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Abstract

The theory of forbidden 0–1 matrices generalizes Turán-style (bipartite) subgraph avoidance, Davenport-
Schinzel theory, and Zarankiewicz-type problems, and has been influential in many areas, such as discrete
and computational geometry, the analysis of self-adjusting data structures, and the development of the graph
parameter twin width.

The foremost open problem in this area is to resolve the Pach-Tardos conjecture from 2005, which states
that if a forbidden pattern P 2 {0, 1}k⇥l is acyclic, meaning it is the bipartite incidence matrix of a forest,
then Ex(P, n) = O(n logCP n), where Ex(P, n) is the maximum number of 1s in a P -free n ⇥ n 0–1 matrix
and CP is a constant depending only on P . This conjecture has been confirmed on many small patterns,
specifically all P with weight at most 5, and all but two with weight 6.

The main result of this paper is a clean refutation of the Pach-Tardos conjecture. Specifically, we prove
that Ex(S0, n),Ex(S1, n) � n2⌦(

p
logn), where S0, S1 are the outstanding weight-6 patterns.

S0 =

0

@
• •
• •

• •

1

A , S1 =

0

@
• •
• •

• •

1

A , Pt =

✓
•

t + 1 alternating 1s
z }| {
• • •

• •
· · ·

•

◆
.

We also prove sharp bounds on the entire class of alternating patterns (Pt), specifically that for every t � 2,
Ex(Pt, n) = ⇥(n(log n/ log log n)t). This is the first proof of an asymptotically sharp bound that is !(n log n).

1 Introduction

The extremal theory of pattern-avoiding 0–1 matrices kicked o↵ in the late 1980s when Mitchell [Mit92],
Pach and Sharir [PS91], and Füredi [Für90] applied forbidden matrix arguments to problems in discrete and
computational geometry. In the early days this theory was characterized [Mit92, FH92] as a two dimensional
generalization of Davenport-Schinzel theory [SA95, Pet15a]. It can also be characterized as a generalization
of Turán theory [Tur41, FS13] from unordered bipartite graphs to ordered bipartite graphs. Füredi and
Hajnal [FH92] (see also Bienstock and Győri [BG91]) began the daunting project of classifying all forbidden
patterns by their extremal function, a project to which many researchers have made important contributions over
the years [Kla92, KV94, Tar05, PT06, Kes09, Cib09, Ful09, Gen09, Pet11a, Pet11b, Fox13, PS13, Pet15a, Pet15b,
CK17, GT17, WP18, GKM+18, KTTW19, Gen19, FKMV20, GT20, MT22, GMN+23, KT23a, KT23b, JJMM24,
CPY24, PT24]. Before proceeding let us define the terms.

1.1 Forbidden Patterns, 0–1 Matrices, Extremal Functions A matrix A 2 {0, 1}n⇥m contains a pattern
P 2 {0, 1}k⇥l, written P � A, if it is possible to transform A into P by removing rows and columns from A,
and flipping 1s to 0s. If P ⌃ A we say A is P -free. Let P be a set of forbidden patterns. The general extremal
function is defined as follows.

Ex(P, n,m) = max{kAk1 | A 2 {0, 1}n⇥m and 8P 2 P.P ⌃ A},
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where kAk1, the weight of the matrix A, is the number of 1s in it. When there is a single forbidden pattern or A
is square we use the short forms

Ex(P, n,m) = Ex({P}, n,m),

Ex(P, n) = Ex(P, n, n).

P 2 {0, 1}k⇥l can be regarded as the adjacency matrix of a bipartite graph with k + l vertices, where the parts
of the partition (rows and columns) are implicitly ordered. Define G(P ) to be the unordered bipartite graph
corresponding to P . Turán’s extremal function ExTur (H,n) is defined to be the maximum number of edges in a
simple n-vertex graph not containing H as a subgraph.

1.2 The Classification of Patterns We have a crude classification of forbidden subgraphs according to the
asymptotic behavior of their Turán-extremal functions.

• If H is non-bipartite, then ExTur (H,n) = ⇥(n2).1

• If H is bipartite and contains a cycle, then ExTur (H,n) = ⌦(n1+c1) and O(n1+c2) for 0 < c1 < c2 < 1.2

• If H is acyclic (a forest) then ExTur (H,n) = ⇥(n).

Is there a similarly clean asymptotic classification for forbidden patterns in 0–1 matrices? In a very influential
paper, Füredi and Hajnal [FH92] observed that (trivially) Ex(P, n) = ⌦(ExTur (G(P ), 2n)) and that there were
several examples when Ex(P, n) = !(ExTur (G(P ), 2n)), e.g.,3

P1 =

✓
• •
• •

◆
, Q3 =

✓
• •

• •

◆
.

Both are acyclic matrices, so ExTur (G(P1), n) = ExTur (G(Q3), n) = O(n), but Ex(P1, n) = ⇥(n log n)
[BG91, Für90, FH92, Tar05] and Ex(Q3, n) = ⇥(n↵(n)) [FH92, HS86], where ↵ is the inverse-Ackermann function.
The pattern P1 arises in an analysis of the Bentley-Ottman line-sweeping algoithm [PS91], bounding unit distances
in convex n-gons [Für90], and bounding the total length of path compressions on arbitrary trees [Pet10]. The
pattern Q3 corresponds to order-3 (ababa-free) Davenport-Schinzel sequences, which have applications to lower
envelopes [WS88, SA95] and corollaries of the dynamic optimality conjecture [CGJ+23, Pet08, CGK+15a, CPY24].

1.3 The Füredi-Hajnal and Pach-Tardos Conjectures Füredi and Hajnal made three conjectures
concerning the relationship between Ex and ExTur .

Conjecture 1.1. (Füredi and Hajnal [FH92]) If P is a permutation matrix (equivalently, G(P ) is a
matching), then Ex(P, n) = O(ExTur (G(P ), n)) = O(n).

Conjecture 1.2. ([FH92]) For any P , Ex(P, n) = O(ExTur (G(P ), n) · log n).

Perhaps doubting the validity of Conjecture 1.2 in general, they asked whether it held at least for acyclic
patterns.

Conjecture 1.3. ([FH92]) For any acyclic P , Ex(P, n) = O(ExTur (G(P ), n) · log n) = O(n log n).

In 2004, Marcus and Tardos [MT04] proved Conjecture 1.1, which also proved the Stanley-Wilf conjecture,
via a prior reduction of Klazar [Kla00]. This result inspired a line of research that led to the definition of the
graph parameter twin width [GM14, BGK+21, BKTW22]. Although the leading constant in Ex(P, n) = O(n)
for a k-permutation P depends only on k, it is exponentially larger than the corresponding leading constant of
ExTur (G(P ), n) = O(n); see Fox [Fox13] and Cibulka and Kynčl [CK17].

1Erdős, Stone, and Simonovits [ES46, ES66], generalizing Turán’s theorem [Tur41] bounded it more precisely as ExTur (H,n) =
(1� 1/r + o(1))

�n
2

�
if H has chromatic number r + 1.

2Erdős and Simonovits conjectured that Ex(H,n) = ⇥(n1+↵) for some rational ↵ 2 Q; see [FS13].
3Following convention, we write patterns using bullets for 1s and blanks for 0s.
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In 2005 Pach and Tardos [PT06] refuted Conjecture 1.2. They provided a matrix with kAk1 = ⇥(n4/3)
that for each k, avoids a certain pattern D2k for which G(D2k) = C2k is a 2k-cycle. Since ExTur (C2k, n) =
O(n1+1/k) [BS74], this proved that the gap between Ex(P, n) and ExTur (G(P ), n) can be as large as n1/3�✏

for any ✏ > 0. This result had no direct e↵ect on Conjecture 1.3, but cast some doubt on its validity. Before
Conjecture 1.3 was refuted they stated a more plausible version of it.

Conjecture 1.4. (Pach and Tardos [PT06]) Let P be an acyclic 0–1 pattern.

Weak Version. Ex(P, n) = O(n logCP n), for some constant CP .

Strong Version. Ex(P, n) = O(n logkPk1�3 n).

The rationale for the Strong Version is that all acyclic P with weight 3 are known to be linear [FH92],
and in some circumstances, adding a row/column containing a single 1 only increases the extremal function by a
log n factor. In particular, Pach and Tardos [PT06] proved the following three reductions for eliminating weight-1
columns. (In the diagrams, there are no constraints on the order of the rows.)

Lemma 1.1. (Pach and Tardos [PT06]) Suppose P is obtained from P 0 (marked by boxes) by adding weight-1
columns in the following configurations.4

P =

0

@ P 0 •

1

A P =

0

@
• •

P 0

• •

1

A P =

0

@
• •
• •

P’ • •

1

A

(A) (B) (C)

Then Ex(P, n) can be expressed in terms of Ex(P 0, n) as follows.

(A) Ex(P, n) = O(Ex(P 0, n) log n).

(B) Ex(P, n) = O(Ex(P 0, n) log n).

(C) Ex(P, n) = O(Ex(P 0, n) log2 n).

The Pach-Tardos reductions (Lemma 1.1) are su�cient to prove Conjecture 1.4 on all patterns with weight
at most 5 and most of weight 6. For example, consider the class (Pt) of “alternating” patterns and R0, R1, R2.

Pt =

✓
•

t + 1 alternating 1sz }| {
• • •

• • · · · •

◆
, R0 =

0

@
• •

•
• •

1

A ,

R1 =

0

@
• •

• •
• •

1

A , R2 =

0

@
• •
• •

• •

1

A .

A t-fold application of Lemma 1.1(A) implies Ex(Pt, n) = O(n logt n), (B) implies Ex(R0, n) = O(n log2 n), and
(C) implies Ex(R1, n) = O(n log3 n) and Ex(R2, n) = O(n log2 n). However, there are two weight-6 patterns up
to rotation/reflection that the Pach-Tardos reductions cannot simplify, namely S0 and S1.

S0 =

0

@
• •
• •

• •

1

A , S1 =

0

@
• •
• •

• •

1

A .

4Formally: (A) The last column of P has one 1. (B) Column j of P has one 1. There are rows i0, i1 such that P (i0, j) =
P (i0, j + 1) = P (i1, j � 1) = P (i1, j + 1) = 1. (C) Columns j and j + 1 of P have one 1 each. There are rows i0, i1, i2 such that
P (i0, j � 1) = P (i0, j) = P (i1, j + 1) = P (i1, j + 2) = P (i2, j � 1) = P (i2, j + 2) = 1.

Since P and its transpose have the same extremal function, reductions (A), (B), and (C) can also be applied to remove weight-1
rows. Strictly speaking, part (C) is implied by part (B).
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1.4 Acyclic Patterns and the Status of Conjectures 1.3 and 1.4 In 2010 Pettie [Pet11a] refuted Füredi
and Hajnal’s Conjecture 1.3 by exhibiting an acyclic pattern X for which Ex(X,n) = ⌦(n log n log log n).

X =

0

BB@

• • •
• •

•
• •

1

CCA .

Park and Shi [PS13] generalized this construction to a class (Xm) of acyclic patterns for which Ex(Xm, n) =
⌦(n log n log log n log log log n · · · log(m) n). These results [Pet11a, PS13] did not cast any doubt on the Pach-
Tardos conjecture (Conjecture 1.4), and even left open the possibility that the Füredi-Hajnal conjecture
(Conjecture 1.3) was still morally true, e.g., if Ex(P, n) = O(n log n poly(log log n)) for all acyclic P .

Essentially no progress has been made on expanding Pach and Tardos’s repertoire of weight-1 column reduction
rules (Lemma 1.1) in order to put more acyclic matrices in the n poly(log n) class. However, in 2019 Korándi,
Tardos, Tomon, and Weidert [KTTW19] developed a new technique for analyzing S0, S1 and similar matrices.

They defined a pattern S to be class-s degenerate if it can be written S =

✓
S0

S00

◆
, where at most one column

has a non-zero intersection with both S0 and S00, and S0, S00 are at most class-(s � 1) degenerate; any pattern
with a single row is class-0 degenerate. Here is an example of a class-4 degenerate pattern. It is decomposed into
individual rows by sequentially making horizontal cuts, each one cutting one vertical line segment joining 1s in
the same column.5 0

BBBB@

• •
• • :

• • :

: •: •
• •

1

CCCCA

They proved that every class-s degenerate S has

Ex(S, n)  n · 2O(log
1� 1

s+1 n) = n1+o(1).

As a consequence, Ex(S0, n),Ex(S1, n)  n2O(log2/3 n), and by being more careful with the analysis of S0, they
proved Ex(S0, n)  n2O(

p
logn). The results of Korándi et al. [KTTW19] did not directly challenge the Pach-

Tardos conjecture (Conjecture 1.4), and the authors characterized their results as taking a step towards a�rming
Conjecture 1.4.

Pettie and Tardos [PT24] introduced a class of matrices (At) such that At is Bt-free and kAtk1 =
⇥(n(log n/ log log n)t). The box pattern Bt is a 2t ⇥ (2t + 1) matrix, where the first and last rows form a
reflection of Pt+1 and the second and last columns form a rotation of Pt.

Bt =

0

BBBBBBBBBBBB@

• • · · · • • •
•

•
•

•
...

... •
•

• • · · · • • •

1

CCCCCCCCCCCCA

.

Hence

Ex(Bt, n) =

⇢
⌦(n(log n/ log log n)t)
O(n log4t�3 n),

5We could also define degeneracy w.r.t. vertical cuts, i.e., S is class-s degenerate if S = (S0 S00), where S0, S00 have at most one
non-zero row in common and are at most class-(s� 1) degenerate. However, the Korándi et al. [KTTW19] method does not permit
decomposing a pattern with both vertical and horizontal cuts.
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where the upper bound follows from iterated application of Lemma 1.1(B). The Pettie-Tardos [PT24] lower bounds
are the highest obtainable lower bounds that are consistent with the weak Pach-Tardos conjecture.6

1.5 Extensions and Variants of the Pach-Tardos Conjecture Füredi, Jiang, Kostochka, Mubayi, and
Verstraëte [FJK+21] studied forbidden patterns in ordered r-uniform hypergraphs. They made a conjecture
extending Conjecture 1.4.

Conjecture 1.5. ([FJK
+
21, Conjecture B]) Let F be any r-uniform forest with interval chromatic number

r. Then the maximum number of edges in a vertex-ordered r-uniform hypergraph with no subgraph order-
isomorphic to F is O(nr�1 logc(F ) n), for some constant c(F ).

One can think of Conjecture 1.5 as a collection of separate conjectures for each r � 2. For r = 2 we get back
an equivalent form of Conjecture 1.4; see [PT06, Theorem 2].

Shapira and Yuster [SY17] considered an extremal problem on augmented tournaments. A tournament is a
complete graph with

�n
2

�
edges, each of which is assigned some direction. A t-augmented tournament has t extra

directed edges, i.e., t pairs of vertices {u, v} have both edges (u, v), (v, u). Shapira and Yuster defined t(n,H) to
be the minimum number such that any n-vertex, t(n,H)-augmented tournament contains a subgraph isomorphic
to the tournament H. They defined a notion of “tournament forest” and made an analogue of the Pach-Tardos
conjecture.

Conjecture 1.6. ([SY17, Conjecture 1]) For any tournament forest H there exists a constant cH such that
t(n,H) = O(n logcH n).

Moreover, they proved that Conjecture 1.6 is equivalent to the Pach-Tardos conjecture.

Theorem 1.1. (Shapira and Yuster [SY17, Theorem 1]) Conjectures 1.4 and 1.6 are equivalent.

1.6 New Results Our main result is a refutation of the Pach-Tardos conjecture (Conjecture 1.4) in both its
weak and strong forms. As stated above, the Pach-Tardos conjecture is equivalent to both the r = 2 case of the
Füredi et al. conjecture (Conjecture 1.5) and the Shapira-Yuster conjecture (Conjecture 1.6) so both of the latter
conjectures are also refuted. It is straightforward to modify the counterexample of the r = 2 case of Conjecture 1.5
(a graph being a 2-uniform hypergraph) to obtain counterexamples for any r > 2; see Appendix A.

Specifically, we prove that the two weight-6 patterns S0, S1 not subject to the Pach-Tardos reductions
(Lemma 1.1) do not have n poly(log n) extremal functions. Here and throughout the paper log stands for the
binary logarithm.

Theorem 1.2. Ex(S0, n),Ex(S1, n) � n2
p
logn�O(log logn).

Theorem 1.2 matches Korándi et al.’s [KTTW19] upper bound Ex(S0, n)  n2O(
p
logn), up to the hidden

constant in the exponent, which happens to be 4 in the upper bound rather than the 1 in the lower bound. We
extend Theorem 1.2 in two directions. First, we show that the matrices constructed for the proof of this theorem
avoid a large class of matrices beyond S0 and S1; see Theorem 2.2. Second, we modify the construction to increase
its weight to n2C

p
logn for any desired constant C � 1 and show that the matrices obtained still avoid some acyclic

patterns; see Theorem 2.3.

We must admit that we did not specifically set out to disprove the Pach-Tardos conjecture. Our initial aim
was simply to better understand variations on the construction of [PT24], and to understand simple, structured
patterns like the (Pt) class. This e↵ort was also very successful.

Theorem 1.3. For every t � 2, Ex(Pt, n) = ⇥(n(log n/ log log n)t).

6(This is true in the sense that for any t [PT24] can achieve an ⌦(n logt n) lower bound, but cannot obtain any ⌦(n log!(1) n)
lower bound.)
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Both the upper and lower bounds of Theorem 1.3 are new. No lower bound better than Ex(Pt, n) �
Ex(P1, n) = ⌦(n log n) [FH92, BG91, Für90, Tar05] was previously known, and the best upper bound was
O(n logt n), which follows from iterated application of Lemma 1.1(A). Theorem 1.3 is notable in many ways.
It is the first proof of an asymptotically sharp bound for any acyclic pattern with extremal function !(n log n); it
demonstrates that the (log n/ log log n)t density first seen in [PT24] is not contrived but a natural phenomenon,
and it highlights an unexpected discontinuity between P1 and P2, P3, . . .

Although 2
p
logn and (log n/ log log n)t look like they arise from quite di↵erent constructions, Theorems 1.2

and 1.3 use essentially the same 0–1 matrix construction for their lower bounds, but under di↵erent parameteri-
zations.

1.7 Related and Unrelated Results

Unrelated Results. The function 2(logn)� is a most fashionable function these days. Kelley and
Meka [KM23] recently proved that Behrend’s [Beh46] 1946 construction of 3-progression-free subsets of [N ] =
{1, 2, . . . , N} with size N/2⇥(

p
logN) is roughly the best possible. Specifically, no 3-progression-free subset of [N ]

has density 2�O(logN)1/12 . This was later improved to 2�O(logN)1/9 by Bloom and Sisask [BS23]. Abboud, Fischer,
Kelley, Lovett, and Meka [AFK+24] discovered a combinatorial boolean matrix multiplication algorithm running

in n3/2⌦(logn)1/7 time, improving a long line of n3/ poly(log n)-time algorithms.
Fine-grained Classification of Acyclic Patterns. Every existing analysis of an acyclic pattern P has

placed its extremal function in the following five-echelon hierarchy. The first four echelons are “natural” inasmuch
as there are lower bounds (see [HS86, FH92] and Theorem 1.2) proving that certain patterns in Quasilinear,
Polylog, and Near-linear cannot be moved to a lower echelon.

Linear. Ex(P, n) = O(n).

Quasilinear. Ex(P, n) = O(n2(↵(n))
CP ), where ↵(n) is the inverse-Ackermann function.7

Polylog. Ex(P, n) = O(n logCP n), for some CP > 0.

Near-linear. Ex(P, n) = n2O(log1�� n), for some � = �P 2 (0, 1).

Polynomial. Ex(P, n) = O(n1+CP+o(1)), for some CP 2 (0, 1).

A lot of e↵ort has been spent to understand the membership and boundaries of these classes. We know of some
infinite classes of Linear matrices, such as permutations [MT04], double-permutations [Gen09], and monotone
patterns [Kes09, Pet11c], and even have good bounds on the leading constant factors [Fox13, CK17, Gen15]
for (double) permutations. Keszegh [Kes09] (see also [Gen09, Pet11a]) proved that the Linear class cannot be
characterized by a finite set of minimally non-linear patterns. In particular, Lemma 1.1(A) and [Gen09] imply
that every pattern in the infinite sequence (Gt) has Ex(Gt, n) = ⇥(n log n) and there is an infinite sequence
(Ht), Ht � Gt, of minimally non-linear patterns w.r.t. � [Kes09, Gen09].8

G0 =

0

BB@

• •
•
•

•

1

CCA, G1 =

0

BBBBBBBB@

• •
•

•
•

•
•

•

1

CCCCCCCCA

, G2 =

0

BBBBBBBBBBBBBB@

• •
•

•
•

•
•

•
•
•

•

1

CCCCCCCCCCCCCCA

.

7There are more slowly growing functions in this class, e.g., n↵(n) [HS86, FH92] or n↵2(n) [Pet11b, Pet15b].
8I.e., it is not known if Gt is itself minimally non-linear.
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While the characterization of linear patterns seems to be elusive, Füredi, Kostochka, Mubayi and Verestrate
[FKMV20] gave a simple characterization of linear connected patterns9

A pattern P is called light if it contains exactly one 1 per column. Light patterns are closely related to
(generalized) Davenport-Schinzel sequences [SA95, Kla02]; they are all known to be in Quasilinear [Kla92,
Kla02, Kes09]. More specifically, for any light P with two rows, Ex(P, n) is one of ⇥(n), ⇥(n↵(n)), ⇥(n2↵(n)),
⇥(n↵(n)2↵(n)), or n2(1+o(1))↵t(n)/t!, t � 2, and if P has more rows, Ex(P, n) is upper bounded by one
of these functions or n(↵(n))(1+o(1))↵t(n)/t! [Pet15a, Pet15b, Pet11b, HS86, FH92, Niv10]. It is an open
problem whether light linear patterns are themselves characterized by a finite set of forbidden patterns. The
only known minimally non-linear ones (w.r.t. � and rotation/reflection) are Q3, Q0

3, with Ex({Q3, Q0
3}, n) =

2n↵(n) +O(n) [Niv10, Pet15a, Pet15b].

Q3 =

✓
• •

• •

◆
, Q0

3 =

0

@
•

•
• •

1

A .

Aside from Lemma 1.1’s weight-1 column-reduction rules, there are a couple more methods to bound the
extremal function of composite patterns.

A�B =

0

BBBB@

A
•

B

1

CCCCA
, A⌦B =

0

BBBB@

B

• • •
A

1

CCCCA
.

Keszegh [Kes09] proved that Ex(A�B,n)  Ex(A, n)+Ex(B,n)10 and Pettie [Pet11c], generalizing [Kes09],
proved that if Ex(A, n) and Ex(B,n) are linear (respectively, near-linear) and B is legal11 then Ex(A ⌦ B,n) is
linear (respectively, near-linear) as well.12 These two composition rules put many more patterns in the Linear
and Polylog classes [Kes09, Pet11c], and allow one to put “artificial” matrices in the class Quasilinear that are
not light; see [PT24, Footnotes 3,4].

Every P 2 {0, 1}k⇥l is dominated by the all-1 k ⇥ l matrix Kk,l. By the Kővári-Sós-Turán theorem,
Ex(P, n)  Ex(Kk,l, n) = O(n2�1/min{k,l}). Very recently Janzer, Janzer, Magner, and Methuku [JJMM24]
proved that if P has at most t 1s per row (or per column), then Ex(P, n) = O(n2�1/t+o(1)), which confirmed a
conjecture of Methuku and Tomon [MT22]. This upper bound applies to all patterns, but still provides the best
known analysis for acyclic patterns not subject to Korándi et al.’s [KTTW19] method. For example, the pretzel
and spiral patterns below have Ex(T0, n),Ex(T1, n) = O(n3/2+o(1)).

T0 =

0

BB@

• •
•

• •
• •

1

CCA , T1 =

0

BB@

• • •
• •

•
• •

1

CCA .

Little is known about the gaps between Linear, Quasilinear, and Polylog. For example, is there a
pattern P with Ex(P, n) = !(n) but o(n↵(n))? or a P not in Quasilinear with Ex(P, n) = o(n log n)?

Tardos [Tar05] proved that if we consider pairs of excluded matrices, Ex({P1, P
|
1}, n) = ⇥(n log n/ log log n)

while Ex({P1, P
�
1 }, n) = ⇥(n log log n), where P |

1 is the reflection of P1 across the y-axis and P�
1 it its 180-degree

rotation. Whether these and other extremal functions between quasilinear and o(n log n) can be realized by a
single pattern is an open question.

9[FKMV20] is about connected vertex-ordered graphs but their results translate to the adjacency matrices of connected graphs
too.

10A�B applies whenever A and B have 1s in their SE and NW corners, respectively.
11A⌦B applies when A contains two consecutive 1s in its top row, B has 1s in its SW and SE corners. A B is legal if it is either

non-ascending or non-descending; see [Pet11c].
12Specifically, if Ex(A,n,m)  nf(n,m) and Ex(B,n,m)  ng(n,m) then Ex(A⌦B,n,m) = O(nf(n,m)g(n,m)).
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Edge-ordered Graphs. As we noted earlier, 0–1 patterns can be regarded as bipartite graphs where the
vertex sets on each side of the partition are ordered. Pach and Tardos [PT06] considered a vertex-ordered variant
of Turán’s problem where the vertex sets of the graph and pattern have a linear order. This theory is very similar
to 0–1 matrix theory, with interval chromatic number 2 taking the role of bipartiteness. Gerbner et al. [GMN+23]
introduced the analogous problem on edge-ordered graphs and forbidden patterns, where order chromatic number
2 takes the role of bipartiteness/interval chromatic number 2. The problem of characterizing linear edge-ordered
patterns seems to be equally di�cult in this setting; see [KT23b] characterizing connected edge-ordered graphs
with a linear extremal function. Gerbner et al. [GMN+23] conjectured that the extremal function of edge-ordered
acyclic patterns with order chromatic number 2 is n1+o(1). This conjecture was recently proved by Kucheriya and
Tardos [KT23a], with a universal upper bound of n2O(

p
logn). They further conjectured that every such extremal

function is actually bounded by O(n poly(log n)) à la Pach-Tardos. There is no known formal connection between
the Gerbner et al./Kucheriya-Tardos conjectures and the Füredi-Hajnal/Pach-Tardos conjectures (Conjectures 1.3
and 1.4). For example, the refutations of the Füredi-Hajnal conjecture [Pet11a, PT24] had no analogues in the
edge-ordered world, so one cannot expect an automatic way to transform Theorem 1.2 from vertex-ordered to edge-
ordered graphs. In the reverse direction, [KT23a] has not led to a universal upper bound Ex(P, n)  n2O(

p
logn)

on acyclic 0–1 patterns P . Nonetheless, Theorem 1.2 may cause one to doubt a universal O(n poly(log n)) upper
bound for pattern graphs with order chromatic number 2.

1.8 Organization Section 2 introduces a new construction of 0–1 matrices with density (i.e., average number
of 1s in a row) ⇥(log n/ log log n)t or 2⇥(

p
logn). It presents the full proof of Theorem 1.2 and its generalizations,

as well as the lower bound half of Theorem 1.3. Section 3 presents the upper bound half of Theorem 1.3. We
conclude with some open problems and conjectures in Section 4.

2 Lower Bounds

2.1 The Good, the Bad, and the Ugly 0–1 Matrix Construction We define a class of 0–1 matrices
A w.r.t. integer parameters b and m. The rows are indexed by [m] ⇥ [m]b and the columns by [m]b ⇥ {0, 1}b,
both ordered lexicographically. Here [m] = {1, 2, . . . ,m} is the set of the first m positive integers. If one
desires a square matrix, then m = 2b. We identify rows by pairs r = (s, r) 2 [m] ⇥ [m]b and columns by pairs
c = (c, i) 2 [m]b ⇥ {0, 1}b.

The matrix A = A[b,m] is defined as follows13

A((s, r), (c, i)) =

⇢
1 if r = c+ s · i,
0 otherwise.

Lemma 2.1. kA[b,m]k1 � 2bmb(m/(b+ 1)� 1), i.e., ⌦(m/b) times the number of columns.

Proof. Pick a column (c, i) uniformly at random. For some s 2 [m], there exists a row (s, r) such that
A((s, r), (c, i)) = 1 i↵, for all u 2 [b] with i(u) = 1, r(u) = c(u) + s does not “overflow” the range [m]. In
other words, the weight of column (c, i) is m�maxu2[b] : i(u)=1 c(u). We have

E
✓

max
u2[b] : i(u)=1

c(u)

◆
 m�m/(kik+ 1) + 1  m�m/(b+ 1) + 1.

Thus, a column of A has at least m/(b+ 1)� 1 1s on average.

2.1.1 Matrices via Alternating Coordinate O↵sets To construct Pt-free matrices we need a small
modification to the A[b,m] construction called At = At[b,m]. The row-set of At is the same as in A[b,m], namely
[m] ⇥ [m]b, but we only keep the following subset of the columns: {(c, i) 2 [m]b ⇥ {0, 1}b | kik1 = t}. Thus, to
form a square At[b,m] one would set m =

�b
t

�
. The rows and columns of At are also ordered lexicographically.

13By analogy to the plot of The Good, the Bad, and the Ugly (1966), the Ugly (column c = (c, i)) knows the location of the
graveyard (i) while the Good (row r = (s, r)) knows the name on the grave (s).
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Define the vectors ieven, iodd 2 {0, 1}b for i 2 {0, 1}b as follows.

ieven(u) = i(u) ·

0

@

0

@1 +
X

v�u

i(v)

1

Amod2

1

A , iodd(u) = i(u) ·

0

@

0

@
X

v�u

i(v)

1

Amod2

1

A .

Clearly, i = ieven + iodd, with iodd containing the last, 3rd last, 5th last 1s of i, and ieven containing the 2nd
last, 4th last, 6th last 1s of i.

At((s, r), (c, i)) =

⇢
1 if r = c+ s · ieven + (m+ 1� s)iodd,
0 otherwise.

Remark 2.1. It is possible to show that if one restricts A = A[b,m] to columns (c, i) with kik1 = t, then A is
P2t-free. The reason for introducing At and the alternating o↵sets s,m+ 1� s is to prove Pt-freeness.

Lemma 2.2. kAt[b,m]k1 = ⌦(mb+1
�b
t

�
/(t2t)), i.e., ⌦(m/(t2t)) times the number of columns.

Proof. Pick a column (c, i) uniformly at random. For a fixed s 2 [m], there exists a row (s, r) with
At((s, r), (c, i)) = 1 i↵ c(u) + s 2 [m] for all u with ieven(u) = 1 and c(u) + m + 1 � s 2 [m] for all u with
iodd(u) = 1. Thus, (c, i) will be incident to some row (s, r) for every s 2 [(1/2� ✏)m, (1/2+ ✏)m] with probability
at least (1/2� ✏)t. Taking ✏ = 1/t, the columns have ⌦(m/(t2t)) 1s on average.

We consider elements of [m]b as b-dimensional integer vectors and add/subtract them accordingly. When
applied to vectors, ‘<’ denotes lexicographic order. Note that lexicographic ordering makes these vectors into a
linearly ordered group.

Lemma 2.3. (Simple Properties) Let A⇤ = A[b,m] or At[b,m]. Consider an occurrence in A⇤ of the following
patterns.

r0
r1

✓ c0
•
•

◆
, r0

� c0
•

c1
•

�
,

where r0 = (s0, r0) and c0 = (c0, i0), etc. Then on the left, s0 < s1, and on the right c0 < c1. If u is the position
of the first non-zero of c1 � c0 then i0(u) = 1. If A⇤ = A[b,m], then (c1 � c0)(u) = s0, whereas if A⇤ = At[b,m]
then (c1 � c0)(u) = s0 if ieven0 (u) = 1 and (c1 � c0)(u) = m+ 1� s0 if iodd0 (u) = 1.

Proof. Observe that if A((s, r), (c, i)) = 1 then ‘r’ is uniquely determined by s, (c, i) and ‘i’ is uniquely determined
by (s, r), c.

Left. Rows are ordered primarily by their s component, so we must have s0  s1. From the observation
above, s0 = s1 is not possible.

Right. As above, we must have c0  c1 and i0 = i1 is not possible, from the observation above. If A⇤ = A[b,m]
we have c1 � c0 = s0(i0 � i1). Here all coordinates of i0 � i1 are in {�1, 0, 1}. Now i0 6= i1 implies that there is a
first non-zero position u of i0 � i1 and c0  c1 implies that (i0 � i1)(u) = 1 hence (c1 � c0)(u) = s0.

If A⇤ = At[b,m], then we have c1� c0 = s0(ieven0 � ieven1 ) + (m+1� s0)(iodd0 � iodd1 ). Then (i0� i1)(u) = 1 as
before, and depending on whether ieven0 (u) = 1 or iodd0 (u) = 1, we will see either (c1 � c0)(u) = s0 or m+ 1� s0.

2.2 Refutation of the Pach-Tardos Conjecture We now recall and prove Theorem 1.2.

Theorem 2.1. Ex(S0, n),Ex(S1, n) � n2
p
logn�O(log logn).

Proof. We shall prove that for all b and m, A = A[b,m] is {S0, S1}-free. The lower bound follows by setting

m = 2b, in which case A is an n⇥ n matrix, n = 2b
2+b with kAk1 = ⌦(n(m/b)). Here b =

p
log n�O(1).

Let us assume that S0 is contained in A, embedded in the rows and columns as indicated below.

S0 =
r0
r1
r2

0

@

c0
•

c1 c2
•

c3

• •
• •

1

A ,
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where r0 = (s0, r0) and c0 = (c0, i0), etc.
Consider the di↵erences x = c3�c0, y = c2�c0, and z = c3�c1. We clearly have y  x, z  x, and y+z � x.

Note that among the lexicographically ordered non-zero integer vectors, this implies that either (i) x and y agree
on the position and value of their first non-zero coordinate, (ii) x and z agree on the position and value of their
first non-zero coordinate, or (iii) the position of the first non-zero coordinate is the same for x, y and z and its
value is strictly smaller for y and z than for x. Lemma 2.3, applied separately to the three rows, tells us that the
first non-zero coordinates of x, y, and z are s1, s0 and s2, respectively. Applying Lemma 2.3 to columns c0, and
c3, we obtain that s0 < s1 < s2, making cases (i), (ii), and (iii) impossible.

Note that S1 is obtained from S0 by swapping the first two rows. Without changing the definition of x, y, z,
we still have y, z  x and y + z � x. Lemma 2.3 implies the first non-zero coordinates in x, y, z are s0, s1, s2,
respectively, and that s0 < s1, s2. Once again, cases (i), (ii), and (iii) are all impossible.

2.3 Extensions of Theorem 1.2 In this section we extend Theorem 1.2’s lower bound on Ex(S0, n) in two
directions. In Section 2.3.1 we show that the argument of Theorem 1.2 can be applied to any covering pattern,
a class whose simplest members are S0 and S1. In Section 2.3.2 we show that there is a class of S0-like patterns
whose extremal functions can reach n2C

p
logn for any desired constant C.

2.3.1 Covering Patterns Definition 2.1 specifies the class of covering patterns.

Definition 2.1. Let M 2 {0, 1}↵⇥� be an acyclic pattern with rows indexed with 0  i < ↵ and columns
0  j < �. M is a covering pattern if there is a distinguished row k⇤ satisfying the following properties.

1. M(k⇤, 0) = M(k⇤,� � 1) = 1, i.e., row k⇤ has 1s in the first and last columns.

2. Let J be the set of row indices, excluding k⇤, with at least two 1s. J contains at most one element j0 < k⇤.
If such an element j0 2 J exists, then some column contains two 1s in rows [j0, k⇤]. For any element j 2 J
with j > k⇤ some column contains two 1s in rows [k⇤, j].

3. For l 2 J define first(l), last(l) to be the column indices of the first and last 1s in row l. Then the real
intervals [first(l), last(l)] cover the entire range, i.e., we have

S
l2J [first(l), last(l)] = [0,� � 1].

S0 and S1 satisfy Definition 2.1, as do S2, S3. Note that S0, S2 have a j0 < k⇤ whereas S1, S3 do not.

S2 =

0

BBBB@

• •
•

• • •
• •

• •

1

CCCCA
, S3 =

0

BBBBBB@

• •
•
• •

• •
• •

• •

1

CCCCCCA
.

Theorem 2.2. For every covering pattern M satisfying Definition 2.1, A[b,m] is M -free, hence Ex(M,n) �
n2

p
logn�O(log logn).

Proof. Suppose, towards obtaining a contradiction, that A = A[b,m] contains M , with row l of an instance of
M labeled (sl, rl) and column j labeled (cj , ij). Definition 2.1(2) implies that all members of {sl | l 2 J} are
di↵erent from sk⇤ , and all but at most one are strictly greater than sk⇤ .

Define x = c��1 � c0, and for l 2 J , yl = clast(l) � cfirst(l). Suppose the position of the first non-zero in x
is u. By Lemma 2.3 applied to line k⇤ we have x(u) = sk⇤ . Moreover, Lemma 2.3 implies the first non-zero in
the vector yl is sl. We have yl  x for all l 2 J hence yl(u) = 0 for all l > k⇤. (If l < k⇤, it is possible that
yl(u) = sl < sk⇤ .) The covering property Definition 2.1(3) implies that

P
l2J yl � x, but this cannot be satisfied

since
P

l2J yl(u) < x(u) = sk⇤ . We conclude that A is M -free and by Lemma 2.1, Ex(M,n) � n2
p
logn�O(log logn).
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2.3.2 A Hierarchy of Patterns S(t)
0 We prove that for every C � 1, there exists an acyclic pattern S(t)

0 such

that Ex(S(t)
0 , n) � n2C

p
logn. The 0–1 matrix construction uses a small generalization of Behrend’s arithmetic

progression-free sets.

Lemma 2.4. (Cf. Behrend [Beh46]) For any h � 2, there exists a subset S ⇢ [N ] with |S| = N/2O(
p
log h logN)

such that there are no non-trivial solutions to ↵s0+�s1+�s2 = 0, with s0, s1, s2 2 S and integers �h  ↵,�, � 
h.14

Proof. Let V ⇢ {0, . . . , d � 1}D be a subset of vectors with |V | � dD�2/D having a common `2-norm. Let us
obtain S from V by prefixing each vector in V with a ‘1’ and then interpreting them as (D + 1)-digit integers in
base 2hd. In formula we have

S =

(
(2hd)D +

D�1X

i=0

vi(2hd)
i

����� (vD�1, . . . , v1, v0) 2 V

)
.

We set d =
j
2
p

log h log(N/2)�log(2h)
k
and D =

jp
log(N/2)/ log h

k
, so for all s 2 S we have s < 2(2hd)D  N .

Expressed in terms of h,N , |V | = |S| � dD�2/D = N/2O(
p
log h logN).

Now suppose there is a solution to ↵s0 +�s1 + �s2 = 0 with integers �h  ↵,�, �  h. We need to show this
is a trivial solution. With a slight abuse of notation, we will identify s0, s1, s2 with the sequence of D + 1 digits
in their base 2hd expression. Note that these sequences are all obtained from elements in V by putting an extra
1 in front of them, so they have the same `2-norms, say r. By symmetry, we may assume that �  0  ↵,� and
consider the equality ↵s0+�s1 = |�|s2 that holds on the level of integers. Due to the base being much larger than
any of the digits, it must also hold for the corresponding sequence of digits. The first digit of ↵s0 + �s1 is ↵+ �,
while the first digit of |�|s2 is |�|, so we must have ↵+� = |�|, ↵+�+� = 0. From ks0k2 = ks1k2 = ks2k2 = r we
obtain k(|�|s2)k2 = |�|r but if s0 6= s1 and ↵, � are positive, then k↵s0+�s1k2 < (↵+�)r = |�|r, a contradiction.
So if ↵,� > 0, we have s0 = s1, and from (↵+ �)s0 = |�|s2, we also have s0 = s1 = s2 and the solution is trivial.
If one or both of ↵ or � is zero, we similarly get that ↵s0 + �s1 + �s2 = 0 constitutes a trivial solution.

Theorem 2.3. For each t � 2, Ex(S(t)
0 , n) � n2(1�o(1))

p
log t logn, where S(t)

0 is defined to be

S(t)
0 =

r0
r1
r2

0

@

c0
•

c1 c2
•

c2t�3 c2t�2

•
c2t�1

• . . . •
• • •

1

A .

Note that S0 = S(2)
0 .

Proof. We modify the construction of A = A[b,m] as follows. The rows and columns are identified with
S ⇥ [m]b and [m]b ⇥ {0, . . . , t � 1}b, respectively, where S ⇢ [m/b] is the set from Lemma 2.4 with size
m1�o(1) avoiding solutions to ↵s0 + �s1 + �s2 = 0 with integers �t + 1  ↵,�, �  t � 1. As usual
A((s, r), (c, i)) = 1 i↵ r = c + si. We make A square by choosing m such that tb = |S|, so m = t(1+o(1))b,

n = mbtb = t(1+o(1))b2 , and b = (1 � o(1))
p

log n/ log t. There are ⇥(|S|) 1s per column, on average, so

kAk1 = ⌦(n|S|) = ⌦(n2(1�o(1))
p
log t logn).

We now argue that A is S(t)
0 -free. Assume, for a contradiction, that A contains S(t)

0 in rows r0 = (s0, r0), r1 =
(s1, r1), r2 = (s2, r2) and columns c0 = (c0, i0), . . . , c2t�1 = (c2t�1, i2t�1). Define x, yk, zk as

x = c2t�1 � c0,

yk = c2k � c0, for 1  k  t� 1,

zk = c2t�1 � c2k�1, for 1  k  t� 1.

Observe that for all k, yk  x and zk  x but

yk + zk � x � yk + zk+1,(2.1)

14A solution is trivial if it exists for any non-empty S, that is, ↵+ � + � = ↵�(s0 � s1) = ��(s1 � s2) = �↵(s2 � s0) = 0.
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where the last inequality holds for k < t� 1.
Note that the following analogue of Lemma 2.3 holds here: (i) if a column of A contains 1s in the distinct

rows (s, r) and (s0, r0), then s 6= s0 and (ii) if the row (s, r) of A contains 1s in the distinct columns (c, i) and
(c0, i0), then c 6= c0 and all coordinates of c � c0 are of the form js with �t + 1  j  t � 1. In particular, (i)
implies s0 < s1 < s2.

Let u be the position of the first non-zero coordinate of x. By (ii) above and c0  c2t�1 we have x(u) = js1
with 1  j  t� 1. We use (ii) again to define jk, j0k such that

yk(u) = jks0,

zk(u) = j0ks2.

Note that yk, zk cannot have any non-zeros preceding coordinate u and must have a non-negative value at position
u. Thus 0  jk  t� 1 and for (2.1) to be satisfied, 1  j0k < j � 1 since s2 > s1. (This is already a contradiction
when t = 2.) We can write Eq. (2.1) as

jks0 + j0ks2 � js1 � jks0 + j0k+1s2,(2.2)

Hence t�1 � j > j01 � j02 � · · · � j0t�1 � 1. By the pigeonhole principle there must exist j0k = j0k+1, but then (2.2)
holds with equality, meaning S supports a non-trivial solution to ↵s0+�s1+�s2 = 0 with ↵ = jk,� = �j, � = j0k,
a contradiction.

2.4 Polylogarithmic Lower Bounds on Alternating Matrices In this section we prove the lower bound
half of Theorem 1.3.15

Theorem 2.4. For t � 1, Ex(Pt, n) = ⌦(n(log n/ log log n)t).

Proof. We prove that At[b,m] is Pt-free. The lower bound follows by setting m =
�b
t

�
, in which case At is an

n⇥ n 0–1 matrix, n = mb+1 =
�b
t

�b+1
, with ⌦(m) = ⌦((log n/ log log n)t) 1s per column, on average.

Suppose that At were not Pt-free. Label the rows and columns of an occurrence of Pt in At as follows, where
r0 = (s0, r0), c0 = (c0, i0), etc.

Pt =
r0
r1

✓ c0
•

c1
•

c2 c3
•

ct+1

•
• • · · · •

◆
.

Define uj 2 [b] to be the position of the first non-zero of cj � c0. Note that cj has its 1 in row r(j+1)mod 2. By
Lemma 2.3, either ieven0 (u) = 1 and (cj�c0)(uj) = s(j+1)mod 2 or i

odd
0 (u) = 1 and (cj�c0)(uj) = m+1�s(j+1)mod 2.

In either case (cj � c0)(uj) > 0, so from the ordering c0  c1  · · ·  ct+1 we can conclude that

u1 � u2 � · · · � ut+1.

Since ki0k1 = t, by the pigeonhole principle there must exist a j with uj = uj+1. In fact, there must exist such a
j that also satisfies j odd and iodd0 (uj) = 1 or j even and ieven0 (uj) = 1.16 If j is odd then

cj � c0 = (0, . . . , 0,m+ 1� s0, . . .)

cj+1 � c0 = (0, . . . , 0,m+ 1� s1, . . .),

which contradicts the order cj  cj+1 as s0 < s1 by Lemma 2.3. If j is even then

cj � c0 = (0, . . . , 0, s1, . . .)

cj+1 � c0 = (0, . . . , 0, s0, . . .),

which also contradicts the order cj  cj+1. Hence At is Pt-free.

15In the context of Theorems 1.3, 2.4 and 3.1, t is fixed, and the constants hidden by O,⌦ depend on t. This is in contrast to
Lemma 2.2, which did not assume t is constant; its constants hidden by asymptotic notation are independent of t.

16Note that u1 = u2 is the last 1 of i0, or u2 = u3 is the 2nd last 1 of i0, etc., all of which satisfy the parity criterion.
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3 Upper Bounds

Theorem 3.1 covers the upper bound half of Theorem 1.3. Note the condition t � 2 cannot be strengthened, as
Ex(P1, n) = ⇥(n log n) [FH92, BG91, Tar05], not O(n log n/ log log n).

Theorem 3.1. For t � 2, Ex(Pt, n) = O(n(log n/ log log n)t).

Let A be an n⇥ n, Pt-free matrix maximizing kAk1. For each A(r, c) = 1 we identify a number of landmark
column indices.

Definition 3.1. (Landmark Columns) With respect to some A(r, c) = 1, the following column indices obey
the following order whenever they exist.

c < F  a1 < b1  a2 < b2  · · ·  at�1 < bt�1  L.

• A(r, F ) = A(r, L) = 1 are the first and last 1s in row r following column c.

• A(r, at�1) = A(r, bt�1) = 1 are consecutive 1s in row r such that F  at�1 < bt�1  L and bt�1 � at�1 is
maximum. In general, A(r, aj) = A(r, bj) = 1 are consecutive 1s in row r such that F  aj < bj  aj+1 and
bj � aj is maximum. (Break ties in a consistent way, say taking the first pair of consecutive 1s of maximal
distance.)

• If A(r, c) is one of the last two 1s in row r, then F and L are not distinct indices and a1, b1, . . . , at�1, bt�1

do not exist. Whenever F = aj, the indices a1, b1, . . . , aj�1, bj�1 do not exist.

We assign three signatures to every 1 in A that is not one of the last two 1s in its row.

Definition 3.2. (Signatures) Let ⇣ = ⇣(n) � t be a parameter (to be optimized later) and ✏
def
= 1

6(⇣+1)(t+2) .

Each A(r, c) = 1 is assigned three signatures sig0(r, c), sig1(r, c), and sig2(r, c). Any piece of a signature that
depends on undefined values (e.g., if a1, b1 do not exist) is undefined.

sig0(r, c) : consists of the vector (
⌅
log⇣(F � c)

⇧
,
⌅
log⇣(b1 � a1)

⇧
, . . . ,

⌅
log⇣(bt�1 � at�1)

⇧
).

sig1(r, c) : consists of two parts, a vector (
⌅
log1+✏(a1 � c)

⇧
, . . . ,

⌅
log1+✏(at�1 � c)

⇧
), and the position of each⌅

log1+✏(bj � c)
⇧
relative to the elements of this vector: larger, equal, or smaller.

sig2(r, c) : consists of three parts, a vector
�⌅
log1+✏(b1 � c)

⇧
,
⌅
log1+✏(b2 � c)

⇧
, . . . ,

⌅
log1+✏(bt�1 � c)

⇧�
,

the position of each
⌅
log1+✏(aj � c)

⇧
relative to the elements of this vector (as in sig1), and a vector

✓
min

⇢�
a2 � b1

(b1 � c)/2

⌫
, 3t

�
, . . . , min

⇢�
at�1 � bt�2

(bt�2 � c)/2

⌫
, 3t

�
, min

⇢�
L� bt�1

(bt�1 � c)/2

⌫
, 3t

�◆
.

3.1 Structure of the Proof We will eventually prove that after the following 4-step marking procedure, there
will be no unmarked 1s in any Pt-free matrix A.

Step 1. In each row, mark the last two 1s and the last 1 of each sig0-type.

Step 2. In each column, mark the last unmarked 1 of each sig1-type that satisfies Inequality (I.1), defined in
Lemma 3.1.

Step 3. In each row, mark the last t unmarked 1s of each sig2-type.

Step 4. In each column, mark the last t unmarked 1s of each sig2-type.

The number of distinct sig0 signatures is O(logt⇣ n) while the number of sig1 and sig2 signatures is

O(logt�1
1+✏ n) = O((⇣ log n)t�1), so the total number of marked 1s is O(n(logt⇣ n + (⇣ log n)t�1)). (Remember

that t = O(1) is constant.) We choose ⇣ = (log n)1/t to roughly balance these contributions, and conclude that
kAk1 = O(n(log n/ log log n)t).
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3.2 The Proof Lemmas 3.1 to 3.4 will be used to prove that no unmarked 1s in A remain after Steps 1–4.

Lemma 3.1. Suppose that A(r, c⇤) = 1, having landmarks (F, a1, b1, . . . , L), is not the last 1 in its row with its
sig0-type. Then for at least one of the following t inequalities, the relevant landmarks exist and the inequality is
satisfied.

a1 � F > 1
3⇣ (F � c⇤),(I.1)

a2 � b1 > 1
3⇣ (b1 � c⇤),(I.2)

...

at�1 � bt�2 > 1
3⇣ (bt�2 � c⇤),(I.t� 1)

L� bt�1 > 1
3⇣ (bt�1 � c⇤).(I.t)

Proof. Suppose that for c0 > c⇤, A(r, c0) = 1 has the same sig0-type as A(r, c⇤), with landmarks
(F 0, a01, b

0
1, . . . , a

0
t�1, b

0
t�1, L

0). Then c0 lies in one of the following intervals.

[F, a1), [a1, a2), . . . , [aj�1, aj), . . . , [at�1, L).

Case 1: c0 2 [F, a1). Clearly A(r, c⇤) and A(r, c0) share a su�x of the landmarks, specifically
(a1, b1, . . . , at�1, bt�1, L) = (a01, b

0
1, . . . , a

0
t�1, b

0
t�1, L

0); only F 0 2 (F, a1] is di↵erent. Since
⌅
log⇣(F � c⇤)

⇧
=⌅

log⇣(F
0 � c0)

⇧
, it must be that a1 � F � F 0 � c0 > 1

⇣ (F � c⇤) > 1
3⇣ (F � c⇤).

Case 2: c0 = aj. Since there are no 1s in row r and the column interval (aj , bj), F 0 = bj and the landmark
vectors agree on the su�xes (aj+1, bj+1, . . . , L) = (a0j+1, b

0
j+1, . . . , L

0). We prove that at least one of Inequalities
(I.1)–(I.j + 1) is satisfied. If (I.1)–(I.j) are not satisfied, then

bj � c⇤ = (bj � aj) + (aj � c⇤)

 (bj � aj) + (1 + 1
3⇣ )(bj�1 � c⇤)

. . .

 (bj � aj) + (1 + 1
3⇣ )(bj�1 � aj�1) + · · ·+ (1 + 1

3⇣ )
j�1(b1 � a1) + (1 + 1

3⇣ )
j(F � c)

< (1 + 1
3⇣ )

t[(bj � aj) + · · ·+ (b1 � a1) + (F � c⇤)].(3.3)

According to the common sig0 type and the fact that (aj , bj) = (c0, F 0) we have
⌅
log⇣(b

0
j � a0j)

⇧
+ · · ·+

⌅
log⇣(b

0
1 � a01)

⇧
=

⌅
log⇣(bj � aj)

⇧
+ · · ·+

⌅
log⇣(b1 � a1)

⇧
,(3.4)

⌅
log⇣(b

0
j � a0j)

⇧
=

⌅
log⇣(bj � aj)

⇧
=

⌅
log⇣(F

0 � c0)
⇧
=

⌅
log⇣(F � c⇤)

⇧
.(3.5)

Since all the landmarks F 0, a01, . . . , b
0
j lie in the range [bj , aj+1], Eqs. (3.3) to (3.5) imply that

2(aj+1 � bj) � 1
⇣ [(bj � aj) + · · ·+ (b1 � a1) + (F � c⇤)]

> 1
⇣ (1 +

1
3⇣ )

�t(bj � c⇤),

and since ⇣ � t, we have (1 + 1
3⇣ )

�t > e�1/3 > 2/3. Thus,

aj+1 � bj >
1
3⇣ (bj � c⇤),

i.e., Inequality (I.j + 1) is satisfied.

Case 3: c0 2 [bj , aj+1). (Here at
def
= L.) The argument is identical to Case 2, except that since c0 is also in

[bj , aj+1), we can substitute for Eqs. (3.4) and (3.5) the following inequality.
⌅
log⇣(b

0
j � a0j)

⇧
+ · · ·+

⌅
log⇣(b

0
1 � a01)

⇧
+
⌅
log⇣(F

0 � c0)
⇧

=
⌅
log⇣(bj � aj)

⇧
+ · · ·+

⌅
log⇣(b1 � a1)

⇧
+
⌅
log⇣(F � c)

⇧
.

Thus, aj+1 � bj >
1
⇣ (1 +

1
3⇣ )

�t(bj � c⇤) > 2
3⇣ (bj � c⇤), thereby satisfying Inequality (I.j + 1).
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Lemma 3.2. Suppose A(r0, c⇤) = A(r1, c⇤) = 1 have the same sig1-type for some indices r0 < r1 and c⇤, and both
satisfy Inequality (I.1). Then A contains Pt.

Proof. Let the landmarks for A(r0, c⇤) and A(r1, c⇤) be (F, a1, b1, . . . , L) and (F 0, a01, b
0
1, . . . , L

0), respectively. Call
slab(i) the interval of columns

⇥
c⇤ + (1 + ✏)i, c⇤ + (1 + ✏)i+1

�
. If the first vector in the common sig1-signature is

(i1, . . . , it�1), then aj , a0j 2 slab(ij) for all j 2 [t� 1]. (Since Inequality (I.1) is satisfied, all aj , a0j exist.)
Case 1: Suppose that according to the second part of the common sig1-signature, there is an index j such

that bj , b0j 2 slab(ij). Then aj � c⇤ is at least the distance from c⇤ to slab(ij), which is �
def
= (1 + ✏)ij , and

bj � aj is at most ✏�, the width of slab(ij). Since Inequality (I.1) is satisfied and a1 � c⇤ < (1 + ✏)i1+1,
F � c⇤ < (1 + 1

3⇣ )
�1(1 + ✏)i1+1. Thus,

aj � F = (aj � c⇤)� (F � c⇤) � �� (1 + 1
3⇣ )

�1(1 + ✏)i1+1

� �
⇣
1� (1+✏)3⇣

3⇣+1

⌘
(i1  ij)

>
�

6(⇣ + 1)
. (✏ < 1/(6⇣))

By the definition of aj , bj , every interval of width ✏� in row r0 (resp., r1) between F (resp., F 0) and slab(ij)
contains a 1. Thus, rows r0 and r1 contain an alternating pattern of length (6(⇣ + 1)✏)�1 > t + 1, and together
with column c⇤ this forms an instance of Pt. See the diagram below.

slab(i1) slab(ij)
c⇤ F a1 aj bj

r0 • • • • •

> (t+ 1)✏�
 ������������������������������!

✏�
 ������!

Case 2: According to the second part of the common sig1-signature, bj , b
0
j 62 slab(ij) for all j 2 [t� 1], hence

i1 < i2 < · · · < it�1. Since a1�F > (F � c⇤)/(3⇣) and ✏ < 1/(3⇣), F is not in slab(i1). Then we have an instance
of Pt on rows r0, r1 and columns c⇤ < F < a01 < a2 < · · · < {at�1, a0t�1} < {bt�1, b0t�1}, where the columns
selected from {at�1, a0t�1} and {bt�1, b0t�1} depend on the parity of t. The underlined points in the figure below
form an instance of Pt if t is even.

slab(i1) slab(i2) slab(it�1)
c⇤ F/F 0 a1/a01 a2/a02 at�1/a0t�1 bt�1/b0t�1

r0 • • • • · · · • •
r1 • • • • · · · • •

Cases 1 and 2 are exhaustive, so we conclude A contains Pt.

Lemma 3.3. Suppose there are two rows r0 < r1 and three columns c⇤ < c, c0 such that

• A(r0, c⇤) = A(r0, c) = A(r1, c⇤) = A(r1, c0) = 1 and all have a common sig2-type.

• A(r0, c⇤) and A(r1, c⇤) are each not the last 1 in their row with their respective sig0-types. They do not
satisfy Inequality (I.1).

• Let the landmarks for A(r0, c⇤), A(r1, c⇤) be (F, a1, b1, . . . , L) and (F 0, a01, b
0
1, . . . , L

0), respectively. Both
c 2 [F, a1) and c0 2 [F 0, a01).

Then A contains Pt.

Proof. Since c 2 [F, a1), the landmarks for A(r0, c) are (F̃ , a1, . . . , bt�1, L), i.e., they only di↵er from the landmarks
for A(r0, c⇤) in F/F̃ .

Let the first vector of the common sig2-signature be (i1, . . . , it�1), i.e., if ij is defined then bj , b0j exist and are

in slab(ij), where the slabs are defined as in the proof of Lemma 3.2. Since
⌅
log1+✏(b1 � c⇤)

⇧
=

⌅
log1+✏(b1 � c)

⇧
,

this implies F �c⇤  c�c⇤ < ✏(1+✏)i1 (the width of slab(i1)) and that F lies strictly before slab(i1). We similarly
have F 0 � c⇤ < ✏(1 + ✏)i1 .
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Case 1: According to the second part of the common sig2-signature, for some index j 2 [t� 1], aj , a0j exist

and are in slab(ij). Then bj � aj < ✏(1 + ✏)ij
def
= ✏� and by definition of aj , bj , every interval of width ✏� in row

r0 between F and slab(ij) has a 1. The same is true in row r1 (with F 0 in place of F ), so there is an alternating
pattern of length (�� ✏(1 + ✏)i1)/✏� � (1� ✏)/✏ > t+ 1 between rows r0, r1, and together with column c⇤, this
forms an instance of Pt.

From now on we assume we are not in Case 1, so in particular, we have i1 < i2 < · · · < it�1.
Case 2: According to the common sig2-signature, for some index j 2 [t � 1], aj is strictly be-

tween slab(ij�1) and slab(ij). Then A contains an instance of Pt on rows r0, r1 and the t +
2 columns c⇤, F, b01, · · · , {bj�1, b0j�1}, {aj , a0j}, {bj , b0j}, . . . , {bt�1, b0t�1}, where the columns selected from
{aj , a0j}, {bt�1, b0t�1}, etc. depend on the parities of j and t.

Case 3: According to the common sig2-signature, for every j 2 [2, t�1], aj , a0j 2 slab(ij�1). By Lemma 3.1, at
least one of Inequalities (I.1)–(I.t) are satisfied, but Inequality (I.1) is not satisfied by assumption. Since aj�bj�1

is less than the width of slab(ij�1), we cannot satisfy any of Inequalities (I.2)–(I.t � 1), hence Inequality (I.t) is
satisfied: L� bt�1 > 1

3⇣ (bt�1 � c⇤), implying that L lies outside slab(it�1) since ✏ < 1/(3⇣). Thus, A contains an

instance of Pt on rows r0, r1 and the t+ 2 columns c⇤, F, b01, . . . , {bt�1, b0t�1}, {L,L0}.

Lemma 3.4. Suppose there are two rows r0 < r1 and three columns c⇤ < c, c0 such that

• A(r0, c⇤) = A(r0, c) = A(r1, c⇤) = A(r1, c0) = 1 and all have a common sig2-type.

• Let the landmarks for A(r0, c⇤), A(r1, c⇤) be (F, a1, b1, . . . , L) and (F 0, a01, b
0
1, . . . , L

0), respectively (with the
first few ai, bi potentially undefined). For some ` 2 [t � 1], c 2 [b`, a`+1) and c0 2 [b0`, a

0
`+1), where

at
def
= L, a0t

def
= L0.

Then A contains Pt.

Proof. Since c 2 [b`, a`+1), the landmarks for A(r0, c) are (F 00, a001 , . . . , b
00
` , a`+1, . . . , at�1, bt�1, L), i.e., they agree

on the su�x (a`+1, . . . , L) with the landmarks of A(r0, c⇤). Let (i1, . . . , it�1) be the first component of the common
sig2-signature. Define �0 2 [(1 + ✏)i` , (1 + ✏)i`+1) and µ > 0 as:

�0 = b` � c⇤,

µ�0 = a`+1 � b`.

slab(i`)
c⇤ a` b` c b00` a`+1

�0 ����������������!
µ�0 ������������������������������������������������!

r0 • • • • • •
< �0 ��������! ⇡ �0 ���������������!

The relevant component of the third part of the common sig2-signature is min
nj

a`+1�b`
(b`�c⇤)/2

k
, 3t

o
=

min{b2µc , 3t}. Observe that because of the first part of the common sig2-signature, b
00
` � c 2 ((1 + ✏)�1�0, (1 +

✏)�0). Thus,
a`+1 � b00`
b00` � c

 µ�0

(1 + ✏)�1�0
� 1 = (1 + ✏)µ� 1.

Note that since ✏ < 1/(3t), (1+✏)µ�1 < µ�1/2 whenever µ < 3t/2. Since the sig2-signatures of A(r0, c⇤), A(r0, c)
are identical, it must be that

min{b2µc , 3t} = min

⇢�
a`+1 � b`
(b` � c⇤)/2

⌫
, 3t

�
= min

⇢�
a`+1 � b00`
(b00` � c)/2

⌫
, 3t

�
= 3t.

Since b` � a` < �0 is maximum among distances of consecutive 1s in the range [F, a`+1], there must be a 1 in
row r0 in every interval of width �0 that starts in the range [a`, a`+1] � [c⇤ + (1+ ✏)i` , c⇤ + (µ+1)(1+ ✏)i` ]. The
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same is true of row r1 with respect to some �1 2 [(1 + ✏)i` , (1 + ✏)i`+1). Since µ � 3t/2 � t + 1, there are t + 1
alternations between rows r0, r1 in the interval [c⇤ + (1+ ✏)i` , c⇤ + (µ+1)(1+ ✏)i` ]. Together with column c⇤ this
forms an instance of Pt.

We are now in a position to prove Theorem 3.1, using Lemmas 3.1 to 3.4.

Proof. [Proof of Theorem 3.1] Let A be an n⇥ n matrix. Recall the 4-step marking process.

Step 1. In each row, mark the last two 1s and the last 1 of each sig0-type.

Step 2. In each column, mark the last unmarked 1 of each sig1-type that satisfies Inequality (I.1).

Step 3. In each row, mark the last t unmarked 1s of each sig2-type.

Step 4. In each column, mark the last t unmarked 1s of each sig2-type.

We shall prove that either every 1 is marked, or A contains an instance of Pt. Suppose that there exists some
A(r0, c⇤) = 1 that is still unmarked after Steps 1–4. Because it is unmarked after Step 1, Lemma 3.1 implies that
it must satisfy at least one of Inequalities (I.1)–(I.t). If it satisfies Inequality (I.1) then Step 2 must have marked
some other A(r1, c⇤) = 1, r1 6= r0, of the same sig1-type that also satisfies Inequality (I.1). In this case A contains
Pt, by Lemma 3.2. Thus, after Step 2, we may assume that A(r0, c⇤) does not satisfy Inequality (I.1).

Steps 3 and 4 imply that there exists rows r0 < r1 < · · · < rt and for each i 2 [0, t], columns
c⇤ < ci,1 < ci,2 < · · · < ci,t such that A(ri, c⇤) = A(ri, ci,j) = 1 all have the common sig2-type of A(r0, c⇤).
Each A(ri, ci,j) is classified by which of the following sets contains ci,j , the landmarks (F i, ai1, b

i
1, . . . , L

i) being
defined w.r.t. A(ri, c⇤).

[F i, ai1), {ai1}, [bi1, ai2), {ai2}, [bi2, ai3) . . . , {ait�1}, [bit�1, L
i).

There are only t� 1 singleton sets {ai1}, . . . , {ait�1}, so by the pigeonhole principle, for each i 2 [0, t] there exists
a j(i) 2 [t] such that ci,j(i) 2 [F i, ai1) [ [bi1, a

i
2) [ · · · [ [bit�2, a

i
t�1) [ [bit�1, L

i). By the pigeonhole principle again,
there must exist two rows ri, ri0 such that ci,j(i), ci0,j(i0) have the same classification. If ci,j(i) 2 [F i, ai1) and

ci0,j(i0) 2 [F i0 , ai
0

1 ) then Lemma 3.3 implies that A contains Pt. If, for some ` 2 [t � 1], ci,j(i) 2 [bi`, a
i
`+1) and

ci0,j(i0) 2 [bi
0

` , a
i0

`+1) (by definition ait
def
= Li), then Lemma 3.4 implies A contains Pt.

The cases considered above are exhaustive, hence if A is Pt-free, there can be no unmarked 1s left in A after
Steps 1–4.

The number of distinct sig0-, sig1-, and sig2-signatures are O(n logt⇣ n), O(n logt�1
1+✏ n), and O(n logt�1

1+✏ n),
respectively, so the number of 1s marked by Steps 1–4 is

O(n · (logt⇣ n+ logt�1
1+✏ n)) = O

�
n ·

�
(log n/ log ⇣)t + (⇣ log n)t�1

��
. (Recall ✏ = ⇥(1/⇣).)

We choose ⇣ = (log n)1/t and conclude that Ex(Pt, n) = O(n(log n/ log log n)t).

Remark 3.1. Note that if A is a rectangular n ⇥ m matrix, Steps 1 and 3 mark O(n(logt⇣ m + logt�1
1+✏ m))

1s whereas Steps 2 and 4 mark O(m logt�1
1+✏ m) 1s. If n > m then we still pick ⇣ = (logm)1/t and get the

upper bound Ex(Pt, n,m) = O(n(logm/ log logm)t), whereas if n < m/ logm, we would pick ⇣ = O(1) and
get the upper bound Ex(Pt,m/ logm,m) = O(m logt�1 m). This shows another qualitative di↵erence between
the behavior of P1-free and Pt-free, t � 2, rectangular matrices. Pettie [Pet10, Appendix A] proved that for
n � m, Ex(P1, n,m) = ⇥(n log1+n/m m) and for m � n, Ex(P1, n,m) = ⇥(m log1+m/n n). I.e., whenever
max{n/m,m/n} = poly(log(nm)), we only lose a ⇥(log log n)-factor in the density of P1-free matrices, but can
lose an ⌦(log n/ poly(log log n))-factor in the density of Pt-free matrices.

4 Conclusion

The foremost open problem in forbidden 0–1 patterns is still to understand the range of possible extremal
functions for acyclic patterns. In the past it has been valuable to advance conjectures of varying strength
(implausibility) [FH92, PT06]. Here we present weak and strong variants of the central conjecture.
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Conjecture 4.1. Let Pacyclic be the class of acyclic 0–1 patterns.

Weak Form. For all P 2 Pacyclic, Ex(P, n) = n1+o(1). (Cf. [Tar05, PT06].)

Strong Form. For all P 2 Pacyclic, there exists a constant CP such that Ex(P, n) = O(n2CP

p
logn).

One way to begin to tackle the Weak Form of Conjecture 4.1 is to prove that there exists an absolute
constant ✏ > 0 such that Ex(P, n) = O(n2�✏), for all P 2 Pacyclic. Another is to generalize Korándi et
al.’s [KTTW19] method to handle patterns like T1 (which can be decomposed using both vertical and horizontal
cuts) and ultimately to patterns like the pretzel T0, for which there is no horizontal/vertical cut that separates
the 1s in a single column/row. The Strong Form of the conjecture should be considered more plausible in light
of [KT23a].

Regardless of the status of Conjecture 4.1, it would be of great interest to characterize the Polylog echelon:
those P with Ex(P, n) = O(n logCP n).

The applications of extremal 0–1 matrix theory in combinatorics [Kla00, MT04], graph theory [GM14,
BGK+21, BKTW22], and data structures [Pet10, CGK+15b, CGJ+23, CPY24] tend to use patterns that are
rather low in the hierarchy, usually Linear or Quasilinear, so there is ample motivation to understand the
boundary between these two echelons.

Conjecture 4.2. Let Q contain Q3, Q0
3, and their horizontal and vertical reflections. If P is light and Q-free

then Ex(P, n) = O(n).

Q3 =

✓
• •

• •

◆
, Q0

3 =

0

@
•

•
• •

1

A .

Conjecture 4.2 has not even been confirmed for all weight-5 light patterns, though most have been classified;
see [Tar05, Lemma 5.1], Fulek [Ful09, Theorem 4], Pettie [Pet11b, Theorem 2.3], and [MT04, Pet15b, CPY24].
One way to think about classifying light Q-free P is to ignore any consecutive repeated columns in P , then
measure how many rows have at least two 1s. If this number is zero then P is a permutation matrix (possibly
with repeated columns) and Ex(P, n) = O(n) [MT04, Gen09]. If P has one such row, then the remaining 1s must
be arranged in a permutation P 0 constrained to the boxed regions in the figure below.

P =

0

BBBBBBBB@

P 0

• •

1

CCCCCCCCA

.

At the other extreme, there are Q-free patterns in which all but one row contain two non-consecutive 1s, but
they are all contained in the oscillating patterns (Ot). Only O2 is known to be linear [FH92]. Fulek [Ful09] proved
that the version of O3 without the repeated column is linear.

O2 =

✓
• •

• •

◆
, O3 =

0

@
• •

• •
• •

1

A , O4 =

0

BB@

• •
• •

• •
• •

1

CCA .

There is a class of light Q-free P containing a row with three non-consecutive 1s, but patterns in this class are

Copyright © 2025
Copyright for this paper is retained by authors4479

D
ow

nl
oa

de
d 

10
/0

1/
25

 to
 3

5.
3.

87
.1

33
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



highly constrained in their structure. Each must be of the following form, up to reflection.

P =

0

BBBBBBBBBBBBBBBB@

B

A • • • D

C

1

CCCCCCCCCCCCCCCCA

,

where B,C 6= 0, A,D are permutations avoiding the weight-3 row, and B,C are

✓
• •
•

◆
-free and

✓
•

• •

◆
-free,

respectively. In particular, there cannot be a second row (intersecting A,B,C, orD) that has three non-consecutive
1s. There are no light Q-free patterns containing four non-consecutive 1s.
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[BKTW22] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I: tractable FO model
checking. J. ACM, 69(1):3:1–3:46, 2022.

[BS74] John A. Bondy and Miklós Simonovits. Cycles of even length in graphs. J. Combinatorial Theory, Series B,
16:97–105, 1974.

[BS23] Thomas F. Bloom and Olof Sisask. The Kelley–Meka bounds for sets free of three-term arithmetic progressions.
Essential Number Theory, 2(1):15–44, 2023.

[CGJ+23] Parinya Chalermsook, Manoj Gupta, Wanchote Jiamjitrak, Nidia Obscura Acosta, Akash Pareek, and Sorrachai
Yingchareonthawornchai. Improved pattern-avoidance bounds for greedy BSTs via matrix decomposition. In
Proceedings of the 34th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 509–534, 2023.
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[FH92] Zoltán Füredi and Péter Hajnal. Davenport-Schinzel theory of matrices. Discrete Mathematics, 103(3):233–251,

1992.

Copyright © 2025
Copyright for this paper is retained by authors4480

D
ow

nl
oa

de
d 

10
/0

1/
25

 to
 3

5.
3.

87
.1

33
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y
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[PT06] János Pach and Gábor Tardos. Forbidden paths and cycles in ordered graphs and matrices. Israel J. Math.,

155:359–380, 2006.
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A Refutation of the Füredi et al. Conjecture for Hypergraphs

We start with defining some simple terms. For the standerd definition of vertex-ordered hypergraph and order-
isomorphism, see [FJK+21]. Define Exr<(H,n) to be the maximum number of edges in an r-uniform, vertex-
ordered hypergraph not containing any subgraphs order-isomorphic to an r-uniform, vertex-ordered H. The
interval chromatic number of H, denoted �<(H), is the smallest number of intervals that V (H) can be partitioned
into (w.r.t. the order on V (H)) such that each hyperedge intersects r distinct intervals. As in the Erdős-Stone-
Simonovits theorem [ES46, ES66], Exr<(H,n) = ⇥(nr) if �<(H) > r. A hypergraph H is called a forest if there
is a peeling order e1, . . . , e|E(H)| where for all i < |E(H)|, there exists an h > i such that ei \

S
j>i ej ⇢ eh.

A closely related concept is the generalization of extremal function Ex from 2-dimensional matrices to r-
dimensional matrices. If P 2 {0, 1}k1⇥···⇥kr , A 2 {0, 1}n1⇥···⇥nr , we say P � A if there are index sets (Ii),
Ii ✓ [ni], |Ii| = ki, such that P is entry-wise dominated by the submatrix A[I1, . . . , Ir] of A restricted to
I1, . . . , Ir. Define Exr(P, n) = max{kAk1 | A 2 {0, 1}nr

and P ⌃ A}. We can view P as an ordered hypergraph
H(P ) with interval chromatic number �<(H(P )) = r by ordering the k1 + · · · + kr vertices primarily by their
axis, then according to their coordinate within the axis. Each P (i1, . . . , ir) = 1 corresponds to a hyperedge

{i(1)1 , . . . , i(r)r }, where i(j)j is the vertex in axis j and position ij .

Lemma A.1. (Cf. [PT06, Thm. 2]) Suppose P 2 {0, 1}k1⇥···⇥kr and H(P ) has no isolated vertices. Then
Exr(P, n)  Exr<(H(P ), rn).

Proof. If A 2 {0, 1}rn is P -free, then H(A) is an ordered r-uniform hypergraph on rn vertices that is H(P )-free,
as every embedding of H(P ) in H(A) must assign the r vertices of each hyperedge into vertices associated with
distinct axes of A.

Recall that Conjecture 1.4 is equivalent to the r = 2 case of Conjecture 1.5. Thus, Theorem 1.2 refuting
the former gives a counterexample of the latter conjecture that is a 2-uniform ordered hypergraph, i.e., a vertex-
ordered graph. We thought that providing counterexamples that are “real” hypergraphs is valuable, so here we
give a similar counterexample that is an r-uniform ordered hypergraphs for any r > 2, as claimed in the first
paragraph of Section 1.6.

Copyright © 2025
Copyright for this paper is retained by authors4482

D
ow

nl
oa

de
d 

10
/0

1/
25

 to
 3

5.
3.

87
.1

33
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



Let Sr
0 2 {0, 1}3⇥4⇥1⇥···⇥1 be the r-dimensional version of the pattern S0, where the last r � 2 dimensions

have width 1. Then H(Sr
0) is in fact an ordered r-uniform forest hypergraph with r + 5 vertices. Construct

a matrix Ar 2 {0, 1}nr

such that every square submatrix A 2 {0, 1}n⇥n obtained by fixing a single coordinate
in the last r � 2 axes is a copy of the lower bound construction A from Theorem 1.2. Then Exr(Sr

0 , n) �
nr�2kAk1 = nr�12

p
logn�O(log logn). By Lemma A.1, Exr<(H(Sr

0), n) � Exr(Sr
0 , n/r) = ⌦(nr�12

p
logn�O(log logn)),

which refutes Conjecture 1.5 for all r � 2 as H(Sr
0) is an r-uniform forest of interval chromatic number r.
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