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Abstract. We consider the problem of fairly allocating the cost of pro-
viding a service among a set of users, where the service cost is formulated
by an NP-hard covering integer program (CIP). The central issue is to
determine a cost allocation to each user that, in total, recovers as much as
possible of the actual cost while satisfying a stabilizing condition known
as the core property. The ratio between the total service cost and the cost
recovered from users has been studied previously, with seminal papers
of Deng, Ibaraki, & Nagomochi and Goemans & Skutella linking this
price-of-fair-sharing to the integrality gap of an associated LP relax-
ation. Motivated by an application of cost allocation for network design
for LPWANS, an emerging IoT technology, we investigate a general class
of CIPs and give the first non-trivial price-of-fair-sharing bounds by using
the natural LP relaxation strengthened with knapsack-cover inequalities.
Furthermore, we demonstrate that these LP-based methods outperform
previously known methods on an LPWAN-derived CIP data set. We also
obtain analogous results for a more general setting in which the service
provider also gets to select the subset of users, and the mechanism to
elicit users’ private utilities should be group-strategyproof. The key to
obtaining this result is a simplified and improved analysis for a cross-
monotone cost-allocation mechanism.

Keywords: Cost sharing - Covering integer programs + LoRaWAN

1 Introduction

Allocating costs fairly when providing some collective service to a set of users has
been a mainstream topic within cooperative game theory in which the notion of
the core, and the associated core property, plays a central role. Specifically, the
core property requires that the payment from each user is such that each subset
of users pays, in total, no more than the cost of providing service just to them.
LP duality has long been known to play a fundamental role in such allocations,
and the seminal work of Deng, Ibaraki & Nagamochi [7] and Goemans & Skutella
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[12] proved the link between the integrality gap (or lack thereof) for several NP-
hard discrete optimization settings and the fraction of the service cost that can
be recovered by an allocation satisfying the core property. We term the ratio
between optimal cost and the cost recoverable satisfying the core property as
the price-of-fair-sharing.

For a natural subclass of covering integer programs (CIPs), known as
multiset-multi-covering problems, the strongest known price-of-fair-sharing was
not obtained using a dual LP-based framework [22]. We show that an LP-based
approach can yield improved bounds and simplified analyses, not just for this
special case considered by [22], but for general CIPs. More specifically, our main
result is that by strengthening the natural LP relaxation for CIPs with knapsack-
cover inequalities, the resulting dual LP does have the property that any feasible
solution yields a cost-allocation that satisfies the core property. This reduces
the problem of finding a cost-allocation to that of finding a strengthened-LP-
relative approximation algorithm, allowing us to leverage approximation algo-
rithms already known for these settings (e.g., [3-5,18]). Not only do these exist-
ing algorithms yield bounds on the price-of-fair sharing for general CIPs, they
also exploit existing bounds for families of sparse CIP instances. These exist-
ing algorithms provide improved cost-recovery ratios for families of sparse CIP
instances.

We also obtain analogous results in a more general setting where the service
provider selects a subset of users to receive the service based on their elicited
private valuations of the service. The mechanism used to elicit users’ private
valuations needs to be group-strategyproof so that no subset of users have an
incentive to misreport their valuations. The key to obtaining this result is a sim-
plified and improved analysis for a cross-monotone cost-allocation mechanism.
These results also rely on our knapsack-cover-strengthened LP relaxation.

Our investigation into these questions was directly motivated by challenges
in the development of an emerging technology, LPWANSs, a popular Internet
of Things solution for wirelessly connecting devices to the internet [28]. CIPs
emerge from the appropriate model for determining the location of gateways
to provide LPWAN coverage to a collection of users, and our result is useful
to determine how the cost of LPWANs should be shared among users in an
incentive compatible manner. We complement our algorithmic and structural
results with an empirical investigation into the effectiveness of our methods on
relatively large-scale LPWAN data. Our empirical study demonstrates that, in
comparison to several natural heuristic alternatives, our theoretically-motivated
methods provide far superior results.

2 Optimizing Coverage for LPWAN Networks and IoT

The growth of the Internet of Things (IoT) is creating both new opportuni-
ties and challenges in wireless coverage provision and pricing. Low-power wide-
area networks (LPWANS) are a ubiquitous technology for connecting devices,
or things, to the internet. These networks use radio communication to transmit
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signals over long distances. Demodulating, and transferring these signals to the
internet requires networks of physical wireless receivers. Many such networks
are already deployed. In 2023 alone, LPWANS reportedly served over 1.3 billion
IoT connections [1]. LoRaWAN is among the most popular LPWAN solutions,
representing roughly 40% of all connections made outside of China. Globally,
over 150 different network operators provide LoRaWAN coverage [29].

Sharing LoRaWAN coverage among multiple users is an effective yet chal-
lenging approach to better utilize wireless infrastructure and lower costs. Two
key features make sharing LoRaWAN coverage especially beneficial. Firstly, the
receivers, or gateways, can process orders of magnitude more wireless traffic than
that produced by a typical single IoT application (see, e.g., the application in [2]).
Secondly, the quality of coverage improves as the number of gateways increases.
Transmitted LoRaWAN packets tend to fail at random, and coverage quality is
measured by the packet reception rate. However, transmissions are association
free; a device broadcasts to all nearby gateways, many of which may process the
same packet [28]. A packet is lost if and only if all nearby gateways simultane-
ously fail to receive it. Thus, having multiple gateways to cover the transmitted
signal can significantly improve the reception rate. This multi-coverage feature
is a key aspect of our model and raises interesting computational challenges.

The problem of optimally providing wireless coverage to a group of users
using multiple gateways can be modeled as a covering integer program. Let
U denote a set of m users, and F a set of n potential gateway locations, or
facilities. Each user j € U has a service requirement r; > 0, and each gateway
has an opening cost ¢; > 0. Requirements and costs are represented by vectors
r = (r1,r2,...,7m) and ¢ = (c1,...,cy), respectively. Each facility-user pair is
associated with a contribution parameter a;; > 0 that specifies the quality of
coverage that facility ¢ provides user j if opened. Contributions are represented
as an n X m matrix A. The objective is to minimize cost, subject to providing
sufficient coverage to each user.

¢* =min{c’x: Ax >r, x € {0,1}"} (1)

Here, the binary decision variables x = (z1, ..., ;) indicate whether each facility
1 is opened or not. Details on how CIPs capture LoRaWAN coverage provision
are given in an extended online version. (A more general formulation of CIPs
permits the purchase of up to d; integer copies of facility i. Our results extend to
this setting in a straightforward way, but we omit this extension for simplicity
and clarity of exposition.)

3 Cost-Sharing Fundamentals

The main objective in this work is to develop a principled algorithmic framework
for finding fair and stable ways to share the cost of CIP solutions among the
set of users. We follow a standard approach in mechanism design and define
“fair and stable” using the core property [16,26]. An allocation satisfies the core
property if no subset of users is allocated more cost than the minimum cost of
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providing coverage for this subset alone. This property can also be viewed as an
absence of cross-subsidies; no sub-group of users pays more than what it would
cost them to serve themselves, thereby not subsidizing other users [10].

More formally, a cost allocation is a vector & = (§1,...,&mn), where & > 0
represents the dollar amount charged to user j € U. Allocations &; are also
called cost-shares. Following the standard definition, cost-shares ¢ satisfy the
core property if for each sub-group J C U,

Y g <y, vIcu, (2)

JjeJ

where ¢ is the minimum cost of serving group J [16]. Cost allocations can vary
in magnitude. We say cost allocation £ is budget-balanced whenever the total
amount paid by the served users, jeu &j, equals the cost of serving them. The
core is the set of budget-balanced cost allocations satisfying the core property
[16]. In some problems, finding cost-shares in the core can be challenging.

Linear programming (LP) duality is the workhorse tool for finding cost-shares
satisfying the core property, but it is not always possible to simultaneously satisfy
both the core property and be budget-balanced. There are simple CIP instances
that have no cost-allocations in the core (see, e.g., Li et al. [22]). Deng, Ibaraki,
and Nagamochi [7] show that a generic covering problem has a non-empty core
if and only if its natural LP-relaxation has no integrality gap. As such, it is
common to maximize the cost recovered, subject to satisfying the core-property
[12,16]; a cost-allocation ¢ is 3-budget-balanced if it recovers a fraction 3 of the
cost.

For many optimization problems, every dual feasible solution is a cost allo-
cation that satisfies the core property. This connection has important algorith-
mic implications. First, one can leverage duality to find cost-shares satisfying
the core property by using (approximation) algorithms that produce feasible
dual solutions as well as feasible integer solutions to the primal. If the integer
solution costs at most a times the dual, we see that the corresponding cost
allocation is 1/a-budget balanced. We shall say then that « is the price-of-fair-
sharing (or equivalently, 1/« has also been termed the cost-recovery ratio). This
relationship has been frequently used to obtain strong results in many settings
[7,8,12,13,19,21,23,25].

On the other hand, seminal work by Deng, Ibaraki, & Nagamochi [7] and
Goemans & Skutella [12] shows that all cost allocations satisfying the core prop-
erty are dual feasible solutions in the set cover problem and the facility location
problem. Since the cost-allocation mechanism purchases an integer solution, but
only allocates costs as a fractional solution, duality implies that price-of-fair-
sharing is lower-bounded by the integrality gap of the problem. It is folklore
that the price-of-fair-sharing is o whenever the integrality gap of the natural LP
relaxation is « [16,23].

The relationship between the price-of-fair-sharing and the integrality gap of
the natural IP/LP formulation does not, however, appear to hold for CIPs. The
multi-cover constraints in CIPs render the natural linear programming relaxation
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ill-suited for cost-sharing. Even with just one user |U| = 1 and integral inputs,
the integrality gap of the CIP is unbounded [4]. Naively, this would imply that
the price-of-fair-sharing in CIPs is unbounded. However, Li, Sun, Wang, and Lou
[22] show that a bound can be attained for the special case of CIPs with integer-
valued A and r. Their analysis, however, does not make explicit use of duality.
Moreover, our IoT application yields CIPs that do not satisfy the assumption
of integer-valued A and r. This begs two questions: How do cost-sharing and
duality relate in CIPs, and can there be an effective cost-recovery at all when
data are non-integer-valued?

4 Knapsack-Cover Constraints to the Rescue

This paper presents a principled framework for finding cost-shares in CIPs using
linear programming duality. Our approach makes use of a well-known strength-
ened LP formulation based on knapsack-cover inequalities [4]. Our main contri-
bution is to show that every feasible dual solution in this strengthened LP, which
we shall denote KC-LP, naturally induces cost-shares that satisfy the core prop-
erty. This has significant algorithmic consequences. First, our results imply that
any approximation algorithm that produces CIP solutions with cost at most «
times the KC-LP optimum can be used to produce cost-shares that recover 1/«
of the cost; that is, a price-of-fair-sharing of a. There are many such algorithms
[4-6,18]. More generally, our framework can be used to find cost-shares for any
integer CIP solution by solving the strengthened dual linear program.

These methods yield the first cost-sharing algorithm with bounded price-
of-fair-sharing for general CIPs. Furthermore, we prove that the implied price-
of-fair-sharing bounds are tight. In addition, we showcase the efficacy of our
framework by recovering up to 93% of the cost in semi-stylized LoRaWAN cov-
ering problems at scale; this is over twice the recovery of the next-best method.
We also use our KC-LP approach to obtain analogous results for a more general
setting in which the service provider also selects a subset of users to receive the
service based on the users’ private valuations elicited from a mechanism that is
group-strategyproof. This reinforces the central message of this paper, affirm-
ing the powerful connection between an effective cost sharing mechanism and
KC-LP dual solutions.

The knapsack-cover inequalities are introduced in the seminal work by Carr,
Fleischer, Leung, and Phillips [4] to strengthen the LP so as to bound its inte-
grality gap. It is helpful to first understand how the integrality gap of the natural
LP relaxation is unbounded. Carr et al. provide the following instance: let R > 0
be a large integer requirement for a single user, and let there be two facilities;
facility a provides R — 1 units of coverage at near-zero cost, whereas facility b
provides R units of coverage at a cost of 1. Clearly, a feasible integer solution
must include item b, with a total cost of 1. A fractional solution, however, can
select a full unit of item a, and only a 1/R fraction of item b, with a cost of 1/R.
The resulting integrality gap is R, which can be arbitrarily large.

Carr et al. [4] derive a strong bound on the integrality gap by adding
exponentially-many valid knapsack-cover (KC) inequalities to produce a
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strengthened LP relaxation. These inequalities represent residual coverage
requirements at partial solutions. Suppose facilities S C F have been built.
Now user j has a residual requirement rf = max {rj — Y ies al-j,()}. To satisfy
j’s residual requirement, an additional contribution of at least rf is needed from
the remaining unbuilt facilities F\S. In addition, there is no benefit to exceed-
ing rf, so the original contributions a;; can be clipped to er if they exceed this
value. We call afj = min {aij, rf} the residual contribution, and set it to zero if
i is in S. This defines the knapsack-cover inequality:

Z afj er. (3)

ieF\S

There are |U| x |27| = m2" KC inequalities. The KC inequalities are valid; their
presence does not change the set of feasible integer solutions, and reduces the
feasible set of the LP relaxation. The strengthened linear program is as follows:

min E Ci%i,
x

ieF

st Y afmi >y, V(4,8) e U x 27, (KC-LP)
1€F\S
x; >0, Vie F.

Note that the constraints z; < 1 have been dropped. (Multiplicity constraints
are implicit, in that a;";- = 0 whenever i € S.) Associated with this primal is the
knapsack-cover dual program (KC-DP), referred to as the KC-LP dual. The dual
has one constraint for each facility, and one variable for every KC inequality:

max Y0 37y,

JEU SCF
st. Y > adyi <e, VieF, (KC-DP)
JEU SCF\{i}
S : F
y; 20, V(j,9) el x 2.

There are known approximation algorithms for CIPs that yield integer solu-
tions with costs within a multiplicative factor of the KC-LP optimum. The worst-
case performance of these algorithms depend on the column and row sparsity of
the contributions A. Let A = max;{}_,;, 1[a;; > 0]} denote the column spar-
sity, and let I' = max; {3, 1[a;; > 0]} denote the row sparsity. Carr et al.
[4] propose a I'-approximation algorithm based on rounding a KC-LP solution;
Kolliopoulos and Young [18] design an alternative KC-LP rounding procedure to
yield a O (log(1 + A))-approximation algorithm. Together, these provide upper
bounds on the strengthened integrality gap of I and O (1 + log A)). Some algo-
rithms attain improved guarantees at the cost of small violations of the mul-
tiplicity constraints [5,6]. Common to these LP-rounding rounding methods is
that they first require obtaining an optimal solution to the KC-LP.
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The strengthened linear program and its dual can be solved to near-
optimality in polynomial time. Chekuri and Quanrud [5] develop a multiplicative
weights method that returns approximately-optimal primal and dual solutions in
near linear time, but with an O (1 / 65) dependence on the relative error e. Their
approach builds upon earlier work of Plotkin, Shmoys, and Tardos [27], and the
solution method outlined by Carr et al. [4]. The returned dual solutions are fea-
sible, lie within a %_e—factor of the optimum, and have a polynomially-bounded
number of non-zero variables [5]. In practice, the primal and dual problems can
be solved exactly using column generation for quite large instances; the prob-
lem of finding a most violated inequality can be reduced to solving a sequence
of pseudopolynomially-many minimum-cost knapsack problems, each of which
admits a pseudopolynomial exact algorithm (e.g., [20]). In our case study, we
solve the KC-LP dual to optimality using this approach on large-scale problem
instances with thousands of users and thousands of facilities.

5 Cost-Shares and the Strengthened LP

Our main technical contribution is to show that any feasible solution to the
strengthened dual (KC-DP) produces a cost-allocation that satisfies the core
property. This reconciles the apparent inconsistency for the CIP with respect to
the folk understanding cost-shares and duality. The cost-shares themselves are
remarkably intuitive: each user pays the part of the dual objective associated
with her share of service utilization.

Theorem 1. Let y = (y}g)sg}',jeu be a KC-LP dual-feasible solution. Then,
cost-shares

&= iy,  Vieu, (4)
SCF

satisfy the core property. We say the cost-shares in (4) are induced by'y.
Clearly, by summing the cost-shares over all users, we recover the dual objec-
tive in (KC-DP). The theorem is simple, but its consequences are profound. In

particular, it can be used to exploit approximation algorithms that find integer
solutions with costs bounded in terms of a corresponding dual-feasible solution.

Corollary 1. Let X C F be a feasible solution to the CIP, andy a KC-LP dual
feasible solution. If X is a KC-LP relative a-approxmationmate solution, i.e.,

)=y ca Y T
ieX jEU SCF
then the cost-shares induced by y have cost-of-fair-sharing at most a.

This implies that the Carr et al. [4] algorithm yields cost-allocations with
cost-of-fair-sharing at most I" < m, and that the rounding approach of Kolliopou-
los and Young [18] produces a cost-of-fair-sharing of O (In A), where A < n.
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Moreover, if small violations of the multiplicity bounds are tolerated, this is
improved further on sparse instances [5,6]. These are the first price-of-fair-
sharing bounds for general CIPs. Furthermore, even on the more restricted
multi-set multi-cover problem, i.e., CIPs with integer inputs, our work yields
improvements. The I'-bound is new, and the latter O (In A) bound dominates
the existing O(max; ; a;j) bound of Li et al. [22]. Finally, our theorem implies
that one can also find cost-shares directly by solving the KC-LP dual. This
decouples the problem of finding an integer CIP solution from that of finding

cost-shares. Our case study shows this can have great value in practice.

Proof of Theorem 1. The proof is relatively simple; it naturally uses dual fea-
sibility, and a rearrangement of summations that is standard in the analysis of
primal-dual schema (see, e.g., [31]). Fix a KC-LP dual feasible solution y, and
let ¢ be the induced cost-shares. The main burden of proof is to show that no
subset of users has incentive to act separately from the others. In other words,
we need to show that for any J C U, we have ¢} > Zje, &, where c% is the
minimum cost of an integer solution serving group J only; this is the minimum
cost to the CIP in which only constraints associated with users J are included.

We prove this by considering an optimal solution to the problem of serving
the smaller set of users. Let X5 C F be a minimum-cost solution for serving
group J. Using (KC-DP) feasibility of y, we see that

= azy D D ey |22 D ey

i€X i€Xy \JjeU SCF\{i} i€Xy jedJ SCF\{i}

where the last inequality is due to the fact that all variables are non-negative.

The last part can be shown using a standard change in the order of summa-
tion. The right-hand-side expression above counts, for every item i € X7, the
sum over subsets S C F that do not contain i. Equivalently, one can sum, for
each subset S C F, every item in X} not in S, i.e.,

DD D A= v | D 4] (5)

i€X% jeJ SCF\{i} JjE€J SCF i€X5\S

Recall that X7 is a feasible solution to the sub-problem of serving users in set J
only. The residual demand of each subset S is satisfied by X; for all users in J:

> oaf=r§, Vied (6)
i€X%\S

By applying the inequality (6) to (5), we arrive at the cost allocation to group
J under the cost-shares £. In summary, we have shown that

LCOED DDA ED I (7)

jEJSCF
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This proves that each group J C U prefers to accept the cost-shares & over
forming a group on their own. In other words, any (KC-DP) dual solution y
produces cost-shares satisfying the core property. a

A natural question is whether there are cost-allocations, perhaps not derived
from KC-LP dual variables, that have lower worst-case prices-of-fair-sharing. For
CIP the answer is mo; our bounds are provably tight, at least with respect to
parameters I" and A. In particular, in the special case in which all contributions
and requirements are binary, the KC-LP and its dual reduce to the standard
set cover linear programs. Here, the folk theorem applies, and the cost-recovery
ratio is provably upper-bounded by the integrality gap [7]. For Set Cover, and
hence CIP as well, the integrality gap can be as large as I' and In A [11,30].
Hence, the lower bounds of our cost-recovery ratios for CIP are tight.

6 A Case Study on LoRaWAN Coverage

We conduct a case study to evaluate the effectiveness of the KC-LP cost-sharing
framework on a practical coverage-sharing problem for LoRaWAN. The study
is based on a scenario in which the goal is to provide coverage over Brooklyn,
NY, a relatively large and densely built urban area. The challenge is to find
a gateway placement that provides sufficient coverage throughout the area at
minimal cost, and to allocate the cost of the gateways across the users, subject
to the core constraint, while recovering as much of the cost as possible. This is
the main problem motivating our work. Our results are based on the average
performance over a sequence of random problem instances. Our results suggest
the KC-LP framework performs well in practice; by solving both the IP and KC-
LP dual to optimality, we recover on average 93% of the cost of the gateways.

The set of problem instances is derived from a combination of real-world
data and assumptions made in the absence of available data. Each instance is a
CIP with random contribution matrix A, requirements r, and facilities f. The
demand points, or users U, are defined as a regular gird of 7,808 points over
the study-area. Each instance uses a sub-sample of size 2,000. Facility locations
are derived from the corners of real building footprints, and sub-sampled down
to 4,380 per instance. This mimics a practical constraint faced by operators
who do not have access to every site due to the high access cost. Next, each
facility ¢ is associated with a cost ¢; uniformly distributed between 0 and 1.
For the contribution matrix A, we use a distance-based Okumura-Hata model
with normal noise to generate random connection qualities a;; between each
gateway-demand point pair (i, j) [14]. Finally, to ensure feasibility, each demand
point has a requirement equal to the value of building all gateways, divided by a
geometrically distributed random variable, sampled independently for each user.
A total of 10 instances are used.

For each instance, we solve both the CIP and the KC-LP dual to optimality.
The CIPs are solved using an off-the-shelf IP solver; the KC-LP dual is solved
using the column generation routine, similar to [4]. This produces the opti-
mal cost-shares, in the sense that the price-of-fair-sharing matches the instance-
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specific integrality gap exactly. To reiterate, the ability to find cost-shares by
solving the KC-LP dual is a valuable consequence of our work. We are not aware
of another equally tractable method for finding cost-shares of this quality in
practice. We also consider additional benchmark algorithms.

The KC-LP solver is compared against two natural approximation algorithms
that produce cost-shares: the PRIMALDUAL algorithm and the GREEDY algo-
rithm. The PRIMALDUAL algorithm, or dual-ascent algorithm, incrementally
grows both a feasible KC-LP dual solution, and an infeasible integer CIP solu-
tion. The algorithm terminates as soon as the integer solution is feasible. The
main idea behind this algorithm is standard (see e.g. [31]), and analogous to
that of [3] in a multi-user setting. Next, we also employ an existing GREEDY
algorithm that also produces both an integer solution to the CIP, as well as
cost-shares [22]. This algorithm produces cost-shares via dual fitting; it greedily
selects gateways to add, and amortizes the per-coverage cost of selected facilities
into an infeasible KC-LP dual solution. Finally, the dual variables are scaled
down by log(n) to ensure feasibility. We also introduce an improved variant of
this algorithm, called GREEDY+. By viewing the greedy-generated cost-shares
as KC-LP dual variables, these need to be scaled down by worst-case bound, but
only the minimal amount to make them KC-LP dual feasible.

One caveat of both greedy algorithms is that they only seem to work well
on CIPs with integer requirements r and contributions A [9]. As such, for these
algorithms only, we modify the instances by multiplying the inputs A and r by
a large constant, and then rounding the connections up, and the requirements
down, to the nearest integer. This modification never compromises feasibility,
and does not increase the minimum cost. However, solutions to the rounded
CIPs need not be feasible for the original real-valued instance. This is a potential
weakness of using greedy algorithms on real-valued CIPs.

The results are summarized in Fig. 1. Each set of bars along the x-axis rep-
resent one instance; the bar heights represent costs. The GREEDY algorithm
performs remarkably well, with its solution cost exceeding the minimum by only
10% on average, whereas the primal-dual algorithm performs worse, averaging
nearly 30% above optimal. More remarkably, the OPTIMAL method recovers 93%
of the cost on average; over twice as much as the next best algorithm. GREEDY
recovers relatively little cost, even after the improved dual-fitting GREEDY+;
PRIMALDUAL recovers considerably more — 45% of the minimum cost.

Overall, the KC-LP framework finds near perfect cost-shares when sharing
the cost of LoRaWAN coverage. Using column generation to solve the KC-LP
dual, one can recover nearly all of the cost of reasonably realistic coverage pro-
vision instances. If the instances are larger such that solving the IP and KC-LP
to optimality is prohibitive, one can use both GREEDY and PRIMAL-DUAL; the
former to solve the CIP, the latter to find cost-shares. Alternatively, one can
solve the KC-LP to near-optimality using the algorithms methods of [4,6]. The
counsistency of performance across this data set (along with other results that
achieved analogous performance on variants in which the costs were Gaussian
rather than uniform) demonstrate the effectiveness of this theoretically-inspired
approach to deliver significant results in our application.
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Fig. 1. Costs incurred and recovery for 10 instances. IP-OPT is the cost of the IP
optimum, KC-LP the cost of the KC-LP optimum. Prefixes PD, Gr, and GR+, rep-
resent the PRIMALDUAL, GREEDY, and GREEDY-, respectively. Suffixes Obj and Rev
represent the integer objective cost, and cost-share revenue, respectively.

7 Group-Strategyproof KC-LP Cost-Shares

So far it has been assumed that the group of users to be served is given; some-
times this choice also falls on the service provider. In an extended setting, the
goal of the service provider is to elicit private user preferences and design a
mechanism for choosing who to serve, in addition to allocating costs to those
served. See Jain and Mahdian [16] for more details and definitions. Assume that
each user j € U has a private utility u; for receiving service, and has the option
of opting out for a utility of 0. When utilities are unknown, they must be elicited
by a mechanism. This creates a challenge, because users and groups of users may
be able to strategically misreport their utilities. A mechanism is said to be strat-
egyproof if individual users cannot benefit from misreporting their utility, and
group-strategyproof if no group of users can benefit by colluding to misreport
their utilities. The goal of a mechanism in this setting is to elicit preferences in
a group-strategyproof manner, decide who to serve, and allocate-costs in a way
that maximizes the cost-recovery ratio.

To find a group-strategyproof mechanism, Moulin and Shenker [24] prove
that it suffices to have cross-monotonic cost-allocation mechanism. Cost-shares
€:U x 2 — RUI are cross-monotonic if the cost allocated to user j does not
increase when more users are served, i.e., when for all j € J C U, §;(U) < &;(J).
Not all cost-shares that satisfy the core property are cross-monotonic. Pal
and Tardos [25] provided a general approach for using primal-dual algorithms
to find cross-monotonic cost-shares in the facility location problem and the
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rent-or-buy problem. This approach has been widely used [17,19,21]. Inter-
estingly, imposing cross-monotonicity usually lowers the best attainable cost-
recovery ratio (or equivalently, increases the price-of-fair-sharing) [25]. Indeed,
Immorlica, Mahdian, and Mirrokni [15] upper bounded the cost-recovery ratio
for cross-monotonic cost allocations. In particular, a cross-monotonic cost allo-
cation for set cover can recover at most 1/A of the cost, where A is the size of the
largest set. Moreover, even if all elements are covered by at most two sets, the
cost recovery ratio is O (2 + €)/n'/3). Li et al. [22] describe a cross-monotonic
cost allocation for the CIP that recovers 1/(2n) of the cost without explicit use
of duality; we simplify their proof using the strengthened dual, generalize the
algorithm to general CIP, and improve this to 1/(2A4).

Our strengthened linear programming approach can be used to find cross-
monotonic cost-shares. The approach uses a primal-dual algorithm, in line with
the general framework of Pal and Tardos [25]. The algorithm is the same as in
Li et al. [22], but our analysis is different, in that it uses the KC-LP dual.

Theorem 2. Fix users U C U. The primal-dual mechanism [22] produces a
feasible solution X for users U, and cross-monotone cost-shares £;(J) that satisfy

Y jes &) = (23) - e(X).

The main algorithmic idea is to let each user independently select facilities
in complete isolation from the other users. Cross-monotonicity is enforced by
preventing any interactions between users’ dual variables. Moreover, the problem
faced by an individual user is a minimum cost-knapsack problem, each of which
can be solved by a primal-dual algorithm [3]. This produces, for each user j €
U, a selection of facilities X;, and a KC-LP dual solution y; that is feasible
for the individual problem with constraints for user j only, and no variables
corresponding to other users. Finally, our mechanism selects the union of all
selected facilities (X;) e, and scales down the individual dual variables y; by
the column sparsity A. The procedure is summarized in Algorithm 1, in which
MinCostKnapsackPrimalDual is given in [3,22| (and our online version).

Algorithm 1: A cross-monotonic primal-dual

Input: (F,U,r,c, A)

for all users j € J independently do
X,y < MinCostKnapsackPrimalDual(F,r;, ¢, a;)
yi < y;/A

X UjeulXj < .

§U) — 553 2 scpy; forall jeU

return X, ¢

Carnes and Shmoys [3] develop and analyze a primal-dual algorithm for the
minimum-cost knapsack problem based on the KC-LP formulation. Fix a single
user j € U and let a; = (a1j,. .., an;) denote their contributions. The user starts
with an all-zero dual solution y;, and an empty selection X = (. While the
residual demand TJX is positive, they increase the dual variable yJX . Eventually,
some constraint » SCF—{i} afg ij < ¢; becomes tight for a facility 7. This facility
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is added to the selection X, and the process repeats. The algorithm returns a
selection of facilities X; and a feasible KC-LP dual solution. Critically, the cost
of X; is at most twice the KC-LP dual objective under y;.

Theorem 3 (Carnes and Shmoys [3]). Let X; C F and y; be a selection
of facilities, and the corresponding dual solution returned by the primal-dual
algorithm for min-cost knapsack. These dual variables are feasible, and satisfy

D as<2) 1y

i€X; SCF

This result is used in two parts of our proof. First, we use the dual feasibil-
ity of the individual dual variables y; to construct a feasible dual solution to
the master CIP, which gives us the core-property via Theorem 1. Secondly, the
approximation ratio is used to derive our cost-recovery ratio.

Proof of Theorem 2. To prove this result, we need to argue for cross-
monotonicity, the core-property, and cost recovery. We argue for cross-
monotonicity first. Clearly, the dual variables y;- of each user are independent
of other users. Meanwhile, the maximum number of users in U served by any
facility, A, is monotonically increasing in the size of U, so the dual variables
Y= y;- /A are monotonically decreasing in U, as are the induced cost-shares.

The core property is easy to prove using dual feasibility and our Theorem 1.
Consider some selected facility ¢ € X. Then,

Z Z myj A Z Z aij;S < Z ci <.

JEU SCF\{i} {jel:a;; >0} \SCF\{i} {j€J:a;; >0}

D)=

The first equality follows from dropping users not served by facility 7. The second
equality uses the definition of y; = y} /A. The following inequality uses the fact
that the dual variables are individually feasible to the min-cost knapsack LP
of each user j. The final inequality follows from the definition of A. The above
shows that dual variables (y;);eu are feasible for the CIP induced by users U, and
thus Theorem 1 implies that the core-property is satisfied by the accompanying
cost-shares (&;(U))jeuv.

Finally, the cost-recovery recovery ratio follows from the approximation ratio
of the minimum-cost knapsack algorithm. In particular, observe that

ch<22q§222r5 'S—QAZZT

i€X JEUEX; jEU SCF jeU SCF

The first inequality is obvious; the second follows from applying Theorem 3 to
each user j in U individually. The equality follows from the definition of y;. This
proves that the cost-of-fair-sharing is at most 24, as claimed. O

Finally, the proof suggests there is potential for improvement. In fact, when-
ever the contributions A are binary, the min-cost knapsack algorithm is exact,
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in which case the cost-recovery ratio is 1/A [22]. Moreover, if we know that each
selected facility X always selected by at least two users, it also follows that the
cost-of-fair-sharing is a factor 2 smaller, i.e. A. On the other hand, no group-
strategyproof mechanism can recover more than 1/A of the cost in general [15].
Whether the 2A cost-of-fair-sharing is tight when contributions are non-binary,
however, remains an open problem [22].
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