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Abstract
1.	 Hyperspectral reflectance can potentially be used to non-destructively estimate 

a diverse suite of plant physiochemical functional traits by applying chemometric 
approaches to leverage absorption features related to chemical compounds and 
physiological processes associated with these traits. This approach has consider-
able implications in advancing plant physiological and chemical ecology. For com-
plex functional traits, however, there is a lack of well-defined absorption features 
and features may be unevenly distributed across the reflectance spectrum, sug-
gesting that the influence of wavelength ranges on the performance of chemo-
metric models is potentially important for accurately estimating foliar functional 
traits.

2.	 Here, we investigate the influence of spectral ranges on the performance of mod-
els estimating six tree functional traits: CO2 assimilation rate, specific leaf area, 
leaf water content and concentrations of foliar nitrogen, sugars and gallic acid. 
Using data collected from multiple different experiments, we quantified plant 
functional trait responses using standard reference measurements and paired 
them with proximal leaf-level hyperspectral reflectance measurements spanning 
the wavelength range of 400–2400 nm. A total of 100 different wavelength range 
combinations were evaluated using partial least squares regression to determine 
the influence of wavelength range on model performance.

3.	 We found that the influence of starting or ending wavelength on model per-
formance was trait specific and better model outcomes were achieved when 
the starting and ending wavelengths encompassed absorption features associ-
ated with the specific leaf trait modelled. Interestingly, we found that including 
shortwave-infrared wavelength ranges (1300–2500 nm) improved performance 
for all trait models.
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1  |  INTRODUC TION

Vegetation spectroscopy has emerged as a powerful tool for assess-
ing plant health, especially considering its potential for estimating 
plant functional trait responses to biotic and abiotic stress (Asner 
et  al.,  2015; Lausch et  al.,  2016; Serbin & Townsend,  2020). This 
approach has been used to rapidly and non-destructively classify 
various stress events and assess stress severity in plants, and it 
can be applied across large spatial and temporal scales using aerial 
and spaceborne measurement platforms (Hill et  al.,  2019; Huang 
et  al.,  2019; Sapes et  al.,  2024; Thomas et  al.,  2018). Vegetation 
spectroscopy can be used to monitor changes in plants caused by 
environmental variation and pest and pathogen pressure (Asner 
et  al.,  2018; Cotrozzi,  2022; Garcia et  al.,  2025; Lassalle,  2021) 
and has shown promise to advance trait-based approaches for un-
derstanding plant ecology (Cavender-Bares et  al.,  2016; Couture 
et al., 2015; DeLaMater et al., 2021; Struckman et al., 2019; Wang 
et  al.,  2022). While relationships among plant spectral data and 
physiochemical traits have enabled monitoring of specific responses 
of plants to different stressors (Lausch et al., 2016), it is not yet well 
understood how spectral range contributes to the accuracy of esti-
mates of many complex physiochemical traits.

Plant functional traits encompass a wide variety of plant 
characteristics, including chemical composition, physiological 
processes, morphology, anatomical structure and phenological 
changes (Violle et  al.,  2007). Spectral estimation of these traits 
relies on the absorption and reflectance patterns of vegetation 
within and across particular wavelength ranges (Curran,  1989). 
Estimating specific chemical compounds, such as chlorophyll, 
may rely on fewer, more well-understood absorption features 
(Curran, 1989), while physiological processes, such as photosyn-
thesis, are a product of a combination of a number of functional 
traits and may require a more complex set of absorption features 
related to the underlying mechanisms to estimate the emergent 
physiological process (Doughty et  al.,  2011; Sexton et  al.,  2021; 
Wu et al., 2024). In addition, when absorption features for traits 
are neither well-defined nor singular in nature, estimating traits 
from spectral data can be challenging, and different wavelength 

or wavelength range combinations may be needed for accurate 
estimation.

A preferred approach to estimating foliar functional traits in 
chemometric modelling is partial least squares regression (PLSR; 
Wold et  al.,  1984, 2001). This method is an empirical multivari-
ate statistical approach that builds a predictive model by relating 
variability in predictor variables to variability in response variables 
(Burnett et al., 2021; Wold et al., 1984, 2001). In contrast to other 
linear regression approaches, which can generate spurious coeffi-
cients when predictor variables are highly correlated, as is the case 
with spectral data, PLSR reduces the predictor data matrix into 
few, relatively uncorrelated latent variables (Burnett et al., 2021). 
Because PLSR decomposes spectral data into latent variables to 
extract information from spectral profiles, the approach can esti-
mate plant functional traits even in cases where complex traits lack 
clear, specific absorption features or rely on absorption features 
from different subcomponent traits that define the functioning of 
an emergent complex trait using the input spectral data (Kothari 
& Schweiger, 2022). Additionally, PLSR can indirectly infer traits 
by leveraging the covariance among other traits that do have clear 
absorption features (Chadwick & Asner, 2016; Chen et al., 2022; 
Nunes et al., 2017). Because of these characteristics, however, the 
estimation accuracy of PLSR is not inherently reliant on known 
absorption features, and thus it is important to identify optimal 
input wavelength ranges.

Currently, there is a lack of well-defined absorption features 
for many complex or less commonly studied plant functional 
traits. In addition, features for these traits may be unevenly dis-
tributed across the reflectance spectrum, and the wavelength 
ranges used can influence how PLSR decomposes the spectral 
matrix to produce latent variables, ultimately affecting predic-
tion outcomes. Because of these knowledge gaps, research into 
identifying optimal wavelength ranges for plant functional trait 
predictions is crucial for improving chemometric outcomes. 
Previous studies have employed different approaches for select-
ing wavelength ranges for PLSR analysis. Some studies have used 
a ‘full wavelength range’ (i.e. 350–2500 nm, or a close variation 
to this range) for all plant functional traits (Dao et al., 2025; Ely 

4.	 Collectively, our findings underscore the importance of optimal spectral range se-
lection in enhancing the accuracy of chemometric models for specific foliar trait 
estimates. An emergent outcome of this work is that the approach can be used 
to (1) identify the important spectral features of traits that currently lack known 
absorption features or have multiple or weak absorption features, (2) expand the 
current suite of plant functional traits that can be estimated using spectroscopy 
and (3) ultimately advance the integration of a spectral biology approach in eco-
logical research.

K E Y W O R D S
black walnut, hyperspectral, Juglans nigra, leaf functional traits, northern red oak, PLSR, 
Quercus rubra, wavelength range
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et al., 2019; Kothari, Beauchamp-Rioux, Blanchard, et al., 2023; 
Nakaji et al., 2019), while others have focused on smaller wave-
length regions based on historically known absorption fea-
tures of specific traits (Calzone et  al.,  2021; Cotrozzi, Peron, 
et  al.,  2020; Couture et  al.,  2016; Dechant et  al.,  2017; Nunes 
et al., 2017; Serbin et al., 2014; Xie et al., 2024). In addition, stud-
ies have explored various combinations of the visible (VIS), near 
infrared (NIR) and shortwave infrared (SWIR) ranges, selecting 
wavelength ranges that yield the best model outcomes (Chen 
et  al.,  2022; Cotrozzi, Peron, et  al.,  2020; Kothari, Beauchamp-
Rioux, Laliberté, et  al.,  2023; Sexton et  al.,  2021). Some recent 
studies have aimed to explore the optimal wavelength range for 
trait estimations by first dividing spectral features into evenly 
sized, small intervals and then combining these intervals to iden-
tify spectral regions that maximized performance in PLSR models 
(Wan et al., 2022; Wang et al., 2023). Despite acknowledging the 
general influence of wavelength selection on the performance of 
models estimating plant functional traits, the influence of spec-
tral features for individual leaf traits on model performance, 
particularly in terms of model accuracy over multiple different 
wavelength ranges, is not fully understood.

In this study, we aim to fill this knowledge gap by exploring 
the influence of different wavelength ranges on chemometric 
model performance for predicting foliar functional traits. We first 
quantified a suite of plant foliar physiological, anatomical and 
chemical traits that reflect plant growth, defence and stress re-
sponses including net CO2 assimilation rate (A), specific leaf area 
(SLA), leaf water content (LWC) and nitrogen (N), sugars and gallic 
acid (GA) concentrations. Assimilation rates, SLA and foliar N and 
sugars concentrations are often implicated in having an impact on 
multiple ecosystem processes such as plant growth and leaf lit-
ter decomposition (Asner et  al.,  2017; Cui et  al.,  2020; Kazakou 
et al., 2009; Wright et al., 2004). Leaf water content is frequently 
used to assess plant water status (Cheng et al., 2011) and phenolic 
acids, including GA, contribute to plant defences by acting as anti-
oxidants and exhibiting antimicrobial activity (Kumar et al., 2020). 
These traits capture essential plant function and together they 
provide insights into how plant growth and stress responses adapt 
to varying environmental conditions. We then examined the in-
fluence of multiple different combinations of wavelength ranges 
on the ability to estimate foliar functional traits from leaf spectral 
data using PLSR.

This study explores how the accuracy of PLSR models var-
ies depending on the wavelength ranges chosen within the full 
spectrum (400–2400 nm) due to the varying presence of relevant 
absorption features for the foliar trait of interest in the different 
subsets of the spectrum. Our specific objectives were to (1) eval-
uate optimal spectral regions to estimate variation in plant func-
tional traits, (2) investigate the accuracy of these models across 
different wavelength ranges selected and (3) assess the extent to 
which changes in model prediction accuracy across wavelength 
regions are related to known absorption features of specific plant 
functional traits.

2  |  MATERIAL S AND METHODS

2.1  |  Data collections

Data used in this study were collected from several different ex-
periments over a 2-year period (2018–2019) examining responses of 
two tree species, black walnut (Juglans nigra) and red oak (Quercus 
rubra), to multiple abiotic and biotic stress factors, alone and in com-
bination, in a controlled environment. Abiotic stress environments 
included water, salt and nutrient stress conditions and biotic stress 
environments included fungal pathogen inoculations (Table  1). 
Detailed descriptions of experimental design and conditions can be 
found in Appendix S1.

2.2  |  Foliar spectral and functional trait collections

Spectral data used in this study were collected individually from 
all living, attached leaves that were selected for physiochemical 
reference measurements in studies described in Appendix S1. Gas-
exchange measurements were conducted on leaves of red oak or 
leaflets of black walnut from the top fully expanded leaf per tree 
to determine net CO2 assimilation rate (A). Specific leaf area (SLA), 
leaf water content (LWC), foliar nitrogen (N), sugars and gallic acid 
(GA) concentrations were measured from a single leaf or leaflet, for 
SLA and LWC, or four to six leaves or leaflets, for N, sugars and GA, 
that were collected and then transported in a cooler on ice to the 
laboratory.

2.2.1  |  Foliar spectral collections

In all experiments, full-range (350–2500 nm) reflectance profiles 
of all leaves or leaflets sampled for reference measurements were 
collected using a SVC HR-1024i spectroradiometer (Spectral Vista 
Corporation, Poughkeepsie NY, USA) including a fibre optic cable 
connected to a plant probe, which was equipped with a leaf clip 
containing an internal halogen light source. Leaf spectral data 
were collected in the middle of the adaxial side of each leaf or leaf-
let immediately following gas-exchange measurements and before 
tissue was collected for determining foliar anatomical, water-
related or chemical traits. Integration time (i.e. the length of time 
that the detectors are allowed to collect photons before passing 
the accumulated charge to the converter for processing) was set at 
2 s. The relative reflectance of each leaf was determined from the 
measurement of radiance collected from the leaf or leaflet divided 
by the radiance collected from a white reference panel internal 
to the leaf clip that was measured every six spectral collections. 
Spectral measurements were resampled to a single nanometre 
resolution and spectral and physiochemical reference measure-
ments were then paired. In the case of spectral measurements 
for chemistry (N, sugars and GA), the spectra from the four or six 
leaves or leaflets collected were combined by calculating the mean 
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at each wavelength to produce an average spectrum. Wavelength 
regions 350–399, 2401–2500 and 1891–1911 nm were removed 
because of noise associated with detector limits (i.e. 350–399 and 
2401–2500) or noise associated with the SWIR 1 and SWIR 2 de-
tector overlap region (i.e. 1891–1911).

2.2.2  |  Foliar functional trait collections

Net CO2 assimilation rate was determined using an LI-6400XT 
Portable Photosynthesis System (LI-COR Biosciences, Lincoln, NE, 
USA) with a light source of a 6400-02B LED, operating at 400 μL L−1 
CO2 concentration and saturating light conditions (1700 μmol m−2 s−1 
photosynthetically active radiation). Specific leaf area and LWC were 
determined by measuring the fresh weight (FW) of a leaf or leaflet 
and then oven-drying the leaf or leaflet at 60°C until a constant mass 
to obtain the dry weight (DW). The petiole of leaf or petiolule of 
leaflet was removed, and the leaf or leaflet was scanned before dry-
ing, and the area of leaf or leaflet was determined using the software 
ImageJ v.1.38 (National Institutes of Health). Specific leaf area was 
calculated as leaf area divided by DW and LWC was calculated as 
[(FW − DW)/FW] × 100.

Additional foliar tissue collected for chemical quantification was 
immediately wrapped in aluminium foil and stored in liquid nitrogen 
until being transferred to a −20°C freezer. Foliar samples were lyo-
philized and ground to fine powder using a ball mill. Leaf N concentra-
tion was determined using a combustion analyser (Costech Analytical 
Technologies Inc., Valencia, CA) with atropine (CE Elantech, Lakewood, 
NJ, USA) serving as a standard. Sugars, determined as the sum of glu-
cose, fructose and sucrose, were quantified according to Pellegrini 
et al.  (2015) with minor modifications. Briefly, 50 mg of freeze-dried 
and ground leaf material was homogenized in 1 mL of HPLC-grade 
water and placed in a water bath at 60°C for 1 h. The extracts were 
then centrifuged at 5000 g for 20 min at room temperature. The su-
pernatant was filtered through a 0.22 μm PES filter (Celltreat Scientific 
Products, USA). Glucose, fructose and sucrose were separated using 
high-performance liquid chromatography (HPLC, Shimadzu Co., 
Kyoto, Japan). The HPLC system consisted of a Shimadzu LC-20AB 
solvent delivery pump, a SIL-20AC HT autosampler, a CTO-20A col-
umn oven and a CBM-20A communications bus module. The system 
was fitted with a Rezex RCM monosaccharide Ca+ size exclusion col-
umn (300 mm × 7.8 mm diameter, Phenomenex, Torrance, CA, USA) 
and a Carbo-Ca2+ security guard cartridge (4 mm × 3 mm diameter, 
Phenomenex, Torrance, CA, USA). The separated sugars were then 

Experiment Tree species Stress Treatment

2018 EEL Black walnut Fungal disease Control: Deionized 
water
Pathogen infection: 
Geosmithia morbida 
inoculation

Soil type Forest soil, plantation 
soil, sterile soil

2018 Wright Center Black walnut Nutrient availability Control: Fertigation
Nutrient deficiency: Tap 
water

Water availability Control: Full irrigation
Drought: 50 mL day−1 
irrigation

2019 EEL Black walnut Fungal disease Control: Deionized 
water
Fungal infection: G. 
morbida or Fusarium 
solani inoculation

Water availability Control: Full irrigation
Drought: No irrigation

2019 Wright Center Black walnut
Red oak

Nutrient availability Control: Fertigation
Nutrient deficiency: Tap 
water

Salinity Control: Fertigation
Salt deposition: salt 
solution (NaCl, 50 mM)

Note: Experiments were conducted in 2018 and 2019 to expose one-year-old black walnut (Juglans 
nigra L.) and northern red oak (Quercus rubra L.) seedlings to various biotic and abiotic stressors 
in two greenhouse environments: The Purdue Entomology Environmental Lab (EEL) at Purdue 
University, West Lafayette, IN, USA (40°25′23″ N, 86°54′52″ W) and the John S. Wright Forestry 
Center (Wright Center) at the Purdue Martell Experimental Forest, West Lafayette, IN, USA 
(40°25′56″ N, 87°02′19″ W). Details of the stress treatments are provided in Appendix S1.

TA B L E  1  Four experimental designs.
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detected using a refractive index detector (RID-20A, Shimadzu). The 
injection volume was 5 μL and the mobile phase was HPLC-grade water 
at a flow rate of 0.6 mL min−1. The total run time was 20 min, and the 
column temperature was maintained at 65°C. Standards of glucose 
(MP Biomedicals, Solon, OH, USA), fructose (Acros Organics, Fair 
Lawn, NJ, USA) and sucrose (Alfa Aesar, Ward Hill, MA, USA) were 
used to identify the retention time of individual sugars and concentra-
tions of individual sugars were determined by comparing the peak area 
of individual sugars to an external standard curve developed for each 
individual sugar.

Gallic acid was analysed according to Nour et al. (2012) with slight 
modifications. Briefly, 1 mL methanol and 1% butylhydroxytoluene 
were added to 14.5 mg of dried leaf tissue and sonicated at 25°C for 
40 min. Extracts were centrifuged at 1200 g and the supernatants were 
filtered through a 0.2 μm syringe filter (13 mm diameter, Fisherbrand, 
PTFE) and stored at −20°C. Gallic acid was identified by the same 
HPLC system that was used for sugar quantification, equipped with 
a photodiode array detector (SPD-M20A) and Hypersil Gold col-
umn (4.6 mm × 250 mm, 5 μm, Thermo Scientific). The mobile phase 
used was 1% acetic acid in water (A) and methanol (B) in a gradient 
mode: 0–27 min (10% B), 27–55 min (10%–40% B), 55–60 min (40% B), 
60–62 min (40%–44% B), 62–70 min (44% B), 70–71 min (44%–10% B) 
and 71–75 min (10% B). The flow rate of the mobile phase and the injec-
tion volume were 1 mL min−1 at 30°C and 5 μL, respectively. The peak 
representing GA was identified from chromatograms at 280 nm and 
by comparing their retention time to that of a pure standard (Sigma-
Aldrich, St. Louis, MO, USA). Concentrations of GA were determined 
by comparing peak area of GA to an external standard curve of the GA 
standard. Summary statistics of observed foliar functional traits from 
the different stress combinations for all experiments can be found in 
Table 2. In total, trait data were collected for A (n = 449), SLA (n = 340), 
LWC (n = 340), N (n = 196), sugars (n = 196) and GA (n = 197).

2.2.3  |  Chemometric model calibration and 
validation

Untransformed reflectance profiles were used to generate predic-
tive models using PLSR (Burnett et al., 2021; Wold et al., 2001). Data 
analyses for PLSR were conducted in R v. 3.6.1 (R Core Team, 2019) 
using the package pls v. 2.7.1 (Mevik et al., 2019). Eighty percent of 
the full dataset was used for calibration and cross-validation and 
the remaining 20% of the full dataset was used for external vali-
dation to evaluate the final performance of the models on unseen 
data. Within the 80% of the dataset used for calibration and cross-
validation, the data were split into 80% for model fitting (training) 
and 20% for cross-validation (testing), stratified across the reference 
data range over 100 randomized permutations. Using a randomiza-
tion approach allows for the assessment of model stability and the 
determination of model uncertainty in prediction.

Model calibration and cross-validation were conducted across 
100 different wavelength ranges. To generate different intervals 
and locations of wavelength ranges, we adjusted the starting and TA
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ending wavelengths across the spectral signature in the process 
of calibration. We also ensured that each spectral range encom-
passed a continuous segment of at least 300 nm. This procedure 
enabled the inclusion or exclusion of specific characteristic pat-
terns within the vegetation spectrum, generating 100 different 
wavelength ranges (Figure S1). We employed this approach, as op-
posed to a feature selection algorithm technique for two reasons: 
the potentially overly context-dependent nature of these feature 
selection approaches in application of chemometrics and the re-
ductionist nature of these approaches never ensures, or forces, 
specific combinations of wavelengths together. Because of the 
context-dependent nature of most feature selection approaches, 
outcomes that are considered by an algorithm to be influential in 
trait estimation may be a secondary product of some other change 
in plant spectral profiles. For example, such changes may involve 
colour shifts that are correlated with the trait of interest but not 
directly related to the absorption features of the trait. Moreover, 
the reductionist approach used by many feature selection algo-
rithms (e.g. LASSO, ReliefF) potentially excludes the opportunity 
to incorporate specific combinations or sets of wavelength ranges, 
and remove wavelengths considered not useful. While removing 
wavelengths unimportant for a singular dataset, they limit the dis-
covery of potentially novel absorption features and focus only on 
wavelengths important to the dataset analysed.

During model calibration, the number of latent variables retained 
in individual models was determined based on reduction of the pre-
dicted residual sum of square (PRESS) statistic (Chen et al., 2004) 
using leave-one-out cross-validation. Prediction residuals more than 
twice the standard deviation were determined to be outliers. These 
outliers were removed from the calibration dataset because of ei-
ther faulty spectral or reference measurements, and models were 
subsequently re-trained. Specifically, A: 16/361 (4.4%), SLA: 9/272 
(3.3%), LWC: 8/272 (2.9%), N: 5/156 (3.2%), sugars: 7/156 (4.5%) 
and GA: 9/157 (5.7%) were removed. Model performance was eval-
uated using goodness-fit (R2) and normalized root mean square error 
(NRMSE, RMSE divided by the reference data range), representing 
precision and accuracy, respectively, across the different permu-
tations. R2 represents the proportion of variance in the dependent 
variable that is explained by the independent variables and is useful 
for assessing the overall strength of the model in capturing the vari-
ability in the data. Conversely, NRMSE focuses on the magnitude of 
the error between predicted and observed values, providing a mea-
sure of accuracy.

Based on the results comparing the model performance from 
calibration across 100 spectral ranges, final PLSR models were 
built using the optimal range for each trait that demonstrated the 
absolute highest R2 and the lowest NRMSE. The same modelling ap-
proach described above was followed, except that 500 randomized 
permutations were used. To determine the importance of specific 
wavelengths contributing to final models, we calculated the variable 
importance of projection (VIP) statistic (Chong & Jun, 2005; Wold 
et  al.,  2001). External validation was performed by applying the 
coefficients from all 500 PLSR models to the data withheld from 

modelling. Relationships between the mean estimated and observed 
values were tested by regression analysis. Fit statistics (R2 and 
NRMSE) were again used to assess the precision and accuracy of 
model estimates.

2.2.4  |  Statistical analyses

Significant differences (p < 0.05) in R2 or NRMSE of the models using 
100 different wavelength ranges in the calibration process, over 100 
iterations each, were tested using analysis of variance (ANOVA). A 
post-hoc Tukey HSD test was used to assess statistically significant 
pairwise differences (p = 0.05). The relationships between wave-
length starting and ending and model prediction accuracy were 
analysed by linear and second-order polynomial regression analy-
sis. The performance of the optimal wavelength range and the full 
wavelength range were compared by applying the multiple model 
coefficient iterations of each model on the external validation set 
separately, and differences were assessed using a t-test. Pearson 
correlation was used to assess the relationship between the correla-
tions of foliar traits estimated using spectral data and those meas-
ured using traditional standardized methods. Statistical analyses 
were performed in GraphPad Prism v 9.5.1 (GraphPad Software, 
Boston, MA, USA) and JMP v. 16.1 (SAS Institute Inc., Cary, NC, 
USA).

3  |  RESULTS

Model performance parameters (R2 and NRMSE) for cross-validation 
outcomes varied among the different wavelength ranges used for 
building the PLSR models (Figures 1 and 2; Tables S1–S12). Changing 
the spectral range had a significant impact on model performance, 
resulting in a variation of 1.7 to 3.0 times in R2 and 1.3 to 2.6 times 
in NRMSE when all functional traits were considered. The range 
of R2 over the 100 wavelength combinations was 0.23–0.68 for A, 
0.43–0.90 for SLA, 0.54–0.91 for LWC, 0.40–0.91 for N, 0.29–0.61 
for sugars and 0.20–0.51 for GA. The absolute range of NRMSE was 
14%–22% for A, 7%–17% for SLA, 5%–12% for LWC, 6%–17% for N, 
15%–21% for sugars and 16%–21% for GA (Tables S1–S12).

When predicting each foliar functional trait, the wavelength 
range with the highest R2 and the wavelength range with the lowest 
NRMSE were the same for A and LWC. For other traits, the wave-
length range that yielded the best performance consistently ranked 
either first or second in these evaluations. However, the number of 
optimal spectral ranges varied depending on whether R2 or NRMSE 
was considered. The exception to this was A, in which nine out of the 
100 evaluated wavelength ranges exhibited R2 values above 0.65, 
and the same nine wavelength ranges were identified as optimal 
when considering NRMSE, with values less than 14.6% (Figures 1a 
and 2a; Tables S1 and S7). The wavelength ranges included in these 
optimal A models began at either 400 or 500 nm and extended be-
yond 1700 nm, with the highest R2 of 0.68 obtained using the range 
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    |  1709PARK et al.

of 500–1850 nm (Figure  1a; Table  S1). For SLA, 34 optimal mod-
els out of the 100 evaluated spectral regions were obtained when 
wavelengths beyond 1550 nm were included, with the highest per-
formance achieved in the 500–2400 nm range (Figure 1b; Table S2). 
The number of wavelength ranges that minimized NRMSE for SLA 
models was reduced to 20, and when the ending wavelength was 
2200 nm or less, the starting wavelength needed to include the vis-
ible wavelength range (Figure 2b; Table S8). Similarly, for assessing 
LWC, 61 optimal spectral regions were identified, which could begin 

at almost any wavelength, but optimal models were obtained when 
wavelengths beyond 1550 nm were included. For LWC, the best 
model R2 of 0.91 was found at 1250–1700 nm (Figure 1c; Table S3). 
Some of the models with spectral regions that started within the 
SWIR region or ended at 1550 nm were not identified as optimal 
spectral regions when using NRMSE as a criterion for evaluation (i.e. 
below 6%; Figure 2c; Table S9).

Model combinations of foliar N revealed 28 optimal spectral 
ranges, starting from any wavelength, but optimal models were 

F I G U R E  1  Wavelength ranges starting from λmin to λmax influence partial least squares regression (PLSR) model performance for 
estimating major leaf functional traits, (a) CO2 assimilation rate (A), (b) specific leaf area (SLA), (c) leaf water content (LWC), (d) nitrogen (N), 
(e) sugars and (f) gallic acid (GA). PLSR model outcomes were made based on the 100 different wavelength ranges, all over 100 iterations 
80%/20% calibration and cross-validation approach. Colour maps are contours of the model performance, goodness-of-fit (R2), on the 
testing dataset. Data points within the orange-coloured box represent wavelength ranges exhibiting significantly highest R2 values that did 
not differ significantly each other and the orange star highlights the spectral region yielding the best result.
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1710  |    PARK et al.

obtained when wavelengths beyond 2200 nm were included, with 
the highest R2 of 0.91 achieved within the 2000–2400 nm wave-
length range (Figure  1d; Table  S4). There were 23 optimal spec-
tral ranges for which foliar N estimates were most accurate, with 
NRMSE values ranging from 6.5% to 7.2%. When the ending wave-
length range was 2200 nm, the starting wavelength needed to begin 
between 720 and 1700 nm and when the wavelength range ended at 
2400 nm, the starting wavelength could range from 650 to 2000 nm 

(Figure 2d; Table S10). For sugars, 22 wavelength ranges were iden-
tified and optimal models were obtained when wavelengths beyond 
2000 nm were included (Figure 1e; Table S5). The highest R2 of 0.61 
was observed when using the wavelength range 1000–2200 nm. 
Additionally, 15 wavelength ranges were recognized as optimal 
based on the lowest NRMSE (14.7%–16.1%). The starting wave-
length of these optimal ranges was more narrowly confined to 650 
to 1550 nm (Figure 2e; Table S11). For GA, 31 optimal spectral ranges 

F I G U R E  2  Wavelength ranges starting from λmin to λmax influence partial least squares regression (PLSR) model performance for 
estimating major leaf functional traits, (a) CO2 assimilation rate (A), (b) specific leaf area (SLA), (c) leaf water content (LWC), (d) nitrogen (N), 
(e) sugars and (f) gallic acid (GA). PLSR model outcomes were made based on the 100 different wavelength ranges, all over 100 iterations 
80%/20% calibration and cross-validation approach. Colour maps are contours of the model performance, normalized root mean square 
error (NRMSE), on the testing dataset. Data points within the orange-coloured box represent wavelength ranges exhibiting significantly 
lowest NRMSE values that did not differ significantly from each other, and the orange star highlights the spectral region yielding the best 
result.
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were identified starting between 400 and 1250 nm and ending be-
tween 1850 and 2400 nm. The highest R2 of 0.51 was found in the 
wavelength range of 500–1850 nm (Figure 1f; Table S6). When eval-
uating the model performance based on NRMSE, 41 optimal wave-
length ranges were found. These ranges fall within the same optimal 
spectral regions as those identified by R2; however, they exhibited 
an extension in the ending wavelengths, ranging between 1300 and 
2400 nm (Figure 2f; Table S12).

We found statistically significant relationships between the 
starting or ending wavelength and R2 (Figure 3). For A, model R2 de-
creased non-linearly with the starting wavelength, whereas it had a 

weak, concave relationship with the ending wavelength, reaching a 
maximum of R2 at 1850 nm (Figure 3a). For SLA, model R2 increased 
non-linearly with both the starting and ending wavelength points, 
but the model performance was less related to the starting wave-
length than the ending wavelength (Figure 3b). Similar patterns were 
observed for LWC, but the difference between R2 values was smaller 
than for SLA (Figure 3c). We found a linear increase in R2 with both 
the starting and ending wavelengths for estimating N (Figure  3d). 
However, the relationship between R2 and the starting wavelength 
was weaker than the relationship between R2 and the ending wave-
length. For sugars, there was a weak and linear relationship between 

F I G U R E  3  Partial least squares regression model performance metric, R2, as a function of λmin (a starting wavelength, open circle) and λmax 
(an ending wavelength, orange diamond) for estimating major leaf functional traits, (a) CO2 assimilation rate (A), (b) specific leaf area (SLA), 
(c) leaf water content (LWC), (d) nitrogen (N), (e) sugars and (f) gallic acid (GA). The lines represent the significant λ–R2 relationships based on 
regression analyses (p < 0.05).
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1712  |    PARK et al.

R2 and the starting wavelength, but the relationship between R2 and 
the ending wavelength was stronger and demonstrated a convex 
pattern (Figure 3e). For GA, the R2 has a weak, concave relationship 
with the starting wavelength, whereas R2 increased non-linearly 
with the ending wavelength (Figure 3f).

The trends between the starting or ending wavelengths and 
NRMSE were opposite to those between the starting or ending 
wavelengths and R2 due to the inverse relationship between R2 and 
NRMSE (Figure  4). The effects of starting or ending wavelengths 
on the NRMSE of each trait were similar to those of the starting or 

ending wavelengths on the R2. For A, NRMSE was more dependent 
on the starting wavelength than the ending wavelength (Figure 4a). 
For all other foliar traits, the ending wavelength was more influential 
to determine NRMSE than the starting wavelength (Figure 4b–f).

The final models accurately estimated foliar traits in the calibration 
and cross-validation approach (Table 3). Model performance in the ex-
ternal validation dataset was lower than the calibration outcomes but 
produced reasonably good metrics (Figure 5). Overall, R2 values ranged 
from 0.43 to 0.86 and NRMSE ranged from 9% to 21%. In general, 
model performance was better for SLA, LWC and N than for A, and 

F I G U R E  4  Partial least squares regression model performance metric, NRMSE, as a function of λmin (a starting wavelength, open circle) 
and λmax (an ending wavelength, orange diamond) for estimating major leaf functional traits, (a) CO2 assimilation rate (A), (b) specific leaf 
area (SLA), (c) leaf water content (LWC), (d) nitrogen (N), (e) sugars and (f) gallic acid (GA). The lines represent the significant λ–NRMSE 
relationships based on regression analyses (p < 0.05).
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concentrations of sugars and GA. The VIP values generated from mod-
els using the selected optimal spectral ranges indicated contributions 
from more influential spectral wavelengths that aligned with known 
absorption features for each trait (Figure  6). In the final model, VIP 
values of A highlighted important wavelengths in the 550, 650–750, 
970, 1350–1500 and around 1720 nm range (Figure 6a). VIP values of 
the SLA model highlighted important wavelengths in the visible wave-
length range, around 1400–1500 nm and in the 1900–2400 nm range 
(Figure 6b). LWC was influenced by shortwave infrared absorption fea-
tures associated with water content (around 1400–1450 nm), but also 
was influenced by wavelengths around 1690 nm (Figure 6c). VIP values 
of nitrogen showed multiple peaks in the 2000–2400 nm range, specif-
ically at 2060, 2130, 2180, 2240, 2300 and 2350 nm (Figure 6d). Sharp 
peaks at 1000, 1370–1450, 1900–2050 nm, along with smaller peaks 
above 2000 nm, were observed for sugars (Figure 6e). Finally, VIP values 
of GA showed major peaks at 650–750, 1450, 1720 nm and at around 
1900 nm (Figure 6f). Variation in raw spectral data, compared with VIP 
values and known absorption features, reveal variation along spectral 
profiles in areas high VIP values and absorption features (Figure 6g).

External validation of models using full-range spectral data 
performed differently with the optimal-range models for most 
traits (Figure  S2). A comparison of R2 values between full-range 
and optimal-range spectral models showed statistically significant 
differences across all traits. The full range was statistically better 
for A (t = 17.8, p < 0.001), SLA (t = 7.5, p < 0.001) and LWC (t = 50.0, 
p < 0.001), but the increases in R2 were modest (≤4%; A: R2 0.533 and 
0.512, SLA: R2 0.842 and 0.838, LWC: R2 0.692 and 0.672, for full 
and optimal ranges, respectively). In contrast, the optimal range per-
formed better for N (t = −3.6, p < 0.001), sugars (t = −57.6, p < 0.001) 
and GA (t = −11.1, p < 0.001), with R2 values that were 0.4%, 30% and 
7% greater, respectively, compared to the full wavelength range (N: 
R2 0.857 and 0.861, sugars: R2 0.455 and 0.590, GA: R2 0.426 and 
0.457, for full and optimal ranges, respectively).

Traits were correlated in both the observed and estimated leaf 
trait datasets (Figure 7). We found that correlation patterns between 
observed foliar traits (Figure 7a) were similar to those found in es-
timated traits (Figure 7b), although we identified stronger relation-
ships in the estimated dataset compared to the observed dataset. 
While there was a statistically significant and positive relationship 
between the foliar trait correlations in the observed and estimated 
datasets (Figure  7c), we did find variation in both the magnitude 
and direction of trait correlations across individual experiments 
(Tables  S13–S16 and S17–S20 for observed traits and estimated 
traits, respectively).

When data were split between the two tree species, model per-
formance for most traits (i.e. A, LWC, N and sugars) was comparable 
(Figure S3a,b,d,e). Model performance for SLA and GA was lower in 
red oak compared to black walnut, but SLA was still well predicted for 
red oak, with a mean R2 of 0.63 and mean NRMSE comparable to black 
walnut (red oak mean NRMSE of 7.3% and black walnut mean NRMSE 
of 7.6%; Figure S3c). R2 was approximately 40% lower, and NRMSE 
was 40% higher for models estimating GA from red oak compared to 
black walnut (Figure S3f).TA
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4  |  DISCUSSION

In this study, we found that the wavelength range used in chemo-
metric modelling affected model performance of six ecologically 
relevant foliar functional traits that included physiological, anatomi-
cal and chemical parameters. We observed distinct improvements in 

model performance when incorporating spectral regions character-
ized by absorption features of specific traits. We also found that for 
most traits, full-range spectral data performed similarly to a reduced 
spectral range, a likely outcome of the distribution of absorption fea-
tures associated with most traits used in this study. We do note, how-
ever, that model performance of traits with more specific absorption 

F I G U R E  5  External validation of partial least squares regression-estimated traits using final models. (a) CO2 assimilation rate (A), (b) 
specific leaf area (SLA), (c) leaf water content (LWC), (d) nitrogen (N), (e) sugars and (f) gallic acid (GA) showed precision and accuracy of 
spectral approach using each optimal wavelength range. Error bars for estimated values represent the standard deviations generated 
from 500 simulated models. Red line is 1:1 relationship; model goodness-fit (R2), normalized root mean square-error (NRMSE) for external 
validation data.
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F I G U R E  6  Mean (solid) and ±1 standard deviation (dotted) of variable importance of projection (VIP) of partial least squares regression 
leaf trait models using the best range selected for each trait, (a) CO2 assimilation rate (A), (b) specific leaf area (SLA), (c) leaf water content 
(LWC), (d) nitrogen (N), (e) sugars and (f) gallic acid (GA) and (g) mean (solid) and ±1 standard deviation (dotted) of spectral profiles of leaves 
collected for this study. VIP denotes the contribution of each wavelength to the trait estimation and a VIP value of >1 (dashed line) is 
considered significant with. Wavelengths associated with optical features of each trait are presented as red vertical dotted lines (Cotrozzi 
et al., 2017; Curran, 1989; Gara et al., 2021; Kumar et al., 2001; Serbin et al., 2012; Figure S4).
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features in a narrower spectral region was negatively affected when 
using full-range spectral data, suggesting additional spectral bands can 
introduce noise and error into chemometric approaches. We suggest 
that the approach used in this study can (1) assess the relative impact 
of absorption features specific to individual functional traits on model 
performance and (2) possibly identify novel spectral regions contain-
ing absorption features for complex traits or traits with unknown or 
potentially multiple non-singular or weak absorption features. An 
emergent outcome of this study is that including the SWIR wavelength 
region in modelling improved the accuracy of all trait estimations. Our 
findings underscore the importance of optimal spectral range selec-
tion in enhancing the performance of chemometric models for specific 
foliar trait estimations, enabling trait estimates to serve as surrogates 
for standard reference measurements, which are often logistically 
challenging to collect and analyse. This approach can help broaden 
the suite of measurable plant functional traits that are influential in 
ecosystem functioning and highlights the utility of integrating spectral 
biology into a trait-based ecological framework.

4.1  |  The importance of starting or ending 
wavelength on model performance differs depending 
on plant functional traits

We found that starting or ending wavelength influenced model 
performance in a trait-specific manner. Furthermore, we observed 
trends in model performance that were predominantly non-linear, 
indicating that the impact of wavelength range variation on model 
accuracy is not consistent across different wavelengths. This out-
come is likely a result of the differential distribution of spectral 
signals related to absorption features that reflect the distinctive 
spectral characteristics of each trait.

Of the traits we measured, model performance for estimation 
of A was found to be more dependent on starting wavelengths. The 
greater influence of starting wavelengths on the prediction accuracy 
of A, relative to other functional traits, was likely because including 
or excluding the visible range had a more substantial impact on model 
performance due to the relationship with pigment pools affecting net 

F I G U R E  7  Scatterplot of pairwise trait correlations from (a) estimated and (b) observed data sets across all experiments combined and (c) 
relationship between the correlations between foliar traits predicted using spectral data and those measured using traditional standardized 
methods. R2 is calculated on correlation values from (a) and (b).
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CO2 assimilation rates. Other studies using spectral data to estimate 
photosynthetic parameters have shown the importance of longer 
wavelengths (i.e. >1100 nm) for improved model performance (Serbin 
et al., 2015; Yendrek et al., 2016). While we found that model perfor-
mance for A improved when longer wavelengths were included, the 
models we generated were less dependent on ending wavelengths. 
This outcome may be due to the enhanced importance of VNIR wave-
lengths due to the different stress conditions the plants experienced 
(Appendix S1) when collecting data in this study that likely affected 
pigment pools more than Rubisco pools (Calzone et al., 2021; Cotrozzi, 
Peron, et al., 2020; Cotrozzi, Lorenzini, et al., 2020). Moreover, previ-
ous studies (Serbin et al., 2015; Yendrek et al., 2016) focused on more 
inherently stable photosynthetic parameters (e.g. Vcmax) that poten-
tially leverage longer wavelengths associated with nitrogen absorption 
features related to Rubisco pools preferentially to shifts in pigment 
pools that might be more related to maximum photosynthetic rate 
(Sexton et al., 2021). This outcome highlights that starting and end-
ing wavelengths play an important role in determining absorption fea-
tures that can improve model performance in chemometric modelling. 
However, the relative importance of wavelength ranges with known 
absorption features might be trait specific and depend on vegetation 
stress or health status, especially for complex traits.

4.2  |  Convergence of starting and ending 
wavelength range for models appears to encompass 
spectral ranges of known trait absorption features

In this study, we found that when we overlay the patterns in the re-
lationship between the starting and ending wavelengths and model 
performance parameters, the range between the peaks of two lines 
appears to contain spectral regions of known or speculated absorption 
features for individual traits. This outcome suggests that the peaks of 
these regression lines may bookend regions of important absorption 
features. For example, the two regression lines depicting the starting 
and ending wavelengths for A intersect near 800 nm, which is close to 
the red edge (700–750 nm), a spectral region strongly influenced by 
chlorophyll content (Mutanga & Skidmore, 2007; Smith et al., 2003). 
Additionally, the range between the two peaks of the lines, spanning 
from 500 to 1850 nm, includes absorption features for both chlorophyll 
a and b, as well as proteins in the longer wavelengths (Curran, 1989; 
Elvidge, 1990). For SLA, the critical range, encompassing from 1400 
to 2400 nm, includes absorption features related to the ligno-cellulose 
and starch (Gara et al., 2021). Moreover, the intersection of the two 
curves for starting and ending wavelength ranges for LWC falls within 
a range containing water absorption features, specifically from 1400 to 
2000 nm (Féret et al., 2019).

Improved models for both N and sugars were found when the 
spectral range extended into longer wavelengths. Unlike other traits 
whose model performance stabilizes beyond ~1850 nm, suggesting 
that key spectral features have already been captured, N and sugars 
continue to benefit from an extended wavelength range. Nitrogen and 
sugars did not demonstrate the same relationship as other traits, but 

converged or approached to convergence when wavelengths above 
2000 nm were included. For N, major absorption features associated 
with N-containing biochemical constituents, such as proteins, contrib-
ute strongly in the longer wavelengths (Wan et al., 2022). Sugar-related 
absorption features span from 1000 to 2200 nm (Cotrozzi et al., 2017), 
with improvements in sugar estimation extending to 2200 nm. 
Meanwhile, GA exhibited a clear convergence near 1600 nm and two 
peaks between 1100 and 2100 nm, encompassing phenol absorption 
(~1660 nm; Couture et al., 2016; Kokaly & Skidmore, 2015).

4.3  |  Including longer wavelengths improves trait 
estimations

We found that the most accurate models were achieved by includ-
ing SWIR wavelength ranges. Our finding that longer wavelength 
ranges can improve model performance is supported by previous 
findings highlighting numerous absorption features in the SWIR re-
gion related with functional traits used in this study, including those 
associated with water, cellular structure, proteins, carbohydrates 
and phenolic compounds (Calzone et  al.,  2021; Chen et  al.,  2022; 
Cotrozzi et  al., 2017; Couture et  al., 2016; Curran, 1989; Dechant 
et  al.,  2017; Féret et  al.,  2019; Kokaly & Skidmore,  2015; Nunes 
et al., 2017; Ramirez et al., 2015; Xie et al., 2024; Yan et al., 2021). 
Because of the information in the SWIR region, models containing 
this range were identified as among the most optimal, exhibiting 
stronger predictive performance. In contrast, models based solely 
on the VIS–NIR range showed reduced accuracy for all traits rela-
tive to models containing SWIR regions. These findings are consist-
ent with previous studies demonstrating that although the metrics 
often highlight the importance of the VIS–NIR region when using 
the full spectral range, excluding VIS–NIR wavelengths in favour 
of SWIR alone does not compromise model performance (Kothari 
et  al.,  2024; Sexton et  al.,  2021; Wan et  al.,  2022). This outcome 
also highlights the importance of evaluating individual wavelength 
regions to isolate and validate the contribution of SWIR-specific ab-
sorption features to trait prediction (Sexton et al., 2021).

Building on these findings, our analysis further demonstrates 
that model performance for some traits remains relatively compara-
ble regardless of extending the starting or ending wavelength point, 
as long as the wavelength ranges that contain relevant spectral in-
formation for a specific trait are included. For example, when assess-
ing A, we achieved better model performance with spectral ranges 
starting at 400–500 nm and extending through 1700–2400 nm. In 
contrast, models estimating LWC were less influenced by the start-
ing wavelength and more dependent on ending wavelength position, 
resulting in an approximately sevenfold increase in optimal ranges 
that were not statistically different. This outcome likely arises from 
how the distribution of important absorption features associated 
with each trait influences the model performance. The assessment 
of A benefitted from the inclusion of both VIS and SWIR regions 
in this study, likely because pigments and photosynthetic proteins 
playing pivotal roles in determining photosynthetic capacity exhibit 
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absorption features in the VIS and SWIR regions, respectively 
(Cotrozzi, Peron, et al., 2020; Serbin et al., 2012). This underscores 
the critical role of combining these spectral regions for accurate esti-
mates of A, emphasizing how longer wavelengths improve leaf-level 
photosynthesis predictions (Doughty et al., 2011). Conversely, LWC 
is a measure of the amount of foliar water, and optimal models re-
quired the inclusion of major water absorption features which are 
predominant in the SWIR; thus, the starting wavelength range was 
less important. The variability observed in the number of optimal 
wavelength ranges among the different foliar traits suggests that 
this depends on the amount, magnitude and distribution of absorp-
tion features of target traits across the spectrum.

Many studies have employed the full spectral range (400–2400 nm) 
for estimating different functional traits and reported strong model 
performance (Ely et al., 2019; Kothari, Beauchamp-Rioux, Blanchard, 
et al., 2023; Serbin et al., 2014; Yan et al., 2021). In our study, it is 
worth noting that the full spectral region was also included as one 
of the optimal wavelength ranges for most traits. External validation 
of PLSR models revealed comparable model performance between 
the selected range with the highest model performance and the full 
spectral range for most models, with minimal differences (i.e. ≤4%). 
We did find, however, a more pronounced reduction in model per-
formance when using the full spectral range for estimating sugars 
and GA. The decline in model performance for these specific traits 
may be attributed to the relatively specific spectral signals associated 
with sugars and GA across the full spectrum, compared with the other 
traits investigated in this study. This potentially implies that including 
wavelength ranges that do not contain absorption features related to a 
specific trait can add noise and negatively affect spectral estimation of 
some traits, especially those with narrow absorption features or mul-
tiple, potentially weak, absorption features. Characterization of ab-
sorption features for ecologically relevant compounds thus becomes 
imperative for reducing any noise from unnecessary wavelengths 
(Serbin et al., 2012). These findings suggest that while employing the 
entire spectral range may be adequate for predicting certain traits, it 
may not be adequate for all plant functional traits.

4.4  |  Reliable trait predictions across tree species

Generalized trait models that cover diverse tree species have been 
developed using PLSR (Nakaji et al., 2019; Serbin et al., 2019; Wan 
et al., 2022; Wang et al., 2023). The transferability of PLSR models 
across different species has been shown to depend on the repre-
sentativeness of the calibration dataset, particularly whether it en-
compasses diverse plant species. Additionally, a dataset that includes 
diverse species is likely to capture variation from multiple absorption 
features of certain traits when many absorption features are pre-
sent (Wan et al., 2022). We acknowledge that this study is limited 
by using only two species, black walnut and red oak, both of which 
are the same age, to develop trait models. However, after selecting 
an optimal wavelength range that maximized model performance, 
we applied it separately to each species, resulting in comparable 

performance for most traits when each species was assessed inde-
pendently. The decline in performance of models estimating SLA 
and GA may be attributed to a narrower range of trait values and a 
reduced number of samples available for the evaluations. However, 
for SLA, mean performance was still relatively good given the re-
duction in trait range and sample size, confirming that single and 
multispecies spectral models estimating some traits can be reli-
able even though there is variation among species and functional 
groups (Kothari, Beauchamp-Rioux, Blanchard, et al., 2023; Kothari, 
Beauchamp-Rioux, Laliberté, et al., 2023; Serbin et al., 2019).

4.5  |  Consistent functional trait relationships 
across studies and integrating spectral biology and 
plant ecology

We found that pairwise trait correlations were similar for both ob-
served and estimated traits, as seen in Chadwick and Asner (2016). 
While these correlations varied somewhat across the different 
treatments, the overall pattern of trait correlations was consistent 
between observed and estimated data when considering all treat-
ments collectively. The consistency in this relationship suggests 
that spectrally estimated functional trait data can act as a surrogate 
for standard reference-collected trait data and has been shown to 
produce similar statistical outcomes when compared with analyses 
using standard reference data (Cotrozzi, Peron, et al., 2020). In ad-
dition, studies using only spectrally estimated functional traits have 
revealed insights into plant responses to environmental change, the 
influence of functional trait variation on plant–insect interactions 
and the influence of geographic variation of insect herbivory on 
plant demographic processes (Cavender-Bares et al., 2016; Couture 
et al., 2015; DeLaMater et al., 2021; Struckman et al., 2019). We sug-
gest that the use of spectrally estimated functional traits can inte-
grate spectral biology into a plant trait-based ecological framework.

5  |  CONCLUSIONS

Outcomes from this work suggest this modelling approach has 
broader implications beyond the modelling of only known absorp-
tion features. It can be extended to identify unknown absorption 
features in leaves for traits, potentially enhancing our ability to pre-
dict and understand these traits and their responses to stress. By lev-
eraging the relationships between starting and ending wavelengths 
and their convergence at or near significant spectral signals, we offer 
a novel approach for identifying absorption features of traits that 
are ecologically relevant but to date have not been focused on in the 
literature because of unknown or complex absorption features. We 
also highlight consistencies among trait correlations for observed 
and estimated traits data, suggesting that estimated data can act 
as a surrogate for standard reference measurements. This outcome 
highlights that a spectral biology approach can be integrated into an 
ecological framework, providing access to a suite of plant functional 
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traits that can be logistically challenging to collect, ultimately ad-
vancing our understanding of relationships among vegetation opti-
cal properties, plant functional traits and plant ecology.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Appendix S1: Plant material and experimental designs.
Table  S1: List of 100 wavelength ranges used for building PLSR 
models estimating CO2 assimilation rate (A), ranked in descending 
order by the mean goodness of fit, R2, across model evaluations by 
conducting 100 permutations.
Table  S2: List of 100 wavelength ranges used for building PLSR 
models estimating specific leaf area, ranked in descending order by 
the mean goodness of fit, R2, across model evaluations by conducting 
100 permutations.
Table  S3: List of 100 wavelength ranges used for building PLSR 
models estimating leaf water content, ranked in descending order by 
the mean goodness of fit, R2, across model evaluations by conducting 
100 permutations.
Table  S4: List of 100 wavelength ranges used for building PLSR 
models estimating nitrogen, ranked in descending order by the mean 
goodness of fit, R2, across model evaluations by conducting 100 
permutations.
Table  S5: List of 100 wavelength ranges used for building PLSR 
models estimating sugars, ranked in descending order by the mean 
goodness of fit, R2, across model evaluations by conducting 100 
permutations.
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models estimating gallic acid, ranked in descending order by the 
mean goodness of fit, R2, across model evaluations by conducting 
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Table  S7: List of 100 wavelength ranges used for building PLSR 
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across model evaluations by conducting 100 permutations.
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mean normalized root mean square error, NRMSE, across model 
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Table  S11: List of 100 wavelength ranges used for building PLSR 
models estimating sugars, ranked in ascending order by the 
mean normalized root mean square error, NRMSE, across model 
evaluations by conducting 100 permutations.
Table  S12: List of 100 wavelength ranges used for building PLSR 
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among estimated leaf traits collected in EEL in 2018.
Table  S18: Pearson's correlation matrix describing relationships 
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Figure S2: External validation of partial least squares regression-
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Figure S3: Correlation scatterplot between observed values and partial 
least squares regression-estimated trait values for black walnut (black 
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Figure S4: First-derivative reflectance profiles of the gallic acid 
standard within the optimal range for gallic acid (650–2000 nm).
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