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2. Here, we investigate the influence of spectral ranges on the performance of mod-
els estimating six tree functional traits: CO, assimilation rate, specific leaf area,
leaf water content and concentrations of foliar nitrogen, sugars and gallic acid.
Using data collected from multiple different experiments, we quantified plant
functional trait responses using standard reference measurements and paired
them with proximal leaf-level hyperspectral reflectance measurements spanning
the wavelength range of 400-2400 nm. A total of 100 different wavelength range
combinations were evaluated using partial least squares regression to determine
the influence of wavelength range on model performance.

3. We found that the influence of starting or ending wavelength on model per-
formance was trait specific and better model outcomes were achieved when
the starting and ending wavelengths encompassed absorption features associ-
ated with the specific leaf trait modelled. Interestingly, we found that including
shortwave-infrared wavelength ranges (1300-2500nm) improved performance

for all trait models.
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logical research.
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1 | INTRODUCTION

Vegetation spectroscopy has emerged as a powerful tool for assess-
ing plant health, especially considering its potential for estimating
plant functional trait responses to biotic and abiotic stress (Asner
et al., 2015; Lausch et al., 2016; Serbin & Townsend, 2020). This
approach has been used to rapidly and non-destructively classify
various stress events and assess stress severity in plants, and it
can be applied across large spatial and temporal scales using aerial
and spaceborne measurement platforms (Hill et al., 2019; Huang
et al., 2019; Sapes et al., 2024; Thomas et al., 2018). Vegetation
spectroscopy can be used to monitor changes in plants caused by
environmental variation and pest and pathogen pressure (Asner
et al, 2018; Cotrozzi, 2022; Garcia et al., 2025; Lassalle, 2021)
and has shown promise to advance trait-based approaches for un-
derstanding plant ecology (Cavender-Bares et al., 2016; Couture
et al., 2015; DeLaMater et al., 2021; Struckman et al., 2019; Wang
et al,, 2022). While relationships among plant spectral data and
physiochemical traits have enabled monitoring of specific responses
of plants to different stressors (Lausch et al., 2016), it is not yet well
understood how spectral range contributes to the accuracy of esti-
mates of many complex physiochemical traits.

Plant functional traits encompass a wide variety of plant
characteristics, including chemical composition, physiological
processes, morphology, anatomical structure and phenological
changes (Violle et al., 2007). Spectral estimation of these traits
relies on the absorption and reflectance patterns of vegetation
within and across particular wavelength ranges (Curran, 1989).
Estimating specific chemical compounds, such as chlorophyll,
may rely on fewer, more well-understood absorption features
(Curran, 1989), while physiological processes, such as photosyn-
thesis, are a product of a combination of a number of functional
traits and may require a more complex set of absorption features
related to the underlying mechanisms to estimate the emergent
physiological process (Doughty et al., 2011; Sexton et al., 2021;
Wau et al., 2024). In addition, when absorption features for traits
are neither well-defined nor singular in nature, estimating traits

from spectral data can be challenging, and different wavelength

4. Collectively, our findings underscore the importance of optimal spectral range se-
lection in enhancing the accuracy of chemometric models for specific foliar trait
estimates. An emergent outcome of this work is that the approach can be used
to (1) identify the important spectral features of traits that currently lack known
absorption features or have multiple or weak absorption features, (2) expand the
current suite of plant functional traits that can be estimated using spectroscopy

and (3) ultimately advance the integration of a spectral biology approach in eco-

black walnut, hyperspectral, Juglans nigra, leaf functional traits, northern red oak, PLSR,
Quercus rubra, wavelength range

or wavelength range combinations may be needed for accurate
estimation.

A preferred approach to estimating foliar functional traits in
chemometric modelling is partial least squares regression (PLSR;
Wold et al., 1984, 2001). This method is an empirical multivari-
ate statistical approach that builds a predictive model by relating
variability in predictor variables to variability in response variables
(Burnett et al., 2021; Wold et al., 1984, 2001). In contrast to other
linear regression approaches, which can generate spurious coeffi-
cients when predictor variables are highly correlated, as is the case
with spectral data, PLSR reduces the predictor data matrix into
few, relatively uncorrelated latent variables (Burnett et al., 2021).
Because PLSR decomposes spectral data into latent variables to
extract information from spectral profiles, the approach can esti-
mate plant functional traits evenin cases where complex traits lack
clear, specific absorption features or rely on absorption features
from different subcomponent traits that define the functioning of
an emergent complex trait using the input spectral data (Kothari
& Schweiger, 2022). Additionally, PLSR can indirectly infer traits
by leveraging the covariance among other traits that do have clear
absorption features (Chadwick & Asner, 2016; Chen et al., 2022;
Nunes et al., 2017). Because of these characteristics, however, the
estimation accuracy of PLSR is not inherently reliant on known
absorption features, and thus it is important to identify optimal
input wavelength ranges.

Currently, there is a lack of well-defined absorption features
for many complex or less commonly studied plant functional
traits. In addition, features for these traits may be unevenly dis-
tributed across the reflectance spectrum, and the wavelength
ranges used can influence how PLSR decomposes the spectral
matrix to produce latent variables, ultimately affecting predic-
tion outcomes. Because of these knowledge gaps, research into
identifying optimal wavelength ranges for plant functional trait
predictions is crucial for improving chemometric outcomes.
Previous studies have employed different approaches for select-
ing wavelength ranges for PLSR analysis. Some studies have used
a ‘full wavelength range’ (i.e. 350-2500nm, or a close variation
to this range) for all plant functional traits (Dao et al., 2025; Ely
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et al., 2019; Kothari, Beauchamp-Rioux, Blanchard, et al., 2023;
Nakaji et al., 2019), while others have focused on smaller wave-
length regions based on historically known absorption fea-
tures of specific traits (Calzone et al., 2021; Cotrozzi, Peron,
et al., 2020; Couture et al.,, 2016; Dechant et al., 2017; Nunes
et al.,, 2017; Serbin et al., 2014; Xie et al., 2024). In addition, stud-
ies have explored various combinations of the visible (VIS), near
infrared (NIR) and shortwave infrared (SWIR) ranges, selecting
wavelength ranges that yield the best model outcomes (Chen
et al., 2022; Cotrozzi, Peron, et al., 2020; Kothari, Beauchamp-
Rioux, Laliberté, et al., 2023; Sexton et al., 2021). Some recent
studies have aimed to explore the optimal wavelength range for
trait estimations by first dividing spectral features into evenly
sized, small intervals and then combining these intervals to iden-
tify spectral regions that maximized performance in PLSR models
(Wan et al., 2022; Wang et al., 2023). Despite acknowledging the
general influence of wavelength selection on the performance of
models estimating plant functional traits, the influence of spec-
tral features for individual leaf traits on model performance,
particularly in terms of model accuracy over multiple different
wavelength ranges, is not fully understood.

In this study, we aim to fill this knowledge gap by exploring
the influence of different wavelength ranges on chemometric
model performance for predicting foliar functional traits. We first
quantified a suite of plant foliar physiological, anatomical and
chemical traits that reflect plant growth, defence and stress re-
sponses including net CO, assimilation rate (A), specific leaf area
(SLA), leaf water content (LWC) and nitrogen (N), sugars and gallic
acid (GA) concentrations. Assimilation rates, SLA and foliar N and
sugars concentrations are often implicated in having an impact on
multiple ecosystem processes such as plant growth and leaf lit-
ter decomposition (Asner et al., 2017; Cui et al., 2020; Kazakou
et al., 2009; Wright et al., 2004). Leaf water content is frequently
used to assess plant water status (Cheng et al., 2011) and phenolic
acids, including GA, contribute to plant defences by acting as anti-
oxidants and exhibiting antimicrobial activity (Kumar et al., 2020).
These traits capture essential plant function and together they
provide insights into how plant growth and stress responses adapt
to varying environmental conditions. We then examined the in-
fluence of multiple different combinations of wavelength ranges
on the ability to estimate foliar functional traits from leaf spectral
data using PLSR.

This study explores how the accuracy of PLSR models var-
ies depending on the wavelength ranges chosen within the full
spectrum (400-2400nm) due to the varying presence of relevant
absorption features for the foliar trait of interest in the different
subsets of the spectrum. Our specific objectives were to (1) eval-
uate optimal spectral regions to estimate variation in plant func-
tional traits, (2) investigate the accuracy of these models across
different wavelength ranges selected and (3) assess the extent to
which changes in model prediction accuracy across wavelength
regions are related to known absorption features of specific plant
functional traits.
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2 | MATERIALS AND METHODS
2.1 | Data collections

Data used in this study were collected from several different ex-
periments over a 2-year period (2018-2019) examining responses of
two tree species, black walnut (Juglans nigra) and red oak (Quercus
rubra), to multiple abiotic and biotic stress factors, alone and in com-
bination, in a controlled environment. Abiotic stress environments
included water, salt and nutrient stress conditions and biotic stress
environments included fungal pathogen inoculations (Table 1).
Detailed descriptions of experimental design and conditions can be
found in Appendix S1.

2.2 | Foliar spectral and functional trait collections

Spectral data used in this study were collected individually from
all living, attached leaves that were selected for physiochemical
reference measurements in studies described in Appendix S1. Gas-
exchange measurements were conducted on leaves of red oak or
leaflets of black walnut from the top fully expanded leaf per tree
to determine net CO, assimilation rate (A). Specific leaf area (SLA),
leaf water content (LWC), foliar nitrogen (N), sugars and gallic acid
(GA) concentrations were measured from a single leaf or leaflet, for
SLA and LWC, or four to six leaves or leaflets, for N, sugars and GA,
that were collected and then transported in a cooler on ice to the

laboratory.

2.2.1 | Foliar spectral collections

In all experiments, full-range (350-2500nm) reflectance profiles
of all leaves or leaflets sampled for reference measurements were
collected using a SVC HR-1024i spectroradiometer (Spectral Vista
Corporation, Poughkeepsie NY, USA) including a fibre optic cable
connected to a plant probe, which was equipped with a leaf clip
containing an internal halogen light source. Leaf spectral data
were collected in the middle of the adaxial side of each leaf or leaf-
let immediately following gas-exchange measurements and before
tissue was collected for determining foliar anatomical, water-
related or chemical traits. Integration time (i.e. the length of time
that the detectors are allowed to collect photons before passing
the accumulated charge to the converter for processing) was set at
2s. The relative reflectance of each leaf was determined from the
measurement of radiance collected from the leaf or leaflet divided
by the radiance collected from a white reference panel internal
to the leaf clip that was measured every six spectral collections.
Spectral measurements were resampled to a single nanometre
resolution and spectral and physiochemical reference measure-
ments were then paired. In the case of spectral measurements
for chemistry (N, sugars and GA), the spectra from the four or six
leaves or leaflets collected were combined by calculating the mean
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Experiment Tree species Stress
2018 EEL Black walnut Fungal disease
Soil type
2018 Wright Center Black walnut Nutrient availability
Water availability
2019 EEL Black walnut Fungal disease
Water availability
2019 Wright Center Black walnut Nutrient availability
Red oak

Salinity

Note: Experiments were conducted in 2018 and 2019 to expose one-year-old black walnut (Juglans

Treatment

Control: Deionized
water

Pathogen infection:
Geosmithia morbida
inoculation

Forest soil, plantation
soil, sterile soil

Control: Fertigation
Nutrient deficiency: Tap
water

Control: Full irrigation
Drought: 50mLday™*
irrigation

Control: Deionized
water

Fungal infection: G.
morbida or Fusarium
solani inoculation

Control: Full irrigation
Drought: No irrigation

Control: Fertigation
Nutrient deficiency: Tap
water

Control: Fertigation
Salt deposition: salt
solution (NaCl, 50mM)

nigra L.) and northern red oak (Quercus rubra L.) seedlings to various biotic and abiotic stressors
in two greenhouse environments: The Purdue Entomology Environmental Lab (EEL) at Purdue
University, West Lafayette, IN, USA (40°25'23”N, 86°54'52” W) and the John S. Wright Forestry
Center (Wright Center) at the Purdue Martell Experimental Forest, West Lafayette, IN, USA
(40°25'56” N, 87°02'19” W). Details of the stress treatments are provided in Appendix S1.

at each wavelength to produce an average spectrum. Wavelength
regions 350-399, 2401-2500 and 1891-1911nm were removed
because of noise associated with detector limits (i.e. 350-399 and
2401-2500) or noise associated with the SWIR 1 and SWIR 2 de-
tector overlap region (i.e. 1891-1911).

2.2.2 | Foliar functional trait collections

Net CO, assimilation rate was determined using an LI-6400XT
Portable Photosynthesis System (LI-COR Biosciences, Lincoln, NE,
USA) with a light source of a 6400-02B LED, operating at 400 pL [
CO, concentration and saturating light conditions (1700 umol m2s!
photosynthetically active radiation). Specific leaf area and LWC were
determined by measuring the fresh weight (FW) of a leaf or leaflet
and then oven-drying the leaf or leaflet at 60°C until a constant mass
to obtain the dry weight (DW). The petiole of leaf or petiolule of
leaflet was removed, and the leaf or leaflet was scanned before dry-
ing, and the area of leaf or leaflet was determined using the software
ImageJ v.1.38 (National Institutes of Health). Specific leaf area was
calculated as leaf area divided by DW and LWC was calculated as
[(FW-DW)/FW]x100.

TABLE 1 Four experimental designs.

Additional foliar tissue collected for chemical quantification was
immediately wrapped in aluminium foil and stored in liquid nitrogen
until being transferred to a —20°C freezer. Foliar samples were lyo-
philized and ground to fine powder using a ball mill. Leaf N concentra-
tion was determined using a combustion analyser (Costech Analytical
Technologies Inc., Valencia, CA) with atropine (CE Elantech, Lakewood,
NJ, USA) serving as a standard. Sugars, determined as the sum of glu-
cose, fructose and sucrose, were quantified according to Pellegrini
et al. (2015) with minor modifications. Briefly, 50mg of freeze-dried
and ground leaf material was homogenized in 1mL of HPLC-grade
water and placed in a water bath at 60°C for 1h. The extracts were
then centrifuged at 50008 for 20min at room temperature. The su-
pernatant was filtered through a 0.22 um PES filter (Celltreat Scientific
Products, USA). Glucose, fructose and sucrose were separated using
high-performance liquid chromatography (HPLC, Shimadzu Co.,
Kyoto, Japan). The HPLC system consisted of a Shimadzu LC-20AB
solvent delivery pump, a SIL-20AC HT autosampler, a CTO-20A col-
umn oven and a CBM-20A communications bus module. The system
was fitted with a Rezex RCM monosaccharide Ca* size exclusion col-
umn (300mmx7.8mm diameter, Phenomenex, Torrance, CA, USA)
and a Carbo-Ca®* security guard cartridge (4mmx3mm diameter,
Phenomenex, Torrance, CA, USA). The separated sugars were then
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detected using a refractive index detector (RID-20A, Shimadzu). The
injection volume was 5 uL and the mobile phase was HPLC-grade water
at a flow rate of 0.6mLmin’. The total run time was 20min, and the
column temperature was maintained at 65°C. Standards of glucose
(MP Biomedicals, Solon, OH, USA), fructose (Acros Organics, Fair
Lawn, NJ, USA) and sucrose (Alfa Aesar, Ward Hill, MA, USA) were
used to identify the retention time of individual sugars and concentra-
tions of individual sugars were determined by comparing the peak area
of individual sugars to an external standard curve developed for each
individual sugar.

Gallic acid was analysed according to Nour et al. (2012) with slight
modifications. Briefly, 1mL methanol and 1% butylhydroxytoluene
were added to 14.5mg of dried leaf tissue and sonicated at 25°C for
40min. Extracts were centrifuged at 1200g and the supernatants were
filtered through a 0.2pum syringe filter (13mm diameter, Fisherbrand,
PTFE) and stored at -20°C. Gallic acid was identified by the same
HPLC system that was used for sugar quantification, equipped with
a photodiode array detector (SPD-M20A) and Hypersil Gold col-
umn (4.6mmx250mm, 5pm, Thermo Scientific). The mobile phase
used was 1% acetic acid in water (A) and methanol (B) in a gradient
mode: 0-27 min (10% B), 27-55min (10%-40% B), 55-60min (40% B),
60-62min (40%-44% B), 62-70min (44% B), 70-71min (44%-10% B)
and 71-75min (10% B). The flow rate of the mobile phase and the injec-
tion volume were 1mLmin™* at 30°C and 5pL, respectively. The peak
representing GA was identified from chromatograms at 280nm and
by comparing their retention time to that of a pure standard (Sigma-
Aldrich, St. Louis, MO, USA). Concentrations of GA were determined
by comparing peak area of GA to an external standard curve of the GA
standard. Summary statistics of observed foliar functional traits from
the different stress combinations for all experiments can be found in
Table 2. In total, trait data were collected for A (1=449), SLA (n=340),
LWC (n=340), N (n=196), sugars (n=196) and GA (n=197).

2.2.3 | Chemometric model calibration and
validation

Untransformed reflectance profiles were used to generate predic-
tive models using PLSR (Burnett et al., 2021; Wold et al., 2001). Data
analyses for PLSR were conducted in Rv. 3.6.1 (R Core Team, 2019)
using the package pls v. 2.7.1 (Mevik et al., 2019). Eighty percent of
the full dataset was used for calibration and cross-validation and
the remaining 20% of the full dataset was used for external vali-
dation to evaluate the final performance of the models on unseen
data. Within the 80% of the dataset used for calibration and cross-
validation, the data were split into 80% for model fitting (training)
and 20% for cross-validation (testing), stratified across the reference
data range over 100 randomized permutations. Using a randomiza-
tion approach allows for the assessment of model stability and the
determination of model uncertainty in prediction.

Model calibration and cross-validation were conducted across
100 different wavelength ranges. To generate different intervals
and locations of wavelength ranges, we adjusted the starting and
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ending wavelengths across the spectral signature in the process
of calibration. We also ensured that each spectral range encom-
passed a continuous segment of at least 300 nm. This procedure
enabled the inclusion or exclusion of specific characteristic pat-
terns within the vegetation spectrum, generating 100 different
wavelength ranges (Figure S1). We employed this approach, as op-
posed to a feature selection algorithm technique for two reasons:
the potentially overly context-dependent nature of these feature
selection approaches in application of chemometrics and the re-
ductionist nature of these approaches never ensures, or forces,
specific combinations of wavelengths together. Because of the
context-dependent nature of most feature selection approaches,
outcomes that are considered by an algorithm to be influential in
trait estimation may be a secondary product of some other change
in plant spectral profiles. For example, such changes may involve
colour shifts that are correlated with the trait of interest but not
directly related to the absorption features of the trait. Moreover,
the reductionist approach used by many feature selection algo-
rithms (e.g. LASSO, ReliefF) potentially excludes the opportunity
to incorporate specific combinations or sets of wavelength ranges,
and remove wavelengths considered not useful. While removing
wavelengths unimportant for a singular dataset, they limit the dis-
covery of potentially novel absorption features and focus only on
wavelengths important to the dataset analysed.

During model calibration, the number of latent variables retained
in individual models was determined based on reduction of the pre-
dicted residual sum of square (PRESS) statistic (Chen et al., 2004)
using leave-one-out cross-validation. Prediction residuals more than
twice the standard deviation were determined to be outliers. These
outliers were removed from the calibration dataset because of ei-
ther faulty spectral or reference measurements, and models were
subsequently re-trained. Specifically, A: 16/361 (4.4%), SLA: 9/272
(3.3%), LWC: 8/272 (2.9%), N: 5/156 (3.2%), sugars: 7/156 (4.5%)
and GA: 9/157 (5.7%) were removed. Model performance was eval-
uated using goodness-fit (R?) and normalized root mean square error
(NRMSE, RMSE divided by the reference data range), representing
precision and accuracy, respectively, across the different permu-
tations. R? represents the proportion of variance in the dependent
variable that is explained by the independent variables and is useful
for assessing the overall strength of the model in capturing the vari-
ability in the data. Conversely, NRMSE focuses on the magnitude of
the error between predicted and observed values, providing a mea-
sure of accuracy.

Based on the results comparing the model performance from
calibration across 100 spectral ranges, final PLSR models were
built using the optimal range for each trait that demonstrated the
absolute highest R? and the lowest NRMSE. The same modelling ap-
proach described above was followed, except that 500 randomized
permutations were used. To determine the importance of specific
wavelengths contributing to final models, we calculated the variable
importance of projection (VIP) statistic (Chong & Jun, 2005; Wold
et al., 2001). External validation was performed by applying the
coefficients from all 500 PLSR models to the data withheld from

modelling. Relationships between the mean estimated and observed
values were tested by regression analysis. Fit statistics (R?> and
NRMSE) were again used to assess the precision and accuracy of

model estimates.

2.2.4 | Statistical analyses

Significant differences (p <0.05) in R? or NRMSE of the models using
100 different wavelength ranges in the calibration process, over 100
iterations each, were tested using analysis of variance (ANOVA). A
post-hoc Tukey HSD test was used to assess statistically significant
pairwise differences (p=0.05). The relationships between wave-
length starting and ending and model prediction accuracy were
analysed by linear and second-order polynomial regression analy-
sis. The performance of the optimal wavelength range and the full
wavelength range were compared by applying the multiple model
coefficient iterations of each model on the external validation set
separately, and differences were assessed using a t-test. Pearson
correlation was used to assess the relationship between the correla-
tions of foliar traits estimated using spectral data and those meas-
ured using traditional standardized methods. Statistical analyses
were performed in GraphPad Prism v 9.5.1 (GraphPad Software,
Boston, MA, USA) and JMP v. 16.1 (SAS Institute Inc., Cary, NC,
USA).

3 | RESULTS

Model performance parameters (R? and NRMSE) for cross-validation
outcomes varied among the different wavelength ranges used for
building the PLSR models (Figures 1 and 2; Tables S1-512). Changing
the spectral range had a significant impact on model performance,
resulting in a variation of 1.7 to 3.0 times in R? and 1.3 to 2.6 times
in NRMSE when all functional traits were considered. The range
of R? over the 100 wavelength combinations was 0.23-0.68 for A,
0.43-0.90 for SLA, 0.54-0.91 for LWC, 0.40-0.91 for N, 0.29-0.61
for sugars and 0.20-0.51 for GA. The absolute range of NRMSE was
14%-22% for A, 7%-17% for SLA, 5%-12% for LWC, 6%-17% for N,
15%-21% for sugars and 16%-21% for GA (Tables S1-512).

When predicting each foliar functional trait, the wavelength
range with the highest R? and the wavelength range with the lowest
NRMSE were the same for A and LWC. For other traits, the wave-
length range that yielded the best performance consistently ranked
either first or second in these evaluations. However, the number of
optimal spectral ranges varied depending on whether R? or NRMSE
was considered. The exception to this was A, in which nine out of the
100 evaluated wavelength ranges exhibited R? values above 0.65,
and the same nine wavelength ranges were identified as optimal
when considering NRMSE, with values less than 14.6% (Figures 1a
and 2a; Tables S1 and S7). The wavelength ranges included in these
optimal A models began at either 400 or 500nm and extended be-
yond 1700 nm, with the highest R? of 0.68 obtained using the range
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to 4., influence partial least squares regression (PLSR) model performance for

estimating major leaf functional traits, (a) CO, assimilation rate (A), (b) specific leaf area (SLA), (c) leaf water content (LWC), (d) nitrogen (N),
(e) sugars and (f) gallic acid (GA). PLSR model outcomes were made based on the 100 different wavelength ranges, all over 100 iterations
80%/20% calibration and cross-validation approach. Colour maps are contours of the model performance, goodness-of-fit (R?), on the
testing dataset. Data points within the orange-coloured box represent wavelength ranges exhibiting significantly highest R? values that did
not differ significantly each other and the orange star highlights the spectral region yielding the best result.

of 500-1850nm (Figure 1a; Table S1). For SLA, 34 optimal mod-
els out of the 100 evaluated spectral regions were obtained when
wavelengths beyond 1550nm were included, with the highest per-
formance achieved in the 500-2400nm range (Figure 1b; Table S2).
The number of wavelength ranges that minimized NRMSE for SLA
models was reduced to 20, and when the ending wavelength was
2200nm or less, the starting wavelength needed to include the vis-
ible wavelength range (Figure 2b; Table S8). Similarly, for assessing
LWC, 61 optimal spectral regions were identified, which could begin

at almost any wavelength, but optimal models were obtained when
wavelengths beyond 1550nm were included. For LWC, the best
model R? of 0.91 was found at 1250-1700nm (Figure 1c; Table S3).
Some of the models with spectral regions that started within the
SWIR region or ended at 1550nm were not identified as optimal
spectral regions when using NRMSE as a criterion for evaluation (i.e.
below 6%; Figure 2c; Table S9).

Model combinations of foliar N revealed 28 optimal spectral
ranges, starting from any wavelength, but optimal models were
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influence partial least squares regression (PLSR) model performance for

estimating major leaf functional traits, (a) CO, assimilation rate (A), (b) specific leaf area (SLA), (c) leaf water content (LWC), (d) nitrogen (N),
(e) sugars and (f) gallic acid (GA). PLSR model outcomes were made based on the 100 different wavelength ranges, all over 100 iterations
80%/20% calibration and cross-validation approach. Colour maps are contours of the model performance, normalized root mean square
error (NRMSE), on the testing dataset. Data points within the orange-coloured box represent wavelength ranges exhibiting significantly
lowest NRMSE values that did not differ significantly from each other, and the orange star highlights the spectral region yielding the best

result.

obtained when wavelengths beyond 2200nm were included, with
the highest R? of 0.91 achieved within the 2000-2400nm wave-
length range (Figure 1d; Table S4). There were 23 optimal spec-
tral ranges for which foliar N estimates were most accurate, with
NRMSE values ranging from 6.5% to 7.2%. When the ending wave-
length range was 2200 nm, the starting wavelength needed to begin
between 720 and 1700 nm and when the wavelength range ended at
2400 nm, the starting wavelength could range from 650 to 2000nm

(Figure 2d; Table S10). For sugars, 22 wavelength ranges were iden-
tified and optimal models were obtained when wavelengths beyond
2000nm were included (Figure 1e; Table S5). The highest R? of 0.61
was observed when using the wavelength range 1000-2200nm.
Additionally, 15 wavelength ranges were recognized as optimal
based on the lowest NRMSE (14.7%-16.1%). The starting wave-
length of these optimal ranges was more narrowly confined to 650
to 1550nm (Figure 2e; Table S11). For GA, 31 optimal spectral ranges
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FIGURE 3 Partial least squares regression model performance metric, R?, as a function of Amin (@ starting wavelength, open circle) and 4,
(an ending wavelength, orange diamond) for estimating major leaf functional traits, (a) CO, assimilation rate (A), (b) specific leaf area (SLA),
(c) leaf water content (LWC), (d) nitrogen (N), (e) sugars and (f) gallic acid (GA). The lines represent the significant 1-R? relationships based on

regression analyses (p <0.05).

were identified starting between 400 and 1250nm and ending be-
tween 1850 and 2400 nm. The highest R? of 0.51 was found in the
wavelength range of 500-1850 nm (Figure 1f; Table S6). When eval-
uating the model performance based on NRMSE, 41 optimal wave-
length ranges were found. These ranges fall within the same optimal
spectral regions as those identified by R?; however, they exhibited
an extension in the ending wavelengths, ranging between 1300 and
2400nm (Figure 2f; Table S12).

We found statistically significant relationships between the
starting or ending wavelength and R? (Figure 3). For A, model R? de-
creased non-linearly with the starting wavelength, whereas it had a

weak, concave relationship with the ending wavelength, reaching a
maximum of R? at 1850nm (Figure 3a). For SLA, model R? increased
non-linearly with both the starting and ending wavelength points,
but the model performance was less related to the starting wave-
length than the ending wavelength (Figure 3b). Similar patterns were
observed for LWC, but the difference between R? values was smaller
than for SLA (Figure 3c). We found a linear increase in R? with both
the starting and ending wavelengths for estimating N (Figure 3d).
However, the relationship between R? and the starting wavelength
was weaker than the relationship between R? and the ending wave-
length. For sugars, there was a weak and linear relationship between
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R? and the starting wavelength, but the relationship between R? and
the ending wavelength was stronger and demonstrated a convex
pattern (Figure 3e). For GA, the R? has a weak, concave relationship
with the starting wavelength, whereas R? increased non-linearly
with the ending wavelength (Figure 3f).

The trends between the starting or ending wavelengths and
NRMSE were opposite to those between the starting or ending
wavelengths and R? due to the inverse relationship between R? and
NRMSE (Figure 4). The effects of starting or ending wavelengths
on the NRMSE of each trait were similar to those of the starting or
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FIGURE 4 Partial least squares regression model performance metric, NRMSE, as a function of 4

ending wavelengths on the R%. For A, NRMSE was more dependent
on the starting wavelength than the ending wavelength (Figure 4a).
For all other foliar traits, the ending wavelength was more influential
to determine NRMSE than the starting wavelength (Figure 4b-f).
The final models accurately estimated foliar traits in the calibration
and cross-validation approach (Table 3). Model performance in the ex-
ternal validation dataset was lower than the calibration outcomes but
produced reasonably good metrics (Figure 5). Overall, R? values ranged
from 0.43 to 0.86 and NRMSE ranged from 9% to 21%. In general,
model performance was better for SLA, LWC and N than for A, and
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and 4, (an ending wavelength, orange diamond) for estimating major leaf functional traits, (a) CO, assimilation rate (A), (b) specific leaf
area (SLA), (c) leaf water content (LWC), (d) nitrogen (N), (e) sugars and (f) gallic acid (GA). The lines represent the significant 1-NRMSE

relationships based on regression analyses (p <0.05).
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FIGURE 5 External validation of partial least squares regression-estimated traits using final models. (a) CO, assimilation rate (A), (b)
specific leaf area (SLA), (c) leaf water content (LWC), (d) nitrogen (N), (e) sugars and (f) gallic acid (GA) showed precision and accuracy of
spectral approach using each optimal wavelength range. Error bars for estimated values represent the standard deviations generated
from 500 simulated models. Red line is 1:1 relationship; model goodness-fit (RZ), normalized root mean square-error (NRMSE) for external

validation data.

4 | DISCUSSION

In this study, we found that the wavelength range used in chemo-
metric modelling affected model performance of six ecologically
relevant foliar functional traits that included physiological, anatomi-
cal and chemical parameters. We observed distinct improvements in

model performance when incorporating spectral regions character-
ized by absorption features of specific traits. We also found that for
most traits, full-range spectral data performed similarly to a reduced
spectral range, a likely outcome of the distribution of absorption fea-
tures associated with most traits used in this study. We do note, how-
ever, that model performance of traits with more specific absorption
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FIGURE 6 Mean (solid) and +1 standard deviation (dotted) of variable importance of projection (VIP) of partial least squares regression
leaf trait models using the best range selected for each trait, (a) CO, assimilation rate (A), (b) specific leaf area (SLA), (c) leaf water content
(LWCQ), (d) nitrogen (N), (e) sugars and (f) gallic acid (GA) and (g) mean (solid) and +1 standard deviation (dotted) of spectral profiles of leaves
collected for this study. VIP denotes the contribution of each wavelength to the trait estimation and a VIP value of >1 (dashed line) is
considered significant with. Wavelengths associated with optical features of each trait are presented as red vertical dotted lines (Cotrozzi
et al.,, 2017; Curran, 1989; Gara et al., 2021; Kumar et al., 2001; Serbin et al., 2012; Figure S4).
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features in a narrower spectral region was negatively affected when
using full-range spectral data, suggesting additional spectral bands can
introduce noise and error into chemometric approaches. We suggest
that the approach used in this study can (1) assess the relative impact
of absorption features specific to individual functional traits on model
performance and (2) possibly identify novel spectral regions contain-
ing absorption features for complex traits or traits with unknown or
potentially multiple non-singular or weak absorption features. An
emergent outcome of this study is that including the SWIR wavelength
region in modelling improved the accuracy of all trait estimations. Our
findings underscore the importance of optimal spectral range selec-
tion in enhancing the performance of chemometric models for specific
foliar trait estimations, enabling trait estimates to serve as surrogates
for standard reference measurements, which are often logistically
challenging to collect and analyse. This approach can help broaden
the suite of measurable plant functional traits that are influential in
ecosystem functioning and highlights the utility of integrating spectral
biology into a trait-based ecological framework.

4.1 | The importance of starting or ending
wavelength on model performance differs depending
on plant functional traits

We found that starting or ending wavelength influenced model
performance in a trait-specific manner. Furthermore, we observed
trends in model performance that were predominantly non-linear,
indicating that the impact of wavelength range variation on model
accuracy is not consistent across different wavelengths. This out-
come is likely a result of the differential distribution of spectral
signals related to absorption features that reflect the distinctive
spectral characteristics of each trait.

Of the traits we measured, model performance for estimation
of A was found to be more dependent on starting wavelengths. The
greater influence of starting wavelengths on the prediction accuracy
of A, relative to other functional traits, was likely because including
or excluding the visible range had a more substantial impact on model
performance due to the relationship with pigment pools affecting net
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CO, assimilation rates. Other studies using spectral data to estimate
photosynthetic parameters have shown the importance of longer
wavelengths (i.e. >1100nm) for improved model performance (Serbin
et al., 2015; Yendrek et al., 2016). While we found that model perfor-
mance for A improved when longer wavelengths were included, the
models we generated were less dependent on ending wavelengths.
This outcome may be due to the enhanced importance of VNIR wave-
lengths due to the different stress conditions the plants experienced
(Appendix S1) when collecting data in this study that likely affected
pigment pools more than Rubisco pools (Calzone et al., 2021; Cotrozzi,
Peron, et al., 2020; Cotrozzi, Lorenzini, et al., 2020). Moreover, previ-
ous studies (Serbin et al., 2015; Yendrek et al., 2016) focused on more

inherently stable photosynthetic parameters (e.g. V___ ) that poten-

cmax
tially leverage longer wavelengths associated with nitrogen absorption
features related to Rubisco pools preferentially to shifts in pigment
pools that might be more related to maximum photosynthetic rate
(Sexton et al., 2021). This outcome highlights that starting and end-
ing wavelengths play an important role in determining absorption fea-
tures that can improve model performance in chemometric modelling.
However, the relative importance of wavelength ranges with known
absorption features might be trait specific and depend on vegetation

stress or health status, especially for complex traits.

4.2 | Convergence of starting and ending
wavelength range for models appears to encompass
spectral ranges of known trait absorption features

In this study, we found that when we overlay the patterns in the re-
lationship between the starting and ending wavelengths and model
performance parameters, the range between the peaks of two lines
appears to contain spectral regions of known or speculated absorption
features for individual traits. This outcome suggests that the peaks of
these regression lines may bookend regions of important absorption
features. For example, the two regression lines depicting the starting
and ending wavelengths for A intersect near 800nm, which is close to
the red edge (700-750nm), a spectral region strongly influenced by
chlorophyll content (Mutanga & Skidmore, 2007; Smith et al., 2003).
Additionally, the range between the two peaks of the lines, spanning
from 500 to 1850 nm, includes absorption features for both chlorophyll
a and b, as well as proteins in the longer wavelengths (Curran, 1989;
Elvidge, 1990). For SLA, the critical range, encompassing from 1400
to 2400nm, includes absorption features related to the ligno-cellulose
and starch (Gara et al., 2021). Moreover, the intersection of the two
curves for starting and ending wavelength ranges for LWC falls within
arange containing water absorption features, specifically from 1400 to
2000nm (Féret et al., 2019).

Improved models for both N and sugars were found when the
spectral range extended into longer wavelengths. Unlike other traits
whose model performance stabilizes beyond ~1850nm, suggesting
that key spectral features have already been captured, N and sugars
continue to benefit from an extended wavelength range. Nitrogen and
sugars did not demonstrate the same relationship as other traits, but

1717

converged or approached to convergence when wavelengths above
2000nm were included. For N, major absorption features associated
with N-containing biochemical constituents, such as proteins, contrib-
ute strongly in the longer wavelengths (Wan et al., 2022). Sugar-related
absorption features span from 1000 to 2200 nm (Cotrozzi et al., 2017),
with improvements in sugar estimation extending to 2200nm.
Meanwhile, GA exhibited a clear convergence near 1600nm and two
peaks between 1100 and 2100 nm, encompassing phenol absorption
(~1660nm; Couture et al., 2016; Kokaly & Skidmore, 2015).

4.3 | Including longer wavelengths improves trait
estimations

We found that the most accurate models were achieved by includ-
ing SWIR wavelength ranges. Our finding that longer wavelength
ranges can improve model performance is supported by previous
findings highlighting numerous absorption features in the SWIR re-
gion related with functional traits used in this study, including those
associated with water, cellular structure, proteins, carbohydrates
and phenolic compounds (Calzone et al., 2021; Chen et al., 2022;
Cotrozzi et al., 2017; Couture et al., 2016; Curran, 1989; Dechant
et al., 2017; Féret et al., 2019; Kokaly & Skidmore, 2015; Nunes
et al., 2017; Ramirez et al., 2015; Xie et al., 2024; Yan et al., 2021).
Because of the information in the SWIR region, models containing
this range were identified as among the most optimal, exhibiting
stronger predictive performance. In contrast, models based solely
on the VIS-NIR range showed reduced accuracy for all traits rela-
tive to models containing SWIR regions. These findings are consist-
ent with previous studies demonstrating that although the metrics
often highlight the importance of the VIS-NIR region when using
the full spectral range, excluding VIS-NIR wavelengths in favour
of SWIR alone does not compromise model performance (Kothari
et al., 2024; Sexton et al., 2021; Wan et al.,, 2022). This outcome
also highlights the importance of evaluating individual wavelength
regions to isolate and validate the contribution of SWIR-specific ab-
sorption features to trait prediction (Sexton et al., 2021).

Building on these findings, our analysis further demonstrates
that model performance for some traits remains relatively compara-
ble regardless of extending the starting or ending wavelength point,
as long as the wavelength ranges that contain relevant spectral in-
formation for a specific trait are included. For example, when assess-
ing A, we achieved better model performance with spectral ranges
starting at 400-500nm and extending through 1700-2400nm. In
contrast, models estimating LWC were less influenced by the start-
ing wavelength and more dependent on ending wavelength position,
resulting in an approximately sevenfold increase in optimal ranges
that were not statistically different. This outcome likely arises from
how the distribution of important absorption features associated
with each trait influences the model performance. The assessment
of A benefitted from the inclusion of both VIS and SWIR regions
in this study, likely because pigments and photosynthetic proteins
playing pivotal roles in determining photosynthetic capacity exhibit
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absorption features in the VIS and SWIR regions, respectively
(Cotrozzi, Peron, et al., 2020; Serbin et al., 2012). This underscores
the critical role of combining these spectral regions for accurate esti-
mates of A, emphasizing how longer wavelengths improve leaf-level
photosynthesis predictions (Doughty et al., 2011). Conversely, LWC
is a measure of the amount of foliar water, and optimal models re-
quired the inclusion of major water absorption features which are
predominant in the SWIR; thus, the starting wavelength range was
less important. The variability observed in the number of optimal
wavelength ranges among the different foliar traits suggests that
this depends on the amount, magnitude and distribution of absorp-
tion features of target traits across the spectrum.

Many studies have employed the full spectral range (400-2400 nm)
for estimating different functional traits and reported strong model
performance (Ely et al., 2019; Kothari, Beauchamp-Rioux, Blanchard,
et al., 2023; Serbin et al., 2014; Yan et al., 2021). In our study, it is
worth noting that the full spectral region was also included as one
of the optimal wavelength ranges for most traits. External validation
of PLSR models revealed comparable model performance between
the selected range with the highest model performance and the full
spectral range for most models, with minimal differences (i.e. <4%).
We did find, however, a more pronounced reduction in model per-
formance when using the full spectral range for estimating sugars
and GA. The decline in model performance for these specific traits
may be attributed to the relatively specific spectral signals associated
with sugars and GA across the full spectrum, compared with the other
traits investigated in this study. This potentially implies that including
wavelength ranges that do not contain absorption features related to a
specific trait can add noise and negatively affect spectral estimation of
some traits, especially those with narrow absorption features or mul-
tiple, potentially weak, absorption features. Characterization of ab-
sorption features for ecologically relevant compounds thus becomes
imperative for reducing any noise from unnecessary wavelengths
(Serbin et al., 2012). These findings suggest that while employing the
entire spectral range may be adequate for predicting certain traits, it
may not be adequate for all plant functional traits.

4.4 | Reliable trait predictions across tree species

Generalized trait models that cover diverse tree species have been
developed using PLSR (Nakaji et al., 2019; Serbin et al., 2019; Wan
et al., 2022; Wang et al., 2023). The transferability of PLSR models
across different species has been shown to depend on the repre-
sentativeness of the calibration dataset, particularly whether it en-
compasses diverse plant species. Additionally, a dataset that includes
diverse species is likely to capture variation from multiple absorption
features of certain traits when many absorption features are pre-
sent (Wan et al., 2022). We acknowledge that this study is limited
by using only two species, black walnut and red oak, both of which
are the same age, to develop trait models. However, after selecting
an optimal wavelength range that maximized model performance,

we applied it separately to each species, resulting in comparable

performance for most traits when each species was assessed inde-
pendently. The decline in performance of models estimating SLA
and GA may be attributed to a narrower range of trait values and a
reduced number of samples available for the evaluations. However,
for SLA, mean performance was still relatively good given the re-
duction in trait range and sample size, confirming that single and
multispecies spectral models estimating some traits can be reli-
able even though there is variation among species and functional
groups (Kothari, Beauchamp-Rioux, Blanchard, et al., 2023; Kothari,
Beauchamp-Rioux, Laliberté, et al., 2023; Serbin et al., 2019).

4.5 | Consistent functional trait relationships
across studies and integrating spectral biology and
plant ecology

We found that pairwise trait correlations were similar for both ob-
served and estimated traits, as seen in Chadwick and Asner (2016).
While these correlations varied somewhat across the different
treatments, the overall pattern of trait correlations was consistent
between observed and estimated data when considering all treat-
ments collectively. The consistency in this relationship suggests
that spectrally estimated functional trait data can act as a surrogate
for standard reference-collected trait data and has been shown to
produce similar statistical outcomes when compared with analyses
using standard reference data (Cotrozzi, Peron, et al., 2020). In ad-
dition, studies using only spectrally estimated functional traits have
revealed insights into plant responses to environmental change, the
influence of functional trait variation on plant-insect interactions
and the influence of geographic variation of insect herbivory on
plant demographic processes (Cavender-Bares et al., 2016; Couture
etal., 2015; DeLaMater et al., 2021; Struckman et al., 2019). We sug-
gest that the use of spectrally estimated functional traits can inte-

grate spectral biology into a plant trait-based ecological framework.

5 | CONCLUSIONS

Outcomes from this work suggest this modelling approach has
broader implications beyond the modelling of only known absorp-
tion features. It can be extended to identify unknown absorption
features in leaves for traits, potentially enhancing our ability to pre-
dict and understand these traits and their responses to stress. By lev-
eraging the relationships between starting and ending wavelengths
and their convergence at or near significant spectral signals, we offer
a novel approach for identifying absorption features of traits that
are ecologically relevant but to date have not been focused on in the
literature because of unknown or complex absorption features. We
also highlight consistencies among trait correlations for observed
and estimated traits data, suggesting that estimated data can act
as a surrogate for standard reference measurements. This outcome
highlights that a spectral biology approach can be integrated into an
ecological framework, providing access to a suite of plant functional
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traits that can be logistically challenging to collect, ultimately ad-
vancing our understanding of relationships among vegetation opti-

cal properties, plant functional traits and plant ecology.
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SUPPORTING INFORMATION

Additional supporting information can be found online in the
Supporting Information section at the end of this article.

Appendix S1: Plant material and experimental designs.

Table S1: List of 100 wavelength ranges used for building PLSR
models estimating CO, assimilation rate (A), ranked in descending
order by the mean goodness of fit, R?, across model evaluations by
conducting 100 permutations.

Table S2: List of 100 wavelength ranges used for building PLSR
models estimating specific leaf area, ranked in descending order by
the mean goodness of fit, R?, across model evaluations by conducting
100 permutations.

Table S3: List of 100 wavelength ranges used for building PLSR
models estimating leaf water content, ranked in descending order by
the mean goodness of fit, R?, across model evaluations by conducting
100 permutations.

Table S4: List of 100 wavelength ranges used for building PLSR
models estimating nitrogen, ranked in descending order by the mean
goodness of fit, R?, across model evaluations by conducting 100
permutations.

Table S5: List of 100 wavelength ranges used for building PLSR
models estimating sugars, ranked in descending order by the mean
goodness of fit, R?, across model evaluations by conducting 100
permutations.

Table Sé: List of 100 wavelength ranges used for building PLSR
models estimating gallic acid, ranked in descending order by the
mean goodness of fit, R?, across model evaluations by conducting
100 permutations.

Table S7: List of 100 wavelength ranges used for building PLSR
models estimating CO, assimilation rate (A), ranked in ascending
order by the mean normalized root mean square error, NRMSE,
across model evaluations by conducting 100 permutations.

Table S8: List of 100 wavelength ranges used for building PLSR
models estimating specific leaf area, ranked in ascending order by
the mean normalized root mean square error, NRMSE, across model
evaluations by conducting 100 permutations.

Table S9: List of 100 wavelength ranges used for building PLSR
models estimating leaf water content, ranked in ascending order by
the mean normalized root mean square error, NRMSE, across model
evaluations by conducting 100 permutations.

Table S10: List of 100 wavelength ranges used for building PLSR
models estimating nitrogen, ranked in ascending order by the
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mean normalized root mean square error, NRMSE, across model
evaluations by conducting 100 permutations.

Table S11: List of 100 wavelength ranges used for building PLSR
models estimating sugars, ranked in ascending order by the
mean normalized root mean square error, NRMSE, across model
evaluations by conducting 100 permutations.

Table S12: List of 100 wavelength ranges used for building PLSR
models estimating gallic acid, ranked in ascending order by the
mean normalized root mean square error, NRMSE, across model
evaluations by conducting 100 permutations.

Table S13: Pearson's correlation matrix describing relationships
among observed leaf traits collected in EEL in 2018.

Table S14: Pearson's correlation matrix describing relationships
among observed leaf traits collected in the Wright Center in 2018.
Table S15: Pearson's correlation matrix describing relationships
among observed leaf traits collected in EEL in 2019.

Table S16: Pearson's correlation matrix describing relationships
among observed leaf traits collected in the Wright Center in 2019.
Table S17: Pearson's correlation matrix describing relationships
among estimated leaf traits collected in EEL in 2018.

Table S18: Pearson's correlation matrix describing relationships
among estimated leaf traits collected in the Wright Center in 2018.
Statistically significant (p <0.05) correlations are bolded.

Table S19: Pearson's correlation matrix describing relationships
among estimated leaf traits collected in EEL in 2019.

Table S20: Pearson's correlation matrix describing relationships
among estimated leaf traits collected in the Wright Center in 2019.
Figure S1: 100 wavelength ranges selected for building PLSR model
in this study.

Figure S2: External validation of partial least squares regression-
predicted traits using the full wavelength range (400-2400 nm) model.
Figure S3: Correlation scatterplot between observed values and partial
least squares regression-estimated trait values for black walnut (black
line) and red oak (red line), derived from the calibration dataset.

Figure S4: First-derivative reflectance profiles of the gallic acid
standard within the optimal range for gallic acid (650-2000 nm).
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