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Abstract—LoRaWAN is a popular Long-Range Low-Power
wireless communications protocol that is enabling many IoT
applications worldwide, with more networks growing both
in size and number around the world. To effectively plan
and operate these networks, it is necessary to have tools
that reliably quantify, measure, and predict the connection
quality provided by LoRaWAN receivers. Being able to reliably
quantify connection quality would allow LoRaWAN adopters to
answer questions such as, “What does ’good coverage’ mean?”.
Reliably measuring coverage would allow for questions like
“What is the quality of network coverage in a given area?”, to
be answered, while predicting connection quality would allow
adopters to answer questions such as “What would the coverage
quality be if we deployed an additional wireless receiver in this
location?”’ This paper proposes a novel data-driven approach to
connection quality modeling that is tailored for LoRaWAN with
the following features. First, connection quality is quantified by
the packet reception rate (PRR), as opposed to the traditional
received signal strength typical of generic radio planning tools.
The PRR more closely captures what network operators and
users ultimately care about. Next, we leverage a large set of
original data to fit a model for PRR. This dataset is unique in
two ways. First, it includes transmissions that were transmitted
but not received by any gateway, eliminating an otherwise
persistent source of bias in empirical estimates of wireless
connectivity. Second, it includes features derived from high-
fidelity terrain topology extracted from LiDAR point clouds.
Our model includes both feature extraction and estimation. We
evaluate our model out-of-sample, including in regions entirely
disjoint from the training data, and show that it is considerably
more accurate than common benchmark wireless propagation
models. Finally, we demonstrate how our model can be used
to provide coverage maps in a real-world network.

Index Terms—IoT, LoRaWAN, data-driven, connection qual-
ity, machine learning

I. INTRODUCTION

Low Power Wide Area Networks (LPWANS) are a type of
wireless telecommunication network that offers low-power
IoT and machine-to-machine (M2M) communication over

The authors acknowledge the support from the National Science Foun-
dation (NSF) under grant 1952063.

large geographical areas and has seen rapid growth in recent
years [1]. LPWANs are ideal for tasks that require small
amounts of data, including near real-time monitoring of
diverse data from flooding, temperature, humidity, infras-
tructure, power consumption, and other energy, environ-
mental, and smart city applications, as well as other low
data rate applications for both urban and rural areas [2]-
[4]. A single LPWAN receiver, or gateway, can provide
network coverage over distances ranging from 1-5km in
urban areas to 10-40km in rural areas [5]. Moreover, one
LPWAN gateway can serve up to thousands of compatible
end devices [27]. This work focuses on long-range wide-area
networks (LoRaWAN), one of the most popular LPWAN
protocols. LoRaWAN differs from other LPWAN protocols
in that (i) it allows for long-range communication with low
power requirements and (ii) it is open-source, free to use, and
accessible both in terms of cost and community-provided
support. LoORaWAN uses the unlicensed industrial, scientific,
and medical (ISM) radio band of the wireless spectrum,
meaning there are no costs associated with its spectrum use.

As LoRaWAN adoption grows and more networks are
implemented and expanded, accurately modeling LoRaWAN
wireless connection quality is becoming increasingly impor-
tant for informed gateway placement, network operation, and
planning purposes. Being able to precisely identify areas
of robust and poor network connectivity through signal
propagation modeling allows LoRaWAN network adopters
to optimize gateway placement locations and quantities to
provide maximum coverage using minimal gateways. An
accurate connection quality model also enables network
adopters to identify areas where network redundancy from
additional gateways might be necessary to ensure desired
levels of coverage. Existing planning tools typically estimate
network coverage based on propagation models that predict
a received signal strength indicator (RSSI). Propagation
models, including free-space path loss (FSPL) [6], Okumura-
Hata [7], ITM [8], and ITWOM [9], are simple linear models
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that use features such as transmission and receiver heights,
distances between them, and frequency of transmission to
predict RSSI. Applying an RSSI threshold to predictions
can also be used to estimate conditions for successful
transmissions [10].

There are challenges with using existing RSSI-based
propagation models for network planning in the context
of LoRaWAN. For one, the accuracy of many models
remains poorly tested for LoRaWAN. Secondly, estimating
RSSI is challenging due to censoring; the received signal
strength is observed only when it is above a theoretical
minimum threshold for successful receptions, so special care
is needed when estimating RSSI from data [10]. However,
in practice, packet success is probabilistic instead of binary.
For instance, a stationary transmitter may intermittently
communicate with a stationary receiver over time if line-
of-sight (LoS) obstructions or a considerable separating
distance exist between the two, making the use of an RSSI
threshold a weak indicator of packet success. Moreover, the
minimum threshold is not exact. In fact, we routinely observe
successful transmissions below the threshold. The threshold
may also vary depending on the gateway model, antenna,
and other factors. Additionally, RSSI itself is not of much
interest; ultimately, it is not the signal strength that matters
to the end user, but rather the rate at which transmissions are
successfully received. Many existing RSSI models also make
limited use of terrain-specific features, which can dictate
the likelihood of successful signal transmission. Finally,
many existing empirical RSSI models were not constructed
using LoRaWAN-specific data but instead generalize signal
propagation for large ranges of frequencies.

This paper develops an empirical model for the connection
quality between LoRaWAN devices. The model eschews
RSSI in favor of modeling the packet reception rate (PRR)
directly. PRR is the ratio of the packets successfully trans-
mitted to a gateway to the total packets transmitted. This can
also be viewed as the probability of successful reception of
a transmitted packet. PRR can be used to loosely estimate a
minimum threshold for successful transmissions. However,
PRR trumps RSSI in its ability to provide end-users with
information on both successful and unsuccessful network
transmissions.

The contributions of this work are threefold:

o« We implement (i) a LoRaWAN testbed in Geneva,
NY, consisting of 4 unique gateways and (ii) 3 GPS
equipped LoRaWAN trackers for recording locations of
successful and failed network transmissions, enabling
the presentation of a real-world network transmission
dataset consisting of 21,027 total attempted transmis-
sion links

e We develop a novel methodology for LoRaWAN
adopters to use for predicting LoRaWAN network cov-
erage based for their location

« We offer an alternative to existing RSSI models based
on a developed PRR logistic regression model that

makes use of our collected transmission data as well
as widely available terrain data

The rest of this work is arranged in the following order:
Section II provides a review of related work. Section III
summarizes our LoRaWAN transmission data collection
and processing. Section IV discusses our regression model-
building process and metrics used to compare propagation
models. Section V details and discusses the results of
our study. Section VI draws conclusions from our work,
discusses limitations, and identifies future areas of work.

II. BACKGROUND

LoRaWAN is an LPWAN protocol built on top of the
LoRa physical layer (PHY), based on Chirp Spread Spec-
trum (CSS) technology. LoRaWAN operates on the unli-
censed ISM band of the wireless spectrum from 902MHz
to 928MHz frequency and spreading factor (SF) 7-10 in the
United States. LoRaWAN architectures typically consist of
end devices and gateways that take on a star-of-stars topol-
ogy, where end devices only communicate with gateways,
and gateways communicate with a central network server.

Existing studies have explored LoRaWAN signal propa-
gation from different perspectives. Gaitan et al. [22] explore
LoRaWAN signal fading dynamics over estuaries, where
reflection from bodies of water directly impacts signal trans-
mission. They compare time varying empirical recordings
with RSSI model predictions and show close alignment
between the two. However, this work only models RSSI and
does not consider modeling PRR. Other works, including
[11] - [14], compare RSSI predictions from existing or
proposed LoRaWAN propagation models with empirical
RSSI data in indoor and outdoor environments. Still, none
consider how RSSI can be related to the more practical PRR
measurement.

Most generic propagation models use features that include
transmission and receiver heights, distances between them,
and transmission frequency to estimate a link budget to
predict signal losses. The link budget models the final
received signal strength as a function of (i) transmitted
power, (ii) losses and gains, and (iii) minimum received
power [15]. Transmitted power describes the output power at
which the signal is sent from the transmitter antenna. Losses
and gains decrease or increase the transmitted power as the
signal traverses from the transmitter to the gateway. Path
losses are the most common losses and can be attributed to
factors related to distance and physical obstructions along
the transmission path. Gains are most commonly attributed
to antennas. The received signal strength can be represented
as the difference between the transmitted power and losses,
defined as:

P.,=P,—L (D

where P,, is the received power, P, is the transmitted
power, and L is the loss. There is a minimum received
power, or device sensitivity, represented as Pj,;,, which is
the minimum power at which a gateway can successfully
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receive a signal [16]; incoming signals below the threshold
are lost.

Using Equation 1, RSSI models typically estimate re-
ceived power by adding a predicted total signal power loss
with a known transmitted power.

The FSPL model describes the signal power losses be-
tween two antennas when transmitting in an unobstructed
space. FSPL depends on the frequency of the signal and
the distance between signal reception and transmission. This
model assumes the transmitter and receiver antennas have
no losses and no multipath interference effects [6]. When
measured in decibels relative to one milliwatt (dBm), FSPL
is formulated as follows:

where FSPL is the free-space path loss (dBm), d is the
distance between the base and mobile stations (m), and f is
the transmission frequency (MHz).

The Okumura-Hata [7] propagation model predicts path
loss based on empirical data originally collected in Tokyo,
Japan, in 1968. It assumes a transmission frequency of 150-
1,500MHz, a transmission height of 1-10m, a reception
height of 30-200m, and a link distance of 1-10km. This
model depends on transmission and reception heights, trans-
mission frequency, an antenna height correction factor cor-
responding to the type of geographical environment, and the
distance between transmission and reception. The Okumura-
Hata model also captures the effects of diffraction, reflection,
and scattering caused by city structures. By adjusting the
antenna height correction factor, this model can be well
suited to predict path loss in small, medium, and large cities,
as well as in suburban and open environments. The model
is formulated as:

Ly = 69.55 + 26.16 logy,(f)-13.821og,, (hy)-C

3)
+ [44.9-6.551og o (hp)] log;o(d)

Cir = 0.8+ (1.110g,o(f)-0.7)hm-1.56log,(f), (4)

where Ly is the path loss (dB), Ay, is the height of the base
station (m), h,, is the height of the mobile station antenna
(m), f is the frequency of transmission (MHz), C'y is the
antenna height correction factor for small or medium-sized
cities, and d is the distance between the base and mobile
stations (km).

III. DATA

We established a LoRaWAN network in Geneva, New
York, using four Multitech Multiconnect Conduit [17]
gateways. Each gateway was installed indoors for protec-
tion against tampering and weather and channeled to a
10dBi Signalplus vertically polarized omnidirectional an-
tenna mounted on the roof of their respective host site.
Signals were configured to be received using The Things
Network (TTN) and saved in a database located on a network
server.

We designed and constructed three GPS-equipped Lo-
RaWAN trackers for data collection. Our tracking devices
were built using an Adafruit Feather MO LoRa Radio and
SparkFun Electronics GPS-15210 Breakout board. Each
device made a LoRaWAN transmission once every 30 sec-
onds containing latitude, longitude, RSSI, signal-to-noise
ratio (SNR), elevation, transmission, and gateway-related
metadata. Failed transmissions did not have an associated
RSSI and were assumed to be less than -127dBm, which is
the minimum RSSI for our gateways containing a Semtech
SX1302 baseband LoRa chip and spreading factor of 7
[16]. The transmission power P, of our trackers was the
maximum power for LoRa devices, 20dBm.

Critical to our approach was a hardware innovation to
avoid censoring of transmissions that were not received
by any gateway. Each tracker was built with 8 gigabytes
of local storage capabilities so that each transmission, in-
cluding those not received by any gateway, was logged.
This ensured that the location, time, and transmission meta-
data were stored irrespective of the success or failure of
the transmission. This hardware innovation was included
as existing literature has demonstrated the importance of
avoiding censoring of transmissions in predicting path loss
[23]-[26].

We define a link as the linear path connecting a tracker
and gateway. Uncensored link data were constructed by
joining the stored transmission data of the trackers with the
received transmission data collected by the gateways. Each
transmission produced as many links as there were gateways.
In theory, every gateway could have received every trans-
mission. If a transmission-gateway pair had a corresponding
record in the TTN database, it was a success; if not, it
failed. Because all transmissions were stored, even ones not
received by any gateway generated link observations.

Transmission data was collected by traversing Geneva
by car. Data were also collected on foot in more densely
populated residential and urban areas, as well as areas that
could not be accessed by car. Fig. 1 depicts a mapping
of the collected data. Blue dots indicate points at which a
LoRaWAN transmission was made. Larger black dots mark
gateway locations.

The collected data were used in combination with a digital
surface model (DSM) raster to obtain elevations for each of
our transmission locations. Publicly available LiDAR point
cloud data from USGS [18] were used to generate a DSM
raster of elevations of the area’s terrain and structures.

We generate linear links between each transmission and
receiving gateway. We discretize the links into 250 evenly
spaced points and pair the elevation of each discrete link
point with the elevation of the terrain above or below it to
calculate a “degree-of-sight”, or DoS, for each point. Fig. 2
demonstrates how the DoS was obtained from an example
link.

The DoS represents the percentage of unobstructed length
of each link. It is continuous and equal to O when there is
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Figure 1: Mapping of LoRaWAN transmission data collected
in Geneva, New York. Blue dots represent successful trans-
missions. Black dots represent gateway locations.

no free-space between the transmitter and receiver. Its value
is 1 when there is only free-space.
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Figure 2: Example link and DoS calculation. The black line
represents the elevation of the direct path (link) connecting
the transmitter to the receiver. Red points indicate the
elevation of the terrain along this path. Points above the
black line indicate obstructions while points below it are free
of obstructions. The percentage of points free of obstructions
are used to calculate the DoS.

Statistics summarizing our training data are presented
in Table I. 21,027 links were collected, with 20% being
successful links and 80% being failed links.

Table I: Training data summary statistics

Parameters Mean Max Min Standard
Deviation

Distance (m) 1,9458 7,668.5 143  1,089.6

log(distance) (m) 7.4 8.9 2.7 0.7

DoS (%) 0.9 1.0 0.0 0.2

Total successful links: 4,163. Total failed links: 16,864.
Total links: 21,027.

IV. MODEL AND EXPERIMENTS

Many signal propagation models, including the bench-
mark models in this study, make network transmission
predictions using models comprised of linear combinations
of features. Of these features, [21] determines distance and
terrain-based features to hold the most importance in prop-
agation modeling. Ref [21] also determines that modeling
every physical phenomenon that impacts signal losses is
infeasible, and instead relies on machine learning techniques
to capture transmission propagation patterns. The goal of
this work is to design a general modeling methodology for
LoRaWAN adopters to easily predict connection quality and
coverage in their respective geographical environment using
few, easily obtainable yet important training features. For
these reasons, we use a minimal logistic regression model
consisting of a linear combination of three variables; (i) log-
distance, (ii) DoS, and (iii) log-distance multiplied by DoS,
passed through a logistic function, taking the form:

PRR = o (w1 logyo(d) + w2DoS + w3 logy(d)DoS + wp)
4)

1
o) =T

We implemented our models in Python using the
statsmodels package [19], training on an nVidia RTX A6000
GPU with 48 GB of RAM using an 80:20 train-test split. We
compare the prediction performance of our models with the
benchmark propagation models FSPL and Okumura-Hata.

To assess the performance of our logistic regression
model, we discretize our PRR predictions into binary out-
comes using the following:

PRR — {(1) if PRR > 0.5

(6)

otherwise

To account for class imbalances in our dataset, we use the
weighted F-score evaluation metric to assess the perfor-
mance of our model.

We compare our PRR model performance with benchmark
RSSI models that use a success threshold to predict PRR.
To verify that the strength of our model is not driven by the
thresholding, we also model RSSI. We use the link budget
Equation 1 for each benchmark model and assume that the
total loss L is equivalent to the path loss L. Combining
L with our known transmission power P.,, we calculate
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P, by evaluating features obtained from our physical data
collection on the benchmark models.

We compare the testing performance of our linear regres-
sion model with benchmark models exclusively on success-
ful transmissions using the evaluation metrics Mean Abso-
lute Error (MAE) and Root Mean Squared Error (RMSE).
Finally, we use our PRR model to generate smooth packet
success predictions within the range [0, 1] and evaluate
our model performance using the Brier-Score (BS) [20],
formulated as follows:

1 n
BS = — s — 0;)? 7
; ;(f i) ()
where f; is the i*" predicted probability of packet success,
0; is the i*" true binary packet success outcome, and 7 is

the total number of examples.

V. RESULTS AND DISCUSSION

This section presents and discusses the results of our
LoRaWAN propagation modeling.

We first trained a logistic regression model on both
transmission successes and failures to predict PRR directly.
The model structure presented in Equation 5 was used in
training the PRR model. The coefficients are provided in
Table II:

Table II: PRR Logistic Regression Coefficients Statistics

Weights  Coefficients Standard Lower Upper
Error 95% 95%
wo -0.2842 0.0007 -0.2856 -0.2828
w1 -3.7288 0.0120 -3.7523 -3.7054
w2 0.3222 0.0013 0.3196 0.3248
w3 2.9496 0.0115 2.9272 2.9721

The robustness of the model coefficients was ensured
by training 1,000 bootstrap models of sample size 18,924,
equal to the full training set size. The predicted mean value
obtained from bootstrapping was used for each coefficient.
The impact of distance is evident in that from the coefficients
in Table II, the rate of successful transmissions decreases as
the distance between transmission and reception increases.
Additionally, as DoS increases, so does the rate of successful
transmissions.

A confusion matrix depicting the performance of our PRR
logistic regression model is depicted in Fig. 3. 69% of
true unsuccessful transmissions are predicted correctly while
71% of true successful transmissions are predicted correctly,
demonstrating the prediction capabilities of our PRR model.

Due to link class imbalances, a weighted F-score was used
and determined to be F; = 0.73 for the test set, as presented
in Table III. Weighted F-scores were then determined for
both the FSPL and Okumura-Hata models by applying the -
127dBm transmission success threshold to RSSI predictions
from the same test set. FSPL and Okumura-Hata weighted
F-scores were found to be F}; = 0.06 and F; = 0.10,

-0.70

-0.65

-0.60

Unsuccessful

0.55

0.50

0.45

True Transmissions

Successful

0.40

0.35

0.30
Successful

Unsuccessful
Predicted Transmissions

Figure 3: PRR logistic regression model confusion ma-
trix. 69% of true unsuccessful transmissions are predicted
correctly while 71% of true successful transmissions are
predicted correctly.

Table III: Comparison of Linear Regression and benchmark
RSSI prediction model performances

MAE (dBm) RMSE (dBm) F-score
FSPL 41.9 44.4 0.06
Hata 13.5 17.6 0.10
Linear Regression 6.0 7.8 0.73

respectively. Our PRR logistic regression model resulted
in a weighted F-score value of F} = (.73, demonstrating
superior performance compared to its FSPL and Okumura-
Hata counterparts.

Table III depicts RSSI prediction performances for each
model exclusively using data from successful transmissions.
Our linear regression model has the strongest prediction
performance, with an MAE and RMSE of 6.0 and 7.8dBm,
respectively. The Okumura-Hata model has the second
strongest prediction performance with an MAE and RMSE
of 13.5 and 17.6dBm, respectively, while the FSPL model
demonstrated the poorest performance with an MAE and
RMSE of 41.9 and 44.4dBm, respectively, likely because
neither makes direct use of terrain-based features like DoS.
FSPL assumes an obstacle-free LoS path through free space,
which omits any effects of transmission interference from
LoS obstructions which may have contributed to observed
FSPL errors. Additionally, the Okumura-Hata model was
derived from data collection done in Tokyo, Japan, in [7],
which may have been best fitted to Tokyo, contributing to
observed errors for the Okumura-Hata model in Table III.

We then assess our PRR logistic regression model in
a non-discretized setting, with transmission predictions be-
tween [0, 1]. Fig. 4 depicts a mapping of our PRR projec-
tions, which demonstrates the capabilities of our model to
capture the effects of both (i) distance between transmitter
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and receiver and (ii) DoS on PRR. Yellow regions represent
geographical areas of high PRRs, while blue regions rep-
resent areas of poor PRR. Regions of poor PRR generally
result from shadowing effects and LoS obstructions from
hills and valleys. To quantify our PRR model performance,
we determine a Brier score of BS = 0.21 when assessed
on our testing dataset. The captured impact of distance is
evident in that, generally speaking, the rate of successful
transmissions decreases as the distance from any gateway
increases. The captured effect of DoS is evident in that
some areas near gateway locations experience poor PRR
predictions.
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Figure 4: PRR projections for all gateways in Geneva, New
York, LoRaWAN network. Network coverage predictions
were made for each gateway. The maximum estimated
transmission probability of all gateways was taken for each
latitude/longitude pair.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose a modeling methodology for
LoRaWAN packet reception rates designed to be used by
LoRaWAN adopters of any geographical environment and
demonstrate the effectiveness of our methodology using
transmission data collected from Geneva, NY. We challenge
traditional RSSI-based signal propagation models with one
based on PRR. We show that when using a PRR model,
we can accurately identify both successful and failed trans-
missions, as opposed to RSSI models, which can only
identify successful transmissions. Moreover, we show that
predicting probabilities, as opposed to binary outcomes, can
also add value; we obtain a useful network quality model that
LoRaWAN adopters can use to optimize gateway placement
location and quantity for maximum network coverage. Ac-
curately capturing the effects of DoS and distance between
transmitter and receiver is essential for LoORaWAN network

planning tools and optimizers, as these features provide
guidance for optimized gateway placement.

Some limitations were met in conducting this work. First,
a limited quantity of LoRaWAN gateways and trackers
were used, making the collected data less diverse than
ideal. Additionally, different materials can create different
levels of obstruction-LoRaWAN signals may be able to
travel through wood better than metal-but our model only
considers the length of obstruction. We are also limited to
how recent the terrain data is. Our DSM was created using
2019 LiDAR data, and newly constructed buildings may
not be represented if the terrain data is outdated. Finally,
all trackers used the same SF and antennas, limiting the
extent of generalization of our PRR model. Future work will
incorporate a wider variety of SFs and additional gateways
and trackers.
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