exp(G(�)).

A stochastic sampling circuit is an object that uses summation, scaling, and G-transformation gates to sample
according to functions with potentially many inputs. Such a circuit is represented by a directed acyclic graph
(V,E) where V is the set of gates and E ⇢ V ⇥ V is a set of wires. There are four types of gates.

• An input-gate u receives a stream of incremental updates. Whenever it receives � > 0, it generates, for
each outgoing edge (u, v), a freshly sampled i.i.d. Y ⇠ Exp(1) random variable and sends Y/� to v.
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1

G

2

G

· · · n

G

· · ·

· · ·

(v⇤, h⇤)

Input

Circuit

Output

· · · · · ·

Figure 1: The flat stochastic sampling circuit corresponding to the generic G-Sampler (Algorithm 1).

• A scalar-gate v is parameterized by a fixed ↵ > 0, and has a unique predecessor v0 and successor v00,
(v0, v), (v, v00) 2 E. Whenever v receives a y 2 R+ from v0 is sends y/↵ to v00.

• A G-gate v has a unique successor v0, (v, v0) 2 E. It is initialized with a random seed U ⇠ Uniform(0, 1).
Whenever v receives a number y 2 R+ from a predecessor u, it sends `G(y, U) to v0, where `G is the
Lévy-induced level function of G 2 G.

• An output-gate stores a pair (v⇤, h⇤), initialized as (?,1). Whenever an output-gate receives a number
y 2 R+ from a predecessor with id v 2 V , if y < h⇤, then it sets (v⇤, h⇤) (v, y).

The restriction that G-gates and scalar-gates have only one successor guarantees that the numbers received
by one gate from di↵erent wires are independent. The generic G-Sampler (Algorithm 1) can be viewed as a flat
stochastic sampling circuit (Fig. 1), where each element v 2 [n] has its own input-gate and G-gate. We could just
as easily assign each input gate v to a Gv-gate, Gv 2 G, which would result in a heterogeneous sampler, where v
is sampled with probability Gv(x(v))/

P
u Gu(x(u)).

We illustrate how stochastic sampling circuits can be used to sample an edge from a graph with probability
proportional to its weight. Let H = ([n], E) be a fixed graph and x 2 Rn

+ be a vector of vertex weights subject to
incremental updates. For a fixed edge-weight function G : R2

+ ! R+, where the weight of (u, v) is G(x(u),x(v)),
we would like to select an edge (u⇤, v⇤) with probability exactly G(x(u⇤),x(v⇤))/

P
(u,v)2E G(x(u),x(v)). Our

running example is a symmetric weight function that exhibits summation, scalar multiplication, and a variety of
G-functions.

G(a, b) = log(1 +
p
a+
p
b) + 2(1� e�(a+b)).

The stochastic sampling circuit corresponding to G is depicted in Fig. 2. It uses the following level and hash
functions.

• `1, level function for G1(x) =
p
x. See Example 4.3.

• `2, level function for G2(x) = 1� e�x. See Example 4.4.

• `3, level function for G3(x) = log(1 + x). See Example 4.5.

• H1 : V ! (0, 1) uniformly at random.

• H2, H3 : E ! (0, 1) uniformly at random.

The implementation of this circuit as a G-Edge-Sampler is given in Algorithm 4. Note that since G is
symmetric, we can regard H as an undirected graph and let Update(v,�) treat all edges incident to v in the
same way. If G were not symmetric, the code for G-Edge-Sampler would have two for loops, one for outgoing
edges (v, u) 2 E, and one for incoming edges (u, v) 2 E.
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u v

p
x

p
x1� e�x

log(1 + x)

(e⇤, h⇤)

2x

H2({u, v})

fresh fresh

H1(u)

H1(v)

H3({u, v})

Figure 2: Circuit diagram for G-Edge-Sampler (Algorithm 4) with G(a, b) = log(1 +
p
a +
p
b) + 2(1 � e�(a+b)).

Depicted are two of the inputs gates (u and v), the unique output gate, and all gates related to the sampling
of edge {u, v}. The symbol indicates the random seed U ⇠ Uniform(0, 1) used by each G-gate, as well as the
“fresh” exponential random variables Y ⇠ Exp(1) generated by the input gates for each update and each output
wire. The “2x”-gate is a deterministic scalar gate with ↵ = 2.
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Algorithm 4 G-Edge-Sampler for G(a, b) = log(1 +
p
a+
p
b) + 2(1� e�(a+b))

Specifications: H = ([n], E) is a fixed graph. The state is (e⇤, h⇤) 2
�[n]

2

�
[ {?} ⇥ R+ [ {1}, initially (?,1).

After processing a stream of updates, P(e⇤ = {u⇤, v⇤}) = G(x(u⇤),x(v⇤))/
P

{u,v}2E G(x(u),x(v)).

1: procedure Update(v,�) . x(v) x(v) +�
2: for each edge {u, v} adjacent to v do

3: Generate fresh, independent Y1, Y2 ⇠ Exp(1)
4: h min{`3(`1(Y1/�, H1(v)), H3({u, v})), `2(Y2/�, H2({u, v}))/2}
5: if h < h⇤ then

6: (e⇤, h⇤) ({u, v}, h)
7: end for

8: end procedure

6 Conclusion

In this paper we developed very simple sketches for perfect G-sampling using O(log n) bits and universal perfect
G-sampling using O(log2 n) bits. (See Remark 3.1 in §3 for a discussion of truly perfect implementations.) They
were made possible by the explicit connection between the class G and the Laplace exponents of non-negative
Lévy processes via the Lévy-Khintchine representation theorem (Theorem 2.1). To our knowledge this is the first
explicit use of the Lévy-Khintchine theorem in algorithm design, though the class G was investigated without
using this connection, by Cohen [3, 4, 5] and Cohen and Geri [6]. A natural question is whether G captures all
functions that have minimal-size O(log n)-bit perfect samplers.

Conjecture 6.1. Suppose x 2 Rn
+ is updated by an incremental stream. If there is an O(log n)-bit perfect G-

sampler in the random oracle model (i.e., an index v 2 [n] is sampled with probability G(x(v))/G(x)±1/poly(n)),
then G 2 G.

Recall that G is in correspondence with non-negative, one-dimensional Lévy processes, which is just a small
subset of all Lévy processes. It leaves out processes over Rd, compound Poisson processes whose jump distribution
includes positive and negative jumps, and p-stable processes for p 2 [1, 2], among others. Exploring the connection
between general Lévy processes, Lévy-Khintchine representation, and data sketches is a promising direction for
future research.
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A Sampling Without Replacement

We can take k independent copies of the G-Sampler or ParetoSampler sketches to sample k indices from the
(G(x(v))/G(x))v2[n] distribution with replacement. A small change to these algorithms will sample k indices
without replacement. See Cohen, Pagh, and Woodru↵ [7] for an extensive discussion of why WOR (without
replacement) samplers are often more desirable in practice. The algorithm (G, k)-Sampler-WOR(Algorithm 5)
samples k (distinct) indices without replacement.

Algorithm 5 (G, k)-Sampler-WOR

Specifications: The state is a set S ⇢ [n]⇥R+, initially empty. The function k-Min(L) takes a list L ⇢ [n]⇥R+,
discards any (v, h) 2 L if there is a (v, h0) 2 L with h0 < h, then returns the k elements with the smallest second
coordinate.

1: procedure Update(v,�) . x(v) x(v) +�
2: Generate fresh Y ⇠ Exp(1).
3: h `G(Y/�, H(v)) . `G is level function of G
4: S  k-Min(S [ {(v, h)})
5: end procedure

In a similar fashion, one can define a sketch k-ParetoSampler-WOR analogous to (G, k)-Sampler-WOR, that
maintains the minimum k-Pareto frontier, defined by discarding any tuple (a, b, v) if there is another (a0, b, v) with
a0 < a, then retaining only those tuples that are dominated by at most k � 1 other tuples.

Theorem A.1. Consider a stream of poly(n) incremental updates to a vector x 2 Rn
+. The (G, k)-Sampler-WOR

occupies 2k words of memory, and can report an ordered tuple (v1⇤, . . . , v
k
⇤ ) 2 [n]k such that

P((v1⇤, . . . , vk⇤ ) = (v1, . . . , vk)) =
kY

i=1

G(x(vi))

G(x)�
Pi�1

j=1 G(x(vj))
.(A.1)

The k-ParetoSampler occupies O(k log n) words w.h.p. and for any G 2 G at query time, can report a tuple
(v1⇤, . . . , v

k
⇤ ) 2 [n]k distributed according to Eq. (A.1).

Proof. The proof of Theorem 1.1 shows that hv ⇠ Exp(G(x(v))) and if v1⇤ minimizes hv1
⇤
, that hv1

⇤
⇠ Exp(G(x)).

It follows that P(v1⇤ = v) = G(x(v))/G(x). By the memoryless property of the exponential distribution, for any
v 6= v1⇤, hv � hv1

⇤
⇠ Exp(G(x(v))), hence hv2

⇤
� hv1

⇤
⇠ Exp(G(x) � G(x(v1⇤))) and P(v2⇤ = v | v1⇤, v 6= v1⇤) =

G(x(v))/(G(x)�G(x(v1⇤))). The distribution of v3⇤, . . . , v
k
⇤ is analyzed in the same way.

By the 2D-monotonicity property, the k-Pareto frontier contains all the points that would be returned by
(G, k)-Sampler-WOR, hence the output distribution of k-ParetoSampler-WOR is identical. The analysis of the
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space bound follows the same lines, except that Xi is the indicator for the event that hvi is among the k-smallest
elements of {hv1 , . . . , hvi}, so E(Xi) = min{k/i, 1}, E(|S|) < kHn, and by a Cherno↵ bound, |S| = O(k log n)
with high probability.
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