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Understanding  stress  distributions at grain
boundaries in polycrystalline materials is crucial for
predicting damaged nucleation sites. In high-purity
materials, voids often nucleate at grain boundaries
due to high stress from granular interactions and
weakened atomic ordering. While traditional crystal
plasticity models simulate grain-level mechanics, their
high computational cost often prevents systematic
identification of critical microstructural features and
efficient forecast of extreme damage events. This
paper addresses these challenges by developing a
computationally efficient physics-assisted statistical
modelling framework. The method starts by
leveraging physical knowledge to hypothesize a
broad set of microstructural factors influencing stress
conditions. Causal inference is then applied to reveal
the predominant features with physical explanations,
leading to a parsimonious statistical model. A
conditional Gaussian mixture model (CGMM) is
employed when the identified relationship is utilized
as a predictive model to quantify the uncertainty
not readily explained by these features. Using body-
centred cubic (BCC) tantalum as a representative
material, a series of synthetic microstructures from
single- to octu-crystal configurations are created.
Results show that high-stress states strongly correlate
with the elastic and plastic deformation capabilities
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and the directional misalighment of grain responses near boundaries. The statistical model
achieves rapid and accurate forecasts, demonstrating its potential for analysing realistic
polycrystalline materials.

1. Introduction

The behaviour of polycrystalline metallic materials under extreme loading conditions is critical
in material science and engineering. When the local stress state exceeds the local void nucleation
strength, a void will nucleate, which can progress to catastrophic material failure through void
growth and coalescence processes [1-6]. These voids are discrete localized features that first form
at tiny length scales before contributing to a larger field of voids with larger length scales. The
formation of each void is considered an extreme event in response to the loading of an aggregate
composite polycrystalline metal. For high-purity polycrystalline materials, experimental evidence
has consistently shown that these voids preferentially nucleate at grain boundaries [3,6-9]. This
preferential nucleation at grain boundaries stems from elevated stress states due to incompatible
deformation between neighbouring grains [10-14]. Stress concentration is further exacerbated
by the inherently weak atomic structure in these boundary regions, making them particularly
susceptible to void formation [15-17]. Given the critical role of grain-boundary stress states in
void nucleation, modelling and quantifying localized concentrations for reliable prediction and
prevention of damage in polycrystalline materials become crucial.

Current models for representing void nucleation and growth under dynamic loading
conditions can be broadly summarized into several categories. Early work by Johnson [18]
introduced a mathematical model for the growth of voids under tensile mean stress and applied
it to spallation problems through a microscopic to continuous framework. This model was
further advanced by incorporating micro-inertial effects in several works [19-21]. More recent
developments have demonstrated the probability distribution of void nucleation [5,22]. The
work of [7] utilized a soft-coupled linkage technique between the macroscale damage model
and micromechanical calculations to study the nucleation of voids. Note that maximum stress
intensity usually occurs at the grain boundary [3,6] because these regions already exhibit
inherently weakened atomic structures [23,24], making them most susceptible to damage
initiation. These extreme events not only drive damage initiation and evolution in materials but
also play crucial roles across many different types of physical systems where accurate prediction
of extreme scenarios is essential for reliability and safety considerations [25,26]. However, the
complicated nonlinear mechanisms and the intrinsic heterogeneity of stress states near grain
boundaries pose unique challenges in predicting void nucleation, where stress distributions
in these regions often exhibit complex non-Gaussian characteristics [15,16,27]. The tail of the
non-Gaussian distributions often corresponds to extreme damage events, which are difficult to
capture using conventional mean-field approaches. Furthermore, the high computational cost of
traditional models does not allow us to carry out a large number of simulations, which prevents
a quantitative understanding of the processes and the efficient forecasting of extreme damage
events. Developing efficient methods to explicitly identify the critical variables contributing to
elevated stress states not only facilitates the physical understanding of these mechanisms but
also advances rapid and accurate forecasting of extreme stress values near grain boundaries in
polycrystalline materials.

In this paper, a physics-assisted statistical reduced-order modelling approach is developed
to identify and quantify the key factors that control stress concentration at grain boundaries,
which is a critical precursor to damage initiation. Rather than attempting to resolve all
microscopic mechanisms, which is computationally prohibitive for engineering applications,
this approach establishes quantitative relationships between elevated stress states and a small
set of dominant, easily estimable microstructural features. Using body-centred cubic (BCC)
tantalum as a model system for simulation, the approach is demonstrated through analysis of
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increasingly complex synthetic microstructures, from single-crystal to octu-crystal configurations.
The method begins by leveraging physical insights to hypothesize a comprehensive set of
microstructural factors influencing stress conditions. Causation entropy [28-32] is then employed
to identify a parsimonious relationship between stress values and a select few dominant
features with clear physical interpretations. Finally, a conditional Gaussian mixture model
(CGMM) [33] is developed to quantify the uncertainty that is not explained by the selected
primary features.

The physics-assisted statistical modelling approach has several desirable features in analysing
complex microstructural systems. First, traditional methods often struggle with a vast number
of factors influencing stress states, which rely on either physical intuition alone or purely
data-driven approaches. By contrast, the proposed method combines physical knowledge
with statistical methods grounded in information theory. Second, by identifying causal
relationships among numerous microstructural features suggested by physical intuition, it
pinpoints a small set of dominant mechanisms governing stress concentration from the
high-dimensional feature space. Compared to a full-field crystal plasticity calculation from
a comprehensive computational model, obtaining the values of these features is of much
lower cost. Therefore, the approach reduces simulation costs by orders of magnitude while
preserving the essential physics and non-Gaussian statistics of grain-boundary interactions.
Third, the CGMM provides appropriate uncertainty quantification for the identified model and
its prediction. Such statistical characterization is essential for predicting extreme events, such as
damage occurrence, in a robust probabilistic way. The proposed approach is computationally
efficient and facilitates physical interpretability. It advances the understanding of microstructures
with enhanced damage resistance, which extends beyond stress prediction to inform material
design strategies.

The remainder of the paper is organized as follows. In §2 we present the general data-
driven statistical reduced-order modelling framework. In §3 we introduce the polycrystal
model and definitions of microstructural features in this study. In §4 we introduce simulation
configurations and corresponding settings. In §5 we identify critical factors governing elevated
stress states and quantifying prediction uncertainties. Finally, in §6, we present the discussion and
conclusion.

2. Physics-assisted data-driven statistical reduced-order modelling framework

The statistical reduced-order modelling framework developed here aims to identify the primary
variables that lead to stress conditions conducive to void nucleation. The approach combines
statistical tests, information-theoretic measures and advanced probabilistic modelling techniques
to reveal the underlying mechanism contributing to the complex stress states near grain
boundaries. Except the single-crystal case, which focuses on the resultant stress, the maximum
stress in the field from each simulation will be utilized as the target variable in all the other tests.
Developing the statistical model requires a set of crystal plasticity simulations from traditional
computational models. Nevertheless, once the statistical model is developed, the forecast, which
relies only on computing the few selected features without running the original computational
models, becomes highly efficient. The framework consists of two phases: data processing and
model identification with feature analysis.

The data processing phase involves:

(i) Compute crystal plasticity simulations under different initial loading conditions for
increasingly complex idealized microstructure configurations.

(ii) Apply the Kolmogorov-Smirnov (KS) test to ensure the statistical significance of
sampling simulations in each configuration.
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Figure 1. Overview of the physics-assisted data-driven stochastic reduced-order modelling framework.
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The model identification with feature analysis phase consists of:

(iii) Construct a comprehensive candidate library of potential microstructural features
based on the physical understanding of deformation mechanisms and grain-
boundary interactions.

(iv) Apply causation entropy analysis to systematically identify the principal factors
contributing to stress states (e.g. the maximum stress), leading to a physically
interpretable model.

(v) Characterize model uncertainties using CGMMs to advance the statistical forecast of
extreme events.

Figure 1 includes a schematic diagram illustrating the analytical framework of our study. It
outlines the key steps from initial polycrystal simulations through statistical analysis to the
identification of primary microstructural factors influencing stress states. The following sections
detail each component of the statistical and computational methodology, including the KS tests,
causation entropy analysis and the application of CGMMs for uncertainty quantification.

(@) KStest

The analysis of stress distribution in polycrystalline materials requires enough samples of
simulated configurations. As mentioned above, the non-Gaussian distribution of maximum stress
resulting from various initial loading conditions is crucial for damage prediction. Adopting
an adequate sampling size is the prerequisite for unbiasedly characterizing such non-Gaussian
statistics. To this end, the so-called KS test is utilized [34-36] to examine the statistics of the
data and determine a minimum number of samples that leads to statistically significant results.
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The KS test is a non-parametric test that can directly evaluate whether the data follows a
specific continuous probability distribution. For the specific application here, the KS test facilitates
determining whether the distribution of the sample data is statistically significantly different from
a normal distribution.

For each idealized configuration, multiple simulations with varying crystallographic
orientations are performed. The maximum stress data from these simulations are normalized
to enable direct comparison with the normal distribution. By progressively increasing the
number of simulations, the KS test examines whether the distribution of the stress values is
statistically distinguishable from the standard normal distribution. The test statistic D quantifies
the maximum difference between the empirical distribution of normalized stress states and the
standard normal distribution

D =sup |Fu(x) — F(x)|, (2.1)

where F;(x) is the empirical distribution function of the sample and F(x) is the cumulative
distribution function of the reference distribution [37], which is a normal distribution in
this study.

For each sample size, the test statistic D is compared with a critical value that depends on the
significance level and sample size. If D exceeds the critical value which is used for the chosen
significant level, the hypothesis of normality is rejected. This indicates the significant difference
between the distribution of stress states and the normal distribution. As more simulations are
included in these KS tests, the reject rate will systematically increase since the non-Gaussian
feature will be clearer as more samples are included. If the rejection rate exceeds 95%, then it
implies that the sampling size is sufficient to consistently detect non-Gaussian feature of the stress
states. At this point, the sample size is considered adequate for capturing the statistical properties
of the stress distribution, enabling reliable subsequent analyses.

The rigorous assessment of sampling adequacy by the KS test is important for subsequent
analysis of microstructural effects on stress states. Since sufficient sampling captures statistical
characteristics, it is a critical prerequisite for reliable damage prediction analysis. Specifically,
the causation entropy method employed in the next subsection requires adequate data to
accurately identify causal relationship between the multiple microstructural factors and stress
states. Insufficient sampling may lead to wrong or missing causal connections, affecting the
identification of key physical mechanisms governing stress concentration at grain boundaries.

(b) Causality-based learning algorithm

The complex relationship between microstructural features and stress states presents significant
challenges for traditional analysis methods. While numerous microstructural characteristics
potentially influence stress concentration at grain boundaries, not all correlations indicate causal
relationships. For example, two features might show a strong correlation simply because they are
both affected by a common underlying mechanism rather than having a direct causal relationship
[38,39]. Furthermore, the nonlinear interactions between multiple features make it challenging
to identify genuinely influential factors through conventional correlation analysis. Therefore,
a causality-based learning algorithm is developed to systematically identify microstructural
features contributing information to stress states to overcome these challenges. There are
several advantages over traditional methods based on information theory. First, the algorithm
distinguishes between direct causal relationships and indirect correlations. Thus, it identifies
the fundamental mechanisms driving stress concentration. Second, it naturally accounts for
complex interactions between multiple features, providing a complete understanding of the
physical system. Third, it allows for efficient processing of a large number of potential factors
while maintaining physical interpretability. The implementation of this framework consists of
three main components: construction of a physics-based feature library, identification of causal
relationships through causation entropy, and parameter estimation of the resulting identified
relationship between the stress values of the selected features.
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(i) Candidate feature library

A library f containing M possible candidate factors is constructed to model the relationship
between microstructural factors and stress states

t={f1, . fm-1 S fms1s - - (2.2)

This library is developed based on physical knowledge and expert insights into the behaviour
of polycrystalline material. It includes a wide range of functions to cover various potential
relationships between microstructural features (such as grain orientation, elastic constants and
non-Schmid factors) and stress states. This also allows for proposing new potential physical
relationships that are not obvious.

(i) Computing the causation entropy

The foundation of our analysis lies in the information theory. For multi-dimensional variables X
and Y, the fundamental entropy, conditional entropy and joint entropy are defined as

HX)= —J p(x)log(p(x)) dx,
H(YIX)=—J J p(x,y)log(p(y|x)) dy dx (2.3)
xJy
and HOOY) == [ | pouy)log(piey) dy dx.
xJy

Building upon these foundational measures, the causation entropy Cy, .4, |(f\f,,] is introduced to
evaluate how each microstructural feature f; influences the stress state o}, in our nth simulation
[28-32]

Ct,— oy 18\fm] = H(on|[£\fm]) — H(on|f). (2.4)

Here, f\f;; represents the set of all candidate features excluding f,, and H(:|-) denotes the
conditional entropy. The causation entropy formulation in equation (2.4) quantifies the unique
information that feature f;, contributes to explaining the stress state o;;, beyond what is already
captured by all other features. This approach extends beyond traditional correlation analysis
in a fundamental way. While correlation merely measures the statistical relationship between
two variables, causation entropy accounts for the complex interactions among all features in the
candidate library. For example, if a common factor f;, influences both o, and fy;;, these variables
may exhibit strong correlation despite lacking a direct causal relationship. In such cases, while the
correlation between o, and f,;; might be high, the causation entropy Cfm_>0-n|[f\fm] would correctly
identify the absence of direct causation by yielding a value near zero.

The practical implementation of this framework faces a significant challenge: high-
dimensional numerical integration required by equations (2.3). This issues could be solved
through a Gaussian approximation strategy that transforms the problem into a tractable form

Cz-xyy =HX|Y) - HX[Y, Z)
= H(X,Y) — H(Y) — HX, Y, Z) + H(Y, Z)

— 2 In(det(Rxy)) ~ 5 Indet(Ry)) — 2 In(det(Rxyz)

+ % 11’1(det(Ryz)). (25)

Here, Rxyz represents the covariance matrix of variables (X, Y, Z), with similar definitions for
other covariance terms.

The Gaussian approximation expressed in equation (2.5) provides an efficient computational
framework for evaluating causation entropy, particularly suitable for systems with moderately
large dimensions such as the low-order system with leading moment equations. While this
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approximation might introduce some error when the true distribution significantly deviates from
Gaussian behaviour, such precision is not critical for our primary objective. Rather than seeking
exact entropy values, the goal is to detect whether the causation entropy Cf, .,|(\f,] €xceeds
a small threshold value, thereby identifying meaningful causal relationships. This approach
has proven effective in practice, as significant causal relationships detected in higher-order
moments typically manifest reliably in the Gaussian approximation. Furthermore, this method
enables efficient identification of sparse model structures, where the precise coefficients can be
subsequently determined through linear regression, as discussed later. The reliability of this
Gaussian approximation approach is well-established with many applications [40—44].

Once the model is determined by selecting a small set of candidate functions, the coefficients
can be estimated via a least-squares method.

(c) Conditional Gaussian mixture modelling

Although the identified causal relationships can capture most non-Gaussian features, they are
deterministic and cannot directly quantify the uncertainty when predicting extreme events.
Moreover, the difference between the identified model and true maximum stress (i.e. residual) in
experiments may exhibit non-Gaussian features that prevent them from being treated as simple
white noise. To address these challenges, a CGMM is introduced that builds upon both the
identified causal relationships and non-Gaussian features of stress states. The general Gaussian
mixture model (GMM) is a suitable approach for representing non-Gaussian features in the
form of a combination of multiple Gaussian distributions [33,45]. While the GMM, describing
the total residual, can be used directly as a crude quantification of the forecast uncertainty,
the maximum stress values vary significantly depending on different physical conditions.
Therefore, it is advantageous to develop a modified version of the GMM, namely, the CGMM,
which characterizes the differences in the forecast uncertainty, conditioned on different physical
conditions, allowing a more refined uncertainty quantification. The CGMM naturally accounts
for the heavy tails associated with extreme events [46,47].

The CGMM approach consists of two main steps:

(i) Training phase: collecting pairs of data consisting of (i) the results from the identified
physics-based model opy04e] and (ii) the corresponding true maximum stress values
obtained from simulations oyy. These pairs are used to construct a GMM that
captures the joint distributions of the true and estimated maximum stress values. Then,
conditioning on each oyoqel, the corresponding GMM describing oy, known as the
CGMM, can be formulated.

(ii) Prediction phase: given a new result o ., from the identified model, the predicted
maximum stress o . is obtained based on the updated parameters from the

corresponding CGMM. This estimation provides not just a single predicted value but

a range of possible values with their associated probabilities.

The details for these two steps are introduced in §2¢(i) and §2c(ii).

(i) Training part

The training phase begins with collecting pairs of data from the identified physics-based model
and the true value for maximum stress. Let oyoqel Tepresent the predictions from the physics-
based model, and oy denote the true maximum stress values from simulations. These pairs of
data are used to construct joint probability distribution using GMM.

A GMM represents a probability distribution as a weighted sum of multiple Gaussian
component distributions. Each component in the mixture is defined by its mean, covariance
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matrix and mixture weight, where the weights sum to unity. The joint distribution of oy0qe1 and
Otruth 1S given by
K
P(0model, Otruth) = Z wiN (i, Zx), (2.6)
k=1
where K is the number of Gaussian components, wy are the mixture weights and A (g, Xx)
represents the bivariate Gaussian distribution with mean p; and covariance matrix X.
The parameters of each Gaussian component are

T Zhar

=Gy if) and Ep=1| ol 27)
X X
™ T

where M and T stand for model and truth, respectively. In this study, the vector py is in two
dimensions, and X is a 2 x 2 matrix.

Before estimating the mean vector and the covariance matrix, the number of Gaussian
components K is a critical parameter in constructing the GMM. It is typically determined
based on the characteristics of the data and the specific application requirements. Selecting an
appropriate K involves balancing model complexity and accuracy while avoiding overfitting.
Several approaches can be employed to determine the optimal number of components, including
information criteria methods such as the Akaike information criterion, the Bayesian information
criterion [48-50] and direct cross-validation [51] which is used in this study.

Once the number of components is determined, the other parameters, such as mixture
weights, means and the covariance matrix, can be optimized using the expectation-maximization
(EM) algorithm [52]. Since it balances computational efficiency and estimation accuracy well,
it is particularly suitable for moderate-sized datasets. The EM algorithm alternates between
component assignments and updating the component parameters. For each step, the log-
likelihood is calculated. This iterative process continues until the log-likelihood converges,
indicating that a local optimum for the model parameters is found. The resulting GMM
parameters capture both the overall distribution of stress values and the complex relationships
between the identified model and true values across different physical conditions.

(ii) Prediction part

We can use the model to predict new cases after obtaining the GMM parameters from the training
phase. Given a new estimation o ;. from the identified physics-based model, the goal is to
estimate the corresponding maximum stress o/ . This is achieved through the conditional
distribution of the GMM, namely, the CGMM.

The distribution of o*

i N
ath conditioned on o

mode
K

p(gttuth | orﬂ;lodel) = Z ykN('alic"lM' ‘\:’%M)/ (2.8)
k=1

| is given by

where the updated weights y;, means /l}}‘M and covariances E~§|M for each component are
computed using the basic property of joint Gaussian distribution in light of equation (2.7). The yj
is given by

TN (O mode | i Zhi)

T K iy
2 jm1 TN Oodel | s Zan)

Yk (2.9)

where N (0% 4o | MI;VI’ b)) 1’\‘4M) is the probability density of observing 0¥ ;. under the kth Gaussian
component. The responsibility y; represents how much each Gaussian component contributes to

predicting oy ) given a new model result oy 4.

It should be noted that the responsibility y, calculated using equation (2.9) is not the most

accurate representation of the contribution of each Gaussian component to the true stress % . .

This is because yj is determined solely based on the estimated stress of the identified model
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Figure 2. The overview diagram of conditional Gaussian mixture modelling.

0 ogel @nd the parameters (,uII‘W Z‘II\‘,IM) associated with oppge1. A more precise calculation of the
responsibility would involve considering the joint probability distribution of both oyo4e1 and
oyuth- Nevertheless, in the absence of the true stress value for a new data point, the responsibility
yk calculated using equation (2.9) serves as a reasonable approximation of the contribution of each
Gaussian component to the prediction of 0%, ;.-

The parameters for the distribution p(of 4 |0y 1) is given by the following based on the

conditional distribution theory of a joint Gaussian distribution [53]:

/1]7{“\M =1k + Zh(Ohodel — 10/ Zham 210)

and 5%\1\/{ = T — ZfnZhr/ S
Note that these two parameters are both scalars.
For each given o .., a predicted probability density function (PDF) is obtained for the
corresponding true stress o} . This predicted PDF provides valuable information about the
uncertainty in estimating o}y ., . Instead of a single-value estimate, the PDF gives a range of
possible values for oyr . along with their associated probabilities. It serves as a powerful tool
for quantifying uncertainty in the model predictions. It also enables us to make more informed
decisions and assess the reliability of the model results.

Figure 2 summarizes the process of the CGMM framework.

3. Material microstructures and computational models

(@) Computational crystal model

The crystal plasticity model used in this work is formulated within a large deformation
framework and incorporates non-Schmid effects characteristic of BCC materials such as tantalum.
The model is highly nonlinear and comprehensive, with sophisticated physical mechanism
representation. We note that the model presented herein is a local material model that does not
consider gradients of field variables in the formulation. Models that include gradient effects can
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more accurately account for the atomistic nature of grain boundaries, as dislocation densities
on slip systems will experience a discontinuity across the boundary and will thus feel the grain
boundary provided that the material point is sufficiently close [54]. Many non-local crystal
plasticity models incorporate the effect of statistically stored dislocations as well as geometrically
necessary dislocations [55-58]. Geometrically necessary dislocations are those that accommodate
plastic strain gradients in the material, while statistically stored dislocations are responsible for
the evolving structural resistance. Since we seek to construct a statistical model formulated on
a statistically significant number of observations, several thousand calculations were performed
as will be shown in §5. It is thus probable that the computational expense to employ a non-local
material model would be impractical, thus we adopt a local material model. The main model
components are summarized hereafter, and the model details can be found in [7,59,60].

(i) Kinematics
First, the deformation gradient is cast in a multiplicative manner into elastic and plastic parts,
F=V¢=FF, (3.1)

where ¢ is the motion in terms of the position in the reference configuration and here V(e) denotes
a derivative in the reference configuration. The plastic deformation gradient evolves with its
velocity gradient,

F=I/F and V=) ve'SG, (3.2)
o

where L7 is the plastic velocity gradient, y is the shear rate on slip system «, S§ = m§ ® ng is the
Schmid tensor for slip system o, and m§ and n§ are the slip direction and slip plane normal in the
reference configuration, respectively. Finally, the elastic Green-Lagrange strain is defined by

E = %(c‘f ~), (3.3)

where C° = F°' F is the elastic right Cauchy-Green deformation tensor.

(ii) Constitutive equations

The second Piola-Kirchhoff stress is related to the elastic Green-Lagrange strain by
T¢ =C[E° — (6 — 6p)A], (3.4)

where C is the fourth-order elastic stiffness tensor, E° is the elastic Green-Lagrange strain, A
is the thermal expansion coefficient tensor, 6 is the current temperature and 6 is a reference
temperature. Since tantalum is a cubic material, the thermal expansion tensor is given by A = «1I.
Moreover, the elastic stiffness tensor has three unique components and is assumed to degrade
with temperature:

C11(0) =Ci10xk —m116, C12(0) =Ciox — 111129} (35)

Caq(0) = Cyq0x — maqf.

The flow rule, incorporating non-Schmid effects, is given by

AG ~a| _ co\P\4
¥ =70 exp (_ke <1 — <|T|§75> > ) for |T% —s“ >0, (3.6)
B 1

where yyp is a reference shear rate, AG is the activation energy, kg is Boltzmann’s constant, s* is
the slip resistance due to dislocation structure, 5; is the intrinsic lattice resistance, and p and g are
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exponents that describe the shape of the thermal activation energy barrier. The intrinsic lattice
resistance is scaled with temperature as

S| =8§——, (3.7)

where o is shear modulus at 0K and wu(T) is the temperature-dependent anisotropic shear
modulus defined by

1(0) = \/ sy =20 (3.9)

The resolved shear stress 7%, accounting for non-Schmid effects, is the stress resolved on to the
maximum resolved shear stress plane,
T = (C°T°): (S§ + Sg) ~ T: (S§ +Sp), (3.9)

where ég is the non-Schmid tensor, defined as
3
sa sa
So=) Sy, (3.10)
i=1

The w; terms are temperature-dependent weighting factors that determine the strength of the
non-Schmid effects. The temperature-dependent weighting factors are given by

0 = jss + (WK — Wjss) exp(—0/0;), (3.11)

where 6, is a reference temperature, and w;gx and w;4 are the weighting factors at 0 K and a
saturation value, respectively. In this work, the saturation weighting factor is taken as w;¢ =
0.05 x Wj 0K -

(iii) Hardening Law

The slip resistance is taken to be a modified Taylor Law,

s% =s9+ ub lZuaﬂpﬁ, (3.12)
B

where s is a reference slip resistance, u is the shear modulus, b is the magnitude of the Burgers
vector, a*f is a slip system interaction matrix and pP is the dislocation density on slip system
B. This expression approximates the dislocation interactions that occur between slip systems.
The evolution of dislocation density on each slip system is described by the multiplication
annihilation law,

o Il
g = (g -2, (313)

£o¢

where L” is the mean free path of dislocations, given by

%: > def o, (3.14)
Vs

where d*f =q*# /k% for self or coplanar interactions and d*# = g%/ /k% for all other interactions.
Dislocation annihilation is taken to be in terms of a critical annihilation radius, y%, that is,
temperature- and rate-dependent,

kgo V;
Y= - — . 1
Y Yo (1 Arec n VO ) (3 5)

Here, y.q is the reference annihilation capture radius, Arec is the activation energy for recovery, kg
is Boltzmann’s constant, 6 is the temperature and yy is a reference strain rate.
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(b) Proposed factors for stress analysis

Given the model described above, several factors, based on physical knowledge, are proposed as
possible candidates that predominantly contribute to the stress conditions at grain boundaries
under loading conditions of interest. These factors are derived from both elastic and plastic
contributions to represent the heterogeneous deformation in polycrystalline materials [61].

First, the orientation of the grain, described by Euler angles [7,62,63], plays a crucial role in
determining the deformation mechanisms and stress distribution within the grain. These Euler
angles, notated as 6, @ and w, represent a sequence of rotations that transform the crystal
coordinate system to the sample coordinate system. The resolved shear stress acting on the slip
systems within the grain depends on the grain orientation and the loading direction. This resolved
shear stress includes both the classical Schmid factor and the non-Schmid factor [60,64,65], which
account for the complex nature of dislocation motion in BCC materials.

In addition to the grain orientation, the elastic properties of the material significantly influence
the stress state in polycrystalline materials through two main mechanisms. First, the elastic
constants, represented by the fourth-order tensor C, vary with crystallographic orientation due
to material anisotropy. Second, the elastic strain E°, which represents reversible deformation,
is related to stress through these orientation-dependent constants. Together, these factors lead
to incompatible elastic deformation at grain boundaries [15], creating stress concentrations and
discontinuities at interfaces even under uniform loading conditions. Therefore, both elastic
constants in the global coordinate system and elastic strain variations across grain boundaries
must be considered when analysing stress distributions in polycrystalline materials.

Next, analogous to the elastic constants, these stress disparities can cause mismatched plastic
flow across the boundaries. This effect is particularly pronounced in BCC materials where
plastic deformation is dominated by screw dislocations. These screw dislocations exhibit unique
characteristics, dissociating into three partial dislocations at rest and forming an equidistant
triad within the crystallographic lattice [66,67]. Their non-planar core structure prevents accurate
representation through classical Schmid rules [68,69] and significantly reduces dislocation
mobility compared to edge dislocations. Therefore, when considering the current state of plastic
deformation in each grain, we include both classical Schmid factors and non-Schmid effects
(equation (3.9)) in our normalized resolved shear stresses. These 48 non-Schmid factors are sorted
by magnitude and re-termed 7;, where I =1 indicates the largest factor. The first five largest
factors are included in our analysis to capture the primary deformation mechanisms and their
contribution to stress heterogeneity at grain boundaries.

Moreover, the total statistically stored dislocation density

pssd =) p° (3.16)
o

is included as this is a quantity that is readily available to both single-crystal models and isotropic
models.
To incorporate the current state of plastic deformation, the spatial strain measure is considered:

3
2
BB =FF =Y /1ol (3.17)
i=1

Its principal stretches and directions are computed. The rate of plastic deformation, provided by
the symmetric part of the plastic velocity gradient,

3
— — p
D/ =symlF =) v @V, (3.18)
i=1
is also taken into account. The misorientation between the accumulated plastic flow directions
and the plastic slip rate directions between grains is considered. The rate of plastic deformation
is captured by DF in equation (3.18), with eigenvalues Af indicating deformation rates
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Table 1. Microstructural factors considered in the candidate function library. Notations with superscript max indicate quantities
evaluated using the hotspot local information.

0,P,w grain orientation relative to sample coordinates.

Sk square root of the mean of statistically stored dislocation density for all grains as shown in
equation (3.16).

mn (f,'g;X) ................................... o rgeSt compre e rsmgra L

C,,Gn ............................................. the//thcomponentOfthee|a5t|cconstant5forgra|nnWh ere/ . /representtherow

and column coordinates in a 6 x 6 matrix. The matrix, using Voigt notation, compactly
describes the full elastic tensor.

the misorientation of the principal stretch rate directions (i.e. eigenvectors) of D” in
equation (3.18) corresponding to the ith eigenvalue of grain n with the jth eigenvalue of
grain m.

and eigenvectors vf’ describing deformation directions. These measures are particularly
important when considering grain-boundary interactions, as demonstrated by experimental
observations [12].

To summarize the above justifications, the candidate factors are listed in table 1.

4. Experimental set-up

A series of idealized microstructure configurations with increasing complexity are simulated to
identify specific physical features leading to high-stress spots in deformed polycrystalline metals.
All simulations are conducted at a strain rate of ¢ =10°s~1, a rate commonly observed in dynamic
loading conditions known to cause damage in tantalum.

The study begins with a single-crystal configuration used to validate the statistical analysis
methodology, for which 200 simulations are performed to establish adequate statistical sampling.
This is followed by two distinct bi-crystal configurations, each requiring 800 simulations: a
cylinder with a grain boundary perpendicular to the loading direction and another with a
grain boundary parallel to the loading direction. In addition, a quad-crystal configuration is
simulated to incorporate both perpendicular and parallel grain-boundary interactions with
2000 simulations. Finally, an octu-crystal (e.g. eight-grain) configuration is implemented to
approach realistic microstructure complexity, with 3000 simulations to fully characterize
the system behaviour. Note that the increased number of simulations is utilized to ensure
the increased complexity of the model still provides statistically significant results under the
KS test.

5. Analysis of grain-boundary effects on stress distributions

(a) Single-crystal analysis: establishing the baseline stress state

To establish a fundamental understanding of stress states, an analysis of single-crystal data is
first conducted. For the single-crystal case, the resultant stress (rather than maximum stress) is
used, defined as the volume-averaged stress over the entire crystal domain, since there are no
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Table 2. Causation entropy analysis on the single-crystal configuration.

feature causation entropy feature causation entropy

E, 03108 3 0.0013
o o o
\/ﬂ ........................................ Doy E;’Z .............................................. o
f4 ............................................ Do fz ............................................ oo
E§3 .............................................. Doy ¢ ............................................... o
e s e g
L vose ;? 3 .............................................. o
e Do P B
E;Z .............................................. Do S s

internal interfaces that could lead to stress concentrations. This approach allows for the isolation
of intrinsic material behaviour before introducing the complexities of grain boundaries and
multi-grain interactions. Two hundred single-crystal simulations are performed, varying initial
orientations to capture various possible microstructural states. The resulting stress data then
facilitate effective statistical analysis to identify key relationships and trends.

The analysis is initiated with a linear combination of a subset of the features to establish a
baseline and identify the most influential variables. Causation entropy calculations are used to
select features that are most relevant to stress prediction. The causation entropies for all features
are listed in table 2.

The causation entropy analysis revealed several key insights into the relative importance of
different microstructural features in predicting stress states. As evident from table 2, E5;, C33 and
/Pssd exhibit the highest causation entropy values, which implies their significant influence on
the stress state. This is consistent with physical intuition since these parameters represent critical
aspects of the material’s elastic behaviour, crystal structure and dislocation density. Interestingly,
while the non-Schmid factors 7; show varying degrees of causation entropy, they collectively
contribute substantial information to stress prediction. Although 7; shows a relatively low
individual causation entropy, all five non-Schmid factors are included in the model to maintain a
comprehensive representation of the non-Schmid effects.

Based on these insights, a simple linear relationship between the stress state and the most
influential variables is obtained:

5
Omodel = Pov/Pssd + B1ESs + B2C33 + Y _ Baiti, (5.1)
i1

where opdel is the predicted resultant stress, pgsq is the statistically stored dislocation density,
Cs3 is an elastic constant, E, is an average strain, 7; are the non-Schmid factors and gy, 1, 2 and
Bs; are the model coefficients.

The residual of the identified system in equation (5.1) is then calculated by taking the difference
between oirye and opedel , the statistics of which reflect the uncertainty in such a relationship.
Figure 3 shows the PDFs of the resultant stress and the associated residual. The results reveal
several important aspects of the model’s performance. Notably, the variance of the residual is
only 1.27% of the original resultant stress. Furthermore, the skewness and kurtosis of the residual
distribution are close to 0 and 3, respectively, indicating that the residual closely approximates
a Gaussian distribution. This near-Gaussian nature of the small residual suggests that it behaves
similarly to white noise, implying that the linear model of equation (5.1) has successfully captured
the significant features of the resultant stress distribution. The stark contrast between the two
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Figure 3. PDFs of the resultant stress (blue line) and residual (dashed black line) from the linear regression model in
equation (5.1) for single-crystal configurations.

(a) Perpendicular grain boundary

_(b) Parallel grain boundary
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Figure 4. KS tests results on the maximum stress if it occurred near a grain boundary in a bi-crystal configuration. Panels (a)
and (b) show the results for the simulations with perpendicular grain boundary and parallel grain boundary, respectively. For
each number of sample points, there are 100 times KS tests to record the percentage of passing tests.

distributions demonstrates the effectiveness of the linear relationship in explaining the majority
of the stress variation in single-crystal configurations.

(b) Bi-crystal analysis: introducing grain-boundary effects

This subsection investigates two primary bi-crystal configurations: one with the grain-boundary
plane perpendicular to the loading direction and another with the grain-boundary plane
parallel to the loading direction. These idealized set-ups provide fundamental insights into
grain-boundary effects while maintaining a tractable level of complexity.

For each configuration, 2000 simulations with different crystallographic orientations are
conducted. Among these, approximately 600 simulations exhibit maximum von Mises stress
near the grain boundary, which is used for the feature analysis carried out below. To ensure
the statistical robustness of the results, KS tests are applied to the subset where maximum
stress occurs at grain boundaries. Figure 4 illustrates these results, with both types reaching
the threshold rejection rate of 95%. This high rejection rate confirms not only the statistical
significance of the sampling but also the non-Gaussian nature of the stress distributions, justifying
the need for advanced statistical techniques in subsequent analyses.
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Initial investigations employed linear models to identify critical factors influencing stress
states. However, these linear models are insufficient in capturing the full complexity of the stress
distributions (not shown here), particularly the non-Gaussian features identified by the KS tests.
Given the limitations of linear models and guided by physical knowledge of crystal plasticity,
a general nonlinear analysis approach is adopted. The candidate feature function library for the
nonlinear analysis includes:

— Linear terms: These represent the direct, first-order effects of various factors as listed in
table 1 on stress, providing a baseline for the model.

— Quadratic combinations of stretch rates i;g, and kg‘GaZ: These terms represent the
nonlinear effects of the rate of plastic deformation on stress states, particularly important
in dynamic loading conditions.

— Squares of u; g, - ujGm and uf“Gaz . u]mgfn These terms represent the nonlinear effects of
grain misorientation on stress states, particularly at grain boundaries.

— Quadratic combinations of cumulative stretch u;g, and /L:"“g: These terms capture
the nonlinear effects of accumulated plastic deformation on stress states, particularly
significant in cases of large plastic strains.

— Squares of v; g, - Vj,gn and VZ‘G";‘, . v]‘f‘é‘;‘n These terms represent the nonlinear effects of
grain misorientation on stress states, particularly at grain boundaries.

— Quadratic combinations of elastic constants C;;g,: These terms model the complex
local elastic behaviour, especially stress concentrations arising from mismatches in elastic
properties between adjacent grains.

— Quadratic combinations of average strain Efi,G .- Analogous to the elastic constant terms,
these quadratic combinations are used to capture nonlinear effects in the average strain
state of each grain, providing a more comprehensive representation of the strain-stress
relationship at the grain level.

— Quadratic combinations of non-Schmid factors 7; g, and 7% These terms represent

i,Gn"
the nonlinear effects of non-Schmid behaviour.

Introducing quadratic terms necessitates further categorizing of these features, as their physical
significance extends beyond individual contributions. Instead of treating each quadratic term
individually, several categories are divided to reflect their underlying physical interactions. This
categorization is applied not only for simplification but also for showing deeper insights into
the mechanisms driving stress distribution in bi-crystal cylinder simulations. Here, Efj,Gn is
taken as an illustrative example; their quadratic combinations can be divided into two groups:
(i) intragrain interactions and (ii) intergrain interactions. The former represents the quadratic
combinations of elastic average strain components within the same grain, while the latter means
the quadratic combinations of those components between different grains, which describe the
complex interplay of elastic strains across the grain boundary. From a physical standpoint, the
intergrain interactions are of particular interest as they directly relate to the stress state at and near
the grain boundary, a critical region for potential damage initiation. This emphasis on intergrain
interactions is not merely theoretical but is substantiated by our causation entropy analysis.

Figure 5 presents a heatmap of the causation entropy for various combinations of elastic
average strain tensor components in the bi-crystal cylinder under the perpendicular grain
boundary. The colour and size of each circle represent the magnitude of causation entropy,
with larger, warmer-coloured circles indicating higher values. Notably, the intergrain interactions
(upper-right quadrant) consistently exhibit higher causation entropy values compared to the
intragrain interactions (upper-left quadrant and lower-right quadrant). This visual representation
clearly shows that this intergrain interaction has a more significant information contribution
compared to intragrain interactions. Such a finding aligns with physical understanding: the
interface between grains, where material properties can change abruptly, is likely to be a key
determinant of the system’s stress distribution.

In summary, features considering all quadratic combinations can be generally categorized into
intragrain and intergrain interactions. For some features, there is no physical meaning in different
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Figure 5. Heatmap of causation entropy for quadratic combinations of elastic strain tensor components (E;,¢,) in a bi-crystal
system. The colour and size of each circle represent the magnitude of causation entropy. The dashed boxes highlight intragrain
interactions (the upper-left is for grain 1and the lower-right is for grain 2) and intergrain interactions (upper-right).

sub-variables with different grains. Therefore, the intragrain interaction only contains its square
terms. To formalize this categorization, a notation system is introduced for generic features {X’}:

— {X}1: linear terms;
— {X}s: quadratic terms representing intragrain interactions or square terms;
— {X}c: quadratic terms representing intergrain interactions.

Figure 6 illustrates the causation entropy values for various categories under two distinct grain-
boundary configurations: perpendicular and parallel. The categories are arranged in descending
order based on the mean causation entropy value across both configurations.

The selection of candidate features extends beyond purely statistical considerations to ensure
the comprehensive representation of all relevant physical mechanisms. The foundation of the
model begins with the dislocation density term ,/pgq. Although this term shows relatively low
causation entropy in the bi-crystal configuration, it is retained as it represents the fundamental
carrier of plastic deformation and provides continuity with single-crystal behaviour. In addition,
it is noteworthy that the number of terms within each category may significantly influence the
magnitude of the causation entropy during the dislocation density ,/pssq category. Actually, the
dislocation density ,/pssq shows the high causation entropy when computing them for individual
features. The linear elastic terms E;?].,Gn and Cj; g, are included as they describe the basic elastic
response, which is essential for maintaining mechanical equilibrium regardless of their causation
entropy values.

The linear elastic terms EZG , and C;; g, are included as fundamental descriptors of the primary
elastic response, essential for maintaining mechanical equilibrium regardless of their causation
entropy values. The cross products of elastic constants Cj; ,,Cii gm and elastic strains Ef

(4
ij,Gn Ekl,Gm
are incorporated to characterize elastic incompatibility at grain boundaries. In addition, square
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Figure 6. Causation entropies computed for different categories for maximum stress under perpendicular grain boundary (dark

blue) and parallel grain boundary (green). The x-axis label represents the different categories, where the subscripts indicate the
linear terms, square terms and intergrain interaction terms.

terms (Cy;, Gn)? and (E: Gn)z are included to capture intergrain interactions and local nonlinear
effects. Notably, all these quadratic terms demonstrate high causation entropy values in the
analysis. These terms naturally emerge in expressions involving differences between grain
features, taking the form (X, — X]m)z, where X represents various physical quantities.

Non-Schmid factor interactions play a crucial role in our model, as evidenced by their high
causation entropy values. The terms 7;G,7jcn and those evaluated using the local hotspot
information are particularly important as they capture the complex interactions between different
slip systems that can lead to stress concentrations at grain boundaries. In addition, the orientation-
dependent terms (v; gy, - v,«,Gm)2 and the corresponding terms evaluated using the local hotspot
information describe misorientation effects, which, while showing moderate causation entropy,
are essential for understanding stress development at grain boundaries.

Based on the above considerations, the resulting statistical model is written as

Ng: Ngr Ng 3
Omodel = Bo~/Pssd + Z Z BiniriGn + Z Z ,32711}‘?@6\: + Z Z ﬁSnijEZ‘,Gn
noj=1 noj=1 noij=1
Nr Nr Ngr
+ Z Z /34711 ii,Gn + Z Z ﬁSnmz] ij,Gn 1],Gm + Z Zﬂ6nmz i, Gn ii,Gm
n m>njj=1 m>n j=1

+ Z Z ,37m](E1] Gn)Z + Z Z /38111](611 Gn)z + Z Z .39nm1]7-'1 GnT],Gm

nojj=1 n m>n jj=1

+ Z Z ﬁlOnmzfln(lﬁqx Aln(l;an); + Z Z ﬂllm(vt Gn " Vi, Gm) Z Z ﬁlZm(V?lS; : ?1(;’3;1)2 (5.2)

m>n j=1

where op0qel is the predicted maximum stress and B represents the coefficients for the
different terms.

To investigate the model accuracy, the residual ores is computed between the true maximum
stress and the predicted values from the above statistical model, ores = Otruth — Tmodel- Figure 7
shows such results. For both bi-crystal configurations, the residual (black lines) has a significantly
smaller variance, less than 10%, than the truth (red-lines), which implies the validity of the feature
analysis in equation (5.2).
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Figure 7. PDFs of the true maximum stress (red lines) and the residual (black lines). (a) The results for the bi-crystal cylinder
under perpendicular grain boundary. (b) The results for the bi-crystal configuration under parallel grain boundary.
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Figure 8. PDFs of the predicted maximum stress o,
distribution p(otth). (a) The PDFs of the estimation of o,
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model*
lines indicate the position of true o . for each predicted PDF.

 conditioned on different values of o ., and the true maximum stress
, under perpendicular grain boundary. (b) The PDFs of the estimation
The vertical dashed

truth

Figure 8 presents the forecast of the stress value with the associated uncertainty. Here, the
forecast is based on the CGMM. It is seen that the forecast uncertainty varies as the predicted value
of the maximum stress O‘m odel* The uncertainty is not necessarily a Gaussian distribution, which
implies the necessity of using the mixture presentations. Due to the additional information of the
conditioned state, i.e. the predicted o) ,.;, the uncertainty in the prediction is usually slightly

smaller than the total residual shown in figure 7, which provides more confident forecast results.
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Figure 9. PDFs of true maximum stress distribution (red lines) and model residuals (black lines) in multi-grain configurations.
(a) The results for quad-crystal cylinder configuration. (b) The results for octu-crystal cylinder configuration.

(c) Multi-grain configurations

Following the statistical model developed from bi-crystal analysis, more complex configurations
containing multiple grain boundaries are investigated to examine the model’s applicability to
realistic polycrystalline structures. These multi-grain configurations, including quad-crystal and
octu-crystal arrangements, serve as intermediate steps between idealized bi-crystal cases and
actual polycrystalline materials.

The statistical model is adapted for these multi-grain configurations to maintain computational
efficiency while preserving essential physical mechanisms. As the number of grains increases, the
full model from the bi-crystal case would include an overwhelming number of interaction terms,
scaling approximately as O(Nf,) for Ny grains. Therefore, a simplified version, equation (5.3),
is employed, retaining only the terms with high causation entropy values identified through
previous analysis. This refined model preserves fundamental terms, including dislocation density,
elastic constants, elastic strains and critical local features while selectively including the most
significant intergrain interactions. The resulting statistical reduced-order model reads

Ny
Omodel = B0+/Pssd + Z Z BinitiGn + Z Z ﬁzm)»fné‘ﬁ + Z Z /33m] ij,Gn + Z Z BaniCii,Gn
nojj=1 n
Nge Ngr Ngr
+ Z Z ﬂ5mm] ij,Gn lE']',Gm + Z Z BenmiCii,anCii,om + Z Z ﬁ7m](Ez] Gn
m=>ni,j=1 m>n j=1 noij=1
Ngr 3
+ Z Z ﬂBmJ(C” Gn)2 + Z Z ,39nm171n251x Afg‘,ﬁ + Z Z Bioni( fn(?:: : frg:;)z (5.3)
n m>n j=1 n =1

Similar to the cases for the configurations of bi-crystal cylinders, figure 9 compares the PDFs
of the true maximum stress (red lines) and the residual of the statistically resulting model
(black lines). The residual distribution has a much smaller variance than the truth. It also
remains approximately Gaussian, suggesting the model successfully captures the primary sources
of non-Gaussian behaviour in the stress field. Similarly, figure 10 shows the forecast and
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Figure 10. Similar to figure 8, but for the quad-crystal case and octu-crystal case.

its uncertainties. The forecast mean values are close to the truth, while the uncertainty is
again smaller than the total residual overall, indicating the necessity of using the CGMM.
The successful application of this streamlined model to more complex arrangements suggests
that the fundamental physics of grain-boundary stress concentrations can be captured with a
reduced set of carefully selected interaction terms. Notably, despite their increasing geometric
complexity, the model’s performance remains consistent across both quad-crystal and octu-
crystal configurations. This robustness in performance across different levels of microstructural
complexity validates the selection of essential interaction terms in the simplified model, which
suggests the potential applicability of the statistically reduced-order modelling framework to
even larger polycrystalline systems.

6. Discussion and conclusion

The framework developed in this study advances our ability to analyse complex material
behaviour by uniquely combining physical principles with statistical learning. Traditional
approaches to studying the damage behaviour of polycrystalline metallic materials rely on
computationally expensive full-field simulations or homogenized engineering models, which
sacrifice physical accuracy for computational efficiency. Most existing analysis tools also have
difficulties in representing the non-Gaussian feature of extreme events, which is, however,
crucial for damage prediction. This framework avoids the above limitations through three
key components.

The uniqueness of the proposed framework consists first of a systematic way of distinguishing
between causal relationships and mere correlations. Unlike traditional correlation-based
methods, the causation entropy analysis identifies true underlying causal relationships between
microstructural features and stress states. This distinction is crucial because it identifies physically
meaningful mechanisms and enables principled model reduction by retaining only features with
genuine causal influence. This provides a mathematical base for experimentally observed damage
patterns in future work.

Beyond stress analysis in polycrystals, this framework establishes a general methodology
for studying complex material phenomena. Its key strength is demonstrated by successful
extrapolation from simple to complex systems, and models trained on bi-crystal configurations
accurately predict stress states in quad-crystal and octu-crystal systems. This robustness suggests
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that the identified physical mechanisms are fundamental rather than specific to particular
configurations, which makes the framework valuable for analysing realistic material systems.

The framework is also efficient because it combines physical insight and statistical
techniques. Traditional crystal plasticity simulations become prohibitively expensive for complex
polycrystalline systems. Using causation entropy to identify essential features and then
employing CGMMs for probabilistic predictions reduces computational time by orders of
magnitude while maintaining accuracy in predicting extreme stress states. In fact, once the
statistical model is developed, the forecast, which relies only on computing the few selected
features without running the original computational models, becomes highly efficient. In
addition, the incorporation of CGMM for uncertainty quantification provides probabilistic
predictions at a low computational cost. This efficiency enables the rapid evaluation of multiple
material configurations, which is critical for practical materials design applications.

These advances establish a new framework for analysing material behaviour, achieving
accuracy and efficiency. As materials science increasingly confronts complex, hierarchical
systems, such physics-informed statistical approaches will become essential for bridging scales
and understanding structure-property relationships. Future developments could extend this
methodology to dynamic loading conditions and integration with experimental data, further
broadening its effect across materials science applications.

Data accessibility. The parameters of the statistical models presented in equations (5.1)—(5.3) and the CGMM for

different cases are provided in the electronic supplementary material [70].
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