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Understanding stress distributions at grain

boundaries in polycrystalline materials is crucial for

predicting damaged nucleation sites. In high-purity

materials, voids often nucleate at grain boundaries

due to high stress from granular interactions and

weakened atomic ordering. While traditional crystal

plasticity models simulate grain-level mechanics, their

high computational cost often prevents systematic

identification of critical microstructural features and

efficient forecast of extreme damage events. This

paper addresses these challenges by developing a

computationally efficient physics-assisted statistical

modelling framework. The method starts by

leveraging physical knowledge to hypothesize a

broad set of microstructural factors influencing stress

conditions. Causal inference is then applied to reveal

the predominant features with physical explanations,

leading to a parsimonious statistical model. A

conditional Gaussian mixture model (CGMM) is

employed when the identified relationship is utilized

as a predictive model to quantify the uncertainty

not readily explained by these features. Using body-

centred cubic (BCC) tantalum as a representative

material, a series of synthetic microstructures from

single- to octu-crystal configurations are created.

Results show that high-stress states strongly correlate

with the elastic and plastic deformation capabilities

2025 The Author(s) Published by the Royal Society. All rights reserved.
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and the directional misalignment of grain responses near boundaries. The statistical model

achieves rapid and accurate forecasts, demonstrating its potential for analysing realistic

polycrystalline materials.

1. Introduction
The behaviour of polycrystalline metallic materials under extreme loading conditions is critical

in material science and engineering. When the local stress state exceeds the local void nucleation

strength, a void will nucleate, which can progress to catastrophic material failure through void

growth and coalescence processes [1–6]. These voids are discrete localized features that first form

at tiny length scales before contributing to a larger field of voids with larger length scales. The

formation of each void is considered an extreme event in response to the loading of an aggregate

composite polycrystalline metal. For high-purity polycrystalline materials, experimental evidence

has consistently shown that these voids preferentially nucleate at grain boundaries [3,6–9]. This

preferential nucleation at grain boundaries stems from elevated stress states due to incompatible

deformation between neighbouring grains [10–14]. Stress concentration is further exacerbated

by the inherently weak atomic structure in these boundary regions, making them particularly

susceptible to void formation [15–17]. Given the critical role of grain-boundary stress states in

void nucleation, modelling and quantifying localized concentrations for reliable prediction and

prevention of damage in polycrystalline materials become crucial.

Current models for representing void nucleation and growth under dynamic loading

conditions can be broadly summarized into several categories. Early work by Johnson [18]

introduced a mathematical model for the growth of voids under tensile mean stress and applied

it to spallation problems through a microscopic to continuous framework. This model was

further advanced by incorporating micro-inertial effects in several works [19–21]. More recent

developments have demonstrated the probability distribution of void nucleation [5,22]. The

work of [7] utilized a soft-coupled linkage technique between the macroscale damage model

and micromechanical calculations to study the nucleation of voids. Note that maximum stress

intensity usually occurs at the grain boundary [3,6] because these regions already exhibit

inherently weakened atomic structures [23,24], making them most susceptible to damage

initiation. These extreme events not only drive damage initiation and evolution in materials but

also play crucial roles across many different types of physical systems where accurate prediction

of extreme scenarios is essential for reliability and safety considerations [25,26]. However, the

complicated nonlinear mechanisms and the intrinsic heterogeneity of stress states near grain

boundaries pose unique challenges in predicting void nucleation, where stress distributions

in these regions often exhibit complex non-Gaussian characteristics [15,16,27]. The tail of the

non-Gaussian distributions often corresponds to extreme damage events, which are difficult to

capture using conventional mean-field approaches. Furthermore, the high computational cost of

traditional models does not allow us to carry out a large number of simulations, which prevents

a quantitative understanding of the processes and the efficient forecasting of extreme damage

events. Developing efficient methods to explicitly identify the critical variables contributing to

elevated stress states not only facilitates the physical understanding of these mechanisms but

also advances rapid and accurate forecasting of extreme stress values near grain boundaries in

polycrystalline materials.

In this paper, a physics-assisted statistical reduced-order modelling approach is developed

to identify and quantify the key factors that control stress concentration at grain boundaries,

which is a critical precursor to damage initiation. Rather than attempting to resolve all

microscopic mechanisms, which is computationally prohibitive for engineering applications,

this approach establishes quantitative relationships between elevated stress states and a small

set of dominant, easily estimable microstructural features. Using body-centred cubic (BCC)

tantalum as a model system for simulation, the approach is demonstrated through analysis of
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increasingly complex synthetic microstructures, from single-crystal to octu-crystal configurations.

The method begins by leveraging physical insights to hypothesize a comprehensive set of

microstructural factors influencing stress conditions. Causation entropy [28–32] is then employed

to identify a parsimonious relationship between stress values and a select few dominant

features with clear physical interpretations. Finally, a conditional Gaussian mixture model

(CGMM) [33] is developed to quantify the uncertainty that is not explained by the selected

primary features.

The physics-assisted statistical modelling approach has several desirable features in analysing

complex microstructural systems. First, traditional methods often struggle with a vast number

of factors influencing stress states, which rely on either physical intuition alone or purely

data-driven approaches. By contrast, the proposed method combines physical knowledge

with statistical methods grounded in information theory. Second, by identifying causal

relationships among numerous microstructural features suggested by physical intuition, it

pinpoints a small set of dominant mechanisms governing stress concentration from the

high-dimensional feature space. Compared to a full-field crystal plasticity calculation from

a comprehensive computational model, obtaining the values of these features is of much

lower cost. Therefore, the approach reduces simulation costs by orders of magnitude while

preserving the essential physics and non-Gaussian statistics of grain-boundary interactions.

Third, the CGMM provides appropriate uncertainty quantification for the identified model and

its prediction. Such statistical characterization is essential for predicting extreme events, such as

damage occurrence, in a robust probabilistic way. The proposed approach is computationally

efficient and facilitates physical interpretability. It advances the understanding of microstructures

with enhanced damage resistance, which extends beyond stress prediction to inform material

design strategies.

The remainder of the paper is organized as follows. In §2 we present the general data-

driven statistical reduced-order modelling framework. In §3 we introduce the polycrystal

model and definitions of microstructural features in this study. In §4 we introduce simulation

configurations and corresponding settings. In §5 we identify critical factors governing elevated

stress states and quantifying prediction uncertainties. Finally, in §6, we present the discussion and

conclusion.

2. Physics-assisted data-driven statistical reduced-order modelling framework
The statistical reduced-order modelling framework developed here aims to identify the primary

variables that lead to stress conditions conducive to void nucleation. The approach combines

statistical tests, information-theoretic measures and advanced probabilistic modelling techniques

to reveal the underlying mechanism contributing to the complex stress states near grain

boundaries. Except the single-crystal case, which focuses on the resultant stress, the maximum

stress in the field from each simulation will be utilized as the target variable in all the other tests.

Developing the statistical model requires a set of crystal plasticity simulations from traditional

computational models. Nevertheless, once the statistical model is developed, the forecast, which

relies only on computing the few selected features without running the original computational

models, becomes highly efficient. The framework consists of two phases: data processing and

model identification with feature analysis.

The data processing phase involves:

(i) Compute crystal plasticity simulations under different initial loading conditions for

increasingly complex idealized microstructure configurations.

(ii) Apply the Kolmogorov–Smirnov (KS) test to ensure the statistical significance of

sampling simulations in each configuration.
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Figure 1. Overview of the physics-assisted data-driven stochastic reduced-order modelling framework.

The model identification with feature analysis phase consists of:

(iii) Construct a comprehensive candidate library of potential microstructural features

based on the physical understanding of deformation mechanisms and grain-

boundary interactions.

(iv) Apply causation entropy analysis to systematically identify the principal factors

contributing to stress states (e.g. the maximum stress), leading to a physically

interpretable model.

(v) Characterize model uncertainties using CGMMs to advance the statistical forecast of

extreme events.

Figure 1 includes a schematic diagram illustrating the analytical framework of our study. It

outlines the key steps from initial polycrystal simulations through statistical analysis to the

identification of primary microstructural factors influencing stress states. The following sections

detail each component of the statistical and computational methodology, including the KS tests,

causation entropy analysis and the application of CGMMs for uncertainty quantification.

(a) KS test

The analysis of stress distribution in polycrystalline materials requires enough samples of

simulated configurations. As mentioned above, the non-Gaussian distribution of maximum stress

resulting from various initial loading conditions is crucial for damage prediction. Adopting

an adequate sampling size is the prerequisite for unbiasedly characterizing such non-Gaussian

statistics. To this end, the so-called KS test is utilized [34–36] to examine the statistics of the

data and determine a minimum number of samples that leads to statistically significant results.
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The KS test is a non-parametric test that can directly evaluate whether the data follows a

specific continuous probability distribution. For the specific application here, the KS test facilitates

determining whether the distribution of the sample data is statistically significantly different from

a normal distribution.

For each idealized configuration, multiple simulations with varying crystallographic

orientations are performed. The maximum stress data from these simulations are normalized

to enable direct comparison with the normal distribution. By progressively increasing the

number of simulations, the KS test examines whether the distribution of the stress values is

statistically distinguishable from the standard normal distribution. The test statistic D quantifies

the maximum difference between the empirical distribution of normalized stress states and the

standard normal distribution

D = sup
x

|Fn(x) − F(x)|, (2.1)

where Fn(x) is the empirical distribution function of the sample and F(x) is the cumulative

distribution function of the reference distribution [37], which is a normal distribution in

this study.

For each sample size, the test statistic D is compared with a critical value that depends on the

significance level and sample size. If D exceeds the critical value which is used for the chosen

significant level, the hypothesis of normality is rejected. This indicates the significant difference

between the distribution of stress states and the normal distribution. As more simulations are

included in these KS tests, the reject rate will systematically increase since the non-Gaussian

feature will be clearer as more samples are included. If the rejection rate exceeds 95%, then it

implies that the sampling size is sufficient to consistently detect non-Gaussian feature of the stress

states. At this point, the sample size is considered adequate for capturing the statistical properties

of the stress distribution, enabling reliable subsequent analyses.

The rigorous assessment of sampling adequacy by the KS test is important for subsequent

analysis of microstructural effects on stress states. Since sufficient sampling captures statistical

characteristics, it is a critical prerequisite for reliable damage prediction analysis. Specifically,

the causation entropy method employed in the next subsection requires adequate data to

accurately identify causal relationship between the multiple microstructural factors and stress

states. Insufficient sampling may lead to wrong or missing causal connections, affecting the

identification of key physical mechanisms governing stress concentration at grain boundaries.

(b) Causality-based learning algorithm

The complex relationship between microstructural features and stress states presents significant

challenges for traditional analysis methods. While numerous microstructural characteristics

potentially influence stress concentration at grain boundaries, not all correlations indicate causal

relationships. For example, two features might show a strong correlation simply because they are

both affected by a common underlying mechanism rather than having a direct causal relationship

[38,39]. Furthermore, the nonlinear interactions between multiple features make it challenging

to identify genuinely influential factors through conventional correlation analysis. Therefore,

a causality-based learning algorithm is developed to systematically identify microstructural

features contributing information to stress states to overcome these challenges. There are

several advantages over traditional methods based on information theory. First, the algorithm

distinguishes between direct causal relationships and indirect correlations. Thus, it identifies

the fundamental mechanisms driving stress concentration. Second, it naturally accounts for

complex interactions between multiple features, providing a complete understanding of the

physical system. Third, it allows for efficient processing of a large number of potential factors

while maintaining physical interpretability. The implementation of this framework consists of

three main components: construction of a physics-based feature library, identification of causal

relationships through causation entropy, and parameter estimation of the resulting identified

relationship between the stress values of the selected features.

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

4
 M

ar
ch

 2
0
2
5
 



6

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

481:20240898
..........................................................

(i) Candidate feature library

A library f containing M possible candidate factors is constructed to model the relationship

between microstructural factors and stress states

f = {f1, . . . , fm−1, fm, fm+1, . . . , fM}. (2.2)

This library is developed based on physical knowledge and expert insights into the behaviour

of polycrystalline material. It includes a wide range of functions to cover various potential

relationships between microstructural features (such as grain orientation, elastic constants and

non-Schmid factors) and stress states. This also allows for proposing new potential physical

relationships that are not obvious.

(ii) Computing the causation entropy

The foundation of our analysis lies in the information theory. For multi-dimensional variables X

and Y, the fundamental entropy, conditional entropy and joint entropy are defined as

H(X) = −
∫

x
p(x) log(p(x)) dx,

H(Y|X) = −
∫

x

∫
y

p(x, y) log(p(y|x)) dy dx

and H(X, Y) = −
∫

x

∫
y

p(x, y) log(p(x, y)) dy dx.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(2.3)

Building upon these foundational measures, the causation entropy Cfm→σn|[f\fm] is introduced to

evaluate how each microstructural feature fm influences the stress state σn in our nth simulation

[28–32]

Cfm→σn|[f\fm] = H(σn|[f\fm]) − H(σn|f). (2.4)

Here, f\fm represents the set of all candidate features excluding fm, and H(·|·) denotes the

conditional entropy. The causation entropy formulation in equation (2.4) quantifies the unique

information that feature fm contributes to explaining the stress state σn, beyond what is already

captured by all other features. This approach extends beyond traditional correlation analysis

in a fundamental way. While correlation merely measures the statistical relationship between

two variables, causation entropy accounts for the complex interactions among all features in the

candidate library. For example, if a common factor f ′
m influences both σn and fm, these variables

may exhibit strong correlation despite lacking a direct causal relationship. In such cases, while the

correlation between σn and fm might be high, the causation entropy Cfm→σn|[f\fm] would correctly

identify the absence of direct causation by yielding a value near zero.

The practical implementation of this framework faces a significant challenge: high-

dimensional numerical integration required by equations (2.3). This issues could be solved

through a Gaussian approximation strategy that transforms the problem into a tractable form

CZ→X|Y = H(X|Y) − H(X|Y, Z)

= H(X, Y) − H(Y) − H(X, Y, Z) + H(Y, Z)

= 1

2
ln(det(RXY)) − 1

2
ln(det(RY)) − 1

2
ln(det(RXYZ))

+ 1

2
ln(det(RYZ)). (2.5)

Here, RXYZ represents the covariance matrix of variables (X, Y, Z), with similar definitions for

other covariance terms.

The Gaussian approximation expressed in equation (2.5) provides an efficient computational

framework for evaluating causation entropy, particularly suitable for systems with moderately

large dimensions such as the low-order system with leading moment equations. While this
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approximation might introduce some error when the true distribution significantly deviates from

Gaussian behaviour, such precision is not critical for our primary objective. Rather than seeking

exact entropy values, the goal is to detect whether the causation entropy Cfm→σn|[f\fm] exceeds

a small threshold value, thereby identifying meaningful causal relationships. This approach

has proven effective in practice, as significant causal relationships detected in higher-order

moments typically manifest reliably in the Gaussian approximation. Furthermore, this method

enables efficient identification of sparse model structures, where the precise coefficients can be

subsequently determined through linear regression, as discussed later. The reliability of this

Gaussian approximation approach is well-established with many applications [40–44].

Once the model is determined by selecting a small set of candidate functions, the coefficients

can be estimated via a least-squares method.

(c) Conditional Gaussian mixture modelling

Although the identified causal relationships can capture most non-Gaussian features, they are

deterministic and cannot directly quantify the uncertainty when predicting extreme events.

Moreover, the difference between the identified model and true maximum stress (i.e. residual) in

experiments may exhibit non-Gaussian features that prevent them from being treated as simple

white noise. To address these challenges, a CGMM is introduced that builds upon both the

identified causal relationships and non-Gaussian features of stress states. The general Gaussian

mixture model (GMM) is a suitable approach for representing non-Gaussian features in the

form of a combination of multiple Gaussian distributions [33,45]. While the GMM, describing

the total residual, can be used directly as a crude quantification of the forecast uncertainty,

the maximum stress values vary significantly depending on different physical conditions.

Therefore, it is advantageous to develop a modified version of the GMM, namely, the CGMM,

which characterizes the differences in the forecast uncertainty, conditioned on different physical

conditions, allowing a more refined uncertainty quantification. The CGMM naturally accounts

for the heavy tails associated with extreme events [46,47].

The CGMM approach consists of two main steps:

(i) Training phase: collecting pairs of data consisting of (i) the results from the identified

physics-based model σmodel and (ii) the corresponding true maximum stress values

obtained from simulations σtruth. These pairs are used to construct a GMM that

captures the joint distributions of the true and estimated maximum stress values. Then,

conditioning on each σmodel, the corresponding GMM describing σtruth, known as the

CGMM, can be formulated.

(ii) Prediction phase: given a new result σ ∗
model from the identified model, the predicted

maximum stress σ ∗
truth is obtained based on the updated parameters from the

corresponding CGMM. This estimation provides not just a single predicted value but

a range of possible values with their associated probabilities.

The details for these two steps are introduced in §2c(i) and §2c(ii).

(i) Training part

The training phase begins with collecting pairs of data from the identified physics-based model

and the true value for maximum stress. Let σmodel represent the predictions from the physics-

based model, and σtruth denote the true maximum stress values from simulations. These pairs of

data are used to construct joint probability distribution using GMM.

A GMM represents a probability distribution as a weighted sum of multiple Gaussian

component distributions. Each component in the mixture is defined by its mean, covariance
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matrix and mixture weight, where the weights sum to unity. The joint distribution of σmodel and

σtruth is given by

p(σmodel, σtruth) =
K

∑

k=1

wkN (μk, Σk), (2.6)

where K is the number of Gaussian components, wk are the mixture weights and N (μk, Σk)

represents the bivariate Gaussian distribution with mean μk and covariance matrix Σk.

The parameters of each Gaussian component are

μk = (μk
M, μk

T) and Σk =

⎡

⎣

Σk
MM Σk

MT

Σk
TM Σk

TT

⎤

⎦ , (2.7)

where M and T stand for model and truth, respectively. In this study, the vector μk is in two

dimensions, and Σk is a 2 × 2 matrix.

Before estimating the mean vector and the covariance matrix, the number of Gaussian

components K is a critical parameter in constructing the GMM. It is typically determined

based on the characteristics of the data and the specific application requirements. Selecting an

appropriate K involves balancing model complexity and accuracy while avoiding overfitting.

Several approaches can be employed to determine the optimal number of components, including

information criteria methods such as the Akaike information criterion, the Bayesian information

criterion [48–50] and direct cross-validation [51] which is used in this study.

Once the number of components is determined, the other parameters, such as mixture

weights, means and the covariance matrix, can be optimized using the expectation-maximization

(EM) algorithm [52]. Since it balances computational efficiency and estimation accuracy well,

it is particularly suitable for moderate-sized datasets. The EM algorithm alternates between

component assignments and updating the component parameters. For each step, the log-

likelihood is calculated. This iterative process continues until the log-likelihood converges,

indicating that a local optimum for the model parameters is found. The resulting GMM

parameters capture both the overall distribution of stress values and the complex relationships

between the identified model and true values across different physical conditions.

(ii) Prediction part

We can use the model to predict new cases after obtaining the GMM parameters from the training

phase. Given a new estimation σ ∗
model from the identified physics-based model, the goal is to

estimate the corresponding maximum stress σ ∗
truth. This is achieved through the conditional

distribution of the GMM, namely, the CGMM.

The distribution of σ ∗
truth conditioned on σ ∗

model is given by

p(σ ∗
truth | σ ∗

model) =
K

∑

k=1

γkN (μ̃k
T|M, Σ̃k

T|M), (2.8)

where the updated weights γk, means μ̃k
T|M and covariances Σ̃k

T|M for each component are

computed using the basic property of joint Gaussian distribution in light of equation (2.7). The γk

is given by

γk =
πkN (σ ∗

model | μk
M, Σk

MM)
∑K

j=1 πjN (σ ∗
model | μj

M, Σ
j
MM)

, (2.9)

where N (σ ∗
model | μk

M, Σk
MM) is the probability density of observing σ ∗

model under the kth Gaussian

component. The responsibility γk represents how much each Gaussian component contributes to

predicting σ ∗
truth given a new model result σ ∗

model.

It should be noted that the responsibility γk calculated using equation (2.9) is not the most

accurate representation of the contribution of each Gaussian component to the true stress σ ∗
truth.

This is because γk is determined solely based on the estimated stress of the identified model
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Figure 2. The overview diagram of conditional Gaussian mixture modelling.

σ ∗
model and the parameters (μk

M, Σk
MM) associated with σmodel. A more precise calculation of the

responsibility would involve considering the joint probability distribution of both σmodel and

σtruth. Nevertheless, in the absence of the true stress value for a new data point, the responsibility

γk calculated using equation (2.9) serves as a reasonable approximation of the contribution of each

Gaussian component to the prediction of σ ∗
truth.

The parameters for the distribution p(σ ∗
truth | σ ∗

model) is given by the following based on the

conditional distribution theory of a joint Gaussian distribution [53]:

μ̃k
T|M = μk

T + Σk
TM(σ ∗

model − μk
M)/Σk

MM

and Σ̃k
T|M = Σk

TT − Σk
TMΣk

MT/Σk
MM.

⎫

⎬

⎭

(2.10)

Note that these two parameters are both scalars.

For each given σ ∗
model, a predicted probability density function (PDF) is obtained for the

corresponding true stress σ ∗
truth. This predicted PDF provides valuable information about the

uncertainty in estimating σ ∗
truth. Instead of a single-value estimate, the PDF gives a range of

possible values for σ ∗
truth along with their associated probabilities. It serves as a powerful tool

for quantifying uncertainty in the model predictions. It also enables us to make more informed

decisions and assess the reliability of the model results.

Figure 2 summarizes the process of the CGMM framework.

3. Material microstructures and computational models

(a) Computational crystal model

The crystal plasticity model used in this work is formulated within a large deformation

framework and incorporates non-Schmid effects characteristic of BCC materials such as tantalum.

The model is highly nonlinear and comprehensive, with sophisticated physical mechanism

representation. We note that the model presented herein is a local material model that does not

consider gradients of field variables in the formulation. Models that include gradient effects can
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more accurately account for the atomistic nature of grain boundaries, as dislocation densities

on slip systems will experience a discontinuity across the boundary and will thus feel the grain

boundary provided that the material point is sufficiently close [54]. Many non-local crystal

plasticity models incorporate the effect of statistically stored dislocations as well as geometrically

necessary dislocations [55–58]. Geometrically necessary dislocations are those that accommodate

plastic strain gradients in the material, while statistically stored dislocations are responsible for

the evolving structural resistance. Since we seek to construct a statistical model formulated on

a statistically significant number of observations, several thousand calculations were performed

as will be shown in §5. It is thus probable that the computational expense to employ a non-local

material model would be impractical, thus we adopt a local material model. The main model

components are summarized hereafter, and the model details can be found in [7,59,60].

(i) Kinematics

First, the deformation gradient is cast in a multiplicative manner into elastic and plastic parts,

F = ∇φ = FeFp, (3.1)

where φ is the motion in terms of the position in the reference configuration and here ∇(•) denotes

a derivative in the reference configuration. The plastic deformation gradient evolves with its

velocity gradient,

Ḟ
p = LpFp and Lp =

∑

α

γ̇ α
p Sα

0 , (3.2)

where Lp is the plastic velocity gradient, γ̇ α
p is the shear rate on slip system α, Sα

0 = mα
0 ⊗ nα

0 is the

Schmid tensor for slip system α, and mα
0 and nα

0 are the slip direction and slip plane normal in the

reference configuration, respectively. Finally, the elastic Green–Lagrange strain is defined by

Ee = 1

2
(Ce − I), (3.3)

where Ce = FeT
Fe is the elastic right Cauchy–Green deformation tensor.

(ii) Constitutive equations

The second Piola–Kirchhoff stress is related to the elastic Green–Lagrange strain by

Te = C[Ee − (θ − θ0)A], (3.4)

where C is the fourth-order elastic stiffness tensor, Ee is the elastic Green–Lagrange strain, A

is the thermal expansion coefficient tensor, θ is the current temperature and θ0 is a reference

temperature. Since tantalum is a cubic material, the thermal expansion tensor is given by A = αI.

Moreover, the elastic stiffness tensor has three unique components and is assumed to degrade

with temperature:

C11(θ ) = C11,0K − m11θ , C12(θ ) = C12,0K − m12θ

C44(θ ) = C44,0K − m44θ .

}

(3.5)

The flow rule, incorporating non-Schmid effects, is given by

γ̇ α = γ̇0 exp

(

−�G

kBθ

〈

1 −
〈 |τ̃α | − sα

s̃l

〉p〉q
)

for |τ̃α | − sα > 0, (3.6)

where γ̇0 is a reference shear rate, �G is the activation energy, kB is Boltzmann’s constant, sα is

the slip resistance due to dislocation structure, s̃l is the intrinsic lattice resistance, and p and q are
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exponents that describe the shape of the thermal activation energy barrier. The intrinsic lattice

resistance is scaled with temperature as

s̃l = sl
μ(θ )

μ0
, (3.7)

where μ0 is shear modulus at 0K and μ(T) is the temperature-dependent anisotropic shear

modulus defined by

μ(θ ) =
√

c44(θ )
c11(θ ) − c12(θ )

2
. (3.8)

The resolved shear stress τ̃α , accounting for non-Schmid effects, is the stress resolved on to the

maximum resolved shear stress plane,

τ̃α = (CeTe) : (Sα
0 + S̃

α

0 ) ≈ Te : (Sα
0 + S̃

α

0 ), (3.9)

where S̃
α

0 is the non-Schmid tensor, defined as

S̃
α

0 =
3

∑

i=1

ωiS̃
α

0,i. (3.10)

The ωi terms are temperature-dependent weighting factors that determine the strength of the

non-Schmid effects. The temperature-dependent weighting factors are given by

ωi = ωi,ss + (ωi,0K − ωi,ss) exp(−θ/θr), (3.11)

where θr is a reference temperature, and ωi,0K and ωi,ss are the weighting factors at 0 K and a

saturation value, respectively. In this work, the saturation weighting factor is taken as ωi,ss =
0.05 × ωi,0K.

(iii) Hardening Law

The slip resistance is taken to be a modified Taylor Law,

sα = s0 + μb

√

∑

β

aαβρβ , (3.12)

where s0 is a reference slip resistance, μ is the shear modulus, b is the magnitude of the Burgers

vector, aαβ is a slip system interaction matrix and ρβ is the dislocation density on slip system

β. This expression approximates the dislocation interactions that occur between slip systems.

The evolution of dislocation density on each slip system is described by the multiplication

annihilation law,

ρ̇α =
|γ̇ α

p |
b

(

1

Lα
− 2yα

c

√

ρα

)

, (3.13)

where Lα is the mean free path of dislocations, given by

1

Lα
=

√

∑

β

dαβρβ , (3.14)

where dαβ = aαβ/k2
1 for self or coplanar interactions and dαβ = aαβ/k2

2 for all other interactions.

Dislocation annihilation is taken to be in terms of a critical annihilation radius, yα
c , that is,

temperature- and rate-dependent,

yα
c = yc0

(

1 − kBθ

Arec
ln

γ̇ α
p

γ̇0

)

. (3.15)

Here, yc0 is the reference annihilation capture radius, Arec is the activation energy for recovery, kB

is Boltzmann’s constant, θ is the temperature and γ̇0 is a reference strain rate.

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

4
 M

ar
ch

 2
0
2
5
 



12

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

481:20240898
..........................................................

(b) Proposed factors for stress analysis

Given the model described above, several factors, based on physical knowledge, are proposed as

possible candidates that predominantly contribute to the stress conditions at grain boundaries

under loading conditions of interest. These factors are derived from both elastic and plastic

contributions to represent the heterogeneous deformation in polycrystalline materials [61].

First, the orientation of the grain, described by Euler angles [7,62,63], plays a crucial role in

determining the deformation mechanisms and stress distribution within the grain. These Euler

angles, notated as θ , Φ and ω, represent a sequence of rotations that transform the crystal

coordinate system to the sample coordinate system. The resolved shear stress acting on the slip

systems within the grain depends on the grain orientation and the loading direction. This resolved

shear stress includes both the classical Schmid factor and the non-Schmid factor [60,64,65], which

account for the complex nature of dislocation motion in BCC materials.

In addition to the grain orientation, the elastic properties of the material significantly influence

the stress state in polycrystalline materials through two main mechanisms. First, the elastic

constants, represented by the fourth-order tensor C, vary with crystallographic orientation due

to material anisotropy. Second, the elastic strain Ee, which represents reversible deformation,

is related to stress through these orientation-dependent constants. Together, these factors lead

to incompatible elastic deformation at grain boundaries [15], creating stress concentrations and

discontinuities at interfaces even under uniform loading conditions. Therefore, both elastic

constants in the global coordinate system and elastic strain variations across grain boundaries

must be considered when analysing stress distributions in polycrystalline materials.

Next, analogous to the elastic constants, these stress disparities can cause mismatched plastic

flow across the boundaries. This effect is particularly pronounced in BCC materials where

plastic deformation is dominated by screw dislocations. These screw dislocations exhibit unique

characteristics, dissociating into three partial dislocations at rest and forming an equidistant

triad within the crystallographic lattice [66,67]. Their non-planar core structure prevents accurate

representation through classical Schmid rules [68,69] and significantly reduces dislocation

mobility compared to edge dislocations. Therefore, when considering the current state of plastic

deformation in each grain, we include both classical Schmid factors and non-Schmid effects

(equation (3.9)) in our normalized resolved shear stresses. These 48 non-Schmid factors are sorted

by magnitude and re-termed τ̂I, where I = 1 indicates the largest factor. The first five largest

factors are included in our analysis to capture the primary deformation mechanisms and their

contribution to stress heterogeneity at grain boundaries.

Moreover, the total statistically stored dislocation density

ρssd ≡
∑

α

ρα (3.16)

is included as this is a quantity that is readily available to both single-crystal models and isotropic

models.

To incorporate the current state of plastic deformation, the spatial strain measure is considered:

BpBp ≡ FpFpT =
3

∑

i=1

λ
p2

i l
p
i ⊗ l

p
i . (3.17)

Its principal stretches and directions are computed. The rate of plastic deformation, provided by

the symmetric part of the plastic velocity gradient,

Dp = sym Lp =
3

∑

i=1

λ
p
i v

p
i ⊗ v

p
i , (3.18)

is also taken into account. The misorientation between the accumulated plastic flow directions

and the plastic slip rate directions between grains is considered. The rate of plastic deformation

is captured by Dp in equation (3.18), with eigenvalues λ
p
i indicating deformation rates

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

4
 M

ar
ch

 2
0
2
5
 



13

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

481:20240898
..........................................................

Table 1. Microstructural factors considered in the candidate function library. Notationswith superscriptmax indicate quantities

evaluated using the hotspot local information.

notation description

θ ,Φ ,ω grain orientation relative to sample coordinates.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .√

ρssd square root of the mean of statistically stored dislocation density for all grains as shown in

equation (3.16).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τ̂i,Gn(τ̂
max
i,Gn ) the ith largest compressive non-Schmid factors in grain n.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cij,Gn the ijth component of the elastic constants for grain n, where i, j represent the row

and column coordinates in a 6 × 6 matrix. The matrix, using Voigt notation, compactly

describes the full elastic tensor.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Eeij,Gn the ijth component of the grain-volume-averaged strain in grain n similar toCij,Gn.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vi,Gn · vj,Gm(vmaxi,Gn · vmaxj,Gm) the misorientation of the principal stretch rate directions (i.e. eigenvectors) of Dp in

equation (3.18) corresponding to the ith eigenvalue of grain n with the jth eigenvalue of

grainm.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λi,Gn(λ
max
i,Gn ) the ith eigenvalue (sorted in descending order) of Dp for grain n.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ui,Gn · uj,Gm(umaxi,Gn · umaxj,Gm) similar to vi,Gn · vj,Gm, but computed from Bp in equation (3.17).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μi,Gn(μ
max
i,Gn ) similar toλi,Gn, but computed from Bp.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and eigenvectors v
p
i describing deformation directions. These measures are particularly

important when considering grain-boundary interactions, as demonstrated by experimental

observations [12].

To summarize the above justifications, the candidate factors are listed in table 1.

4. Experimental set-up
A series of idealized microstructure configurations with increasing complexity are simulated to

identify specific physical features leading to high-stress spots in deformed polycrystalline metals.

All simulations are conducted at a strain rate of ε̇ = 105 s−1, a rate commonly observed in dynamic

loading conditions known to cause damage in tantalum.

The study begins with a single-crystal configuration used to validate the statistical analysis

methodology, for which 200 simulations are performed to establish adequate statistical sampling.

This is followed by two distinct bi-crystal configurations, each requiring 800 simulations: a

cylinder with a grain boundary perpendicular to the loading direction and another with a

grain boundary parallel to the loading direction. In addition, a quad-crystal configuration is

simulated to incorporate both perpendicular and parallel grain-boundary interactions with

2000 simulations. Finally, an octu-crystal (e.g. eight-grain) configuration is implemented to

approach realistic microstructure complexity, with 3000 simulations to fully characterize

the system behaviour. Note that the increased number of simulations is utilized to ensure

the increased complexity of the model still provides statistically significant results under the

KS test.

5. Analysis of grain-boundary e
ects on stress distributions

(a) Single-crystal analysis: establishing the baseline stress state

To establish a fundamental understanding of stress states, an analysis of single-crystal data is

first conducted. For the single-crystal case, the resultant stress (rather than maximum stress) is

used, defined as the volume-averaged stress over the entire crystal domain, since there are no
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Table 2. Causation entropy analysis on the single-crystal con�guration.

feature causation entropy feature causation entropy

Ee33 0.3108 Ee11 0.0013
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C33 0.2135 C11 0.0003
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .√

ρssd 0.0753 Ee12 0.0002
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τ̂4 0.0091 τ̂2 0.0002
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ee23 0.0070 φ 0.0001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τ̂3 0.0058 C22 7.98 × 10−5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τ̂5 0.0056 Ee13 1.97 × 10−5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

θ 0.0025 ω 1.57 × 10−5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ee22 0.0023 τ̂1 1.02 × 10−5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

internal interfaces that could lead to stress concentrations. This approach allows for the isolation

of intrinsic material behaviour before introducing the complexities of grain boundaries and

multi-grain interactions. Two hundred single-crystal simulations are performed, varying initial

orientations to capture various possible microstructural states. The resulting stress data then

facilitate effective statistical analysis to identify key relationships and trends.

The analysis is initiated with a linear combination of a subset of the features to establish a

baseline and identify the most influential variables. Causation entropy calculations are used to

select features that are most relevant to stress prediction. The causation entropies for all features

are listed in table 2.

The causation entropy analysis revealed several key insights into the relative importance of

different microstructural features in predicting stress states. As evident from table 2, Ee
33, C33 and√

ρssd exhibit the highest causation entropy values, which implies their significant influence on

the stress state. This is consistent with physical intuition since these parameters represent critical

aspects of the material’s elastic behaviour, crystal structure and dislocation density. Interestingly,

while the non-Schmid factors τ̂i show varying degrees of causation entropy, they collectively

contribute substantial information to stress prediction. Although τ̂1 shows a relatively low

individual causation entropy, all five non-Schmid factors are included in the model to maintain a

comprehensive representation of the non-Schmid effects.

Based on these insights, a simple linear relationship between the stress state and the most

influential variables is obtained:

σmodel = β0
√

ρssd + β1Ee
33 + β2C33 +

5
∑

i=1

β3iτ̂i, (5.1)

where σmodel is the predicted resultant stress, ρssd is the statistically stored dislocation density,

C33 is an elastic constant, Ee
33 is an average strain, τ̂i are the non-Schmid factors and β0, β1, β2 and

β3i are the model coefficients.

The residual of the identified system in equation (5.1) is then calculated by taking the difference

between σtrue and σmodel , the statistics of which reflect the uncertainty in such a relationship.

Figure 3 shows the PDFs of the resultant stress and the associated residual. The results reveal

several important aspects of the model’s performance. Notably, the variance of the residual is

only 1.27% of the original resultant stress. Furthermore, the skewness and kurtosis of the residual

distribution are close to 0 and 3, respectively, indicating that the residual closely approximates

a Gaussian distribution. This near-Gaussian nature of the small residual suggests that it behaves

similarly to white noise, implying that the linear model of equation (5.1) has successfully captured

the significant features of the resultant stress distribution. The stark contrast between the two
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Figure 3. PDFs of the resultant stress (blue line) and residual (dashed black line) from the linear regression model in

equation (5.1) for single-crystal con�gurations.

Figure 4. KS tests results on the maximum stress if it occurred near a grain boundary in a bi-crystal con�guration. Panels (a)

and (b) show the results for the simulations with perpendicular grain boundary and parallel grain boundary, respectively. For

each number of sample points, there are 100 times KS tests to record the percentage of passing tests.

distributions demonstrates the effectiveness of the linear relationship in explaining the majority

of the stress variation in single-crystal configurations.

(b) Bi-crystal analysis: introducing grain-boundary e
ects

This subsection investigates two primary bi-crystal configurations: one with the grain-boundary

plane perpendicular to the loading direction and another with the grain-boundary plane

parallel to the loading direction. These idealized set-ups provide fundamental insights into

grain-boundary effects while maintaining a tractable level of complexity.

For each configuration, 2000 simulations with different crystallographic orientations are

conducted. Among these, approximately 600 simulations exhibit maximum von Mises stress

near the grain boundary, which is used for the feature analysis carried out below. To ensure

the statistical robustness of the results, KS tests are applied to the subset where maximum

stress occurs at grain boundaries. Figure 4 illustrates these results, with both types reaching

the threshold rejection rate of 95%. This high rejection rate confirms not only the statistical

significance of the sampling but also the non-Gaussian nature of the stress distributions, justifying

the need for advanced statistical techniques in subsequent analyses.
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Initial investigations employed linear models to identify critical factors influencing stress

states. However, these linear models are insufficient in capturing the full complexity of the stress

distributions (not shown here), particularly the non-Gaussian features identified by the KS tests.

Given the limitations of linear models and guided by physical knowledge of crystal plasticity,

a general nonlinear analysis approach is adopted. The candidate feature function library for the

nonlinear analysis includes:

— Linear terms: These represent the direct, first-order effects of various factors as listed in

table 1 on stress, providing a baseline for the model.
— Quadratic combinations of stretch rates λi,Gn and λmax

i,Gn: These terms represent the

nonlinear effects of the rate of plastic deformation on stress states, particularly important

in dynamic loading conditions.
— Squares of ui,Gn · uj,Gm and umax

i,Gn · umax
j,Gm: These terms represent the nonlinear effects of

grain misorientation on stress states, particularly at grain boundaries.
— Quadratic combinations of cumulative stretch μi,Gn and μmax

i,Gn: These terms capture

the nonlinear effects of accumulated plastic deformation on stress states, particularly

significant in cases of large plastic strains.
— Squares of vi,Gn · vj,Gm and vmax

i,Gn · vmax
j,Gm: These terms represent the nonlinear effects of

grain misorientation on stress states, particularly at grain boundaries.
— Quadratic combinations of elastic constants Cii,Gn: These terms model the complex

local elastic behaviour, especially stress concentrations arising from mismatches in elastic

properties between adjacent grains.
— Quadratic combinations of average strain Ee

ii,Gn: Analogous to the elastic constant terms,

these quadratic combinations are used to capture nonlinear effects in the average strain

state of each grain, providing a more comprehensive representation of the strain–stress

relationship at the grain level.
— Quadratic combinations of non-Schmid factors τi,Gn and τmax

i,Gn : These terms represent

the nonlinear effects of non-Schmid behaviour.

Introducing quadratic terms necessitates further categorizing of these features, as their physical

significance extends beyond individual contributions. Instead of treating each quadratic term

individually, several categories are divided to reflect their underlying physical interactions. This

categorization is applied not only for simplification but also for showing deeper insights into

the mechanisms driving stress distribution in bi-crystal cylinder simulations. Here, Ee
ij,Gn is

taken as an illustrative example; their quadratic combinations can be divided into two groups:

(i) intragrain interactions and (ii) intergrain interactions. The former represents the quadratic

combinations of elastic average strain components within the same grain, while the latter means

the quadratic combinations of those components between different grains, which describe the

complex interplay of elastic strains across the grain boundary. From a physical standpoint, the

intergrain interactions are of particular interest as they directly relate to the stress state at and near

the grain boundary, a critical region for potential damage initiation. This emphasis on intergrain

interactions is not merely theoretical but is substantiated by our causation entropy analysis.

Figure 5 presents a heatmap of the causation entropy for various combinations of elastic

average strain tensor components in the bi-crystal cylinder under the perpendicular grain

boundary. The colour and size of each circle represent the magnitude of causation entropy,

with larger, warmer-coloured circles indicating higher values. Notably, the intergrain interactions

(upper-right quadrant) consistently exhibit higher causation entropy values compared to the

intragrain interactions (upper-left quadrant and lower-right quadrant). This visual representation

clearly shows that this intergrain interaction has a more significant information contribution

compared to intragrain interactions. Such a finding aligns with physical understanding: the

interface between grains, where material properties can change abruptly, is likely to be a key

determinant of the system’s stress distribution.

In summary, features considering all quadratic combinations can be generally categorized into

intragrain and intergrain interactions. For some features, there is no physical meaning in different
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Figure 5. Heatmap of causation entropy for quadratic combinations of elastic strain tensor components (Eij,Gn) in a bi-crystal

system. The colour and size of each circle represent the magnitude of causation entropy. The dashed boxes highlight intragrain

interactions (the upper-left is for grain 1 and the lower-right is for grain 2) and intergrain interactions (upper-right).

sub-variables with different grains. Therefore, the intragrain interaction only contains its square

terms. To formalize this categorization, a notation system is introduced for generic features {X }:

— {X }L: linear terms;

— {X }S: quadratic terms representing intragrain interactions or square terms;

— {X }C: quadratic terms representing intergrain interactions.

Figure 6 illustrates the causation entropy values for various categories under two distinct grain-

boundary configurations: perpendicular and parallel. The categories are arranged in descending

order based on the mean causation entropy value across both configurations.

The selection of candidate features extends beyond purely statistical considerations to ensure

the comprehensive representation of all relevant physical mechanisms. The foundation of the

model begins with the dislocation density term
√

ρssd. Although this term shows relatively low

causation entropy in the bi-crystal configuration, it is retained as it represents the fundamental

carrier of plastic deformation and provides continuity with single-crystal behaviour. In addition,

it is noteworthy that the number of terms within each category may significantly influence the

magnitude of the causation entropy during the dislocation density
√

ρssd category. Actually, the

dislocation density
√

ρssd shows the high causation entropy when computing them for individual

features. The linear elastic terms Ee
ij,Gn and Cii,Gn are included as they describe the basic elastic

response, which is essential for maintaining mechanical equilibrium regardless of their causation

entropy values.

The linear elastic terms Ee
ij,Gn and Cii,Gn are included as fundamental descriptors of the primary

elastic response, essential for maintaining mechanical equilibrium regardless of their causation

entropy values. The cross products of elastic constants Cii,GnCii,Gm and elastic strains Ee
ij,GnEe

kl,Gm
are incorporated to characterize elastic incompatibility at grain boundaries. In addition, square
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Figure 6. Causation entropies computed for di
erent categories formaximum stress under perpendicular grain boundary (dark

blue) and parallel grain boundary (green). The x-axis label represents the di
erent categories, where the subscripts indicate the

linear terms, square terms and intergrain interaction terms.

terms (Cij,Gn)2 and (Ee
ij,Gn)2 are included to capture intergrain interactions and local nonlinear

effects. Notably, all these quadratic terms demonstrate high causation entropy values in the

analysis. These terms naturally emerge in expressions involving differences between grain

features, taking the form (XIn − XJm)2, where X represents various physical quantities.

Non-Schmid factor interactions play a crucial role in our model, as evidenced by their high

causation entropy values. The terms τ̂i,Gnτ̂j,Gm and those evaluated using the local hotspot

information are particularly important as they capture the complex interactions between different

slip systems that can lead to stress concentrations at grain boundaries. In addition, the orientation-

dependent terms (vi,Gn · vi,Gm)2 and the corresponding terms evaluated using the local hotspot

information describe misorientation effects, which, while showing moderate causation entropy,

are essential for understanding stress development at grain boundaries.

Based on the above considerations, the resulting statistical model is written as

σmodel = β0
√

ρssd +
Ngr
∑

n

3
∑

i=1

β1niλi,Gn +
Ngr
∑

n

3
∑

i=1

β2niλ
max
i,Gn +

Ngr
∑

n

3
∑

i,j=1

β3nijE
e
ij,Gn

+
Ngr
∑

n

3
∑

i=1

β4niCii,Gn +
Ngr
∑

m>n

3
∑

i,j=1

β5nmijE
e
ij,GnEe

ij,Gm +
Ngr
∑

m>n

3
∑

i=1

β6nmiCii,GnCii,Gm

+
Ngr
∑

n

3
∑

i,j=1

β7nij(E
e
ij,Gn)2 +

Ngr
∑

n

3
∑

i=1

β8nij(C
e
ii,Gn)2 +

Ngr
∑

m>n

5
∑

i,j=1

β9nmijτ̂i,Gnτ̂j,Gm

+
Ngr
∑

m>n

5
∑

i=1

β10nmiτ̂
max
i,Gn τ̂max

i,Gm +
Ngr
∑

n

3
∑

i=1

β11ni(vi,Gn · vi,Gm)2

Ngr
∑

n

3
∑

i=1

β12ni(v
max
i,Gn · vmax

i,Gm)2, (5.2)

where σmodel is the predicted maximum stress and β represents the coefficients for the

different terms.

To investigate the model accuracy, the residual σres is computed between the true maximum

stress and the predicted values from the above statistical model, σres = σtruth − σmodel. Figure 7

shows such results. For both bi-crystal configurations, the residual (black lines) has a significantly

smaller variance, less than 10%, than the truth (red-lines), which implies the validity of the feature

analysis in equation (5.2).
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Figure 7. PDFs of the true maximum stress (red lines) and the residual (black lines). (a) The results for the bi-crystal cylinder

under perpendicular grain boundary. (b) The results for the bi-crystal con�guration under parallel grain boundary.

Figure 8. PDFs of the predicted maximum stressσ ∗
truth conditioned on di
erent values ofσ

∗
model and the true maximum stress

distributionp(σtruth). (a) The PDFs of the estimation ofσ
∗
truth under perpendicular grain boundary. (b) The PDFs of the estimation

ofσ ∗
truth under parallel grain boundary. Each colour corresponds to a di
erent conditioning value ofσ

∗
model. The vertical dashed

lines indicate the position of trueσ ∗
truth for each predicted PDF.

Figure 8 presents the forecast of the stress value with the associated uncertainty. Here, the

forecast is based on the CGMM. It is seen that the forecast uncertainty varies as the predicted value

of the maximum stress σ ∗
model. The uncertainty is not necessarily a Gaussian distribution, which

implies the necessity of using the mixture presentations. Due to the additional information of the

conditioned state, i.e. the predicted σ ∗
model, the uncertainty in the prediction is usually slightly

smaller than the total residual shown in figure 7, which provides more confident forecast results.
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Figure 9. PDFs of true maximum stress distribution (red lines) and model residuals (black lines) in multi-grain con�gurations.

(a) The results for quad-crystal cylinder con�guration. (b) The results for octu-crystal cylinder con�guration.

(c) Multi-grain con�gurations

Following the statistical model developed from bi-crystal analysis, more complex configurations

containing multiple grain boundaries are investigated to examine the model’s applicability to

realistic polycrystalline structures. These multi-grain configurations, including quad-crystal and

octu-crystal arrangements, serve as intermediate steps between idealized bi-crystal cases and

actual polycrystalline materials.

The statistical model is adapted for these multi-grain configurations to maintain computational

efficiency while preserving essential physical mechanisms. As the number of grains increases, the

full model from the bi-crystal case would include an overwhelming number of interaction terms,

scaling approximately as O(N2
g) for Ng grains. Therefore, a simplified version, equation (5.3),

is employed, retaining only the terms with high causation entropy values identified through

previous analysis. This refined model preserves fundamental terms, including dislocation density,

elastic constants, elastic strains and critical local features while selectively including the most

significant intergrain interactions. The resulting statistical reduced-order model reads

σmodel = β0
√

ρssd +
Ngr
∑

n

3
∑

i=1

β1niλi,Gn +
Ngr
∑

n

3
∑

i=1

β2niλ
max
i,Gn +

Ngr
∑

n

3
∑

i,j=1

β3nijE
e
ij,Gn +

Ngr
∑

n

3
∑

i=1

β4niCii,Gn

+
Ngr
∑

m>n

3
∑

i,j=1

β5nmijE
e
ij,GnEe

ij,Gm +
Ngr
∑

m>n

3
∑

i=1

β6nmiCii,GnCii,Gm +
Ngr
∑

n

3
∑

i,j=1

β7nij(E
e
ij,Gn)2

+
Ngr
∑

n

3
∑

i=1

β8nij(C
e
ii,Gn)2 +

Ngr
∑

m>n

3
∑

i=1

β9nmiτ̂
max
i,Gn τ̂max

i,Gm +
Ngr
∑

n

3
∑

i=1

β10ni(v
max
i,Gn · vmax

i,Gm)2. (5.3)

Similar to the cases for the configurations of bi-crystal cylinders, figure 9 compares the PDFs

of the true maximum stress (red lines) and the residual of the statistically resulting model

(black lines). The residual distribution has a much smaller variance than the truth. It also

remains approximately Gaussian, suggesting the model successfully captures the primary sources

of non-Gaussian behaviour in the stress field. Similarly, figure 10 shows the forecast and
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Figure 10. Similar to �gure 8, but for the quad-crystal case and octu-crystal case.

its uncertainties. The forecast mean values are close to the truth, while the uncertainty is

again smaller than the total residual overall, indicating the necessity of using the CGMM.

The successful application of this streamlined model to more complex arrangements suggests

that the fundamental physics of grain-boundary stress concentrations can be captured with a

reduced set of carefully selected interaction terms. Notably, despite their increasing geometric

complexity, the model’s performance remains consistent across both quad-crystal and octu-

crystal configurations. This robustness in performance across different levels of microstructural

complexity validates the selection of essential interaction terms in the simplified model, which

suggests the potential applicability of the statistically reduced-order modelling framework to

even larger polycrystalline systems.

6. Discussion and conclusion
The framework developed in this study advances our ability to analyse complex material

behaviour by uniquely combining physical principles with statistical learning. Traditional

approaches to studying the damage behaviour of polycrystalline metallic materials rely on

computationally expensive full-field simulations or homogenized engineering models, which

sacrifice physical accuracy for computational efficiency. Most existing analysis tools also have

difficulties in representing the non-Gaussian feature of extreme events, which is, however,

crucial for damage prediction. This framework avoids the above limitations through three

key components.

The uniqueness of the proposed framework consists first of a systematic way of distinguishing

between causal relationships and mere correlations. Unlike traditional correlation-based

methods, the causation entropy analysis identifies true underlying causal relationships between

microstructural features and stress states. This distinction is crucial because it identifies physically

meaningful mechanisms and enables principled model reduction by retaining only features with

genuine causal influence. This provides a mathematical base for experimentally observed damage

patterns in future work.

Beyond stress analysis in polycrystals, this framework establishes a general methodology

for studying complex material phenomena. Its key strength is demonstrated by successful

extrapolation from simple to complex systems, and models trained on bi-crystal configurations

accurately predict stress states in quad-crystal and octu-crystal systems. This robustness suggests
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that the identified physical mechanisms are fundamental rather than specific to particular

configurations, which makes the framework valuable for analysing realistic material systems.

The framework is also efficient because it combines physical insight and statistical

techniques. Traditional crystal plasticity simulations become prohibitively expensive for complex

polycrystalline systems. Using causation entropy to identify essential features and then

employing CGMMs for probabilistic predictions reduces computational time by orders of

magnitude while maintaining accuracy in predicting extreme stress states. In fact, once the

statistical model is developed, the forecast, which relies only on computing the few selected

features without running the original computational models, becomes highly efficient. In

addition, the incorporation of CGMM for uncertainty quantification provides probabilistic

predictions at a low computational cost. This efficiency enables the rapid evaluation of multiple

material configurations, which is critical for practical materials design applications.

These advances establish a new framework for analysing material behaviour, achieving

accuracy and efficiency. As materials science increasingly confronts complex, hierarchical

systems, such physics-informed statistical approaches will become essential for bridging scales

and understanding structure-property relationships. Future developments could extend this

methodology to dynamic loading conditions and integration with experimental data, further

broadening its effect across materials science applications.

Data accessibility. The parameters of the statistical models presented in equations (5.1)–(5.3) and the CGMM for

different cases are provided in the electronic supplementary material [70].
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