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Abstract

The theory of forbidden 0-1 matrices generalizes Turdn-style (bipartite) subgraph avoidance, Davenport-
Schinzel theory, and Zarankiewicz-type problems, and has been influential in many areas, such as discrete
and computational geometry, the analysis of self-adjusting data structures, and the development of the graph
parameter twin width.

The foremost open problem in this area is to resolve the Pach-Tardos conjecture from 2005, which states
that if a forbidden pattern P € {0,1}**! is acyclic, meaning it is the bipartite incidence matrix of a forest,
then Ex(P,n) = O(nlog®? n), where Ex(P,n) is the maximum number of 1s in a P-free n x n 0-1 matrix
and Cp is a constant depending only on P. This conjecture has been confirmed on many small patterns,
specifically all P with weight at most 5, and all but two with weight 6.

The main result of this paper is a clean refutation of the Pach-Tardos conjecture. Specifically, we prove
that Ex(So,n), Ex(S1,n) > n29(V1°8™) where Sy, S1 are the outstanding weight-6 patterns.

t 4+ 1 alternating 1s

. . . .
So = . . , S1 = . . R Pt:(. ° ¢ .>.
. . . °

We also prove sharp bounds on the entire class of alternating patterns (P;), specifically that for every ¢ > 2,
Ex(P;,n) = O(n(logn/loglogn)"). This is the first proof of an asymptotically sharp bound that is w(nlogn).

1 Introduction

The extremal theory of pattern-avoiding 0-1 matrices kicked off in the late 1980s when Mitchell [Mit92],
Pach and Sharir [PS91], and Fiiredi [EFir90] applied forbidden matrix arguments to problems in discrete and
computational geometry. In the early days this theory was characterized [Mit92 [FH92| as a two dimensional
generalization of Davenport-Schinzel theory [SA95 [Pet1ba]. It can also be characterized as a generalization
of Turdn theory [Turdll [FS13] from unordered bipartite graphs to ordered bipartite graphs. Fiiredi and
Hajnal [FH92| (see also Bienstock and Gyéri [BG91]) began the daunting project of classifying all forbidden
patterns by their extremal function, a project to which many researchers have made important contributions over
the years [Kla92| [KV94, [Tar05, PT06l [Kes09, [Cib09, [Ful09] (Gen09l [Pet11al [Pet11b, [Fox13l [PS13| [Pet15al [Pet15b,
CKI17,[GT17, WPI8, IGKM ™18, [KTTW19, [Gen19, [FKMV20, [GT20, MT22, IGMN ™23\ [KT23al, [KT23b, [JTMM24]
CPY24| [PT24]. Before proceeding let us define the terms.

1.1 Forbidden Patterns, 0—1 Matrices, Extremal Functions A matrix A € {0,1}"*™ contains a pattern
P € {0,1}**! written P < A, if it is possible to transform A into P by removing rows and columns from A,
and flipping 1s to 0s. If P £ A we say A is P-free. Let P be a set of forbidden patterns. The general extremal
function is defined as follows.

Ex(P,n,m) = max{||All1 | A€ {0,1}"*™ and VP € P.P £ A},
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where || A||1, the weight of the matrix A, is the number of 1s in it. When there is a single forbidden pattern or A
is square we use the short forms

Ex(P,n,m) = Ex({P},n,m),
Ex(P,n) = Ex(P,n,n).

P € {0,1}**! can be regarded as the adjacency matrix of a bipartite graph with k -+ [ vertices, where the parts
of the partition (rows and columns) are implicitly ordered. Define G(P) to be the unordered bipartite graph
corresponding to P. Turdn’s extremal function Exp,,-(H,n) is defined to be the maximum number of edges in a
simple n-vertex graph not containing H as a subgraph.

1.2 The Classification of Patterns We have a crude classification of forbidden subgraphs according to the
asymptotic behavior of their Turdn-extremal functions.

e If H is non-bipartite, then Exp,.(H,n) = @(n2)
e If H is bipartite and contains a cycle, then Expy,,-(H,n) = Q(n'T¢) and O(n'*<) for 0 < ¢; < 2 < 1@
e If H is acyclic (a forest) then Exp,.(H,n) = 0(n).

Is there a similarly clean asymptotic classification for forbidden patterns in 0-1 matrices? In a very influential
paper, Fiiredi and Hajnal [FH92| observed that (trivially) Ex(P,n) = Q(Exq.-(G(P),2n)) and that there were
several examples when Ex(P,n) = w(Exp,-(G(P),2n)), e.g.

(i) o (*.0)

Both are acyclic matrices, so Expu(G(P1),n) = Exp,(G(Qs3),n) = O(n), but Ex(P;,n) = O(nlogn)
[BGI1l [F{ir90, [FHI92, [Tar05] and Ex(Q3,n) = O(na(n)) [FH92, [HS86], where « is the inverse-Ackermann function.
The pattern P; arises in an analysis of the Bentley-Ottman line-sweeping algoithm [PS91], bounding unit distances
in convex n-gons [F{ir90], and bounding the total length of path compressions on arbitrary trees [Petl0]. The
pattern Qs corresponds to order-3 (ababa-free) Davenport-Schinzel sequences, which have applications to lower
envelopes [WS88|[SA95] and corollaries of the dynamic optimality conjecture [CGJ™23 [Pet08] ICGK™15a,[CPY24].

1.3 The Fiiredi-Hajnal and Pach-Tardos Conjectures Fiiredi and Hajnal made three conjectures
concerning the relationship between Ex and Ex ;..

CONJECTURE 1.1. (FUREDI AND HAJNAL [FH92]) If P is a permutation matriz (equivalently, G(P) is a
matching), then Ex(P,n) = O(Expu-(G(P),n)) = O(n).

CoNJECTURE 1.2. ([FH92]) For any P, Ex(P,n) = O(Exqu(G(P),n) -logn).

Perhaps doubting the validity of Conjecture in general, they asked whether it held at least for acyclic
patterns.

CONJECTURE 1.3. ([FH92]) For any acyclic P, Ex(P,n) = O(Exp,-(G(P),n) -logn) = O(nlogn).

In 2004, Marcus and Tardos [MTO04] proved Conjecture which also proved the Stanley- Wilf conjecture,
via a prior reduction of Klazar [Kla00]. This result inspired a line of research that led to the definition of the
graph parameter twin width [GM14, BGK™21, BKTW22]. Although the leading constant in Ex(P,n) = O(n)
for a k-permutation P depends only on k, it is ezponentially larger than the corresponding leading constant of
Ex1ur(G(P),n) = O(n); see Fox [Fox13] and Cibulka and Kyncl [CK17].

1Erdés, Stone, and Simonovits [ES46, [ES66], generalizing Turdn’s theorem [Tur4l] bounded it more precisely as Expy,.(H,n) =
1-1/r+ 0(1))(3) if H has chromatic number r + 1.

2Erdés and Simonovits conjectured that Ex(H,n) = ©(n't®) for some rational o € Q; see [FS13)].

3Following convention, we write patterns using bullets for 1s and blanks for Os.
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In 2005 Pach and Tardos [PT06] refuted Conjecture They provided a matrix with ||A]; = ©(n*/3)
that for each k, avoids a certain pattern Doy for which G(Dgg) = Co is a 2k-cycle. Since Expy-(Cog,n) =
O(n'*t1/*) [BST74], this proved that the gap between Ex(P,n) and Exg,.(G(P),n) can be as large as n'/3~¢
for any e > 0. This result had no direct effect on Conjecture but cast some doubt on its validity. Before
Conjecture was refuted they stated a more plausible version of it.

CONJECTURE 1.4. (PAcH AND TARDOS [PT06]) Let P be an acyclic 0-1 pattern.
Weak Version. Ex(P,n) = O(nlog®" n), for some constant Cp.
Strong Version. Ex(P,n) = O(nlog!”h=3n).

The rationale for the Strong Version is that all acyclic P with weight 3 are known to be linear [FH92],
and in some circumstances, adding a row/column containing a single 1 only increases the extremal function by a
logn factor. In particular, Pach and Tardos [PT06] proved the following three reductions for eliminating weight-1
columns. (In the diagrams, there are no constraints on the order of the rows.)

LEMMA 1.1. (PacH AND TARDOS [PT06]) Suppose P is obtained from P’ (marked by bozes) by adding weight-1
columns in the following conﬁgumtions

P = P’ ° P = P P=

o | e P’ °

(A) (B) (©)
Then Ex(P,n) can be expressed in terms of Ex(P’',n) as follows.
(A) Ex(P,n) = O(Ex(P’,n)logn).
(B) Ex(P,n) = O(Ex(P’,n)logn).
(C) Ex(P,n) = O(Ex(P’,n)log®n).

The Pach-Tardos reductions (Lemma are sufficient to prove Conjecture on all patterns with weight
at most 5 and most of weight 6. For example, consider the class (P;) of “alternating” patterns and Ry, Ry, Ra.

t + 1 alternating 1s

o o [ ) [ ¢
[ ] [ )
e o e o
Ry = o o | Ry = ° °
[ ) [ ) e o

A t-fold application of Lemma [1.1{A) implies Ex(P;,n) = O(nlog’ n), (B) implies Ex(Ry,n) = O(nlog?n), and
(C) implies Ex(R;,n) = O(nlog® n) and Ex(Ry,n) = O(nlog®n). However, there are two weight-6 patterns up
to rotation/reflection that the Pach-Tardos reductions cannot simplify, namely Sy and Sy.

o
SOZ L4 L4 ) Slz L L
[ ]

4Formally: (A) The last column of P has one 1. (B) Column j of P has one 1. There are rows ig,41 such that P(ip,j) =
P(ig,j +1) = P(i1,5 — 1) = P(é1,5 + 1) = 1. (C) Columns j and j + 1 of P have one 1 each. There are rows ig, 41,42 such that
Plio,j — 1) = PlioJ) = P(i1,j +1) = P(i1,j +2) = Pliz,j ~ 1) = Pliz,j +2) = 1.

Since P and its transpose have the same extremal function, reductions (A), (B), and (C) can also be applied to remove weight-1
rows. Strictly speaking, part (C) is implied by part (B).
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1.4 Acyclic Patterns and the Status of Conjectures and In 2010 Pettie [Petllal refuted Fiiredi
and Hajnal’s Conjecture [1.3] by exhibiting an acyclic pattern X for which Ex(X,n) = Q(nlognloglogn).

L] [ ] [ ]

X: [ ] L]
]

[ [

Park and Shi [PS13] generalized this construction to a class (X,,) of acyclic patterns for which Ex(X,,,n) =
Q(nlognloglognlogloglogn ---log™ n). These results [Petllal [PS13] did not cast any doubt on the Pach-
Tardos conjecture (Conjecture , and even left open the possibility that the Fiiredi-Hajnal conjecture
(Conjecture was still morally true, e.g., if Ex(P,n) = O(nlognpoly(loglogn)) for all acyclic P.

Essentially no progress has been made on expanding Pach and Tardos’s repertoire of weight-1 column reduction
rules (Lemma in order to put more acyclic matrices in the npoly(logn) class. However, in 2019 Kordndi,
Tardos, Tomon, and Weidert [KTTW19] developed a new technique for analyzing Sy, S7 and similar matrices.

/
They defined a pattern S to be class-s degenerate if it can be written S = 5,, >, where at most one column
has a non-zero intersection with both S’ and S”, and S’,5” are at most class-(s — 1) degenerate; any pattern
with a single row is class-0 degenerate. Here is an example of a class-4 degenerate pattern. It is decomposed into
individual rows by sequentially making horizontal cuts, each one cutting one vertical line segment joining 1s in
the same columnl?

=

o———eo

They proved that every class-s degenerate S has
Ex(S,n) < n . 20008 =T m) _ p1o()

As a consequence, Ex(Sp,n), Ex(S1,n) < 20 (log?/? ") and by being more careful with the analysis of Sy, they
proved Ex(Sy,n) < n20(V1°gn)  The results of Korandi et al. [KTTW19] did not directly challenge the Pach-
Tardos conjecture (Conjecture, and the authors characterized their results as taking a step towards affirming
Conjecture [1.4]

Pettie and Tardos [PT24] introduced a class of matrices (A:) such that A; is Bi-free and ||A¢; =
O(n(logn/loglogn)t). The box pattern By is a 2t x (2t + 1) matrix, where the first and last rows form a
reflection of P41 and the second and last columns form a rotation of P;.

&
I

Hence Q .
n(logn/loglogn
Ex(Bi,n) = { O((n(logg4t_/3 ng) sn))

5We could also define degeneracy w.r.t. vertical cuts, i.e., S is class-s degenerate if S = (S’ S”), where S’,S" have at most one
non-zero row in common and are at most class-(s — 1) degenerate. However, the Kordndi et al. [KTTW19| method does not permit
decomposing a pattern with both vertical and horizontal cuts.
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where the upper bound follows from iterated application of LemmaB). The Pettie-Tardos [PT24] lower bounds
are the highest obtainable lower bounds that are consistent with the weak Pach-Tardos conjecturelf|

1.5 Extensions and Variants of the Pach-Tardos Conjecture Fiiredi, Jiang, Kostochka, Mubayi, and
Verstraéte [FJKT21| studied forbidden patterns in ordered r-uniform hypergraphs. They made a conjecture
extending Conjecture [1.4

CONJECTURE 1.5. ([FJKT21, CONJECTURE B]) Let F be any r-uniform forest with interval chromatic number
r. Then the mazimum number of edges in a wvertex-ordered r-uniform hypergraph with no subgraph order-
isomorphic to F is O(n"~*1og®®) n), for some constant ¢(F).

One can think of Conjecture [L.5| as a collection of separate conjectures for each r > 2. For r = 2 we get back
an equivalent form of Conjecture [1.4} see [PT06L Theorem 2].

Shapira and Yuster [SY17] considered an extremal problem on augmented tournaments. A tournament is a
complete graph with (72’) edges, each of which is assigned some direction. A t-augmented tournament has t extra
directed edges, i.e., t pairs of vertices {u, v} have both edges (u,v), (v,u). Shapira and Yuster defined t(n, H) to
be the minimum number such that any n-vertex, t(n, H)-augmented tournament contains a subgraph isomorphic
to the tournament H. They defined a notion of “tournament forest” and made an analogue of the Pach-Tardos
conjecture.

CONJECTURE 1.6. ([SY17, CONJECTURE 1]) For any tournament forest H there exists a constant cy such that
t(n, H) = O(nlog® n).

Moreover, they proved that Conjecture is equivalent to the Pach-Tardos conjecture.
THEOREM 1.1. (SHAPIRA AND YUSTER [SY17, THEOREM 1]) Conjectures[1.4] and[1.6 are equivalent.

1.6 New Results Our main result is a refutation of the Pach-Tardos conjecture (Conjecture in both its
weak and strong forms. As stated above, the Pach-Tardos conjecture is equivalent to both the r = 2 case of the
Fiiredi et al. conjecture (Conjecture and the Shapira-Yuster conjecture (Conjecture[1.6) so both of the latter
conjectures are also refuted. It is straightforward to modify the counterexample of the r = 2 case of Conjecture|L.5|
(a graph being a 2-uniform hypergraph) to obtain counterexamples for any r > 2; see Appendix

Specifically, we prove that the two weight-6 patterns Sp,S; not subject to the Pach-Tardos reductions
(Lemma do not have npoly(logn) extremal functions. Here and throughout the paper log stands for the
binary logarithm.

THEOREM 1.2. Ex(Sp,n), Ex(S1,n) > n2viesn—0Ologlogn),

Theorem matches Kordndi et al.’s [KTTWI9] upper bound Ex(Sy,n) < n20(V1°em) up to the hidden
constant in the exponent, which happens to be 4 in the upper bound rather than the 1 in the lower bound. We
extend Theorem in two directions. First, we show that the matrices constructed for the proof of this theorem
avoid a large class of matrices beyond Sy and S7; see Theorem Second, we modify the construction to increase
its weight to n20VIogn for any desired constant C' > 1 and show that the matrices obtained still avoid some acyclic
patterns; see Theorem

We must admit that we did not specifically set out to disprove the Pach-Tardos conjecture. Our initial aim
was simply to better understand variations on the construction of [PT24], and to understand simple, structured
patterns like the (P;) class. This effort was also very successful.

THEOREM 1.3. For every t > 2, Ex(P;,n) = ©(n(logn/loglogn)?).

6(This is true in the sense that for any ¢ [PT24] can achieve an Q(nlogtn) lower bound, but cannot obtain any Q(nlog® (") n)
lower bound.)
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Both the upper and lower bounds of Theorem are new. No lower bound better than Ex(P;,n) >
Ex(P1,n) = Q(nlogn) [FH92, BGI1l [Fur90l Tar05] was previously known, and the best upper bound was
O(nlog'n), which follows from iterated application of Lemma A). Theorem is notable in many ways.
It is the first proof of an asymptotically sharp bound for any acyclic pattern with extremal function w(nlogn); it
demonstrates that the (logn/loglogn)! density first seen in [PT24] is not contrived but a natural phenomenon,
and it highlights an unexpected discontinuity between P; and P», Ps, ...

Although 2V!°8" and (logn/loglogn)? look like they arise from quite different constructions, Theorems
and use essentially the same 0—1 matrix construction for their lower bounds, but under different parameteri-
zations.

1.7 Related and Unrelated Results

Unrelated Results. The function 20°6™)° is a most fashionable function these days. Kelley and
Meka [KM23] recently proved that Behrend’s [Beh46] 1946 construction of 3-progression-free subsets of [N] =
{1,2,..., N} with size N/29(V1°eN) is roughly the best possible. Specifically, no 3-progression-free subset of [N]
has density 2~© g N)Y* " This was later improved to 2-9(log Ny by Bloom and Sisask [BS23]. Abboud, Fischer,
Kelley, Lovett, and Meka [AFK™24] discovered a combinatorial boolean matrix multiplication algorithm running
in n3 /2908 )/ time, improving a long line of n3/ poly(logn)-time algorithms.

Fine-grained Classification of Acyclic Patterns. Every existing analysis of an acyclic pattern P has
placed its extremal function in the following five-echelon hierarchy. The first four echelons are “natural” inasmuch
as there are lower bounds (see [HS86, [FH92] and Theorem proving that certain patterns in Quasilinear,
Polylog, and Near-linear cannot be moved to a lower echelon.

Linear. Ex(P,n) = O(n).

Quasilinear. Ex(P,n) = O(nQ(O‘("))CP ), where a(n) is the inverse-Ackermann function
Polylog. Ex(P,n) = O(nlog®? n), for some Cp > 0.

Near-linear. Ex(P,n) = n200¢" """ for some § = 6p € (0,1).

Polynomial. Ex(P,n) = O(n'*¢r+°M) for some Cp € (0,1).

A lot of effort has been spent to understand the membership and boundaries of these classes. We know of some
infinite classes of Linear matrices, such as permutations [MT04], double-permutations [Gen09], and monotone
patterns [Kes09, Petllc], and even have good bounds on the leading constant factors [Fox13| [CK17] [Genl5]
for (double) permutations. Keszegh [Kes09] (see also [Gen09, [Pet1lal) proved that the Linear class cannot be
characterized by a finite set of minimally non-linear patterns. In particular, Lemma A) and [Gen09] imply
that every pattern in the infinite sequence (G;) has Ex(G¢,n) = O(nlogn) and there is an infinite sequence
(H:), Hy < Gy, of minimally non-linear patterns w.r.t. < [Kes09, Gen09j

Go

I
@
I
[ ]

G

"There are more slowly growing functions in this class, e.g., na(n) [[S86} [FH92] or na?(n) [Pet1lbl [Peti5h].
8T.e., it is not known if G¢ is itself minimally non-linear.
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While the characterization of linear patterns seems to be elusive, Fiiredi, Kostochka, Mubayi and Verestrate
[FKMV20] gave a simple characterization of linear connected patternﬂ

A pattern P is called light if it contains exactly one 1 per column. Light patterns are closely related to
(generalized) Davenport-Schinzel sequences [SA95) [KIa02]; they are all known to be in Quasilinear [Kla92|
Kla02, [Kes09]. More specifically, for any light P with two rows, Ex(P,n) is one of ©(n), O(na(n)), (n2%M),
O(na(n)2*™), or n2Foa’(m)/tt ¢ > 9 and if P has more rows, Ex(P,n) is upper bounded by one
of these functions or n(a(n))d+te()e’ )/t [Peti5al Petlsh, Petllhl HS8E, [FH92, NivI0]. It is an open
problem whether light linear patterns are themselves characterized by a finite set of forbidden patterns. The
only known minimally non-linear ones (w.r.t. < and rotation/reflection) are Qs,Q%, with Ex({Qs,Q%},n) =
2na(n) + O(n) [Niv10| [Pet15al [Pet15b].

ng(’,‘,), Q= .

Aside from Lemma [I.I]s weight-1 column-reduction rules, there are a couple more methods to bound the
extremal function of composite patterns.

A B
A®B= ° , AR B = ° o | o
B A

Keszegh [Kes09] proved that Ex(A® B, n) < Ex(4,n) + Ex(B,n)°|and Pettie [Petllc], generalizing [Kes09],
proved that if Ex(A,n) and Ex(B,n) are linear (respectively, near-linear) and B is lega then Ex(A ® B,n) is
linear (respectively, near-linear) as WeHE These two composition rules put many more patterns in the Linear
and Polylog classes [Kes09, [Pet1lc|, and allow one to put “artificial” matrices in the class Quasilinear that are
not light; see [PT24] Footnotes 3,4].

Every P € {0,1}**! is dominated by the all-1 k x [ matrix Kj;. By the K&vari-Sés-Turén theorem,
Ex(P,n) < Ex(Kg;,n) = O(n?>~Y/ ™k Very recently Janzer, Janzer, Magner, and Methuku [JTMM24]
proved that if P has at most ¢ 1s per row (or per column), then Ex(P,n) = O(n?~*/t+°(1)) which confirmed a
conjecture of Methuku and Tomon [MT22]. This upper bound applies to all patterns, but still provides the best
known analysis for acyclic patterns not subject to Kordndi et al.’s [KTTW19] method. For example, the pretzel
and spiral patterns below have Ex(Tp, n), Ex(Ty,n) = O(n?/2toM).

—t—

Ip = , T =

Little is known about the gaps between Linear, Quasilinear, and Polylog. For example, is there a
pattern P with Ex(P,n) = w(n) but o(na(n))? or a P not in Quasilinear with Ex(P,n) = o(nlogn)?
Tardos [Tar05] proved that if we consider pairs of excluded matrices, Ex({Pl,Pl‘},n) = O(nlogn/loglogn)
while Ex({P1, P’},n) = ©(nloglogn), where Pl‘ is the reflection of P; across the y-axis and Py it its 180-degree
rotation. Whether these and other extremal functions between quasilinear and o(nlogn) can be realized by a
single pattern is an open question.

9[FKMV20] is about connected vertex-ordered graphs but their results translate to the adjacency matrices of connected graphs
too.

104 @ B applies whenever A and B have 1s in their SE and NW corners, respectively.

1A ® B applies when A contains two consecutive 1s in its top row, B has 1s in its SW and SE corners. A B is legal if it is either
non-ascending or non-descending; see [Petllc|.

128pecifically, if Ex(A4,n,m) < nf(n,m) and Ex(B,n,m) < ng(n,m) then Ex(A ® B,n,m) = O(nf(n,m)g(n,m)).

Copyright (© 2025

4468 Copyright for this paper is retained by authors



Downloaded 10/01/25 to 35.3.87.133 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Edge-ordered Graphs. As we noted earlier, 0-1 patterns can be regarded as bipartite graphs where the
vertex sets on each side of the partition are ordered. Pach and Tardos [PT06] considered a vertex-ordered variant
of Turan’s problem where the vertex sets of the graph and pattern have a linear order. This theory is very similar
to 0-1 matrix theory, with interval chromatic number 2 taking the role of bipartiteness. Gerbner et al. [GMNT23|
introduced the analogous problem on edge-ordered graphs and forbidden patterns, where order chromatic number
2 takes the role of bipartiteness/interval chromatic number 2. The problem of characterizing linear edge-ordered
patterns seems to be equally difficult in this setting; see [KT23b] characterizing connected edge-ordered graphs
with a linear extremal function. Gerbner et al. [GMNT23| conjectured that the extremal function of edge-ordered
acyclic patterns with order chromatic number 2 is n'T°(1) . This conjecture was recently proved by Kucheriya and
Tardos [KT23al, with a universal upper bound of n20(logn) They further conjectured that every such extremal
function is actually bounded by O(n poly(logn)) a la Pach-Tardos. There is no known formal connection between
the Gerbner et al./Kucheriya-Tardos conjectures and the Fiiredi-Hajnal /Pach-Tardos conjectures (Conjectures
and . For example, the refutations of the Fiiredi-Hajnal conjecture [Petllal [PT24] had no analogues in the
edge-ordered world, so one cannot expect an automatic way to transform Theorem [I.2]from vertex-ordered to edge-
ordered graphs. In the reverse direction, [KT23a] has not led to a universal upper bound Ex(P,n) < n20(Vlogn)
on acyclic 0-1 patterns P. Nonetheless, Theorem [1.2| may cause one to doubt a universal O(n poly(logn)) upper
bound for pattern graphs with order chromatic number 2.

1.8 Organization Section introduces a new construction of 0—1 matrices with density (i.e., average number
of 1s in a row) O(logn/ loglogn)* or 2°(v1°&™) Tt presents the full proof of Theorem [1.2{and its generalizations,
as well as the lower bound half of Theorem [1.3| Section |3| presents the upper bound half of Theorem [1.3] We
conclude with some open problems and conjectures in Section

2 Lower Bounds

2.1 The Good, the Bad, and the Ugly 0—-1 Matrix Construction We define a class of 0-1 matrices
A w.r.t. integer parameters b and m. The rows are indexed by [m] x [m]® and the columns by [m]® x {0, 1},
both ordered lexicographically. Here [m] = {1,2,...,m} is the set of the first m positive integers. If one
desires a square matrix, then m = 2°. We identify rows by pairs r = (s,7) € [m] x [m]® and columns by pairs
c = (c,i) € [m]® x {0,1}°.

The matrix A = A[b, m] is defined as follow

i 1 lf r=c+s- i7
A((s,7), (¢,4)) = { 0 otherwise.

LEMMA 2.1. [[A[b,m]||1 > 2°m®(m/(b+ 1) — 1), i.e., Q(m/b) times the number of columns.

Proof. Pick a column (c,i) uniformly at random. For some s € [m], there exists a row (s,7) such that
A((s,r),(c,i)) = 1 iff, for all uw € [b] with i(u) = 1, r(u) = c(u) + s does not “overflow” the range [m]. In
other words, the weight of column (c, %) is m — max,epy : j(u)=1 c¢(u). We have

E( [b]maic) 1c(u)> <m-m/(Ji|l+1)+1<m—-m/(b+1)+1.
ue ci(u)=

Thus, a column of A has at least m/(b+ 1) — 1 1s on average. O

2.1.1 DMatrices via Alternating Coordinate Offsets To construct P;-free matrices we need a small
modification to the A[b, m| construction called A; = A;[b, m]. The row-set of A; is the same as in A[b, m], namely
[m] x [m]®, but we only keep the following subset of the columns: {(c,4) € [m]® x {0,1}* | ||i||; = ¢}. Thus, to
form a square A:[b, m] one would set m = (ZZ) The rows and columns of A; are also ordered lexicographically.

13By analogy to the plot of The Good, the Bad, and the Ugly (1966), the Ugly (column ¢ = (c,4)) knows the location of the
graveyard (¢) while the Good (row r = (s, 7)) knows the name on the grave (s).
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Define the vectors i€V, 944 € {0, 1} for i € {0,1}" as follows.

o) = i) [ (14 S0 | modz ] M0 = i) - | | (o) | mod2

v>u v>u

Clearly, i = i°°" 4+ i°94 with 44 containing the last, 3rd last, 5th last 1s of i, and i®V°® containing the 2nd
last, 4th last, 6th last 1s of 1.

. 1 ifr=c+s-i" + (m+1— s)iedd
A((s,7), (e9)) :{ 0 otherwise. ( :

REMARK 2.1. It is possible to show that if one restricts A = Alb,m] to columns (c,i) with ||i||y = t, then A is
Pyy-free. The reason for introducing A; and the alternating offsets s,m + 1 — s is to prove P;-freeness.

LEMMA 2.2. [|A:[b,m]|1 = Q(m*+1 (%) /(t24)), i.e., Q(m/(t2')) times the number of columns.

Proof. Pick a column (c,i) uniformly at random. For a fixed s € [m], there exists a row (s,r) with
A((s,7),(¢,4)) = 1 iff e(u) + s € [m] for all uw with i®**(u) = 1 and c¢(u) + m + 1 — s € [m] for all v with
i°dd(y) = 1. Thus, (c,4) will be incident to some row (s,7) for every s € [(1/2 — €)m, (1/2+ €)m] with probability
at least (1/2 — €)t. Taking € = 1/t, the columns have Q(m/(t2!)) 1s on average. O

We consider elements of [m]® as b-dimensional integer vectors and add/subtract them accordingly. When
applied to vectors, ‘<’ denotes lexicographic order. Note that lexicographic ordering makes these vectors into a
linearly ordered group.

LEMMA 2.3. (SIMPLE PROPERTIES) Let A* = A[b,m] or A¢[b,m]. Consider an occurrence in A* of the following

patterns.
Co

Co C1
1 47 [ ]
() L,
where ro = (so,70) and co = (co,0), etc. Then on the left, so < s1, and on the right co < c1. If u is the position

of the first non-zero of ¢1 — co then ig(u) = 1. If A* = A[b,m], then (¢1 — co)(u) = so, whereas if A* = Ai[b,m]
then (c1 — co)(u) = so if i§¥™(u) = 1 and (c1 — co)(u) =m + 1 — s¢ if i59%(u) = 1.

Proof. Observe that if A((s,7), (¢,7)) = 1 then ‘r’ is uniquely determined by s, (¢, ¢) and %’ is uniquely determined
by (s,7),c.

Left. Rows are ordered primarily by their s component, so we must have sy < s;. From the observation
above, sg = s1 is not possible.

Right. As above, we must have ¢y < ¢; and ig = 41 is not possible, from the observation above. If A* = A[b, m|
we have ¢; — ¢p = so(ig — i1). Here all coordinates of ig — 47 are in {—1,0,1}. Now iy # i1 implies that there is a
first non-zero position u of ig — 41 and ¢y < ¢y implies that (ig — 41)(u) = 1 hence (¢; — ¢g)(u) = so.

If A* = A;[b, m], then we have c¢; — co = s0(i§"°" — V™) + (m + 1 — 50) (3594 — i994). Then (ig —i1)(u) = 1 as
before, and depending on whether i§"°"(u) = 1 or i3¢(u) = 1, we will see either (c; — co)(u) = s or m + 1 — so.
d

2.2 Refutation of the Pach-Tardos Conjecture We now recall and prove Theorem [1.2
THEOREM 2.1. Ex(Sp,n), Ex(S1,n) > n2vieen—0O(oglogn),

Proof. We shall prove that for all b and m, A = A[b,m] is {Sp, S1}-free. The lower bound follows by setting
m = 2%, in which case A is an n x n matrix, n = 2°°+° with IA|l1 = Q(n(m/b)). Here b = /logn — O(1).
Let us assume that Sy is contained in A, embedded in the rows and columns as indicated below.

Co C1 C2 C3
o [ ] [ ]
So = I L] ° s
Iro [ [
ight 202
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where rg = (sg,79) and ¢ = (co, i), ete.

Consider the differences x = c3 —cg, y = co — g, and z = c3—c1. We clearly have y <z, z < z, and y+z > z.
Note that among the lexicographically ordered non-zero integer vectors, this implies that either (i)  and y agree
on the position and value of their first non-zero coordinate, (ii) « and z agree on the position and value of their
first non-zero coordinate, or (iii) the position of the first non-zero coordinate is the same for z, y and z and its
value is strictly smaller for y and z than for x. Lemma |2.3] applied separately to the three rows, tells us that the
first non-zero coordinates of z, y, and z are sy, so and so, respectively. Applying Lemma to columns cq, and
c3, we obtain that so < 1 < s, making cases (i), (ii), and (iii) impossible.

Note that S; is obtained from Sy by swapping the first two rows. Without changing the definition of z,y, z,
we still have y,z < x and y + 2z > x. Lemma implies the first non-zero coordinates in z,y, z are sg, s1, S2,
respectively, and that so < s1,s2. Once again, cases (i), (ii), and (iii) are all impossible. O

2.3 Extensions of Theorem In this section we extend Theorem s lower bound on Ex(Sp,n) in two
directions. In Section we show that the argument of Theorem [1.2| can be applied to any covering pattern,
a class whose simplest members are Sy and S;. In Section we show that there is a class of Sy-like patterns
whose extremal functions can reach n2¢Vv1o8”™ for any desired constant C.

2.3.1 Covering Patterns Definition specifies the class of covering patterns.

DEFINITION 2.1. Let M € {0,1}**# be an acyclic pattern with rows indezed with 0 < i < « and columns
0 <j < pB. M is a covering pattern if there is a distinguished row k* satisfying the following properties.

1. M(k*,0) = M(k*,5—1) =1, i.e., row k* has 1s in the first and last columns.

2. Let J be the set of row indices, excluding k™, with at least two 1s. J contains at most one element jo < k*.
If such an element jo € J exists, then some column contains two 1s in rows [jo, k*]. For any element j € J
with j > k* some column contains two 1s in rows [k*, j].

3. For 1l € J define first(l),last(l) to be the column indices of the first and last 1s in row l. Then the real
intervals [first(l), last(l)] cover the entire range, i.e., we have |J,¢ ;[first(l), last(l)] = [0, 8 — 1].

Sy and S satisfy Deﬁnition as do S, .53. Note that Sy, Se have a jo < k* whereas S1,.53 do not.

THEOREM 2.2. For every covering pattern M satisfying Definition @, Alb,m] is M-free, hence Ex(M,n) >
n2\/10gn—0(log logn).

Proof. Suppose, towards obtaining a contradiction, that A = A[b,m] contains M, with row ! of an instance of
M labeled (s;,r;) and column j labeled (¢j,i;). Definition 2) implies that all members of {s; | | € J} are
different from s+, and all but at most one are strictly greater than sg«.

Define x = cg_1 — co, and for I € J, yi = Clast) — Crirst(1)- Suppose the position of the first non-zero in z
is u. By Lemma applied to line k* we have z(u) = sg+. Moreover, Lemma implies the first non-zero in
the vector y; is s;. We have y; < z for all I € J hence y;(u) = 0 for all I > k*. (If I < k*, it is possible that
y1(u) = s; < sg=.) The covering property Definition 3) implies that ), ;1 > @, but this cannot be satisfied
since ), ; yi(u) < x(u) = sp-. We conclude that A is M-free and by Lemmam Ex(M,n) > n2viegn—0(oglogn),
O
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2.3.2 A Hierarchy of Patterns Sét) We prove that for every C' > 1, there exists an acyclic pattern S(()t) such

that Ex(Sét),n) > n2¢VIesn  The 0-1 matrix construction uses a small generalization of Behrend’s arithmetic
progression-free sets.

LEMMA 2.4. (CF. BEHREND [BEH46]) For any h > 2, there exists a subset S C [N] with |S| = N/20(VIoghlog N)
such that there are no non-trivial solutions to asg+ 8s1+vys2 = 0, with sg, s1,82 € S and integers —h < a, 8,7 <

h[4

Proof. Let V C {0,...,d — 1}¥ be a subset of vectors with |V| > d”~2/D having a common /-norm. Let us
obtain S from V by prefixing each vector in V' with a ‘1’ and then interpreting them as (D + 1)-digit integers in
base 2hd. In formula we have

D—1
S = {2hd’3+zvl (2hd)’
1=0

We set d = P\/ loghlog(Nﬂ)_lOg(Qh)J and D = { log(N/2)/log hJ7 so for all s € S we have s < 2(2hd)P? < N.

Expressed in terms of h, N, |V| = |S| > dP~2/D = N/20leghlog N),

Now suppose there is a solution to asg + 8s1 + s = 0 with integers —h < «, 5,7 < h. We need to show this
is a trivial solution. With a slight abuse of notation, we will identify sq, s1, so with the sequence of D + 1 digits
in their base 2hd expression. Note that these sequences are all obtained from elements in V' by putting an extra
1 in front of them, so they have the same f5-norms, say r. By symmetry, we may assume that v < 0 < «, f and
consider the equality asg+ 8s1 = |v|s2 that holds on the level of integers. Due to the base being much larger than
any of the digits, it must also hold for the corresponding sequence of digits. The first digit of asg + 8s1 is a+ S5,
while the first digit of |7y|ss is |y, so we must have a+f = ||, a+ S+ = 0. From ||so|l2 = ||s1]l2 = ||s2]l2 = r we
obtain ||(|v]|s2)|l2 = |y|r but if sg # s1 and «, § are positive, then ||asg+ Bs1|]2 < (a+B)r = |y|r, a contradiction.
So if a,, 8 > 0, we have sg = s1, and from (« + )sg = |y|s2, we also have sg = s1 = so and the solution is trivial.
If one or both of a or 3 is zero, we similarly get that asg 4+ £s1 + vs2 = 0 constitutes a trivial solution. ]

UDfl,...,Ul,’Uo) € V} .

THEOREM 2.3. For each t > 2, EX(S(()t),TL) > p2U—e)Viogtlogn —yypere S(()t) is defined to be

Cp C1 C C2¢—3 C2¢t—2 C2t—1
Iro L] ° °
S(()t) = ) .. °
ro . ° °
Note that Sp = S (2)
Proof. We modify the construction of A = A[b,m] as follows. The rows and columns are identified with

S x [m]® and [m]® x {0,...,t — 1}*, respectively, where S C [m/b] is the set from Lemma with size
m!*=°(1) avoiding solutions to asg + Bs1 + ys2 = 0 with integers —t + 1 < a,8,7y < t — 1. As usual
A((s,7),(c,1)) = 1 iff r = ¢+ si. We make A square by choosing m such that t* = |S|, so m = t(1+e()e
n = mbtd = AT’ and b = (1 — o(1))y/logn/logt. There are O(|S|) 1s per column, on average, so
LA~ 008l — st
We now argue that A is S(()t)—free. Assume, for a contradiction, that A contains S(gt) in rows rg = (sg,r0),r1 =

(s1,71),r2 = (82,72) and columns cg = (cg,40),- .., Cot—1 = (Cat—1,%92¢—1). Define x,yy, 2 as

T = C2t—1 — Co,

Yk = Cak — Co, forl<k<t-—1,

Zp = C2t—1 — C2k—1, for lgkﬁt—l.

Observe that for all k£, yx < z and zx < x but

(2.1) Yk + 2k 22 2 Yk + Zk41,

14 A solution is trivial if it exists for any non-empty S, that is, o+ 8+ v = aB(s0 — 51) = By(s1 — s2) = va(s2 — s9) = 0.
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where the last inequality holds for k <t — 1.

Note that the following analogue of Lemma holds here: (i) if a column of A contains 1s in the distinct
rows (s,r) and (s',7'), then s # s’ and (ii) if the row (s,7) of A contains 1s in the distinct columns (¢,i) and
(i), then ¢ # ¢ and all coordinates of ¢ — ¢’ are of the form js with —t +1 < j < ¢t — 1. In particular, (i)
implies sg < 51 < S3.

Let u be the position of the first non-zero coordinate of z. By (ii) above and ¢y < cgt—1 we have x(u) = js;
with 1 <j <t¢—1. We use (i) again to define ji, j;. such that

yr(u) = jiso,
./
zi(u) = ji.82.
Note that yg, 21 cannot have any non-zeros preceding coordinate v and must have a non-negative value at position
u. Thus 0 < jr <t—1 and for 1} to be satisfied, 1 < j; < j — 1 since s > s1. (This is already a contradiction
when ¢t = 2.) We can write Eq. (2.1)) as
(2.2) JeS0 + JiS2 > J$1 > jrSo + Jg152,

Hence t—1>j > ji > j5 > --- > j{_; > 1. By the pigeonhole principle there must exist j;, = j;,, but then (2.2)
holds with equality, meaning S supports a non-trivial solution to asg+ 8s1 +vs2 = 0 with & = ji, 8 = —35,v = Jp.,
a contradiction. O

2.4 Polylogarithmic Lower Bounds on Alternating Matrices In this section we prove the lower bound
half of Theorem [1.3]'%]

THEOREM 2.4. Fort > 1, Ex(P;,n) = Q(n(logn/loglogn)t).
Proof. We prove that A;[b,m] is P;-free. The lower bound follows by setting m = (lt’), in which case A; is an

n x n 0-1 matrix, n = m**! = (lt’)bﬂ, with Q(m) = Q((logn/loglogn)!) 1s per column, on average.

Suppose that A; were not P;-free. Label the rows and columns of an occurrence of P; in A; as follows, where
ro = (80,70), o = (co,%0), ete.

Co C1 C2 C3 Ci41
ro [ [ o °
P, = . .
t r o ° °

Define u; € [b] to be the position of the first non-zero of ¢; — co. Note that ¢; has its 1 in row r(; 1 1)moa2- By
Lemma either i§"*"(u) = 1 and (¢;—co)(u;) = S(j4+1)mod 2 0r i34 (u) = L and (¢j—co)(u;) = M41—5(j4+1) mod 2-
In either case (¢; — co)(u;) > 0, so from the ordering ¢y < ¢ < -+ < ¢;41 we can conclude that

Up > Uz 2> - > Upt-

Since ||ip]|1 = t, by the pigeonhole principle there must exist a j with u; = u;41. In fact, there must exist such a

j that also satisfies j odd and i§%9(u;) = 1 or j even and i§"*" (u;) = 1/*%| If j is odd then

cj —Cp = (0,...,0,m+1—50,...)
Cj+1 — Co = (0,...,0,m+1—51,...),
which contradicts the order ¢; < cj41 as sg < 51 by Lemma If j is even then
C; —Cop = (0,...,0,81,...)
Cji+1 — Co = (0,...,0,807...)7

which also contradicts the order ¢; < ¢j41. Hence A; is Pi-free. O

15In the context of Theorems and t is fixed, and the constants hidden by O, depend on ¢t. This is in contrast to
Lemma which did not assume t is constant; its constants hidden by asymptotic notation are independent of ¢.
16Note that u; = uso is the last 1 of ig, or us = u3 is the 2nd last 1 of ig, etc., all of which satisfy the parity criterion.
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3 Upper Bounds

Theorem covers the upper bound half of Theorem Note the condition ¢t > 2 cannot be strengthened, as
Ex(P1,n) = O(nlogn) [FH92, BGI1l [Tar05], not O(nlogn/loglogn).

THEOREM 3.1. Fort > 2, Ex(P;,n) = O(n(logn/loglogn)?).

Let A be an n x n, Pi-free matrix maximizing || A||;. For each A(r,c¢) = 1 we identify a number of landmark
column indices.

DEFINITION 3.1. (LANDMARK COLUMNS) With respect to some A(r,c) = 1, the following column indices obey
the following order whenever they exist.

c<F<a<b <ay<by<---<ay_1<b_1 <L.
e A(r,F)= A(r,L) =1 are the first and last 1s in row r following column c.

o A(r,as—1) = A(r,bi—1) = 1 are consecutive 1s in row r such that F < a;_1 < bj—1 < L and by_1 — a;_1 is
mazimum. In general, A(r,a;) = A(r,b;) = 1 are consecutive 1s in row r such that F < aj; < b; < a;y1 and
b — a; is maximum. (Break ties in a consistent way, say taking the first pair of consecutive 1s of mazimal

distance.)
o If A(r,c) is one of the last two 1s in row r, then F' and L are not distinct indices and a1,by,...,as—1,b—1
do not exist. Whenever F' = aj, the indices a1,b1,...,a;_1,b;_1 do not exist.

We assign three signatures to every 1 in A that is not one of the last two 1s in its row.

DEFINITION 3.2. (SIGNATURES) Let ¢ = ((n) >t be a parameter (to be optimized later) and e def m.

Each A(r,c) = 1 is assigned three signatures sig,(r, c),sig,(r,¢), and sigy(r,c). Any piece of a signature that
depends on undefined values (e.g., if a1,b1 do not exist) is undefined.

sigy(r,c) +  consists of the vector (Uogc(F -0, Uogc(bl —a)l,..., Uogc(bt_l —ai-1)]).

sigy(r,c) :  consists of two parts, a vector (|log, (a1 —c)|,...,|log (ai—1 —c)|), and the position of each
Lloglﬂ(bj — C)J relative to the elements of this vector: larger, equal, or smaller.

sigy(r,c) +  consists of three parts, a vector
(Uogl%»e(bl - C)J ) Uog1+e(b2 - C)J PRI UoglJre(bt*l - C)J) )

the position of each |log, . (a; — c)| relative to the elements of this vector (as in sig, ), and a vector

. az — by . at—1 bt—QJ } . {{ L—b J })
ming | ——=|,3tpy, ..., ming | ———=|,3t, minq | ——= | , 3¢t .
( { {(bl - C)/QJ } { {(bt2 —c)/2 (bt—1—c)/2
3.1 Structure of the Proof We will eventually prove that after the following 4-step marking procedure, there
will be no unmarked 1s in any P;-free matrix A.

Step 1. In each row, mark the last two 1s and the last 1 of each sig,-type.

Step 2. In each column, mark the last unmarked 1 of each sig;-type that satisfies Inequality (L.1), defined in
Lemma B3.11

Step 3. In each row, mark the last ¢ unmarked 1s of each sig,-type.
Step 4. In each column, mark the last t unmarked 1s of each sigy-type.

The number of distinct sig, signatures is O(logz n) while the number of sig; and sig, signatures is
O(logi7tn) = O((Clogn)'~1), so the total number of marked 1s is O(n(logén + (Clogn)t~1)). (Remember
that t = O(1) is constant.) We choose ¢ = (logn)!/* to roughly balance these contributions, and conclude that
|All1 = O(n(logn/loglogn)t).
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3.2 The Proof Lemmas [3.1] to [3.4 will be used to prove that no unmarked 1s in A remain after Steps 1-4.

LEMMA 3.1. Suppose that A(r,c¢*) = 1, having landmarks (F,a1,b1,...,L), is not the last 1 in its row with its
sigy-type. Then for at least one of the following t inequalities, the relevant landmarks exist and the inequality is
satisfied.

(1.1) ag — F > %(F —c"),
1.2) as — by > gz (b1 — ),
(It — ].) a1 —by_o > %(bt 92— C )
(I.t) L—bi_1> i(btfl —cC )
Proof. Suppose that for ¢ > ¢*, A(r,d/) = 1 has the same sig,-type as A(r,c*), with landmarks
(F',a}, by, ...,a,_1,b;_1,L"). Then ¢ lies in one of the following intervals.
[F7a1)7 [a17a2)7 BN [a/j—la aj)a B [a‘t—h L)

Case 1: (¢ € [F,ay). Clearly A(r,c*) and A(r,¢’) share a suffix of the landmarks, specifically
(a1,b1,.. . ai-1,bi1,L) = (a},by,...,a;_y,b;_y,L'); only F' € (F,ay] is different. Since |log (F —c*)| =

[log (F" — ¢)], it must be that ay — F > F' — ¢/ > %(F —c*) > 3—2(F —c).

Case 2: ¢’ = a;. Since there are no 1s in row r and the column interval (a;j,b;), F’ = b; and the landmark
vectors agree on the suffixes (a;11,bj41,...,L) = (@}, 1,0)4,...,L"). We prove that at least one of Inequalities
(I.1)—(1.7 + 1) is satisfied. If (I.1)—(I.j) are not satisfied, then

(
bj—c" = ( a]) (a; —¢)
) (1+ 3()(bj*1 _C*)

<(bj—a) + (1+32)(bjo1r —aj1) + -+ (L4 55)7 (b1 —a1) + (1 + 52 (F = ¢)

(3.3) < (L4 g2)'[(bj —ag) + -+ (b1 —a1) + (F — )]
According to the common sig, type and the fact that (a;,b;) = (¢, F') we have
(3.4) [log, (b —a})| + - + [loge(by —a}) | = [loge(bj — aj) | + -+ + [logc(by — a1)]
(3.5) |log, (b; — a})| = |log.(b; — a;)| = |log,(F' —¢')| = |log¢(F —¢*)].
Since all the landmarks F’, af,..., b} lie in the range [bj, aj11], Eqs. (3.3) to (3.5) imply that

2(ajr1 —bj) = ¢l(bj —aj) + -+ (br —ar) + (F — )]
(1 + 3() (b —C )

and since ¢ > t, we have (1 + &)*t > e /3 > 2/3. Thus,

Aj+1 — bj > i(b; — C*),
i.e., Inequality (I.j + 1) is satisfied.

Case 3: ¢’ € [bj,a;41). (Here a; ef L.) The argument is identical to Case 2, except that since ¢’ is also in
[bj,aj11), we can substitute for Egs. (3.4) and (3.5)) the following inequality.

lloge (B, — a})] + -+« + |loge (b, — a})| + [log. (F' — &)
= |log.(bj — a;)| + - + [logc (b1 — a1) | + |log (F — )] .

Thus, a;+1 —b; > %(1 + &)_t(bj —¢*) > 2(b; — c*), thereby satisfying Inequality (Lj + 1). o

3¢
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LEMMA 3.2. Suppose A(rg,c*) = A(r1,c¢*) = 1 have the same sig, -type for some indices ro < r1 and c*, and both
satisfy Inequality . Then A contains P;.

Proof. Let the landmarks for A(rg,c*) and A(rq,c*) be (Fya1,b1,...,L) and (F',a},b},..., L"), respectively. Call
slab(i) the interval of columns [c* + (1 + €)’, ¢* 4 (1 + €)*1). If the first vector in the common sig,-signature is
(i1,...,4t—1), then a;,a; € slab(i;) for all j € [t — 1]. (Since Inequality is satisfied, all a;, a’; exist.)

Case 1: Suppose that according to the second part of the common sig;-signature, there is an index j such

def

that b, b € slab(i;). Then a; — ¢* is at least the distance from c¢* to slab(i;), which is A = (1 4 €)%, and

b; — a; is at most €A, the width of slab(i;). Since Inequality is satisfied and a1 — ¢* < (1 + €)1,
F—c"<(1+ i)*l(l + €)1+, Thus,
aj —F=(a;—c)=(F=c)>A—=(145)" " (1+e""

1+€)3 . .
ZA(1* (3221C> (11 <ij)
A

Z 6+

(e <1/(60))

By the definition of a;,b;, every interval of width eA in row ro (resp., r1) between F' (resp., F') and slab(i;)
contains a 1. Thus, rows 7 and r; contain an alternating pattern of length (6(¢ + 1)e)~! > ¢ + 1, and together
with column ¢* this forms an instance of P;. See the diagram below.

blab(ll) blab(Z])

c* F al aj bj

rg e . . ] ]
> (t+1)eA eA

Case 2: According to the second part of the common sig;-signature, b;, b’ ¢ slab(i;) for all j € [t — 1], hence
i1 <ig < -+ <i4_1. Since ay — F > (F —¢*)/(3¢) and € < 1/(3¢), F is not in slab(i1). Then we have an instance
of P, on rows rg,r; and columns ¢* < F < af < az < -+ < {at-1,a,_1} < {bt—1,b,_1}, where the columns
selected from {a;—1,a},_;} and {b;—_1,b;_;} depend on the parity of ¢. The underlined points in the figure below
form an instance of P; if t is even.

slab(i1) slab(iz) slab(i;—1)
c* F/F' ay/a} as/ak ai—1/a;_q be—1/b;_4
o e . . . " . .
r e . ° ° e o °
Cases 1 and 2 are exhaustive, so we conclude A contains P;. a

LEMMA 3.3. Suppose there are two rows ro < r1 and three columns ¢* < ¢,c’ such that
o A(rg,c*) = A(rg,c) = A(ry,¢*) = A(r1,) = 1 and all have a common sig,-type.

o A(rg,c*) and A(ry,c*) are each not the last 1 in their row with their respective sigy-types. They do not
satisfy Inequality .

o Let the landmarks for A(rg,c*), A(r1,c*) be (F,a1,b1,...,L) and (F',a},b),...,L"), respectively. Both
c€[F,a1) and ¢ € [F',d}).

Then A contains P;.

Proof. Since ¢ € [F, ay), the landmarks for A(rg, c) are (F,aq,...,bi_1, L), i.e., they only differ from the landmarks
for A(ro,c*) in F/F.

Let the first vector of the common sig,-signature be (i1, ...,i;—1), i.e., if 4; is defined then b;, b; exist and are
in slab(;), where the slabs are defined as in the proof of Lemma Since [logy, (b1 — ¢*)| = [logy (b1 — )],
this implies F'—c¢* < ¢—c* < €(14€)" (the width of slab(i1)) and that F lies strictly before slab(i;). We similarly
have F/ — ¢* < e(1 + €)™,
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Case 1: According to the second part of the common sig,-signature, for some index j € [t — 1], a],a] exist
and are in slab(i;). Then b; — a; < €(1+ €)% LA and by definition of a;, b;, every interval of width €A in row
ro between F' and slab(i;) has a 1. The same is true in row r1 (with F’ in place of F), so there is an alternating
pattern of length (A — €(1 +€)%)/eA > (1 —€)/e > t + 1 between rows 7o, 71, and together with column c*, this

forms an instance of P;.

From now on we assume we are not in Case 1, so in particular, we have i1 < iy < -+ < i4_1.

Case 2: According to the common sig,-signature, for some index j € [t — 1], a; is strictly be-
tween slab(i;—1) and slab(i;). Then A contains an instance of P on rows rg,71 and the ¢ +
2 columns ¢* Fy by, -+ {bj_1,b;_1},{az,a}}, {b;, 0}, ..., {bs—1,b;_1}, where the columns selected from

{aj,a’},{bi—1,b;_1}, etc. depend on the parities of j and t.

Case 3: According to the common sig,-signature, for everyj 6 2,t—1], a;,a’; € slab(ij_1). By Lemma | at
least one of Inequalities (L.1] are satisfied, but Inequality ([.1)) is not satlsﬁed by assumption. Since a; —b;_
is less than the width of slab(z] 1), we cannot satisfy any of Inequahtles E, hence Inequality . is
satisfied: L — b1 > (bt 1 — ¢*), implying that L lies outside slab(zt,l) since € < 1/(3¢). Thus, A contains an

instance of P; on rows 7'0,7"1 and the ¢ 4+ 2 columns ¢*, F, by, ..., {bj—1,b0,_1},{L, L'} O

LEMMA 3.4. Suppose there are two rows ro < r1 and three columns c¢* < ¢,c such that
o A(rg,c*) = A(ro,c) = A(r1,c¢*) = A(r1, ) = 1 and all have a common sigs-type.

o Let the landmarks for A(ro,c*), A(ri,c*) be (Fyay,b1,...,L) and (F',a},b},..., L"), respectively (with the
first few a;,b; potentially undefined). For some £ € [t — 1], ¢ € [bg,apy1) and ¢ € [by,ay, ), where

def def
ay = L7 % = L.

Then A contains P;.

Proof. Since ¢ € [by,a4+1), the landmarks for A(rg, c) are (F”,ay,..., b/, ap41,...,a¢—1,bi—1, L), i.e., they agree
on the suffix (a¢41, ..., L) with the landmarks of A(ro, c*). Let (i1,...,4¢—1) be the first component of the common
sigy-signature. Define Ag € [(1+ €)%, (14 €)*™1) and p > 0 as:

AO = b[ - C*,
nlg = apr1 — by.

slab(iy)
c* ay be ¢ by gt
AO /LAO
’]"O [ ] [ ) [ [ ] [ ] [ )
< AO ~ AO

The relevant component of the third part of the common sig,-signature is min{{(‘;“l*)b/"QJ ,3t} =

min{|2u],3t}. Observe that because of the first part of the common sig,-signature, b} —c € ((14 €)' Ag, (1 +
€)Ay). Thus,

ag+1 — bg < ,LLAO _
b —c ~ (1+e1Ag

Note that since € < 1/(3t), (1+€)u—1 < pr—1/2 whenever p < 3t/2. Since the sig,-signatures of A(rg,c*), A(ro, c)
are identical, it must be that

) . ar+1 — b . apr1 — by
2ul, 3t} = — |3ty = ——— |, 3ty = 3t.
min 2 30) =i { | 5652206 o} = min { | |
Since by — ag < Ap is maximum among distances of consecutive 1s in the range [F,as11], there must be a 1 in
row ro in every interval of width A that starts in the range [as, ap1] D [¢* + (1 + €)%, c* + (u+1)(1 +€)]. The

I1=>14+ep—
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same is true of row 1 with respect to some Ay € [(1 4 €)*, (1 +¢)**1). Since p > 3t/2 >t + 1, there are t + 1
alternations between rows rg,r; in the interval [¢* + (14 €)*,¢* + (u+ 1)(1 + €)*]. Together with column ¢* this
forms an instance of P;. |

We are now in a position to prove Theorem using Lemmas [3.1] to

Proof. [Proof of Theorem Let A be an n x n matrix. Recall the 4-step marking process.

Step 1. In each row, mark the last two 1s and the last 1 of each sig,-type.

Step 2. In each column, mark the last unmarked 1 of each sig,-type that satisfies Inequality .
Step 3. In each row, mark the last ¢ unmarked 1s of each sig,-type.

Step 4. In each column, mark the last ¢t unmarked 1s of each sigy-type.

We shall prove that either every 1 is marked, or A contains an instance of P;. Suppose that there exists some
A(rg, c*) = 1 that is still unmarked after Steps 1-4. Because it is unmarked after Step 1, Lemmaimplies that
it must satisfy at least one of Inequalities f. If it satisfies Inequality then Step 2 must have marked
some other A(ry,c*) =1, 11 # rg, of the same sig;-type that also satisfies Inequality . In this case A contains
Py, by Lcmma Thus, after Step 2, we may assume that A(rg, c*) does not satisfy Inequality .

Steps 3 and 4 imply that there exists rows rg < 11 < --- < 7y and for each i € [0,¢], columns
¢ <1 < ¢ < --- < ¢y such that A(ry,¢*) = A(ri, ¢ ;) = 1 all have the common sigy-type of A(ro,c*).
Each A(r;,c; ;) is classified by which of the following sets contains ¢; ;, the landmarks (F*,a},b},..., L") being
defined w.r.t. A(r;, c*).

[F',a3), {ai}, [b1,a3), {a}, [by.a5) .., {ai )}, (04, L

There are only t — 1 singleton sets {ai},..., {al_ 1} so by the pigeonhole principle, for each i € [0, ] there exists
a j(i) € [t] such that ¢; ;i;) € [F", a}) U] 17(12) U---Ub_5,ai 1)U bi_, LY). By the pigeonhole principle again,
there must exist two rows r;, 7y such that c; je),cir i) have the same classification. If ¢; ;) € [Fi al) and
cir j(iry € [Fi/,a’i/) then Lemma implies that A contains P;. If, for some £ € [t — 1], ¢; j;) € [b@,aéﬂ) and

Cir jiry € b7, a?_H) (by definition al e L?), then Lemma implies A contains P;.

The cases considered above are exhaustive, hence if A is P;-free, there can be no unmarked 1s left in A after
Steps 1-4.

The number of distinct sigy-, sig;-, and sig,-signatures are O(n logz n),0(nlogi;tn), and O(nlogﬁi n),
respectively, so the number of 1s marked by Steps 14 is

O(n - (logz n+ logﬁi n)) =0 (n- ((logn/log¢)" + (¢logn)~1)). (Recall e = ©(1/¢).)
We choose ¢ = (logn)/* and conclude that Ex(P,,n) = O(n(logn/loglogn)t). |

REMARK 3.1. Note that if A is a rectangular n x m matriz, Steps 1 and 3 mark O(n(logém + logiTtm))
1s whereas Steps 2 and 4 mark O(m logH_6 m) 1s. If n > m then we still pick ¢ = (logm)Y/t and get the
upper bound Ex(P;,n,m) = O(n(logm/loglogm)t), whereas if n < m/logm, we would pick { = O(1) and
get the upper bound Ex(P,,m/logm,m) = O(mlog' 'm). This shows another qualitative difference between
the behavior of Pi-free and Pi-free, t > 2, rectangular matrices. Pettie [Petl(], Appendiz A] proved that for
n > m, Ex(Pi,n,m) = ©(nlog,,/,, m) and for m > n, Ex(P1,n,m) = ©(mlog,,,,,n). ILe., whenever
max{n/m,m/n} = poly(log(nm)), we only lose a O(loglogn)-factor in the density of Pi-free matrices, but can
lose an Q(logn/ poly(loglogn))-factor in the density of P;-free matrices.

4 Conclusion

The foremost open problem in forbidden 0-1 patterns is still to understand the range of possible extremal
functions for acyclic patterns. In the past it has been valuable to advance conjectures of varying strength
(implausibility) [FH92, [PT06]. Here we present weak and strong variants of the central conjecture.
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CONJECTURE 4.1. Let Pycyciic be the class of acyclic 0-1 patterns.

Weak Form. For all P € Paeyetic, Ex(P,n) = n'+°W. (Cf [Tar03, [PT06].)
Strong Form. For all P € Pacyciic, there exists a constant Cp such that Ex(P,n) = O(n2Crviosn),

One way to begin to tackle the Weak Form of Conjecture is to prove that there exists an absolute
constant ¢ > 0 such that Ex(P,n) = O(n?>7¢), for all P € Pacyclic- Another is to generalize Korandi et
al.’s [KTTW19] method to handle patterns like 77 (which can be decomposed using both vertical and horizontal
cuts) and ultimately to patterns like the pretzel Tp, for which there is no horizontal /vertical cut that separates
the 1s in a single column/row. The Strong Form of the conjecture should be considered more plausible in light
of [KT23a.

Regardless of the status of Conjecture 4.1} it would be of great interest to characterize the Polylog echelon:
those P with Ex(P,n) = O(nlog®" n).

The applications of extremal 0—-1 matrix theory in combinatorics [Kla00, MT04], graph theory [GMI14}
BGK™21, BKTW22], and data structures [Pet10, ICGKT15bl [CGJT23| [CPY24] tend to use patterns that are
rather low in the hierarchy, usually Linear or Quasilinear, so there is ample motivation to understand the
boundary between these two echelons.

CONJECTURE 4.2. Let Q contain Q3,Q%, and their horizontal and vertical reflections. If P is light and QO-free
then Ex(P,n) = O(n).

Q3(°,°,), Q= .

Conjecture has not even been confirmed for all weight-5 light patterns, though most have been classified;
see [Tar05, Lemma 5.1], Fulek [Ful09, Theorem 4], Pettie [Petllb, Theorem 2.3], and [MT04, [Pet15b] [(CPY24].
One way to think about classifying light O-free P is to ignore any consecutive repeated columns in P, then
measure how many rows have at least two 1s. If this number is zero then P is a permutation matrix (possibly
with repeated columns) and Ex(P,n) = O(n) [MT04, [Gen09]. If P has one such row, then the remaining 1s must
be arranged in a permutation P’ constrained to the boxed regions in the figure below.

Pl

At the other extreme, there are Q-free patterns in which all but one row contain two non-consecutive 1s, but
they are all contained in the oscillating patterns (O;). Only Os is known to be linear [FH92]. Fulek [Ful09] proved
that the version of O3 without the repeated column is linear.

There is a class of light Q-free P containing a row with three non-consecutive 1s, but patterns in this class are
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highly constrained in their structure. Each must be of the following form, up to reflection.

B

C

where B,C # 0, A, D are permutations avoiding the weight-3 row, and B,C are (...) -free and <...> -free,

respectively. In particular, there cannot be a second row (intersecting A, B, C, or D) that has three non-consecutive
1s. There are no light Q-free patterns containing four non-consecutive 1s.
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A Refutation of the Fiiredi et al. Conjecture for Hypergraphs

We start with defining some simple terms. For the standerd definition of vertex-ordered hypergraph and order-
isomorphism, see [EJKT21]. Define Ex’ (H,n) to be the maximum number of edges in an r-uniform, vertex-
ordered hypergraph not containing any subgraphs order-isomorphic to an r-uniform, vertex-ordered H. The
interval chromatic number of H, denoted x < (H), is the smallest number of intervals that V (H) can be partitioned
into (w.r.t. the order on V(H)) such that each hyperedge intersects r distinct intervals. As in the Erdés-Stone-
Simonovits theorem [ES46, [ES66], Ex (H,n) = ©(n") if x<(H) > r. A hypergraph H is called a forest if there
is a peeling order e1, ..., e p(m) where for all i <|E(H)], there exists an h > i such that e; N ;- ¢; C ep.

A closely related concept is the generalization of extremal function Ex from 2-dimensional matrices to -
dimensional matrices. If P € {0, 1}k Xk A ¢ {0, 1} X X" we say P < A if there are index sets (I;),
I; C [ng], |I;] = k4, such that P is entry-wise dominated by the submatrix A[I3,...,I.] of A restricted to
I,...,I.. Define Ex"(P,n) = max{||Al|; | A€ {0,1}" and P £ A}. We can view P as an ordered hypergraph
H(P) with interval chromatic number x«(H(P)) = r by ordering the k1 + --- + k, vertices primarily by their
axis, then according to their coordinate within the axis. Each P(iy,...,i.) = 1 corresponds to a hyperedge

{igl), A iy)}, where i;j) is the vertex in axis j and position ;.

LEMMA A.1. (Cr. [PT06, TaMm. 2]) Suppose P € {0,1}f2> >k and H(P) has no isolated vertices. Then
Ex"(P,n) < Ex_(H(P),rn).

Proof. If A € {0,1}"" is P-free, then H(A) is an ordered r-uniform hypergraph on rn vertices that is H(P)-free,
as every embedding of H(P) in H(A) must assign the r vertices of each hyperedge into vertices associated with
distinct axes of A. ]

Recall that Conjecture is equivalent to the r = 2 case of Conjecture [1.5] Thus, Theorem refuting
the former gives a counterexample of the latter conjecture that is a 2-uniform ordered hypergraph, i.e., a vertex-
ordered graph. We thought that providing counterexamples that are “real” hypergraphs is valuable, so here we
give a similar counterexample that is an r-uniform ordered hypergraphs for any r > 2, as claimed in the first
paragraph of Section 1.6
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Let S§ € {0,1}3x4x1xx1 he the r-dimensional version of the pattern Sy, where the last 7 — 2 dimensions
have width 1. Then H(S]) is in fact an ordered r-uniform forest hypergraph with r + 5 vertices. Construct
a matrix A" € {0,1}"" such that every square submatrix A € {0,1}"*™ obtained by fixing a single coordinate
in the last r — 2 axes is a copy of the lower bound construction A from Theorem Then Ex"(S§,n) >
n"2|| Al = nr—1gviogn—O(loglogn) By LemmalE7 Ex_(H(Sp),n) > Ex"(Sg,n/r) = Q(nr_12\/@_o(104‘5k’g”))7
which refutes Conjecture for all r > 2 as H(S7) is an r-uniform forest of interval chromatic number 7.
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