1EEE IEEE Open Joumai of the
ComSoc ¢ P

Society

Received 5 March 2025; revised 11 May 2025; accepted 2 June 2025. Date of publication 5 June 2025; date of current version 25 June 2025.
Digital Object Identifier 10.110%0JCOMS.2025.3576749

Algorithms to Identify Copied and Manipulated
Spectrum Occupancy Data in Cognitive

Radio Networks
JOSEPH TOLLEY~ AND CARL B. DIETRICH~ (Senior Member, IEEE)

Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
CORRESPONDING AUTHOR: J. TOLLEY (e-mail: jtolley @vt.edu)
This work was supported by the National Science Foundation under Award 2128584.

ABSTRACT Spectrum Access Systems (SASs) and similar systems coordinate access to shared radio
frequency bands to efficiently allocate the use of spectrum between users in a locality. To fill the need for
dense spectrum occupancy information, SASs will utilize crowdsourced data from nodes outside the SAS’s
control. This crowdsourcing of data, however, makes the SAS vulnerable to many types of attacks. The
attacks covered in this paper include copying and manipulating existing data to create a Spectrum Sensing
Data Falsification (SSDF) attack. We propose methods to identify two categories of easily implemented
SSDF attacks and show the proposed methods to be both effective and efficient. Further, we recommend
that the proposed techniques be used in conjunction with other SSDF thwarting methods that use statistics,
probability, or machine learning, and can identify a wider range of SSDF attacks, albeit more slowly
and less reliably than the proposed methods can identify the specific types of SSDF attacks for which
they are effective. Our findings demonstrate the feasibility of discerning diverse forms of manipulated
data while maintaining pace with the influx of incoming data. The ability to identify manipulated data
rapidly without imposing undue strain on a centrally aggregated system helps reduce the number of
ways to create a potentially successful SSDF attack and increases the accuracy of determining the radio
transmission activity of a Primary User (PU). Several methods are explored and evaluated for identifying
copied or manipulated spectrum data. We recommend utilizing an exact match identification algorithm
with Elasticsearch to search for exact copies of spectrum data. Additionally, we recommend utilizing a
cosine similarity function with Elasticsearch to search for manipulated spectrum data and exact copies
when sufficient computational resources are available.

INDEX TERMS Dynamic spectrum access, cognitive radio, CBRS, malicious crowdsourced data detection,
cosine similarity.

I. INTRODUCTION
O ADDRESS the increasing need for wireless data

Tcapacity, centrally coordinated Dynamic Spectrum
Access (DSA) can be utilized to govern a spectrum-sharing
strategy across multiple Radio Frequency (RF) bands.

Primary Users (PUs) are licensed incumbent users that
have priority access to certain frequencies for wireless
transmission and can use them without interference from
other users. Secondary Users (SUs) are unlicensed users that
do not have priority access and must participate in spectrum
sharing with a frequency coordinator like a Spectrum Access
System (SAS) to transmit legally.

Though potentially more effective, SASs, similar systems,
and future multi-context-aware spectrum-sharing frameworks
(e.g., as proposed for the 12.2-12.7 GHz band [1], [2])
leveraging crowdsourced spectrum occupancy and/or other
observed operational-context data to enhance the detection
of PU transmission activity and potential for interference, are
susceptible to various types of attacks. This is an inherent
risk of incorporating denser, crowdsourced spectrum occu-
pancy observations, and potentially other operational-context
information, from unverified devices. This paper focuses on
the case of crowdsourced spectrum-occupancy data used by
SASs in the United States (US) Citizens Broadband Radio

(© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see htips:/creativecommons.orgficenses/by/4.0/

VOLUME 6, 2025

5135

TOLLEY AND DIETRICH: ALGORITHMS TO IDENTIFY COPIED AND MANIPULATED SPECTRUM OCCUPANCY DATA

Service (CBRS) band due to its near-term relevance, and
briefly address extension of the proposed approach to other
crowdsourced operational-context observations as potential
future work.

Maliciously generated, manipulated, or copied spectrum
sensing data can be used to create Spectrum-Sensing Data
Falsification (SSDF) attacks.

To thwart these attacks, we investigated ways of iden-
tifying specific types of easily-implemented, and therefore
likely, SSDF attacks that maliciously manipulate and copy
spectrum occupancy data; and propose specific methods for
this purpose based on the results of our investigation. To (1)
exploit the speed and effectiveness of the proposed methods
and (2) maintain the potential to detect a wide variety of
SSDF attacks, we recommend that the proposed methods be
used in conjunction with other types of SSDF identification
methods, including methods based on one or more of that are
more broadly applicable, yet slower and less accurate. The
ability to detect falsified spectrum data reliably has broad
implications across various industries, including wireless
communications, national security, next-generation networks,
and regulatory compliance. In spectrum-sharing frameworks
such as those managed by SASs, these detection methods
help prevent unauthorized spectrum usage and ensure fair
allocation of resources. Defense and security agencies can
leverage these techniques to mitigate intentional interference
and ensure the integrity of mission-critical communications.
Additionally, 5G networks, Internet of Things (IoT) deploy-
ments, and smart city infrastructures benefit from improved
spectrum monitoring, reducing the risk of data manipulation
affecting intelligent transportation and energy grid systems.
These applications highlight the necessity of effective SSDF
detection mechanisms to secure dynamic spectrum access
and maintain reliable communication environments.

As mentioned, these methods should be used in addition to
other types of SSDF identification methods. We successfully
applied both an exact match identification algorithm to
identify copies of spectrum data and a cosine similarity
algorithm to identify copied and manipulated spectrum
data. Neither method imposes undue strain on a centrally
aggregated system helping reduce the number of ways to
create an SSDF attack. Applying either method or both
increases the accuracy of determining the radio transmission
activity of a PU.

Il. BACKGROUND

SPECTRUM ACCESS SYSTEMS

Spectrum Access Systems (SASs) are used to manage the
shared CBRS band in the US. Title 47 of the US Code of
Federal Regulations, Chapter I, Subchapter D, Part 96 states
that a SAS should ensure that when a PU appears on a
channel or overlaps a range of frequencies allocated by the
SAS, SUs participating in spectrum sharing are informed
to stop transmitting within 300 seconds from the time the
SAS is notified about the presence of a PU [3]. The SAS
has no direct control over SUs and cannot prevent any SU

5136

((‘. H . Honest Data
((‘. MU Malicious Data

((‘. Honest Data
(

Honest Data

]

FIGURE 1. CRN during a Spectrum Sensing Data Falsification attack where
maliclous SUs, MUs, report maliclous recelved power measure reports.

from transmitting regardless of whether or not an SU is
acting maliciously or not. As a compliance measure, the SAS
notifies all SUs with active grants in the specified band to
cease transmission. SASs often use spectrum occupancy data
in the form of a received power measure report to determine
the transmission activity of a PU in a given channel.

SPECTRUM SENSING DATA FALSIFICATION

An SSDF attack comes in the form of Malicious Users (MUs)
transmitting false data to a fusion center attempting to change
the decision-making of a Cognitive Radio Network (CRN)
regarding the presence of a PU [4]. For a CRN to function
properly, spectrum sensing data must be collected from
receiving radios and reported to a fusion center to determine
if a PU is transmitting within a specific frequency range. In
an SSDF attack, MUs will report false information to corrupt
the system. The data can be maliciously reported higher
or lower than the actual sensed values. Figure 1 depicts a
CRN during an SSDF attack. The MUs send false spectrum
measure reports to the aggregate center. In non-centralized
networks, MUs report false data to their respective endpoints.

An MU can benefit from both malicious measure report
data that is higher than the actual value and lower than
the actual value as they both affect the functionality of the
systems.

If the reported data is higher than the actual measure
report readings, a CRN might incorrectly decide that a PU is
transmitting within the frequency range submitted and signal
to all the other SUs in the system to stop transmitting on that
channel. This allows the MU to access a channel or frequency
range that would have been otherwise reserved for honest
SUs. If everyone is told to stop transmitting within a specific
frequency range, the MU will not have interference from
other users. SUs and the SAS suffer from these attacks. SUs
will potentially have an interrupted grant, degrading their
quality of service (QoS) or they will miss out on a potential
opportunity to transmit. The SAS, if benefiting from SUs
monetarily, will lose money on the potential spectrum they
could have licensed out in a grant.

VOLUME 6, 2025

1EEE IEEE Qpen Journal of the
gomSot C ications Society

When falsely reported values are too low SUs, PUs, the
CRN, and the SAS all suffer. SUs and PUs transmissions
will interfere with each other causing a degradation in the
QoS. The CRN and SAS will lose the credibility and trust
of their users and if the PU reports the SAS for allowing
interference to occur, potentially the SAS operator could lose
their license to operate. Unless the MU is choosing a PU as
its intended target for interference purposes, an MU would
benefit more directly by falsely reporting data that is higher
than the actual sensed spectrum data.

INTERMITTENT SPECTRUM SENSING DATA
FALSIFICATION

The Intermittent Spectrum Sensing Data Falsification
(ISSDF) attack is the same attack method as an SSDF but
the attacker reports false data to the CRN with a lower rate
of incidence to maintain the attacker’s reputation with the
targeted system. Various types of MU detection algorithms
can identify if an MU is submitting false spectrum data,
especially if they are doing so when their behavior is
sustained or patterned. These include statistical anomaly
detectors, similarity-based models, clustering techniques,
and machine learning-based classifiers tailored for spatio-
temporal signal patterns. Their spectrum data will almost
always be an outlier if their attack is constant. Many
algorithms that attempt to thwart an SSDF attack assign a
score to the node, Citizens Broadband Radio Service Device
(CBSD), or user that submits the data. In this case, if
the system’s decision on the presence of a PU constantly
disagrees with the decision of the MU or its data, the score
will go down.

The detection and response functionality is more difficult
with an ISSDF attack. Oftentimes, MUs will submit false
data only occasionally and honest data the rest of the time.
If the MU does not know how the CRN assesses the
trustworthiness of a user or node, the MU will often only
attack when it benefits them. With intermittent attacks, the
MU can assume their trust score will go back up, remain
the same or a flag (identifying the MU) will be removed
from their identity. If the user knows the algorithm the CRN
is using to assess the trustworthiness of a node, the MU
can behave so that their trustworthiness will go back up in
between attacks. If the algorithm is based on flagging the
MU before ignoring or removing the MU from the system
and the MU knows the amount of honest data it needs to
send to remove the flag, it will send that amount of data
so that it can commence the attack again. If an MU does
not know how or if the flag can be removed, the MU may
submit manipulated data through trial and error until they
determine how they can act maliciously in a way without
being penalized or removed from the system.

The MU could potentially discover their reputation score
from the operator’s reputation algorithm and flag status
through more direct methods like hacking into the SAS
server or even by being informed directly by the SAS.

VOLUME 6, 2025

Therefore, we do not recommend the SAS inform SUs of
any flags raised regarding malicious behavior.

PRIMARY USER EMULATION

Another type of SSDF attack is Primary User Emulation
(PUE). In a PUE attack, malicious sensing nodes will
purposely report false spectrum sensing data that tries to
convince a SAS or CRN that there is an active PU. In
response to detecting evidence of PU transmission whether
through a PUE attack or spectrum-sensing PU activity, a
SAS or CRN sends messages to honest all nodes operating
within the given frequency range to cease transmission. In
a properly operating system, the immediate halt is intended
to prevent interference with the PU’s signal. The PUE
attack convinces the CRN to stop SU transmission, thereby
degrading the performance of the CRN [5], [6]. This attack
benefits the MU by falsely convincing the SAS that a PU is
transmitting. PUE attacks can prevent honest SUs from using
the spectrum and reduce QoS for all honest users involved.

CURRENT DETECTION METHODS FOR SPECTRUM
SENSING DATA FALSIFICATION

Recent advancements in spectrum sensing have significantly
influenced the design and challenges of SSDF detection
systems. In particular, compressed sensing methods have
been employed to reduce sampling rates without compromis-
ing signal recoverability. For instance, optimized multicoset
sampling strategies have been proposed to approach the sub-
Nyquist boundary in multiband spectrum sensing, reducing
power and data transmission overhead [7]. Complementary
approaches using adversarial autoencoders enable joint signal
reconstruction and anomaly detection directly from com-
pressed or incomplete data, offering robust performance
in sub-Nyquist regimes [8]. Additionally, the design of
nonuniform sampling patterns has shown promise in improv-
ing spectrum recovery under mobility, making compressed
sensing more adaptive to dynamic radio environments [9].

While these methods improve the efficiency and scalability
of spectrum monitoring, they also introduce new challenges
for SSDF detection especially when considering data spar-
sity, reconstruction error, and the lack of fine-grained signal
context. The cosine similarity-based approach proposed in
this work is well-suited to operate alongside these modern
sensing strategies, as it compares new data entries directly to
previously validated reports, regardless of sampling structure.
This makes it applicable to systems employing compressed
or sub-Nyquist sampling while maintaining computational
efficiency and resilience to data replication and manipulation
attacks.

Current methods for detecting and thwarting SSDF attacks
often use statistical analysis or machine learning to identify
trends and anomalies. Rarely are they able to accurately
identify ISSDF attacks without high missed detection rates.

5137

TOLLEY AND DIETRICH: ALGORITHMS TO IDENTIFY COPIED AND MANIPULATED SPECTRUM OCCUPANCY DATA

PROBABILISTIC AND STATISTICAL ANALYSIS-BASED
METHODS

Statistical analysis has been a cornerstone in detecting
SSDF attacks. Techniques such as anomaly detection and
hypothesis testing are widely employed to identify deviations
in sensing reports that indicate malicious behavior. These
methods often leverage prior knowledge of normal sensing
patterns to flag irregularities [10]. Event attacks with various
forms can be identified with probability [11]. A combination
of a Z-test and g-out-of-m rule scheme was used in [12].
Other methods use statistical analysis to identify SSDF
attacks and have varying degrees of success [13]. Maximum-
match Filtering is also used to combat malicious data
submission. While effective in straightforward cases, statis-
tical methods generally struggle against more sophisticated
attackers, especially those who mimic legitimate behavior
intermittently or embed malicious behavior within otherwise
plausible data.

Common anomaly detection methods utilize traditional
distance metrics such as Euclidean, Manhattan, or Chebyshev
distances are often ineffective in this context. These metrics
assume uniform variance and equal weighting across all
data dimensions, which is not the case in spectrum sensing
data, where power values can vary significantly across
frequency bands. Additionally, such metrics do not account
for angular similarity, meaning that malicious data that has
been scaled or shifted. Common SSDF techniques may
still appear similar to honest data in Euclidean space. This
can result in false negatives, where manipulated data is
incorrectly accepted as legitimate. In contrast, techniques like
cosine similarity are more robust in identifying proportional
manipulations because they focus on the orientation of data
vectors rather than their magnitude.

MACHINE LEARNING-BASED METHODS

Machine learning techniques have shown promise in detect-
ing SSDF attacks. Algorithms like support vector machines
(SVMs), k-means clustering, and neural networks analyze
sensing data patterns to distinguish between legitimate and
falsified reports with Gaussian noise [14]. One study iden-
tified seven types of attacks and was able to identify some
of them to varying degrees by using machine learning [15].
Another method uses Byzantine learning and develops a
ground truth to determine the attack [16]. These methods
excel in adaptive scenarios but are limited by their depen-
dence on quality training data and vulnerability to adversarial
attacks. Multiple machine learning-based approaches using
artificial neural networks and other classifiers to detect and
classify reliable and unreliable secondary users in cognitive
radio networks, mitigating SSDF attacks under various noise
conditions [14]. We test several machine learning methods,
including supervised learning, unsupervised learning, metric
learning, distance-based methods, and deep learning.

5138

CHALLENGES AND LIMITATIONS

Despite their effectiveness, current detection methods face
several challenges. Statistical techniques often suffer from
high false positive rates in dynamic environments, while
machine learning models require extensive labeled datasets
for training, which may not always be available. Both
approaches can be computationally intensive, making real-
time implementation difficult. Moreover, advanced attackers
have the possibility of overcoming machine learning mod-
els through multiple types of attacks, including spectrum
poisoning using adversarial machine learning attacks on
CRNs, where an attacker uses a deep neural network
to predict and manipulate a transmitter’s spectrum sens-
ing process [17]. Others propose Bayesian learning-based
defense schemes against SSDF attacks in collaborative
spectrum sensing, introducing offline and online Bayesian
algorithms to improve detection without relying on ground-
truth data [16]. These methods do not address patterns
and manipulations of the data that are addressed by the
algorithms we propose, especially in coordinated spectrum
attacks. We will not provide detailed descriptions of designs
for advanced malicious systems to limit potential negative
impacts on SASs and spectrum-sharing CRNs.

COMPARISON OF CURRENT SPECTRUM SENSING DATA
FALSIFICATION ATTACK DETECTION METHODS TO THE
PROPOSED METHOD

The proposed method is different than the previous methods
because it compares all incoming spectrum data, malicious
or not, to existing spectrum data without hindering the
performance of other algorithms and the system as a whole.
The accuracy of the proposed method is also not dependent
on whether or not an attack is collaborative or independent
and is relatively independent of the number of MUs. While
the proposed method does not perform well with maliciously
generated data, it identifies copied and manipulated data
very well and can perform when the MU is not actively
trying to confuse the system with false values. Although it is
efficient and effective, the proposed method should be used
in conjunction with other SSDF detection methods that can
identify a wider range of SSDF attacks, albeit more slowly
and less reliably.

lll. MALICIOUSLY MANIPULATING SPECTRUM DATA
ALTERING SENSED DATA
An MU can submit false data by altering live-sensed data,
submitting data from other nodes, users, and datasets, or
generating fake data using number-generating algorithms.
Of these, altering real data is expedient and therefore an
attractive way to generate realistic yet misleading data. We
examine three ways MUs may alter real spectrum data:
addition, multiplication, or a combination of both. The
numbers used to alter spectrum data can be positive or
negative.

Only MUs submit malicious data. Completely random
values are easily identified and discarded. MUs will often use

VOLUME 6, 2025

1EEE IEEE Qpen Journal of the
gomSoc C ications Society

Manipulating Honest Data

ceived Power dBm

Time (g}

FIGURE 2. Notional graph comparing honest recelved signal strength values from a
specific frequency channel to the different base methods of manipulating that data.

techniques to manipulate the data they are collecting before
reporting the data to the aggregator. This ensures the MU’s
data appears realistic and timely, while remaining false.

Figure 2 depicts three MUs altering the same honest data
in three different ways. The blue line at the bottom is
the original CBSD data, which all three MUs manipulate
in different ways. The orange line represents the honest
data manipulated by adding a fixed value; in this example,
the value is 20. The gray line represents the honest data
manipulated by adding a random value between 15 and 25
at each point. This creates a more realistic reading that
the suggested methods could have difficulty recognizing
as manipulated data. The yellow line represents the MU
submitting the original values multiplied by a value less than
unity.

Manipulations using fixed values are not necessarily
discernible through visual observation but can be identified
via Algorithm 3.

Equation (1) and (2) model common manipulation meth-
ods.

My =HxS)+a 1)
My=(H+a)x$ (2)

where M is the resulting malicious manipulated data set.
H is the set of honest data values and & is a value being
multiplied by the honest data set. The « value represents the
number being added to the honest data set.

STEALING AND REUSING DATA

If an MU is submitting data that is somehow stolen from
other nodes, the act is malicious. However, the copied data
may not lower the accuracy of determining the presence of
an actively transmitting PU.

Switching between own data and reused data (e.g.,
Node A reusing Node B’s data) is deceptive and can be
flagged.

If there is a range of numbers from -100 dBm to 40 dBm,
there are 140 possible whole numbers to choose from.

VOLUME 6, 2025

These values are a reasonable range expected for received
power measure reports. The range is used to show the
low probability of two nodes receiving the same value. If
there is a floating-point precision of six decimal places to
the right of the decimal point there is a 1 in 140,000,000
probability of arriving at the same exact value. The six
decimal places are given by the default configuration of
the Universal Software Radio Peripheral (USRP) commonly
used in research on CRNs. The probability of guessing the
same series of numbers at that precision is approximately:

1
((Rr — Ry) % 10F2)N @

In this equation, R, and R; represent the high and low
values of the range respectively. F), is the floating-point
precision (number of decimal places) and the array size is N.
When N = 16, the Wireless Innovation Forum (WInnForum)
specified array length for received power measure reports,
the probability of repeating the same values is nearly zero.

If an array of measure reports appears more than once,
the data should be flagged. The duplicate report should be
flagged, as the first instance is presumed honest.

FALSELY GENERATING VALUES
Generated data should be flagged when it deviates from
real-world signal patterns.

KEYSTROKES AND FORMATTING DATA

As mentioned in [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30], [31], keystroke pattern recognition
can be used as an additional authentication measure for
electronic applications. Keystroke dynamics is a technique
that looks for not what the authentication data is, but how
it is entered by a user. For crowdsourced spectrum sensing
data to be useful to a CRN, samples must be taken every few
seconds to minutes and submitted as they are received by
each sensing node. Spectrum measure reports are generally
large arrays of measured radio power. Since real-time reports
are full of floating-point numbers that would be impossible
to fabricate by a human entering the information by hand
because of the speed needed and the implied automation,
human error is not a concern in the processing algorithm.

Data that is submitted to the system has a data type
that the WInnForum specifies [32], [33]. If data is not of
that type in the proper object, the CRN will not process
it. WInnForum specifies the data type but not the precision
or submission frequency, which the CRN can exploit for
anomaly detection. Recording six places past the decimal
place helps the algorithm identify specific instances of
copying or manipulation. Any value past two decimal places
does not necessarily have an impact on the PU detection
algorithm.

An MU’s data precision depends on the script, language,
or system used. Generating data with random precision or
random array sizes is extremely suspicious and should be
flagged immediately by the system.

5139

TOLLEY AND DIETRICH: ALGORITHMS TO IDENTIFY COPIED AND MANIPULATED SPECTRUM OCCUPANCY DATA

Algorithm 1 Exact Copy Check (For Loop)
1: Input: query_data, CBSD_ID, existing_data_set

: Output: exact_flag, matches

: exact_flag <— False

: matches < []

: for each data € existing data_set do

if data.values == query_data then
exact_flag < True
matches.append({ID: data.CBSD_ID,
values: data.values})

g end if

10: end for

11: new_entry <— {values: query_data,

CBSD_ID: CBSD_ID)
12: existing_data_set.append(new_entry)
13: return exact_flag, matches

(= B = L R S I

A measure report is generated by sending an array of
objects that specify a frequency range and the received power
measure report. If the collective report submitted by an SU
has multiple reports and encompasses frequencies that cover
multiple 10 MHz ranges, each measure report within the
array would have a 10 MHz range and there would be 16
values in each of the reports within the collective report.

If report values span multiple channels, they’re counted
in both ranges for PU detection but submitted only once.

By analyzing the measure report formats, MUs can be
identified.

IV. APPLYING MALICIOUS DATA IDENTIFICATION
METHODS

We examine two types of maliciously submitted spectrum
occupancy data: data that has been copied, and data that has
been manipulated using Equation (1) or Equation (2).

Theoretical Framing: We model malicious spectrum
data as either (i) exact duplicates of legitimate measure-
ments or (ii) affine transformations from Equation (1) and
Equation (2) where H, M, My € R" represent the original
and submitted spectrum occupancy vectors, and o, € R
are unknown scalar parameters denoting multiplicative and
additive manipulation, respectively. Given this threat model,
the detection task becomes a constrained similarity search
over historical data, where incoming vectors are evaluated
for both exact equality and approximate alignment with
previously observed entries. This formulation accommodates
both perfectly copied data and subtle manipulations that
preserve vector direction or magnitude, while allowing
tolerance for real-world noise and measurement drift.

Algorithm 1 iteratively searches for copied data by iden-
tifying exact matches.

Algorithm 2 searches through all possible manipulations
that could be maliciously created with Equation (1) or
Equation (2). This method can also identify exact matches.
While this method would have an extremely high accuracy

5140

rate, it is computationally intensive and would not be feasible
given the number of possible manipulations.

To overcome the shortcomings of Algorithm 2, we
designed Algorithm 3 which uses the cosine similarity
function to identify exact matches and manipulations of
existing spectrum occupancy data.

Additionally, we describe Elasticsearch and its potential
application to the algorithms.

In the full implementation of a SAS or CRN we propose
having two separate flags that can be raised when malicious
data is identified. The first flag that can be raised is an exact
copy flag. This flag indicates that there is an identical match
in the existing data set. The second flag that can be raised
is the manipulated data flag. This flag indicates that the
data being compared has been manipulated through either
Equation (1) or Equation (2).

Algorithm 1 raises the exact match flag when it finds a
match.

Algorithm 2, if it was computationally feasible, could use
a modified version of the process depicted in Figure 3 that
we suggest Algorithm 3 use to raise the exact match flag or
manipulated flag depending on whether the data is an exact
match or manipulated data resulting from Equation (1) or
Equation (2).

These flags would be read by reputation-based algorithms.
If a user has been marked with the exact match flag, their
trust score should be reduced more significantly than if there
is a manipulated flag, as an exact copy is less likely to occur
naturally with honest data. In SU-reputation algorithms,
repeated copies would quickly result in the MU having their
trust score dropped to the lowest possible rating.

System-Level Innovation. While each algorithm individ-
ually offers distinct trade-offs between accuracy, complexity,
and interpretability, their integration within a two-flag
detection and reputation framework offers a novel hybrid
solution for CRNs and SAS deployments. By combining
exact match checks, affine transformation detection, and
scalable similarity-based filtering supported by Elasticsearch
this framework enables scalable, interpretable detection of
malicious spectrum reports in real-time, addressing both
performance and explainability which often compete in
spectrum security systems. To our knowledge, this is the first
approach that combines vector-space modeling, detection
flagging, and search-engine-assisted scaling for malicious
spectrum data identification.

ALGORITHM 1: IDENTIFYING EXACT MATCHES

The methodology used in Algorithm 1 follows a linear
search approach, iterating through all previous entries to
compare the full data vector for exact equality. This makes
it simple to implement and highly interpretable, with a time
complexity of O(n), where 7 is the number of records in the
existing data set. Its primary computational advantage lies
in avoiding complex mathematical operations or models—no
normalization, distance functions, or learning is required.
However, its main limitation is scalability: performance may

VOLUME 6, 2025

1EEE IEEE Qpen Journal of the
gomSot C ications Society

degrade linearly as the database grows. Additionally, this
method only detects exact byte-level duplication and cannot
identify manipulated or near-duplicate entries, which is why
it is supplemented by subsequent algorithms. It is most
effective when used in systems where repeated transmission
of identical data is a known attack strategy.

Identifying exact matches of the queried spectrum occu-
pancy data can be achieved using Algorithm 1. Each received
power measure report that is submitted triggers Algorithm 1
and comes in as the input array query_data. The query data
is compared to each of the previously collected measure
reports to validate if there is an exact match in data. If there
is a match, the CBSD_ID of the data is copied and returned
with the exact match flag. Regardless of whether or not the
flag is set to true, the data is stored in the existing data set.
The process of clearing the data in the existing data_set is
not depicted as it runs separately from this algorithm.

Algorithm 1 could be modified to end early if a match is
found, but additional matches may go unnoticed.

Algorithm Design and Scope: Algorithm 1 operates as a
deterministic search over historical records to identify exact
byte-level duplication. Formally, for each query vector x €
R™, the algorithm tests whether x € D, where D is the data
set of prior spectrum occupancy reports. This brute-force
linear scan provides perfect precision and recall for exact
matches, but fails to detect any transformations, including
minor manipulations caused by noise or malicious edits. As
such, this algorithm is most appropriate in environments
where repeated copy-based spoofing is prevalent, and its
simplicity makes it well-suited for systems with constrained
resources or deterministic execution requirements.

ALGORITHM 2: IDENTIFYING MANIPULATED DATA
Identifying copied or manipulated data from Equation (1)
and Equation (2) is possible using Algorithm 2. Each
received power measure report submitted triggers
Algorithm 2 and is used as the input array query_data. The
query_data is compared to each of the previously collected
measure reports to validate if there is incoming data that
matches previously stored data that is copied, shifted by a
fixed value, multiplied by a fixed value, or a combination
of both a shift and multiplication by fixed value. If there
is a match, the CBSD_ID is paired with the copied or
manipulated incoming data. The algorithm can then use a
similar process like Figure 3 to determine if a manipulated
flag or exact flag should be raised. Regardless of whether
or not a match or manipulation is found, the incoming data
is stored in the existing data set. The process of clearing
the data in the existing_data_set is not depicted as it runs
separately from this algorithm.

Algorithm 2 could be modified to end early if a match
is found, but additional matches and manipulations may go
unnoticed.

Algorithm 2 is designed to detect manipulated copies
of previously submitted spectrum data by exhaustively
searching for linear transformations of the form ax + §

VOLUME 6, 2025

Algorithm 2 Manipulated Data Check (For Loop)

1: Input: query_data, CBSD_ID, existing_data_set
: Output: matches
: matches < []
: for each data € existing_data_set do
for i < —9999999 to 9999999 do
for j < —99999999 to 99999999 do
‘ if data.values == ({g50000 X query_data) +
Toosoos then
8: matches.append({ID: data.CBSD_ID,
values: data.values})
9: break
10: else if data.values ==
query_data) x 100("'000 then
11: matches.append({ID: data.CBSD_ID,
values: data.values})
12: break
13: end if
14: end for
15: end for
16: end for
17: new_entry <— {values: query_data,
CBSD_ID: CBSD_ID}
18: existing_data_set.append(new_entry)
19: return matches

G &

or (x + 8)a, where « and & are scalar values. In its
unoptimized form, the algorithm performs a nested iteration
over « in the range [—9999999,9999999], and § in the rage
[—99999999, 99999999] resulting in =~ 4 x 10! comparisons
per entry. Assuming a processing rate of 10° iterations per
second, a single full execution would take over 120 years
to complete, excluding additional overhead from memory
access or I/O-rendering the brute-force method infeasible
for real-time SAS deployments.

Theoretical Properties: Algorithm 2 exhaustively checks
whether an affine transformation exists between the query
vector and any entry in the historical dataset. That is,
for vectors x,y € R", the algorithm searches for scalars
a and § such that yj = ax +48 or 2 = (x +).
Theoretically, this makes the algorithm capable of detecting
all possible linear manipulations within a bounded resolution.
The computational complexity, however, grows quadratically
with the resolution of « and 8, making it impractical for
online detection. The innovation in this algorithm lies in its
completeness, such that no linear transformation within the
bounded range can escape detection, which positions it as a
valuable offline verification tool or a ground-truth validator
for tuning faster approximate algorithms.

In its current form, Algorithm 2 performs a brute-force
triple loop: for each of n historical entries, it searches over
a grid of & and & values, discretized into m and k steps
respectively. This results in a time complexity of O(nmk)
comparisons per query, where m and k are the number

5141

TOLLEY AND DIETRICH: ALGORITHMS TO IDENTIFY COPIED AND MANIPULATED SPECTRUM OCCUPANCY DATA

Algorithm 3 Cosine Similarity Function
1: Input: query_data, CBSD_ID,
threshold
Ensure: cosine_similarify
2: Output: matches
3: matches <[]
4: for each data € existing_data_set do
dotProduct <— 0.0
dataNorm < 0.0
inputNorm < 0.0
for i < 0 to length(query_data) — 1 do
dotProduct < dotProduct + (query_datali] x
data.values[i])
10: dataNorm < dataNorm + data.values [i]2
113 inputNorm < inputNorm + .f_,'14:.*5*:3;_dara[i]2
12: end for
13: dataNorm < «/dataNorm

14: inputNorm <— +/inputNorm

existing_data_set,

W o

15: cosine_similarity < #ﬁm

16: if | cosine_similarity 1> threshold then

17: matches.append({ID: data.CBSD_ID,
values: data.values})

18: end if

19:

20: end for

21: new_entry <— {values: query_data,
CBSD_ID: CBSD_ID}

22: existing_data_set.append(new_entry)

23: return matches

of discrete values scanned for o and 8. With millions of
possibilities for both parameters, the overall runtime becomes
infeasible for real-time systems. Memory complexity remains
O(n) for storing historical data. Hence, the algorithm is
best suited as a completeness-guaranteed validator in offline
modes or bounded-range simulations.

To enable practical use, the search space must be
significantly constrained using domain-specific heuristics,
quantization limits, or approximations. For instance, limiting
« and § to physically realistic scaling and shifting ranges can
reduce complexity by several orders of magnitude. Coarse-
grained pre-checks, early-exit conditions, or approximate
filtering may also help eliminate unlikely candidates early in
the computation. Thus, while the algorithm provides valuable
detection capabilities, it is best suited for offline use or as a
secondary analysis module within a hybrid SSDF detection
framework.

ALGORITHM 3: COSINE SIMILARITY
Exact matches of previous data and data that are manipulated
by Equation (1) and Equation (2) can be identified using
a cosine similarity function found in Equation (4) and
implemented in Algorithm 3.

A-B

B 4
TATIBI @)

Cosine Similarity = cos(8) =

5142

In Equation (4), A and B are two vectors. The vectors
for this equation are the incoming received power measure
report’s values A and a previously submitted received power
measure report’s values B. The cosine similarity function
would be applied to every measure report in the existing
data set.

Using a cosine similarity function can detect both copied
data and manipulations involving the addition of a fixed
value, multiplication by a fixed value, or a combination of
both. Additionally, the threshold value which ranges from
-1.0 to 1.0 can change the rate of missed detections and
false alarms. The absolute value of the cosine similarity
result is used when compared to the cosine similarity
threshold because multiplying an array by a negative number
results in a negative cosine similarity value. If the cosine
similarity threshold is too high, closer to 1.0, even some
basic manipulations will be missed detections [34]. If the
cosine similarity threshold is too low, closer to 0.0, it will
cause more arrays to be flagged as malicious data, increasing
the number of false alarms.

As an illustrative example, consider a shortened query
vector from the 16-value measure report X = [3,4] and
an existing data vector Y = [6, 8] . The cosine similarity is
computed using Equation (4) as:

XY 50

cosine(X, Y) = — ="1.0
IXIY| 5x10

Since this value exceeds this example’s detection threshold
of 0.95, the data entry is flagged as a match, indicating
potential duplication or manipulation. This example high-
lights the algorithm’s ability to detect highly similar entries.
Algorithm 3 compares the absolute value of the calculated
cosine similarity to the cosine similarity threshold. Using
the absolute value of the computed cosine similarity allows
arrays multiplied by a negative number to be identified.

The choice of threshold has a direct impact on SSDF
detection performance. Lower thresholds increase sensitivity
by capturing more subtle manipulations, but may also result
in higher false positive rates. Conversely, higher thresholds
improve precision but risk missing slightly altered malicious
data. Therefore, threshold selection must be empirically
tuned to balance recall and precision, depending on the
deployment context and the nature of expected attacks.

Algorithm 3 uses the cosine similarity function to com-
pare the query _data to the previously received power
measure reports stored in the database (existing_data_ser).
Algorithm 3 identifies those with the absolute value of the
cosine_similarity higher than the threshold value and returns
them with their CBSD ID.

Algorithm 3 requires computing cosine similarity between
the query vector and each of the n vectors in the historical
dataset. Each comparison involves d operations, where d
is the dimensionality of the spectrum vector (i.e., number
of frequency channels). This results in a time complexity
of O(nd) per query. The algorithm scales linearly with

VOLUME 6, 2025

1EEE IEEE Qpen Journal of the
gomSoc C ications Society

Incoming
Spectrum
Occupancy Data

Run Cosine

Similarity
Function

Store Data
and/or Stats In
Database

Is Result Above
Threshold?

Is Returned
Data Exact
Match?
Send
Manipulated
Flag

Send Exact Flag

FIGURE 3. Flowchart lllustrating the identification of | Ing spectry
data using Algorithm 3.

dataset size and vector dimensionality, making it computa-
tionally feasible for real-time detection when paired with
efficient search structures or distributed processing. Memory
complexity is also O(n), with each entry stored as a full
d-dimensional vector.

We recommend a secondary comparison to check and
see if any of the identified measure reports are the exact
same. The secondary comparison would return the exact
match or manipulated flag depending on whether or not
the data is an exact match or a manipulation. Figure 3
depicts the procedural flow of using Algorithm 3 and
checking for exact data matching. This flowchart can be
adjusted for Algorithm 2. Values are expected to represent
realistic received power measurement reports so floating-
point precision and extremely large or small values should
be identified before running the algorithm. Standard flagging
and edge case detection should be implemented to prevent
division by zero during computation. Note the algorithm
should handle cases when dividing by zero and when the
result is undefined.

Justification and Innovation. The cosine similarity
measure used in Algorithm 3 detects manipulations by com-
paring the directional alignment between vectors, rather than
their absolute differences. This makes the approach robust to
both additive and multiplicative changes, particularly when
these preserve the proportional structure of the original
vector. From a geometric perspective, cosine similarity
computes the angle # between two high-dimensional vectors,
identifying those that lie on the same or similar directional
subspace. Unlike Euclidean distance or Pearson correlation,
cosine similarity is insensitive to scale (ignoring rounding
and overflow errors), which makes it particularly effective
for detecting manipulations intended to evade statistical
thresholds. The innovation in this design lies in applying
this property to malicious spectrum occupancy data and

VOLUME 6, 2025

using an absolute cosine threshold to enable negative-
scaling detection, something not achievable through standard
correlation metrics.

Regardless of whether or not a match or manipulation is
found, the incoming data is stored in the existing data set.
The process of clearing the data in the existing_data_set is
not depicted as it runs separately from this algorithm.

In Algorithm 3, cosine similarity is used to detect
manipulated data by comparing the directional alignment of
incoming data vectors with previously observed entries. The
cosine similarity threshold defines the minimum similarity
required to consider two vectors as matching. A higher
threshold ensures that only very closely aligned vectors are
flagged, reducing false positives but potentially increasing
missed detections of slightly altered or noisy duplicates.
Conversely, a lower threshold increases sensitivity to manip-
ulations but may also result in more false matches.

The threshold thus acts as a tunable parameter that
balances detection sensitivity against specificity. Empirical
tuning based on operational noise levels and data variability
is essential to optimize accuracy. In deployment, the ideal
threshold may vary depending on the environment’s SNR
and the type of manipulations encountered.

ELASTICSEARCH

Elasticsearch is an indexing tool that typically organizes
unstructured data from diverse sources, such as various
locations and text, based on user-defined or automatically
inferred mappings enabling efficient searchability. Its dis-
tributed design allows for rapid searching and analysis of
extensive datasets, nearly in real-time [35], [36], [37]. With
Elasticsearch’s scaling capabilities, computation on data sizes
can easily be up to a billion entries. Although received power
measure report data can be relatively structured and store the
same format of data, Elasticsearch can be used to separate
these arrays of spectrum data into different shards either by
the same CBSD or by separating the data into different time
segments as long as shards remain within the suggested size
limit.

As received power measure reports are sent to the
data aggregator, they should be stored and indexed using
Elasticsearch. Elasticsearch can utilize complex search
parameters that are faster than standard for loops even in
scenarios where there is lots of data to be stored. For
optimal results, the CBSD ID, time, and received power
measure report array should be stored as a single object with
Elasticsearch. Other search engines, such as Apache Solr,
were considered for searching and analyzing crowdsourced
received power values [38]. However, the constant influx of
data is best suited to Elasticsearch.

One of the key strengths of Elasticsearch is its dis-
tributed architecture, which supports horizontal scaling
across multiple nodes. This allows the system to maintain
high query performance even as the dataset grows into the
scale of billions of entries. In our application, this means
that as more CBSDs report received power measurements,

5143

TOLLEY AND DIETRICH: ALGORITHMS TO IDENTIFY COPIED AND MANIPULATED SPECTRUM OCCUPANCY DATA

Elasticsearch can distribute indexing and search workloads
across multiple shards and nodes. To handle increases in user
queries or real-time data influx, we recommend configuring
Elasticsearch clusters with dedicated data and query nodes
and employing index lifecycle management to balance
performance and storage cost. In preliminary scalability tests,
we observed that a single-node Elasticsearch setup could
handle approximately 50 million entries with sub-second
query performance. As data volume increases, performance
can be maintained by scaling the cluster and using time-based
or device-based sharding strategies. However, operational
limitations such as shard size and heap memory usage must
be respected to avoid degradation in query latency or node
stability.

DATA REQUIREMENTS AND FORMATTING

Effective detection of SSDF attacks that utilize copied
and manipulated data depends on well-structured and con-
sistently formatted data. Crowdsourced spectrum reports
could vary in quality and format, making standardization
essential for accurate similarity detection and manipulation
identification. Proper data formatting of the received power
measure reports ensures reliable processing and integration
with SASs. Addressing inconsistencies in data formatting,
missing data, and anomalous outliers in measure reports
strengthens the system’s ability to detect falsified reports
while maintaining efficiency. The collected and stored data
must be stored as numbers. Fuzzy matching and other
approximation algorithms are not well-suited for this type of
data, as similar numerical values are frequently encountered
in received power measurement reports, making it difficult
to distinguish meaningful differences.

To enhance Algorithm 3’s ability to handle extremely
large or small input values while maintaining precision,
normalization and scaling techniques like Vector
Normalization (L2-Norm) could be employed if computing
resources permit. Implementing logarithmic transformations
or floating-point precision adjustments can mitigate
issues related to floating-point underflow and overflow.
Additionally, adaptive precision handling—where the
algorithm dynamically adjusts its level of precision based on
the magnitude of the input data—can help maintain accuracy
without excessive computational overhead.

Input validation plays a critical role in ensuring that
the algorithm processes only meaningful and reliable data.
Proper validation should include range checks, format
verification, and outlier detection to prevent corrupted or
maliciously altered data from compromising the integrity
of the spectrum sensing process. Ensuring that the output
is structured in a practical format, such as a well-defined
JSON or structured database entry, facilitates its integration
with existing spectrum management frameworks. The output
exact match and manipulated flags can be incorporated into
node-reputation algorithms to help identify malicious users
and protect the accuracy of the system’s PU detection.

5144

This structured output allows for easy aggregation, further
analysis, and real-time decision-making.

Flexibility is another essential aspect of the algorithm’s
design. While the data should be in the WInnForum’s
specified received power measure report object format,
proper error handling, and adaptability should accommodate
various data formats and matching conditions, particularly
when integrating crowdsourced spectrum data from different
sources. Implementing configurable parameters for similarity
thresholds, weighting schemes, and data transformation
techniques would enhance the algorithm’s applicability to
a broader range of spectrum-sharing scenarios. Leveraging
modular design principles and support for multiple data types
would ensure that the system remains versatile as spectrum
access policies and data collection methodologies evolve.

Robustness against input errors and inconsistencies is
paramount for preventing false positives and negatives in
identifying SSDF attacks. The method does not employ
noise-tolerant comparison techniques, such as fuzzy match-
ing and probabilistic similarity scoring, which could account
for minor variations in exact matches but would not
accurately detect manipulations. Error-handling mechanisms
should be in place to manage incomplete, corrupted, or
missing data, preventing these issues from propagating
through the system and compromising decision-making.

The cosine similarity calculation used in Algorithm 3
is susceptible to numerical precision issues, particularly
when working with floating-point numbers. These issues
stem from rounding errors, underflow, and the limited
precision of floating-point arithmetic, which can impact the
detection of small but meaningful alterations in falsified
spectrum data. To enhance accuracy, using higher-precision
data types is essential. Standard 32-bit floating-point repre-
sentations provide roughly seven decimal places of precision,
whereas 64-bit doubles allow for 15-17 decimal places.
In applications where minor differences in spectrum data
are critical, double-precision arithmetic should be preferred.
Computational libraries such as NumPy in Python provide
explicit control over floating-point precision, allowing calcu-
lations to be performed using 64-bit doubles instead of 32-bit
doubles. If extreme accuracy is required, arbitrary-precision
software libraries such as Python’s decimal module can be
employed, though they come at a computational cost.

Another source of error in cosine similarity calculations
is the subtraction of nearly equal numbers, which can
lead to cancellation. The cancellation issue is where sig-
nificant digits are lost due to floating-point representation
limitations. This problem is particularly relevant in dot
product calculations and vector normalization, both of which
are fundamental to cosine similarity. To mitigate this,
stable numerical computation libraries should be used, as
they implement optimized algorithms designed to preserve
precision. Additionally, rescaling data before computing
cosine similarity can prevent issues related to floating-
point underflow and overflow. Spectrum sensing data, such
as power measurements in dBm, can span several orders

VOLUME 6, 2025

1EEE IEEE Qpen Journal of the
gomSoc C ications Society

of magnitude, making direct comparisons computationally
unstable. A practical solution is to apply logarithmic scaling
or mean-centering before similarity computations, ensuring
that values remain within a numerically stable range.

In Elasticsearch, floating-point operations may also intro-
duce accuracy issues when computing cosine similarity on
high-dimensional vectors. The default dense vector field type
in Elasticsearch uses 32-bit floating points, which may not
provide sufficient precision for distinguishing minor varia-
tions in spectrum data. To improve accuracy, Elasticsearch
should be configured to use 64-bit floating points for vector
storage and similarity calculations. This can be achieved
by defining the dense vector field with specific index
options to ensure that precise offsets are stored for similarity
computation. Additionally, adjusting Elasticsearch’s query
parameters, such as script_score functions, can further refine
similarity calculations by reducing numerical approximation
errors. These optimizations help maintain the integrity
of spectrum data similarity measurements, improving the
system’s ability to detect even subtle manipulations in
crowdsourced reports.

To validate the algorithm’s functionality and performance,
comprehensive test cases should be designed to assess its
effectiveness in identifying both exact and manipulated
spectrum data. This method should be used in combina-
tion with other SSDF-detection methodologies. Critical test
cases should include detecting deliberate data duplication,
slight value modifications, and adversarial perturbations that
attempt to evade detection. Performance metrics such as
precision, recall, Fl-score, computational efficiency, and
scalability should be evaluated to ensure the algorithm
remains effective under real-world conditions. Benchmarking
against known datasets and simulating real-world adversarial
attacks would further confirm the algorithm’s reliability
in detecting SSDF attacks that use copied or manipulated
spectrum data without introducing excessive false positives.

By addressing these considerations, the proposed approach
can significantly enhance the integrity of crowdsourced spec-
trum sensing while maintaining efficiency and adaptability
within a dynamic and evolving spectrum-sharing ecosystem.

V. RESULTS

In this section, we measure elapsed time for simultaneous
data searches across multiple nodes using Algorithm 1, the
timing and accuracy performance of Algorithm 1 using a for
loop and Elasticsearch to detect maliciously copied spectrum
occupancy data, and the timing and accuracy performance of
Algorithm 3 at various cosine similarity thresholds using a
for loop and Elasticsearch to detect both maliciously copied
and manipulated spectrum occupancy data.

TIMING ALGORITHM 1 WITH CONCURRENT NODE
SUBMISSIONS

Figure 4 displays the average elapsed time for running
Algorithm 1 with varying user counts for 21,600 sensing
rounds. These figures were generated using simulated SUs,

VOLUME 6, 2025

Computation Time of Various User Counts For Every Period (T)

— 16 Nodes

32 Nodes —64 Nodes —1328 Nodes Linear (128 Nodes)

FIGURE 4. Average elapsed time for Algorithm 1 to parse through all previously
entered data submiited for every period T for various node counts, parallelized. These
tesis were performed between rlogin — a high-perfor Linux p g -

for optimum performance metrics [39] and a MacBook Pro. Fluctuations are aitributed
to sy being allocated by other functi

which submitted a received power array to the aggregator
on rlogin via a socket connection. Python was used for
calculation and communication. The server ran Algorithm 1
using the input arrays and compared the results to the
aggregated data collected. Each period was tested 1000 times
and the values obtained were averaged across all runs for
each period T. The loops in the algorithms were optimized
using parallelization techniques to achieve faster results.

TIMING AND ACCURACY COMPARISONS USING
DIFFERENT ALGORITHMS AND THRESHOLDS
GENERATING TESTING DATA

A set of arrays was generated and stored in array E of
specified size. An array, O, was generated to test the search
algorithms. Manipulated copies of O were made using
Equation (1) and Equation (2) and stored in M.

The manipulated data, array M, created with and 2 for
testing utilized completely random floating-point numbers
ranging from -99.999999 to 99.999999 for « and from
-9.999999 to 9.999999 for §. Testing the accuracy of the
methods by iterating through all possible combinations of «
and § would take years to process, so random values were
selected for each iteration.

Before running Algorithm 1, Algorithm 2, and
Algorithm 3, precursor checks were conducted on the input
data to ensure its validity and prevent any potential anomalies
that could affect the results. This includes checks for data
integrity, completeness, and consistency. Additionally, robust
error-handling mechanisms were implemented to gracefully
manage unexpected inputs or computational errors, ensuring
that the algorithms could continue to run without interruption
in the case of invalid or inconsistent data.

Both O and M were inserted in array E so they could
be searched for. The matches found using Algorithm 1
searching for O that were stored in E were compared to
O to test the method’s accuracy. The matches found using
Algorithm 3 searching for O and thereby its manipulations

5145

TOLLEY AND DIETRICH: ALGORITHMS TO IDENTIFY COPIED AND MANIPULATED SPECTRUM OCCUPANCY DATA

that were stored in E were compared to O and M to test the
method’s accuracy.

For testing Algorithm 1, there were ten arrays in O the
rest of the arrays were in E.

For testing Algorithm 3, there was one array in O, 99
arrays in M, and the rest were in E.

All arrays in O and E were generated using random
numbers between -100 and 40 with six decimal places and
an array size of 16.

ANALYSIS OF MACHINE LEARNING APPROACHES FOR
IDENTIFYING DATA MANIPULATIONS

In this study, we explored a variety of machine learning
techniques to detect data manipulations and anomalies within
large datasets. The methods tested spanned several cate-
gories, including supervised learning, unsupervised learning,
and deep learning. Here, we provide an analysis of the
models tested, categorized by their learning paradigms, and
discuss the challenges encountered in detecting subtle data
manipulations.

Experimental Setup for Machine Learning Methods:Each
model was trained using 100,000 received power mea-
surement reports, with 100 manipulated instances included
per dataset. The experimental conditions and preprocessing
steps were consistent with those outlined in the preceding
subsection. For models that require supervision, 10,000,000
received power measurement reports of normalized (non-
manipulated) data were provided for training. Supervised
learning methods were averaged over 10 iterations. The other
methods were averaged over 100 iterations.

Supervised Learning Methods:

K-Nearest Neighbors (KNN): KNN, a distance-based
method, was employed to classify data points based on their
proximity to others in the feature space. However, the small
differences between the manipulated and original data led to
poor performance. In cases where the data points are nearly
identical, such as in this study, KNN fails to distinguish
subtle variations, resulting in misclassification. KNN had a
moderate missed detection rate of 28.3018%, and a relatively
high false alarm rate of 0.0284%. One iteration traversing
10,000,000 existing arrays took 960.7477 seconds.

Support Vector Machines (SVM): SVM is designed to
find the optimal separating hyperplane between classes.
Despite its power in high-dimensional spaces, SVM strug-
gled with our dataset due to the close proximity of the
manipulated and original data. Since SVM requires clear
margins between classes to function optimally, it performed
poorly when the data overlap was too high. SVM performed
decently well compared to the other machine learning
approaches with a missed detection rate of 0.1000%, but had
a high false alarm rate of 1.9500%. One iteration traversing
10,000,000 existing arrays took 406.6185 seconds.

Isolation Forest: A model designed to isolate anomalies
rather than classify data points based on patterns. It works
by recursively partitioning the data using random splits and
is more effective when dealing with outliers. Isolation Forest

5146

isolates points in fewer steps, making it particularly suited
for anomaly detection in high-dimensional spaces. Isolation
forests had a missed detection rate of 45.1200% and a false
alarm rate of 0.0052%. One iteration traversing 10,000,000
existing arrays took 40.6618 seconds.

Random Forests: Aggregate the results of multiple
decision trees. These models perform best when there are
distinguishable patterns in the feature space. Random Forests
had the second lowest missed section rate of 8.2349% and the
lowest false alarm rate of 0.0001%. One iteration traversing
10,000,000 existing arrays took 22.8188 seconds.

Unsupervised Learning Methods:

K-Means Clustering: K-Means clustering, an unsuper-
vised method, groups data points into clusters based on their
proximity. However, it struggled in this context because the
manipulated data points were too similar to the original
ones. Without significant variation between the groups, K-
Means could not form meaningful clusters, resulting in poor
detection of manipulations. The K-Means Clustering had the
highest missed detection rate at 65.1000% and the second
highest false alarm rate at 0.0075%. One iteration traversing
10,000,000 existing arrays took 2.9237 seconds.

Deep Learning Methods:

Siamese Networks: Siamese networks are designed
for comparing pairs of data points and learning a
similarity metric. Despite its strength in tasks like
one-shot learning and face wverification. The Siamese
Network had the second highest missed detection rate
of 62.0142% and a false alarm rate of 0.0014%. One
iteration traversing 10,000,000 existing arrays took 32.6501
seconds.

Key Challenges and Findings With Machine Learning: The
primary challenge faced in applying these machine learning
models lies in the high degree of similarity between the
manipulated and original data points. Most of the models,
particularly supervised learning and unsupervised learning
methods, are effective when there are clear differences in
the data. However, in our case, the manipulated data were
generated through small, subtle changes like scaling by a
constant and/or shifting values, which made it difficult for
traditional ML. models to detect. The best model/technique
for machine learning was the SVM and the Random
Forest with SVM having a higher false alarm rate and
Random Forest having a higher missed detection rate. The
worst was K-Means Clustering. These models are typically
better suited for tasks involving large-scale datasets with
significant variance, like image classification or generative
modeling. The controlled, small-scale nature of the data
manipulations in this study did not provide the necessary
complexity for these models to identify meaningful patterns.
In summary, these models yielded lower performance and
incurred substantial computational overhead during both
training and inference. All machine learning methods took
considerably longer than the Elasticsearch cosine similarity
function. This highlights the difficulty in detecting such
small, controlled variations in received power measure report

VOLUME 6, 2025

ComSoc ¢,

IEEE Open Joumnal of the

ications SQCfety

TABLE 1. s y of hil g approaches for Identifying data manipulations with 10,000,000 Arrays. Models with ‘N/A’ In the threshold column elther do not require
a threshold for decislon-making or rely on model-specific methods, such as k Is or learned features, where a threshold Is not directly applied directly (e.g., SVMs, Random
Forests).
Missed Detecti Time at
ModelTechnique Learning Paradigm SRR False Alarm Rate 10,000,000 Threshold
Arrays
K-Nearest Neighbors . .
: Supervised Learning 28.3018% 0.0284% 960.7477 (s) N/A
(KNN) (Euclidean)
Support Vector Machine S ised L . 0.1000% 1.9500% 406.6185 (s) N/A (uses RBF kernel for
(SVM) (RBF Kernel) upervised Leamning ' : R similarity)
Based on anomaly score.
Isolation Forest Uns ised Learni 45.1200% 0.0052% 40.6618 (s
solation Fores nsupervi arning (s) N R A
Uses learned boundary. Not
Random Forest Supervised Learning 8.2349% 0.0001% 22.8188 (s) a distance/similarity
threshold
K-Means Clustering Unsupervised Learning 65.1000% 0.0075% 2.9237 (s) N/A
Si Network:
e e Deep Learning 62.0142% 0.0014% 32,6501 (s) N/A
(Euclidean)

data. Table 1 shows the machine learning type, category,
missed detection rate, false alarm rate, and threshold, where
applicable.

TIMING AND ACCURACY COMPARISONS USING FOR
LOOPS

Table 1 displays the elapsed time, missed detection rate,
and false alarm rate for identifying repeated or manipulated
data using Algorithm 1 and Algorithm 3 at various cosine
similarity threshold values. The timing for all combinations
of variables was performed on a MacBook Pro for the non-
Elasticsearch methods.

The average elapsed time was over 100 iterations for each
array count.

The timing for all computations utilizing for loops
increased proportionally to the number of arrays the algo-
rithms searched through. The timing for Algorithm 3 was not
affected by the cosine similarity threshold value changing.

Missed detection and false alarm rates were calculated
using 10,000,000 arrays averaged over 100 iterations with
newly generated numbers for each iteration. Each search
fully searched all arrays and did not stop when a determined
match was found.

Algorithm 1 only checked for exact matches as it would
be unable to accurately identify manipulated data unless
the manipulated data coincidentally matched a different
received power measure report. The missed detection rates
for Algorithm 1 matches do not consider manipulated data
as it would correlate with the number of manipulated arrays.

Algorithm 1 was able to detect all copies every time with
zero false alarms. For Algorithm 3 the missed detection rate
decreased and the false alarm rate increased as the threshold
decreased in value.

Data that was manipulated using random variables for «
and § at each index of the array was not able to be identified
by either of the methods. Random variables with extremely

VOLUME 6, 2025

small variances could be identified by Algorithm 3 if the
threshold was lower (closer to 0.95).

TIMING AND ACCURACY COMPARISONS USING
ELASTICSEARCH

Elasticsearch was run locally on a MacBook Pro. The
Elastic Cloud server was run on a local instance. The server
was accessed via a Python script to create an index to
simulate storing received power arrays with ports, IDs, and
accompanying metadata.

Utilizing Elasticsearch’s capabilities for handling exten-
sive search queries, which combined the previous algorithms,
proved to be significantly more efficient, especially using
the cosine similarity function in Algorithm 3. This was
especially true when processing large quantities of received
power measure reports, where Elasticsearch demonstrated
notable speed and performance in retrieving relevant results.

Table 3 displays the elapsed time, missed detection rate,
and false alarm rate for identifying repeated or manipulated
data using Algorithm 1 and Algorithm 3 at various cosine
similarity threshold values with Elasticsearch.

The average elapsed time was over 100 iterations for each
array count.

Timing for all computations utilizing Elasticsearch
increased at a sub-linear rate when the number of arrays
searched through increased. The timing for Algorithm 3
was not affected by the cosine similarity threshold values
changing.

Missed detection and false alarm rates were calculated
using 10,000,000 arrays averaged over 100 iterations with
newly generated numbers for O and M in each iteration.
Each search fully searched all arrays and did not stop when
a determined match was found.

Algorithm 1 only checked for exact matches as it would
be unable to accurately identify manipulated data unless
the manipulated data coincidentally matched a different
received power measure report. The missed detection rates

5147

TOLLEY AND DIETRICH: ALGORITHMS TO IDENTIFY COPIED AND MANIPULATED SPECTRUM OCCUPANCY DATA

TABLE 2. Timing and accuracy results of Algorithm 1 and Algorithm 3.

. Time at Time at Time at Time at Missed
Method e .10 10,000 100,000 1,000,000 | 10,000,000 | Detection | ¢ Alam
Arrays Rate
Arrays Arrays Arrays Arrays Rate
Exact Match For Loop
X e o 0.00509 (s) 004724 (s) | 046300 (s) | 487605 (s) | 47.65693 (s) | 0.00000% | 0.000000%
(Algorithm 1)
Cosine Similarity 1.0 F 123.75839
ORI LIS B 0.01381 (s) 012482 (s) | 128873 (s) | 1292112 (s) 98.83% 0.000000%
Loop (Algorithm 3) (s)
Cosine Similarity 0.9999 For 0.01216 () 012136) | 122573 () | 1280629 () | o0 96.08% 0.000000%
Loop (Algorithm 3) ! " : 2 (AN 2 : () ;)
Cosine Similarity 0.999 For 124.48920
_ 0.01254 (s) 0.12102 (s) 1.24982 (s) 12.57230 (s) 90.28% 0.000000%
Loop (Algorithm 3) (s)
Cosine Similarity 0.99 For 120.11618
ARIEATIATY 0.01228 (s) 012283 (s) | 133182 (s) | 12.98618 (s) 71.85% 0.000000%
Loop (Algorithm 3) (s)
Cosine Similarity 0.97 For 122.73411
0.01231 0.12487 121254 12.31215 57.13% 0.000001%
Loop (Algorithm 3) ® ® ®© ® ()
e 0.01268 (5) 0.12283 (s) | 1.25831(s) | 12.48295 (s) LS 49.41% 0.000070%
.| 5 3 3 \S, . . 5 " 7 g &
Loop (Algorithm 3) ? (s)
Cosine Similarity 0.9 F 130.11618
OBl VALY, Dl 2 0.01228 () 0.12283 (s) | 130282 (s) | 12.98618 (5) 38.83% 0.004850%
Loop (Algorithm 3) (s)
TABLE 2. Timing and accuracy results of Algorithm 1 and Algorithm 3 with Elasticsearch.
Time at Time at Time at Time at Missed
Time at 1,000 False Al
Method e o) 10,000 100,000 1,000000 | 10,000,000 | Detection o
Arrays Rate
Arrays Arrays Arrays Armays Rate
Exact Match Elasticsearch
Rack Yaen, S uahielea 0.00528 (s) 000622 (s) | 0.01644 (s) | 0.07011(s) | 014644 (s) | 0.00000% | 0.000000%
(Algorithm 1)
Cosine Similarity 1.0
Similarity Elasticsearch 0.00404 (s) 000698 (s) | 002184 (s) | 0.12282(s) | 0.18356 (5) 99.15% 0.000000%
(Algorithm 3)
Cosine Similarity 0,9999
Similarity Elasticsearch 0.00557 (s) 0.00673 (s) | 002462 (s) | 0.08322(s) | 0.17592 (8) 96.30% 0.000000%
(Algorithm 3)
Cosine Similarity 0.999
Similarity Elasticsearch 0.00421 (s) 0.00639 (s) 0.01626 (s) 0.09027 (s) 0.18829 (s) 90.06% 0.000000%
(Algorithm 3)
Cosine Similarity 0.99
Similarity Elasticsearch 0.00452 (s) 000565 (s} | 0.03647 () | 008447 (5) | 0.16182 (5) 71.64% 0.000000%
(Algorithm 3)
Cosine Similarity 0.97
Similarity Elasticsearch 0.00481 (s) 000472 (s} | 0.02910(s) | 009127 (s) | 031932 (s) 55.93% 0.000000%
(Algorithm 3)
Cosine Similarity 0.95
Similarity Elasticsearch 0.00390 (s) 000613 (s} | 0.03167 () | 0.09077 (s) | 0.17052 (5) 48.83% | 0.0000645%
(Algorithm 3)
Cosine Similarity 0.9
Similarity Elasticsearch 0.00326 () 000905 (s) | 002128 (s) | 009294 (s) | 031555 () 38.80% 0.004901%
(Algorithm 3)

for Algorithm 1 matches do not consider manipulated data
as it would correlate with the number of manipulated arrays.

Algorithm 1 was able to detect all copies every time with
zero false alarms.

For Algorithm 3 the missed detection rate decreased and
the false alarm rate increased as the threshold decreased in
value.

Data that was manipulated using random variables for o
and § at each index of the array was not able to be identified
by either of the methods.

5148

TIMING COMPARISONS BETWEEN FOR LOOPS AND
ELASTICSEARCH

Figure 5 displays the various elapsed times from Table 2
and Table 3 for Algorithm 1 and Algorithm 3 using
for loops and Elasticsearch. The cosine similarity times
depicted use 0.99 as the function’s threshold. The cosine
similarity method with for loops was the slowest and
the exact match method utilizing Elasticsearch was the
fastest.

VOLUME 6, 2025

1EEE IEEE Qpen Journal of the
gomSoc C ications Society

Timing Performance Comparison of Various Algorithms
With and Without Utilizing Elasticsearch

o
1000 10000 100000 1000000 10000000

—Exact Match For Loop Cosine Similarity For Loop

—Exact Match Elasticsearch —Cosine Similarity Elasticsearch

FIGURE 5. Timing comparison for various Identification algorithms with and without
utilizing Elasticsearch with a logarithmic horizontal axis.

Cosine Similarity ROC Curve

1.0 1

0.8

0.6

0.4 4

True Positive Rate (TPR)

0.2 4

0.0

False Positive Rate (FPR)

FIGURE 6. Recelver operating characteristic (ROC) curve for cosine simllarity
threshold values.

ROC FOR COSINE SIMILARITY THRESHOLD USING
ELASTICSEARCH

Figure 6 shows the receiver operating characteristic curve
for cosine similarity threshold values. From our testing, the
optimum threshold values for the cosine similarity function
were between 0.9 and 0.99. This range contains the optimal
combination between missed detection and false alarm rates.
When threshold values were higher than 0.99 manipulated
data was not able to be identified effectively. When values
were lower than 0.9 false alarm rates increased drastically.

VI. ANALYSIS

In this section, we analyze the performance and feasibility
of the various algorithms for detecting maliciously copied
and manipulated spectrum occupancy data. We examine
the timing, accuracy, and potential challenges associated
with the algorithms, offering insights into their practical
implementation in real-world systems.

TIMING
The timing analysis plays a crucial role in evaluating
the practical applicability of the algorithms in real-world

VOLUME 6, 2025

scenarios. Understanding how the system performs under
various conditions, such as multiple nodes submitting data
simultaneously or during individual search operations, is
essential for ensuring reliable and efficient detection of
malicious activity. The following subsections address these
aspects, providing a detailed examination of the system’s
performance.

MULTIPLE NODES AT ONCE

Figure 4 is a timing analysis for filtering through the
previously submitted data looking for repeated data. Each
series on the graph represents the number of nodes submit-
ting data to the fusion center for the current period. Each
node submits its measure report with a length of 16 numbers
every period. The submissions of spectrum occupancy data
may be sequential or parallel. The timing shows how long
it takes for all of the current period’s data to be checked
once all the data has been collected for that period. Even
if the SAS operator chooses not to use this method on all
incoming data, the timing shows that it is possible to filter
through all of the data rather quickly and should fit within
most specified periods T. Spikes in the graph showing longer
processing times are most likely due to background processes
on the operating system competing for the CPU. The linear
trends show that when the data volume is increasing the
computation time needed increases relatively proportionally.

Even when storing 21,600 periods worth of data at one-
second intervals with 128 nodes, the computation time did
not exceed the one-second interval using parallel processing.
If the period was four seconds or 28 seconds, the data could
be recorded for one day or one week respectively with-
out processing time exceeding the one-second submission
intervals. We expect that most data reports will not be more
frequent than every few seconds. If the measure reports have
a longer time interval, there will be even less data to go
through and computation times will decrease relative to the
decrease in data.

Algorithm 3 is computationally intensive and may not
be able to keep up with a system that has multiple nodes
submitting data to the aggregator at the same time without
Elasticsearch so timing was only recorded for individual
searches.

INDIVIDUAL SEARCH TIMES

For both Algorithm 1 and Algorithm 3 the search times
were dramatically faster using Elasticsearch than the for
loop especially for larger array counts. For example, at
10,000,000 arrays the search times for the cosine similarity
threshold value equal to 0.95 were 0.17052s and 123.18421s
respectively.

The timing scenarios in Table 2 using Elasticsearch show
that systems should be able to maintain pace running these
algorithms on continuously incoming spectrum occupancy
data under a reasonable number of nodes and frequency

5149

TOLLEY AND DIETRICH: ALGORITHMS TO IDENTIFY COPIED AND MANIPULATED SPECTRUM OCCUPANCY DATA

of spectrum occupancy submissions. From this, we recom-
mend using Elasticsearch for the implementation of either
Algorithm 1 or Algorithm 3.

The cosine similarity threshold value had no measurable
impact on the execution time for either the iterative loop
or the Elasticsearch-based approach. Any potential effect
on timing would be primarily associated with the data
transmission overhead, as lowering the threshold results
in a larger number of retrieved results. Consequently,
this would increase the volume of data transmitted, but
the computational cost of the cosine similarity calculation
remained invariant with respect to the threshold itself. Thus,
any observed differences in performance would likely be
attributed to the increased data handling rather than the
similarity calculation process.

Iteratively checking for manipulated data with
Algorithm 2 was not computationally feasible with the
current resources however, it would have been the slowest
method. Furthermore, increasing the granularity of the
manipulation would have further extended the computation
time.

Real-time responsiveness is a critical requirement in SAS
environments, which must detect and respond to PU activity
within 300 seconds to avoid interference. At an average of
0.5 seconds per query, processing 500,000 queries would
require approximately 250,000 seconds, which exceeds the
allowable window by several orders of magnitude. This
confirms that unoptimized or exhaustive methods such as
Algorithm 2 are not suitable for real-time use in their current
form. Optimizations such as parallel execution, approxi-
mate filtering, early-exit heuristics, or leveraging distributed
systems like Elasticsearch are essential for reducing latency
while preserving detection accuracy.

MEMORY CONSUMPTION
The algorithms were evaluated using datasets ranging in
size from 1,000 to 10,000,000 entries. To optimize memory
usage, floats were used in place of doubles, as they consume
less memory while maintaining the necessary precision for
the calculations. Each dataset consisted of 16 numerical
values per enfry, accompanied by associated metadata,
such as CBSD_ID, resulting in an average storage size of
approximately 100 bytes per entry. Consequently, the largest
total dataset size tested was approximately 1.00 GB, which
was sufficient to store approximately 10,000,000 entries.
Consider a scenario where the SAS maintains an existing
dataset containing 10 million spectrum occupancy records,
with each record requiring 128 bytes of storage. The total
initial storage requirement is calculated as:

Initial Storage = 10, 000, 000 x 128 bytes
= 1.28 x 10° bytes = 1.28 GB

Assuming an annual data growth rate of 20%, the
storage requirement after three years can be estimated using

5150

compound growth:

Storage after 3 years = Initial Storage x (1.20)
Storage after 3 years = 1.28 GB x (1.728) =~ 2.21 GB

Thus, after three years, the total storage requirement grows
to approximately 2.21 GB.

While this storage size may seem manageable in cen-
tralized architectures, sustained growth and an increasing
number of records can lead to performance degradation in
terms of latency, I/O throughput, and system responsiveness.
As the dataset expands, centralized storage systems may
become a bottleneck, especially when handling real-time
queries or large-scale SSDF detection tasks.

In contrast, distributed storage solutions such as cloud-
based platforms or edge computing architectures offer more
scalable alternatives. These systems allow parallel data
access, localized processing, and better fault tolerance,
reducing the load on any single server. Future research should
explore the trade-offs between centralized and distributed
storage systems, considering the impact on latency, compu-
tational overhead, and bandwidth utilization in a dynamic
spectrum access environment.

Given the need to balance memory efficiency with com-
putational speed, the methodology could store the required
information in a variety of formats depending on the specific
requirements of the application. For example, floats and
integers are ideal for numerical data storage and offer
optimized memory usage and processing speed, particularly
for operations such as cosine similarity and data searching.
Additionally, binary formats could be used in cases where
storage and retrieval speed are paramount, especially for
larger datasets or distributed systems.

On the other hand, arrays or lists are excellent for
storing vectors or datasets requiring frequent mathematical
computations, as they provide direct access for efficient
calculation. While strings and booleans could be used in
specific scenarios, they are less suitable for tasks like cosine
similarity or searching, as they introduce overhead and
require additional preprocessing.

By leveraging these varied formats, the methodology
offers flexibility in storing and processing data while main-
taining memory efficiency and computational effectiveness.

ACCURACY

All maliciously copied data could be identified with a
0.000000% missed detection rate and a 0.000000% false
alarm rate with Algorithm 1. Algorithm 1 with Elasticsearch
is ideal for detecting malicious spectrum occupancy data
copies. This result highlights the algorithm’s ability to
precisely detect exact copies without generating any erro-
neous matches, making it highly reliable when the goal is
to identify strictly identical data points.

Using Algorithm 2 could theoretically find all exact
matches and manipulations from Equation (1) and
Equation (2), but it is too computationally heavy to run with
current processing limitations.

VOLUME 6, 2025

1EEE IEEE Qpen Journal of the
gomSot C ications Society

Algorithm 3 with a cosine similarity threshold between
0.9 and 0.99 was able to detect most exact matches and
most manipulations. Manipulation error was mostly due to
rounding when data was multiplied by fractional values.
Rounding and floating-point errors in cosine similarity calcu-
lations can lead to inaccuracies in SSDF detection outcomes,
particularly when distinguishing between closely related
spectrum occupancy values. These numerical inaccuracies
may result in false positives or false negatives, especially
when similarity scores fluctuate near fixed detection thresh-
olds. Over time, accumulated errors can affect the stability
of trust metrics and lead to inconsistent behavior across
heterogeneous CBSD platforms. To mitigate these issues,
the use of high-precision arithmetic, consistent normalization
procedures, and threshold margin buffers is recommended to
enhance robustness and reproducibility. We suggest using a
cosine similarity threshold value that has a 0.000000% false
alarm rate which sacrifices manipulated data points that are
missed for a guarantee that the flagged data is malicious.
From Table 2 the cosine similarity threshold value equal
to 0.97 had the lowest missed detection rate at 55.93%
with a 0.000000% false alarm rate. This will detect almost
all exact copies and a large portion of manipulations that
are created maliciously with Equation (1) and Equation (2)
without raising false alarms.

Algorithm 3’s accuracy in identifying manipulated data
had no notable difference in missed detection and false alarm
rates with Elasticsearch compared to the standard Python for
loops script. Any differences are most likely attributed to
random number generation during testing.

The manipulated data created with Equations (1) and
(2) for testing utilized completely random floating-point
numbers ranging from —99.999999 to 99.999999 for o and
from —9.999999 to 9.999999 for 4. This occasionally makes
the values of the data impossibly high or low compared to
real spectrum occupancy data. Most of the missed detections
were from overflow values resulting in truly uncorrelated
array values. If o and & values were selected based on
the resulting array values and not randomly generated, the
accuracy of this method would increase.

The previous discussion, tables, and related graphs show
that exact match identification and cosine similarity algo-
rithms are valid methods for identifying repeated data
if resources are available. Additionally, Algorithm 3 can
accurately identify manipulated spectrum data using the
correct cosine similarity threshold value.

ELASTICSEARCH

From our testing, to find exact copies it is suggested to
use Elasticsearch with Algorithm 1. To identify manipulated
data, Elasticsearch with Algorithm 3 is suggested. The
drawback to Elasticsearch is that the setup for methods
other than the cosine similarity function is more complex
and requires a deeper understanding of Elasticsearch. If
Elasticsearch is not available, Algorithm 1 using a for loop
would be the next best option in terms of accuracy and speed

VOLUME 6, 2025

for identifying repeated data only as Algorithm 3 would not
be feasible to implement due to timing constraints imposed
by a CRN or SAS.

POTENTIAL CHALLENGES AND VULNERABILITIES

The reliance on crowdsourced data in SASs introduces
significant vulnerabilities, particularly the risk of receiving
and processing falsified spectrum occupancy information.
As the system scales and the volume of crowdsourced data
increases, the demand for processing power and storage
will grow, potentially leading to performance bottlenecks,
especially when implementing computationally intensive
measures such as the cosine similarity function to detect
manipulated data. This increase in data volume may also
exacerbate the risks of false positives and false negatives
where manipulated data goes undetected. Both outcomes
could undermine the accuracy and reliability of a CRN or
SAS.

To understand the practical implications of detection
performance, consider an SSDF detection system that
processes approximately 100,000 spectrum occupancy data
points per day, with 5,000 of those being manipulated
data. With a theoretical false positive rate of 2% and a
missed detection rate of 5%, the system would incorrectly
flag approximately 2,000 legitimate entries as manipulated
each day, and fail to detect around 250 actual manip-
ulated entries. The elevated risk of missed detections
underscores the necessity of employing this method as a
complementary mechanism within a broader SSDF detection
framework.

These errors have direct consequences on spectrum avail-
ability and network efficiency. False positives may lead to
underutilization of available spectrum, as legitimate users
are erroneously excluded or their trust scores are unjustly
reduced. On the other hand, false negatives allow malicious
data to persist, potentially enabling attackers to interfere with
spectrum access, degrade sensing accuracy, or manipulate
resource allocation decisions. Therefore, minimizing these
errors is critical to maintaining the integrity and reliability
of dynamic spectrum access systems.

Another significant concern is the latency in response;
while the SAS is required to notify SUs to cease transmission
within 300 seconds of detecting a PU, this window may be
insufficient to prevent harmful interference in time-sensitive
situations if the SAS has used its resources for computation.

Algorithm 2 is a brute force method and is extremely
computationally heavy, making it impossible to feasibly
implement in a system. The method is so computationally
heavy that all systems aborted the program or crashed when
testing.

The need for a centralized system also presents a potential
single point of failure. Should the centralized system be
compromised or experience downtime, the entire spectrum
management process could be disrupted, leading to potential
interference and service degradation.

5151

TOLLEY AND DIETRICH: ALGORITHMS TO IDENTIFY COPIED AND MANIPULATED SPECTRUM OCCUPANCY DATA

ETHICAL, SECURITY, AND PRIVACY CONSIDERATIONS
The implementation of SSDF detection algorithms raises
important ethical, security, and privacy considerations. From
a privacy standpoint, crowdsourced spectrum data may
contain sensitive information about users or locations,
necessitating anonymization and encryption to prevent data
leakage. Techniques such as differential privacy can help
protect individual contributors while still allowing for effec-
tive manipulation detection. Another concern is the potential
for false positives, where legitimate users may be incorrectly
flagged for SSDF attacks, leading to unintended denial
of service. To mitigate this, detection algorithms should
be tuned to minimize false positives while incorporating
confidence scores to assess the reliability of flagged entries.
Additionally, security against adaptive adversaries must be
considered, as attackers may attempt to evade detection
by mimicking legitimate sensing patterns. To counteract
this, adversarial machine learning techniques could be
explored to improve model resilience against evolving
threats [40], [41], [42]. Finally, ethical considerations must
be taken into account, ensuring that the algorithm adheres to
regulatory guidelines for fair spectrum access and does not
unintentionally disadvantage any group of users. Transparent
methodologies and standardized evaluation metrics should
be used to prevent misuse in competitive spectrum-sharing
environments. The proposed method enhances security by
proactively addressing these concerns while ensuring ethical
and responsible implementation.

VIl. FUTURE WORK

To minimize the risk of regressions from future changes,
we propose a combination of automated testing, version
control, modular algorithm design, and dataset validation.
Automated testing should include unit and integration
tests to verify the functionality of detection algorithms,
particularly against adversarial input scenarios and edge
cases. Benchmarking tools should be employed to monitor
execution time, memory usage, and detection accuracy
with each update. Maintaining a structured version con-
trol repository with detailed commit histories will help
track modifications while enabling continuous integration
(CI) pipelines to validate performance against predefined
baselines. A modular architecture should be adopted to
further enhance adaptability by separating components like
data acquisition, preprocessing, and the algorithm into
independently testable units. Implementing a design for
detection algorithms, including cosine similarity, allows for
easier experimentation and integration of new methods.
Configurable thresholds and runtime-loaded parameters will
support deployment across diverse environments without
code changes. Using semantic versioning and maintaining
detailed changelogs will support reproducibility and trace-
ability in ongoing SSDF detection research. Additionally,
designing the algorithms modularly will allow for targeted
updates to individual components without affecting the
overall framework. A curated dataset of real and synthetic

5152

SSDF attack patterns should be maintained to validate
algorithm effectiveness after modifications. Finally, allowing
configurable similarity thresholds and detection parameters
will ensure adaptability to evolving operational conditions.
By implementing these measures, the system can evolve
while maintaining stability and effectiveness in detecting
SSDF attacks.

Algorithm 2 has an extreme computational load as it
requires millions of for-loop iterations. If computational
capabilities increase, this method could be explored further
with the full or partial range of potential @ and § values.

Rounding and floating-point errors can impact the
accuracy of the cosine similarity approach. Therefore,
investigating the cosine similarity threshold with varying data
precision, data types, and operating systems is recommended
to increase the accuracy of this method.

Additionally, future testing could be done with more selec-
tive values of o and é from Equation (1) and Equation (2).
These values were chosen randomly, and the resulting
array was not assessed for realistic ranges of spectrum
occupancy data. The percentage of missed detections and
false alarms from the cosine similarity function can be
refined with a more selective group of manipulation
values.

Future systems could employ Algorithm 3 with a variable
threshold depending on the system and environmental factors
such as the number of SUs, frequency of data submission,
and the physical environment. SAS operators may want to
see all data that has a similar threshold value despite having
higher false positive rates and compare CBSD IDs and store
them for future reference.

Further research in this area should also aim to
identify manipulated data with a specified confidence
interval.

These research efforts would greatly benefit from the
collection of real-world data from an operational CRN or
SAS that has experienced attacks.

Vill. CONCLUSION

The ability to identify manipulated data without imposing
undue strain on a centrally aggregated system helps reduce
the number of ways to create an SSDF attack and increase
the accuracy of determining the radio transmission activity
of a PU.

Our findings demonstrate the feasibility of discerning sev-
eral forms of manipulated spectrum occupancy data before
running SSDF attack identification algorithms using our
proposed model and future areas of research to optimize the
accuracy and implementation of these algorithms in a CRN
or SAS. Several machine learning methods were evaluated
but failed to accurately identify such manipulations well.
Notably, such manipulations do not necessarily constitute
anomalies or statistical outliers. Additionally, our timing
scenarios with Elasticsearch show that systems should be
able to maintain pace running these algorithms on continu-
ously incoming spectrum occupancy data under a reasonable

VOLUME 6, 2025

IEEE Open Joumnal of the

IEEE
ComSoc- ¢ ications Society

number of nodes and frequency of submitting received power
measure reports. None of the machine learning approaches
tested were able to meet the time constraints required for
CRN or SAS operations. The approach explored here is also
applicable to crowdsourcing of other operational-context data
(for example, rainfall rate, which has a greater impact on
RF propagation at frequencies above those in the CBRS
band) in addition to spectrum-occupancy data, and could be
applied within multi-context-aware spectrum-sharing frame-
works such as those proposed for the 12.2-12.7 GHz band
(e.g-, [1, [2D).

When resources permit, to identify exact matches we
recommend using Algorithm 1. To find manipulated spec-
trum occupancy data and copies, we recommend utilizing
a cosine similarity function with Elasticsearch while using
the lowest possible threshold that eliminates false alarms.
These approaches can enable the system to accurately
identify almost all instances of copied data and a large
percentage of manipulated data without generating false
positives. Consequently, it provides a reliable guarantee to
the CRN or SAS operator that any incoming flagged data is
malicious.

ACKNOWLEDGMENT
The views in this document are those of the authors and do
not reflect the official policy or position of the sponsors or
the U.S. Government.

REFERENCES

[1] Z. Hassan et al., “Spectrum sharing of the 12 GHz band with two-way
terrestrial 5G mobile services: Motivations, challenges, and research
road map,” IEEE Commun. Mag., vol. 61, no. 7, pp. 53-59, Jul. 2023.

[2] T.-S.R. Niloy et al., “ASCENT: A context-aware spectrum coexistence
design and implementation toolset for policymakers in satellite bands,”
in Proc. IEEE Int. Symp. Dyn. Spectr. Access Netw. (DySPAN), 2024,
pp.- 240-248.

[3] (Federal Commun. Comm., Washington, DC, USA). Part 96 Citizens
Broadband Radio Service. 2021. [Online]. Available: https://www.ecfr.
gov/cgi-bin/text-idx ’node=pt47.5.96

[4] A. A. Sharifi and M. J. M. Niya, “Defense against SSDF attack in
cognitive radio networks: Attack-aware collaborative spectrum sensing
approach,” IEEE Commun. Lett., vol. 20, no. 1, pp. 93-96, Jan. 2016.

[5] I Gupta and O. P. Sahu, “An overview of primary user emulation
attack in cognitive radio networks,” in Proc. 2nd Int. Conf. Comput.
Methodol. Commun. (ICCMC), 2018, pp. 27-31.

[6] R. Chen and J.-M. Park, “Ensuring trustworthy spectrum sensing in
cognitive radio networks,” in Proc. Ist IEEE Workshop Netw. Technol.
Softw. Defined Radio Netw., 2006, pp. 110-119.

[71 Z. Song, J. Yang, H. Zhang, and Y. Gao, “Approaching sub-
Nyquist boundary: Optimized compressed spectrum sensing based on
multicoset sampler for multiband signal,” JEEE Trans. Signal Process.,
vol. 70, pp. 4225-4238, 2022.

[8] H. Zhang, Z. Song, J. Yang, and Y. Gao, “Adversarial autoencoder
empowered joint anomaly detection and signal reconstruction from
sub-Nyquist samples,” IEEE Trans. Cogn. Commun. Netw., vol. 9,
no. 3, pp. 618-628, Jun. 2023.

[9] Z. Song, Y. She, J. Yang, J. Peng, Y. Gao, and R. Tafazolli,

“Nonuniform sampling pattern design for compressed spectrum

sensing in mobile cognitive radio networks,” IEEE Trans. Mobile

Comput., vol. 23, no. 9, pp. 86808693, Sep. 2024.

Y. Fu and Z. He, “Massive SSDF attackers identification in cognitive

radio networks by using consistent property,” IEEE Trans. Veh.

Technol., vol. 72, no. 8, pp. 11058-11062, Aug. 2023.

[10]

VOLUME 6, 2025

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Y. Liu, A. H. Shaikh, and W. M. Khoso, “Impact of spectrum sensing
data falsification attack and imperfect reporting channel on cooperative
spectrum sensing,” in Proc. 9th Int. Conf. Comput. Commun. (ICCC),
2023, pp. 470-474.

I. Ngomane, M. Velempini, and S. V. Dlamini, “The detection of the
spectrum sensing data falsification attack in cognitive radio ad hoc
networks,” in Proc. Conf. Inf. Commun. Technol. Soc. (ICTAS), 2018,
pp. 1-5.

P. S. Chatterjee and M. Roy, “A regression based spectrum-sensing
data-falsification attack detection technique in CWSN,” in Proc. Int.
Conf. Inf. Technol. (ICIT), 2015, pp. 48-53.

N. Parhizgar, A. Jamshidi, and P. Setoodeh, “Defense against spectrum
sensing data falsification attack in cognitive radio networks using
machine learning,” in Proc. 30th Int. Conf. Elect. Eng. (ICEE), 2022,
pp. 974-979.

P. M. S. Sédnchez et al., “Stealth spectrum sensing data falsification
attacks affecting IoT spectrum monitors on the battlefield,” in Proc.
IEEE Mil. Commun. Conf. (MILCOM), 2023, pp. 673-678.

G. Nie, G. Ding, L. Zhang, and Q. Wu, “Byzantine defense in
collaborative spectrum sensing via Bayesian learning,” IEEE Access,
vol. 5, pp. 20089-20098, 2017.

Y. Shi, T. Erpek, Y. E. Sagduyu, and J. H. Li, “Spectrum data poisoning
with adversarial deep learning.” in Proc. IEEE Mil. Commun. Conf.
(MILCOM), 2018, pp. 407-412.

A. Foresi and R. Samavi, “User authentication using keystroke
dynamics via crowdsourcing,” in Proc. 17th Int. Conf. Privacy,
Security Trust (PST), 2019, pp. 1-3.

D. Raghu, C. R. Jacob, and Y. Bhavani, “Neural network based
authentication and verification for Web based key stroke dynamics,”
Dimension, vol. 2, p. 1, 2011.

T. Eude and C. Chang, “One-class SVM for biometric authentication
by keystroke dynamics for remote evaluation,” Comput. Intell., vol. 34,
no. 1, pp. 145-160, 2018.

E. C. Ogemuno, “Behavioural based biometrics using keystroke
dynamics for user authentication,” Ph.D. dissertation, Univ. Windsor,
Windsor, ON, Canada, 2018.

A. Alsultan, K. Warwick, and H. Wei, “Improving the
performance of free-text keystroke dynamics authentication
by fusion,” Appl Soft Comput, vol. 70, pp. 1024-1033,
Sep. 2018.

P. Kang, “The effects of different alphabets on free text keystroke
authentication: A case study on the Korean—English users,” J. Syst.
Softw., vol. 102, pp. 1-11, Apr. 2015.

D. R. Chandranegara and F. D. S. Sumadi, “Keystroke dynamic
authentication using combined MHR (mean of horner’s rules) and
standard deviation,” Kinetik, Game Technol., Inf. Syst, Comput.
Netw., Comput., Electron., Control, vol. 4, no. 1, pp. 13-18,
2019.

N. A. Hegde, “A study of person identification using keystroke
dynamics and statistical analysis,” Int. J. Eng. Manag. Res., vol. 8,
no. 3, pp. 18-23, 2018.

J. C. Stewart, J. V. Monaco, S.-H. Cha, and C. C. Tappert, “An
investigation of keystroke and stylometry traits for authenticating
online test takers,” in Proc. Int. Joint Conf. Biometrics (IJCB), 2011,
pp. 1-1.

C.-H. Jiang, S. Shieh, and J.-C. Liu, “Keystroke statistical learning
model for Web authentication,” in Proc. 2nd ACM Symp. Inf., Comput.
Commun. Secur., 2007, pp. 359-361.

R. Giot, M. El-Abed, and C. Rosenberger, “Web-based benchmark
for keystroke dynamics biometric systems: A statistical analysis,” in
Proc. Eighth Int. Conf. Intell. Inf. Hiding Multimedia Signal Process.,
2012, pp. 11-15.

P. S. Teh, A. B. J. Teoh, and S. Yue, “A survey of keystroke dynamics
biometrics,” Sci. World J., 2013, to be published.

X. Wang, F. Guo, and J.-F. Ma, “User authentication via keystroke
dynamics based on difference subspace and slope correlation degree,”
Digit. Signal Process., vol. 22, no. 5, pp. 707-712, 2012.

M. Antal, L. Z. Szab6, and 1. Liszl6, “Keystroke dynamics on android
platform.” Procedia Technol., vol. 19, pp. 820-826, Jan. 2015.
(Wireless Innovat. Forum, Reston, VA, USA). CBRS Protocols
Technical Report. Aug. 2017. [Online]. Available: https:/winnf.
memberclicks.net/assets/work_products/Recommendations/WINNF-
TR-0205-V1.0.0

5153

TOLLEY AND DIETRICH: ALGORITHMS TO IDENTIFY COPIED AND MANIPULATED SPECTRUM OCCUPANCY DATA

[33]

34]

[35]

[36]

37

[38]

[39]

[40

—

5154

(Wireless Innovat. Forum, Reston, VA, USA). Post Initial
Certification Revisions to CBRS Baseline Operational and Functional
Requirements Specification. May 2024. [Online]. Available: https://
winnf.memberclicks.net/assets/CBRS/WINNF-TS-1020.pdf

1. Han, M. Kamber, and J. Pei, “2-getting to know your data,” in Data
Mining (The Morgan Kaufmann Series in Data Management Systems),
3rd ed., J. Han, M. Kamber, and J. Pei, Eds., Boston, MA, USA:
Morgan Kaufmann, 2012, pp. 39-82. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/B9780123814791000022

C. Gormley and Z. Tong, Elasticsearch: The Definitive Guide: A
Distributed Real-Time Search and Analytics Engine. Sebastopol, CA,
USA: O’Reilly Media, Inc., 2015.

A. Yang, S. Zhu, X. Li, J. Yu, M. Wei, and C. Li, “The research
of policy big data retrieval and analysis based on elastic search,” in
Proc. Int. Conf. Artif. Intell. Big Data (ICAIBD), 2018, pp. 43-46.
R. Goscieri, M. Klinkowski, and K. Walkowiak, “A tabu search
algorithm for routing and spectrum allocation in elastic optical
networks,” in Proc. 16th Int. Conf. Transp. Opt. Netw. (ICTON), 2014,
pp. 14

(Apache Softw. Found., Forest Hill, MD, USA). Apache Solr.
Accessed: Jun. 5, 2024. [Online]. Available: http://lucene.apache.org/
solr/

(Comput. Sci. Virginia Tech., Blacksburg, VA, USA). [Remote Login
Cluster:] About. Nov. 2023. [Online]. Available: https://wordpress.cs.
vt.edu/rlogin/about/

L Alsmadi et al., “Adversarial machine learning in text processing: A
literature survey,” IEEE Access, vol. 10, pp. 17043-17077, 2022.

[41] N. Janapriya, K. Anuradha, and V. Srilakshmi, “Adversarial deep
learning models with multiple adversaries,” in Proc. 3rd Int. Conf.
Invent. Res. Comput. Appl. (ICIRCA), 2021, pp. 522-525.

[42] C. Mehta, P. Harniya, and S. Kamat, “Comprehending and detecting
vulnerabilities using adversarial machine learning attacks.” in Proc.
2nd Int. Conf. Artif. Intell. Signal Process. (AISP), 2022, pp. 1-5.

JOSEPH TOLLEY received the B.S. and M.S. degrees in computer
engineering from Virginia Tech, where he is currently pursuing the Ph.D.
degree. His research interests are in computer systems, spectrum access,
and cognitive radio.

CARL B. DIETRICH (Senior Member, IEEE) received the B.S. degree in
electrical engineering from Texas A&M University, and the M.S. and Ph.D.
degrees in electrical engineering from Virginia Tech. His research interests
are in multiple aspects of wireless communication systems, including
cognitive radio testing, radio wave propagation, and multiantenna systems.
He is a member of IEEE HKN and ASEE, and a professional engineer in
Virginia.

VOLUME 6, 2025

