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Abstract: This paper presents a data-driven receding horizon control framework for discrete-
time linear systems that guarantees robust performance in the presence of bounded disturbances.
Unlike the majority of existing data-driven predictive control methods, which rely on Willem’s
fundamental lemma, the proposed method enforces set-membership constraints for data-driven
control and utilizes execution data to iteratively refine a set of compatible systems online.
Numerical results demonstrate that the proposed receding horizon framework achieves better
contractivity for the unknown system compared with regular data-driven control approaches.
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1. INTRODUCTION

Data-Driven Control (DDC) has gained significant atten-
tion in recent years due to the challenges of accurately
modeling modern systems, as highlighted by Hou and
Wang (2013) and Tang and Daoutidis (2022). DDC meth-
ods bypass explicit system identification, instead focusing
on designing controllers that handle all systems consistent
with observed data. Similarly, Model Predictive Control
(MPC) has been widely adopted for its ability to handle
constraints and optimize control inputs over a time horizon
using system models as detailed in Mayne et al. (2000).
However, traditional MPC relies heavily on explicit sys-
tem identification, which can introduce errors. Advances
in data collection and computational capabilities have
brought these two areas closer, enabling control design
directly from measurement data. This paper builds on
these developments, with DDC as the central focus and
MPC playing a complementary role. Specifically, we aim
to develop a robust Data-Driven Receding Horizon Control
(DDRHC) method for discrete-time Linear Time-Invariant
(LTT) systems. In the next subsection, we review relevant
works on data-driven MPC.

1.1 Related Works

A study by Berberich et al. (2020) proposes a robust data-
driven MPC method, based on Willems’ Fundamental
Lemma as detailed in Willems et al. (2005), for LTT sys-
tems. The approach addresses bounded additive noise in
output measurements by introducing a slack variable with
cost regularization in the MPC problem. Nevertheless,
the non-convexity introduced by the upper bound of the
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slack variable makes the problem computationally ineffi-
cient for practical implementation. Additionally, the new
measurements are not utilized to refine the model, which
may limit the performance. While most DDC studies are
based on the Fundamental Lemma, in Xie et al. (2024), the
authors consider an unknown discrete LTI system affected
by noise and design a general min-max MPC problem
with input and state constraints. The considered min-max
problem minimizes the worst case cost over the set of
system matrices consistent with the measurement data.
However, the authors restrict their approach to a linear
state-feedback law and propose a receding horizon strategy
by reformulating the data-driven min-max MPC problem
as a semidefinite program.

Another approach to the data-driven MPC problem has
been studied by Attar and Lucia (2023), where they
propose a method to compute robust backward reach-
able sets from noisy data for unknown constrained lin-
ear systems with bounded disturbances. Their approach
constructs backward reachable sets using zonotopic inner
approximations that align with measurements and state
and input constraints, and designs a controller based on
the reachable sets. The study by Li et al. (2023) intro-
duces a data-driven receding-horizon control method for
chance-constrained output tracking in unknown stochastic
LTT systems influenced by both process and measurement
noise. The approach constructs an auxiliary state model
directly parameterized by input-output data, enabling the
formulation of a stochastic control problem. This method
incorporates chance constraints, aligning with the Stochas-
tic MPC framework under investigation.

Verhoek et al. (2021) proposes a receding-horizon data-
driven predictive control method for linear parameter-
varying (LPV) systems, assuming the scheduling parame-
ter is measurable and known over the prediction horizon.
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Using measured data and persistence of excitation, the
method ensures reference tracking and constraint satisfac-
tion with performance comparable to model-based control.
However, the LPV system considered in their work is
assumed to be noise-free. Schuurmans and Patrinos (2021)
examines a receding horizon data-driven estimator for
linear system networks, specifically focusing on partially
observable Markov jump linear systems. Their proposed
method uniquely identifies a subsequence of past mode
transitions and removes the need for an offline exhaustive
search over mode sequences to determine the observation
window size.

1.2 Contributions

In this paper, unlike most DDC methods that rely on
Willems’ Fundamental Lemma—which often requires ad-
ditional reformulation to achieve robust performance and
may lead to non-convexities or inefficiencies in imple-
mentation—the proposed approach implements DDC by
enforcing a set-membership constraint. Methods based on
Willems’” Fundamental Lemma typically produce a robust
controller that is optimal for a single specific system
but does not guarantee robust performance across all
systems consistent with the measured data. In contrast,
our method designs a robust controller that accounts for
noise and ensures robust performance for all discrete-
time linear systems compatible with the measured data.
Furthermore, by utilizing a receding horizon framework,
our approach updates the noise-affected data dictionary
online at each time instant. Other methods may overlook
state and input constraints, which limit their applicabil-
ity to constrained systems, or may focus solely on linear
state-feedback design laws without addressing designing
an input in a general form. In contrast, our proposed
method is applicable to all systems consistent with the
measured data and dynamically integrates newly acquired
data to refine the model in real-time. Additionally, our
robust design formulation accounts for a general form of
input while considering state and input constraints. The
contributions of this work are as follows:

e A novel robust data-driven receding horizon con-
trol framework that guarantees Uniformly Ultimately
Bounded (UUB) stability and robust performance of
all systems compatible with measured data under
persistent noise, while state and input constraints are
satisfied.

e A systematic approach for computing the largest ro-
bust controlled invariant set within state constraints,
ensuring feasibility.

e An efficient reformulation of the control problem us-
ing the extended Farkas’ lemma is proposed, avoiding
explicit vertex enumeration and thereby significantly
reducing computational complexity.

This paper is organized as follows: Section 1 outlines the
motivation, challenges, and related works in DDC. Section
2 introduces key concepts like contractivity and bounded-
ness. Section 3 formulates the robust UUB control problem
under disturbances. Section 4 presents the data-driven
receding horizon control framework, including invariant set
handling. Section 5 proposes a reduced complexity frame-
work of the optimization. Section 6 provides numerical
validation, and Section 7 summarizes our contributions.

2. PRELIMINARIES

2.1 Notation

R, (R™)  Set of real numbers (of dimension n)
x,X,X  Vector (or scalar), matrix, set of
1,7 Vector of 1s, identity matrix

llz|| o {-norm of vector z

® Kronecker product

vec(X) Vectorized matrix along columns
int(X) Interior of set X

oX Boundary of set X

2.2 Minkowski: Functionals and Ultimate Boundedness

Definition 1. The Minkowski functional of a set P is
defined as

Yp(x) =inf{r e R:r >0 and x € rP}.

When the set P is convex, compact, symmetric and
contains the origin in its interior, ¢(.) defines a norm in
R™. In the sequel we will denote this norm by ||z||p.

Consider an uncertain discrete-time LTI system of the
form:

41 = A(w)z, + B(w)ug + vg, w € W, v, €V, (1)

where w and v represent bounded uncertainty and process
noise respectively, and W,V are compact, balanced poly-
hedra containing the origin in their interior. In the sequel,
without loss of generality, we will assume that V has the
representation V = {v: |V« < 1}.
Definition 2 (Blanchini (1994)). Given 0 < X < 1,
a set S is (controlled) A-contractive with respect to the
trajectories of (1) if and only if for all x € S there exists
a control u = ¢(x) such that A(w)x + B(w)u(z) +v € AS
for all w € W,v € V. In the case where A = 1, the set S
1s said to be positively invariant.
Lemma 1 (Blanchini (1994)). If a set S is A-contractive
with respect to (1), then the set uS is also A-contractive
for all pu > 1. Further, if vy, = 0 then the result holds for
all p > 0.
Definition 3 (Blanchini (1994)). The system (1) with a
control of the form u, = ¢(xk) is Uniformly Ultimately
Bounded (UUB) in a set S if and only if for every initial
condition x,, there exists K(x,) such that xy, € S for all
k> K(x,) and allw € W,v € V.
Definition 4. The system (1) with a control of the form
u = ¢(x) has a convergence rate A < 1 to a set S if
and only if for all x & int(S), ||A(w)z + B(w)o(x) + v||p
< Az||p for allw e W,v e V.
Definition 5. Given experimental data D = {zy,uy,
ka}Z;Ol, consisting of T state-input-next pairs, the con-
sistency set is defined as

C={A,B: |V(Azk + Bup — Ti+1) [loo < 1, @)

k=0,...,T—1},

that is, the set of all systems consistent with the available
information (model structure, measured data and distur-

bance model). In the sequel, by a slight abuse of notation,
we will denote this set as C(D).
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2.3 FExtended Farkas’ Lemma

The following variant of Farkas’” Lemma plays a key role
in this work to reduce the data-driven control design to a
tractable convex optimization problem:

Lemma 2 (Henrion et al. (1999)). Consider polyhedrons
Py ={z: Nz < v} and Py = {a: Mz < p}. Then Py C
P if and only if there exists a matriz Y with non-negative
entries such that

YN=M and Yv < p.

3. ROBUST UUB CONSTRAINED DATA-DRIVEN
CONTROL

In this paper we consider uncertain systems of the form
(1), affected by persistent, bounded disturbances and
subject to state and control constraints xx € X, uy € U.
In the sequel, without loss of generality we will assume
that the state and control constraint sets are given by:

X ={z:||[Fr|o <1}, U ={u: [[Hulloo <1}  (3)
Note that with this representation ¢ x () = || F|| co-

Due to the presence of persistent disturbances, it is only
possible to guarantee that the closed-loop system can be
rendered UUB in some set S that contains the smallest
(controlled) origin reachable set from the disturbance. This
observation motivates the following prototype problem.
Problem 1. Given a A-contractive set S, find a control
law u = ¢(x) that renders the closed-loop system UUB in
S for all w € W,v € V while respecting the state and
control constraints.

When the uncertain dynamics have a convex description of
the form A(w) = > w;A4;, B(w) = > w;B; where A;,B;
are known and S is polyhedral, the problem above can be
solved using a polyhedral Lyapunov function induced by
the Minkowski functional ¥p of a suitable A-contractive
polyhedron P C S (see Blanchini (1994); Blanchini et al.
(2008) for details).

In the data-driven scenario considered here, however, this
approach cannot be applied directly, since (A;, B;) are
unknown and must be inferred from the observed data
D. Nevertheless, since V is a polyhedron, the consistency
set C(D) is also a polyhedron whose vertices (i.e., (4;, B;))
can be easily computed. Thus, in principle Problem 1 can
be solved by finding the vertices (4;,B;) of C(D) and
then proceeding as in Blanchini et al. (2008). However,
such an approach does not make efficient use of all data
available, i.e., the training data and the data generated
by the current executions, unless the consistency set C(D)
is updated as new data is generated. Furthermore, from a
performance standpoint, it is desirable to minimize the size
of the set S and achieve the fastest possible convergence
rate compatible with the constraints. This motivates the
following receding horizon problem.

Problem 2. Given experimental training data Dirain =

N .
{z?,u?,z?+1 }J,Zl and data generated during the present
execution up to the current time T, Deger = {Tk, Uk,

J:k+1}f:_01, find the smallest set S and a corresponding
controller uw(xr) that (i) renders all systems consistent
with the data Dr = Dirgin U Dege,r UUB in S compatible
with the state and control constraints, and (ii) has the
fastest (i.e., smallest \) convergence rate to this set.

4. DATA-DRIVEN RECEDING HORIZON CONTROL

A difficulty in solving Problem 2 stems from the fact that
computing an approximation to the smallest controlled
invariant (or controlled contractive) set S is nontrivial
as shown in Chen et al. (2018). In addition, optimizing
the rate of convergence requires optimizing the worst
case (over initial conditions and disturbances) of HZ:O Aks
where A\, denotes the contractivity rate at time k, and T is
the considered time horizon. To address these challenges,
we adopt a greedy receding horizon approach. At each time
instant k, we minimize the worst-case Ay across all systems
consistent with the available data Dy up to time k, while
satisfying the control and state constraints.

4.1 The Case with Controlled Contractive X

For simplicity, first consider the case where the entire
state constraint set X is controlled A-contractive, for some
0 < A < 1. In this case, the following algorithm is used as
a surrogate of Problem 2:

Algorithm 1 Conceptual Data-Driven Receding Horizon
Control

1: Initialize: initial state xg and data Dy = Dirain

2: repeat
3: Input: current state x; and data Dy
4: Solve
ur = argmin A subject to:
ueU, A
b (Azk + Bu+v) < M (1), (4)

Vo eV, (A,B) € C(Dy)

5 Apply the control u to the unknown system

6 Measure the resulting state xj41

7 Update the data set: Dg11 < Dy U (zg, ug, Tt1)
8 E+—k+1

9: until a stopping criterion is met

Lemma 3. Assume that X s controlled \,-contractive
for some 0 < A, < 1, for all systems in C(Dirain). Then
the control law generated by Algorithm 1 is admissible and
such that:

(1) The origin is an exponentially stable point of the
nominal closed-loop system, with region of attraction
X and convergence rate \*, for some \* < A,.

(2) The closed-loop system is UUB in the set AX C X,
with A < A,.

Proof. To prove (1), set vy = 0 and denote by z; the
vertices of X', where we assume a finite number of extreme
points. Since 0 € int(V), it follows that for each j there
exists u(z;) and A; < A, such that for all (4,B) €
C(Dtrain)s Ya(Azj + Bu(z;)) < Aj. From convexity, it
follows that for all © € 90X, there exists u(x) such that
Yx(Ax + Bu(z)) < A* = max; \] < A,. Consider now the
trajectory generated by Algorithm 1, starting from some
xo € X. Since at time k, C(Dy) C C(Dirain), from Lemma
1 it follows that the control action generated by (4) is
such that P (zx) < Ma(zp—1) < (M) ha(z0) < (AP
Property (2) follows directly from Lemma 1 and the fact
that, at each step, C(Dg) C C(Dirain)- Hence, if X is
controlled \,-contractive for all (A, B) € C(Dyrain), it is
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controlled A-contractive for all (A, B) € C(Dy), for some
A< X O

Remark 1. Note that condition (2) above is the tightest
worst-case UUB condition achievable, since it encompasses
the case where the true system is the one corresponding to
the worst contractivity rate.

4.2 The General Case

In the case where the state constraint set X is not
controlled contractive, there is no control action u € U that
guarantees satisfaction of the constraints for all x € X and
v € V. Nevertheless, Algorithm 1 can still be applied by
restricting the initial condition to X7, the largest controlled
invariant subset of X', and replacing ¥ x(.) by ¥x,(.) in the
optimization (4).

The set X7 can be constructed by applying the algorithm
proposed in Blanchini et al. (2008) to the vertices (A;, B;)
of the consistency set C(Dyyqin ). For ease of reference, this
algorithm is shown below:

Algorithm 2 Backward Construction of Invariant Sets

1: Input: X(F,g) = {z: Fr < g}, U(H) ={u: Hu <1}
2: Initialize: k =0, F®) = F, ¢ = ¢ x) = x

3: repeat

4: Compute glf’“) = gl(k) — MaX,evert(V) Fi(k)v

5: M) = {(x,u): F(k)[Aix + Bju] < g% Hu < 1}
6: Compute R*) = {z: 3u, (z,u) € M(’“)}

7. Update X*+D = R 0 x*)

8: k+—k+1

9: until a stopping criterion is met

10: Output: X'

5. A REDUCED COMPLEXITY FORMULATION

Let Agk), Bi(k),i =1,..., N, denote the vertices of the set
C(Dy,). Since all sets involved are polyhedral, a necessary
and sufficient condition for feasibility of (4) is the existence
of a control u € U such that

br(AP 2+ B uto) < My (ar), YweV, i=1,...,N,

()
Thus, in principle the optimization (4) reduces to a linear
program. However, this requires finding the vertices of the
consistency set C(Dy) at each step, which is a nontrivial
task. Further, it can lead to a very large number of con-
straints, since, as shown in Avis and Jordan (2018), the
number of vertices of the consistency set grows combina-
torially in n and T

To circumvent this difficulty, we propose an alternative
approach based on duality that does not require finding
the vertices of C(D}). Using the Kronecker product, C(Dy,)
can be equivalently reformulated as a polytope in the space
of system coefficients:

oo~ {oo (3 4[24}

where a = vec(AT), b = vec(BT) and

Ve V& [ui]” Vg
P =|Vey )" Q= |Vaui_|.¢= Va'ly
Veri_, V@uj_, Vg

We make the following assumption on the amount of data
required for our data-driven control design:
Assumption 1. Sufficient data are collected such that the
matriz [Py, Q1] has full column rank.

This assumption ensures that the consistency set C(Dy)
is compact. Note that this assumption is also necessary
for identification-based methods. Otherwise, the worst-
case identification error of any interpolation algorithm
becomes unbounded, thereby causing identification-based
robust control to fail.

Theorem 1. The optimization (4) is equivalent to the
following linear program:

up = argmin X subject to:
uelU,Y >0,\
PoQ 07
v |~P Qi 0| _ FI®z") FIeu") F
0 0 V| |-Fiez") -FIaul) -F
0 0 -V,
14¢
v [T 78 <@t
1

Proof. For a given 0 < XA <1, let
Pa(u,z,A) = {A, B,v: [|F(Az + Bu +v)|0 < A(z)}

Using the properties of the Kronecker product yields the
equivalent representation

Y [Fa®s™) FUeu") F11|¢
732_{[2 '[F(I@xT) ~F(I®u") F} 2 ®

< ()}

Consider now the polyhedron defined by the consistency
set:

Pli'DkXVZ
» P @ 0 ” 1+¢
b *Pl 7Q1 0 bl < ]175
0 0 Vv = 1
v o o -v|UY 1

It can be easily seen that the constraint in (4) holds for
a given A if and only if P; C Ps. Applying the extended
Farkas’ Lemma, this inclusion is equivalent to the existence
of a multiplier matrix Y with non-negative elements such
that
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P Q1 07
y|=P Qi 0| _ FIlozT) FUIeul) F
0 0 V| |[-Fies") -FIeu") -F
0 0 -V,
1+¢]
v [17 8] < .
1

(9)
The proof follows now by replacing the constraint in (4)
with the equivalent constraint (9). O

Remark 2. Note that (9) does not depend on the un-
known dynamics (A, B) or perturbation v. Thus, it avoids
computing the vertices of C(Dy), resulting in a substantial
computational complezity reduction.

5.1 The Proposed DDRHC' Algorithm

Based on the results presented in the previous sections, we
propose the DDRHC algorithm shown in Algorithm 3.

Algorithm 3 Data-Driven Receding Horizon Control

Require: Training data Di,qin, constraints X', U,V
1: Initialization
Construct the consistency set C(Dyrqin)
Execute Algorithm 2 to compute X, the largest
controlled invariant set contained in X’
Set k=0, 2, = ¢
2: Execution
3: repeat
4: Solve (7) at xj, to obtain wuy
5 Apply the control ug to the unknown system
6 Measure the resulting state xj41
7: Update Dyy1 < Dy U (g, Uk, Tpt1)
8 k+—k+1
9: until a stopping criterion is met

Theorem 2. Assume that the set X; is controlled \-
contractive for some 0 < A < 1 and for all systems in
C(Dtrain). Then, the control action generated by Algorithm
3 renders the closed-loop system UUB in the set \* Xy for
some 0 < X\* < A. Further, in the absence of disturbances,
the origin is an exponentially stable equilibrium point, with
a region of attraction Xj.

Proof. Follows from combining Lemma 3 and Theorem
1. O

6. NUMERICAL EXAMPLES

The following section presents the experimental results of
the proposed data-driven receding horizon control method.
All experiments were implemented in MATLAB 2024a
with Yalmip Lofberg (2004) and solved using Mosek ApS
(2024). The supplementary code for the experiments is
publicly available at https://github.com/J-mzz/ddmpc.
Example 1. Consider a discrete-time linear system with

0 —0.99 0
A:{0.99 0 ],B:H,

and state and input constraint v € X = {x: ||z]|ec < 1},
uw el ={u: ||ullooc < 1}. The system is subject to process
noise, which is bounded by € = 0.04.

We collected 10 noisy measurements for the control design,
and formulated a consistency set C(Dy) from (6) of dimen-
sion 6, with 40 faces (of which 18 are nonredundant Caron
et al. (1989)) and 132 vertices. For the state constraint X,
which is the blue square in Fig. 1a, we applied Algorithm 2
for 20 iterations to obtain the largest controlled invariant
set X7 C X, depicted as the brown polytope in Fig. la.

Starting from the initial point xg = [1;0.8], which lies
within the obtained invariant set, we applied our method
for the unknown system and simulated it for 50 steps.
Two trajectories, corresponding to our DDRHC and the
regular DDC without RH, are presented in Fig. 1b, while
the corresponding A and u are shown in Fig. 1c and 1d,
respectively.
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Fig. 1. Results of Example 1

It is clear from Fig. 1b that our method achieves better
contraction performance compared to the regular DDC,
as the blue line converges to the UUB set faster than the
orange one. This is also shown in Fig. 1c where the blue line
remains below the orange line starting from the third step
and until both lines reach the UUB set. This is because
the data collected during the simulation further refine the
consistency set and thus allow for more aggressive control,
as illustrated in Fig. 1d.

Example 2. Consider the same system as in Example 1,
with the same and state and input constraints X ,U. But
the noise level of the system is now increased to € = 0.1.

We collected 10 noisy measurements, and formulated a
consistency set. For the state constraint X, we applied
Algorithm 2 for 20 iterations and obtained the largest
controlled invariant set X7 C X, as shown in Fig. 2a.

Starting from the initial point o = [—1;0.8], we applied
our method for the unknown system and simulated it for
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20 steps. To better illustrate that our method achieves
faster convergence, we applied a constant process noise in
the simulation. Note that this is equivalent to analyzing
a shifted system without process noise. Two trajectories,
corresponding to our DDRHC and the regular DDC with-
out RH, are presented in Fig. 2b, while the corresponding

A and u are shown in Fig. 2c and 2d, respectively.
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Fig. 2. Results of Example 2

Fig. 2 clearly illustrates that the RH trajectory reaches
the UUB set at time 6, while the non-RH trajectory does
not reach the this set until time 9. We can also observe a
smaller invariant set in Fig. 2a, compared to Fig. la, due
to the increasing noise level.

7. CONCLUSION

In this work, we propose a novel data-driven receding
horizon control framework for unknown discrete-time LTI
systems, which guarantees robust performance in the pres-
ence of bounded process noise. Our method relies on set-
membership constraints to achieve data-driven control and
utilizes the online execution data to iteratively refine the
set of all compatible systems. Experimental results demon-
strate the effectiveness of the proposed framework and
illustrate how receding horizon improves the regular data-
driven control with faster convergence. Future work may
focus on approximating the smallest controlled contractive
set, optimizing the convergence over an extended predic-
tion horizon, and relaxing the assumptions used in this
work.
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