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A B S T R A C T  

Phylogenetic networks encode a broader picture of evolution by the inclusion of reticulate processes such as hybridization, introgression, or 
horizontal gene transfer. Each hybridization event is represented by a ‘hybridization cycle’. Here, we investigate the statistical identifiability 
of the position of the hybrid node in a 4-node hybridization cycle in a semi-directed level-1 phylogenetic network. That is, we investigate if 
our model is able to detect the correct placement of the hybrid node in the hybridization cycle using quartet concordance factors as data. In 
the current study, we prove that the correct placement of the hybrid node in 4-node hybridization cycles, included in level-1 phylogenetic 
networks, is generically identifiable if the assumptions are non-restrictive such as t 2 ð0;1Þ for all branch (or edge) lengths and γ 2 ð0;1Þ
for the inheritance probability of the hybrid edges. However, simulations show that accurate detection of these cycles can be complicated by 
inadequate sampling, small sample size, or gene tree estimation error. We identify practical advice for evolutionary biologists on best sam
pling strategies to improve the detection of this type of hybridization cycle.
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I N T R O D U C T I O N
The increasing evidence of reticulate processes in the Tree of 
Life has inspired the development of novel mathematical and 
statistical methods to infer phylogenetic networks from genomic 
data (Huson and Bryant 2006, Degnan 2018, Jiao et al. 2021, 
Kong et al. 2022). A phylogenetic network is an extension of the 
tree graph by the inclusion of hybrid nodes that allow for two 
incoming parental edges which represent genetic material being 
transferred from two different sources. Methods to infer phyloge
netic networks include classes from combinatorial (Gr€unewald 
et al. 2007, Grunewald et al. 2013, Yang et al. 2013, Oldman et al. 
2016, Tan et al. 2019), distance-based (Willems et al. 2014, 
Markin et al. 2019, Xu and An�e 2022), or model-based under 
Markov models that use genetic sequences or markers as input 
(Gross et al. 2021, Rabier et al. 2021, Lutteropp et al. 2022) or 
under the multispecies coalescent model (Rannala and Yang 
2003) that uses gene trees as input (Yu et al. 2014, Sol�ıs-Lemus 
and An�e 2016, Zhang et al. 2018).

Model-based approaches provide accurate representations of 
the reticulate evolutionary process among species represented by 

the estimated phylogenetic network. However, the accurate esti
mation of this parameter requires proof of identifiability. Indeed, 
multiple studies have tackled the question of whether phyloge
netic networks are identifiable under different models (Pardi and 
Scornavacca 2015, Sol�ıs-Lemus and An�e 2016, Gross and Long 
2018, Long and Kubatko 2018, Allman et al. 2019, Ba~nos 2019, 
Gross et al. 2021, Solis-Lemus et al. 2020, Xu and An�e 2022, 
Allman et al. 2024), and here, we extend the identifiability proofs 
in Sol�ıs-Lemus and An�e (2016) and Solis-Lemus et al. (2020) to 
further validate the inference of level-1 phylogenetic networks 
under a pseudolikelihood model built on the multispecies net
work coalescent model (MSNC). Since identifiability can be 
unattainable in many cases, in practice, one aims to prove generic 
identifiability which means that the network parameter is almost 
surely identifiable.

Let N be a semi-directed level-1 phylogenetic network with 
h hybridization events and n taxa. We denote this the network 
parameter of the model. Let G ¼ fG1;G2; . . . ;Ggg be g esti
mated gene trees as input for the model. We can define a like
lihood as the product of the probability under the 
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multispecies network coalescent model (Yu et al. 2012) of 
each gene tree given the network parameter (with its numeri
cal parameters as branch lengths and inheritance probabil
ities). For the case of a species tree as the model parameter, it 
has been proven that the distribution of gene trees identifies 
(or generically identifies) the tree topology, branch lengths 
and even root position under the multispecies coalescent 
model in trees (Chang 1996, Allman and Rhodes 2006, 
Allman et al. 2011, Rhodes and Sullivant 2012). The same is 
not known for the full likelihood model on species networks, 
but generic identifiability proofs have been derived for the 
case of a quartet-based pseudolikelihood model (Sol�ıs-Lemus 
and An�e 2016, Ba~nos 2019, Solis-Lemus et al. 2020) that 
assumes probabilities of each observed quartet gene tree under 
its corresponding species quarnet are independent. Note that 
pseudolikelihood approaches have been used to infer species 
tree as well when full likelihood calculations are computation
ally infeasible (Liu et al. 2010). The identifiability results in 
networks show that the presence of hybridization events in n- 
taxon level-1 semi-directed phylogenetic networks is generi
cally identifiable from the observed distribution of gene trees 
under a pseudolikelihood model as described in the next 
theorem.

Theorem 1 [Generic identifiability of a hybridization event 
(Sol�ıs-Lemus and An�e 2016, Solis-Lemus et al. 2020)]. 
Let N be a semi-directed level-1 n-taxon phylogenetic 
network with one hybridization event. Let k be the number 
of nodes in the cycle defined by the hybridization event. 
Then, the hybridization event is generically identifiable if 
(i) k>3, (ii) t 2 ð0;1Þ for all branch lengths, and 
(iii) γ 2 ð0;1Þ for the inheritance probability 
corresponding to the hybridization event.   

However, it remained unproven whether the position of the 
hybrid node within the hybridization cycle was identifiable. 
Here, we begin to explore the question of network identifiabil
ity by focusing on level-1 phylogenetic networks with hybrid
ization cycles of 4 nodes (4-node cycles). These types of 

cycles [denoted diamonds (Pickrell and Pritchard 2012)] are 
relevant because in practice they seem to lead to flat pseudoli
kelihood scores (Sol�ıs-Lemus and An�e 2016). That is, 4-node 
cycles that only differ on the placement of the hybrid node in 
the cycle can have similar pseudolikelihood scores. Here, we 
show that a semi-directed network (correct direction of hybrid 
edges) is generically identifiable from input unrooted gene 
trees, not only the unrooted network (placement of the cycle). 
This implies that the direction of the gene flow event (hybrid 
edge) can be distinguished with the pseudolikelihood model, 
providing an accurate evolutionary interpretation of the origin 
and target of hybridizations. Our proof follows the same alge
braic geometry techniques as in Sol�ıs-Lemus and An�e (2016)
and Solis-Lemus et al. (2020) such as the definition of the set 
of polynomial equations under the coalescent model and the 
search for unique (or finitely many) solutions.

The organization of the manuscript is as follows. In second 
Section, we establish the models more precisely and the 
approach used to prove generic identifiability. In third 
Section, we define the theorems and proofs for the generic 
identifiability of the placement of the hybrid node in the 4- 
node hybridization cycle. In fourth and fifth Sections, we illus
trate the mathematical findings (and the practical considera
tions when dealing with limited data) with a simulation study. 
Finally, we present some discussion in Section 6.

M A T E R I A L S  A N D  M E T H O D S
Semi-directed level-1 explicit phylogenetic networks

Our main parameter of interest is the topology N of a phylo
genetic network (Definition 1) along with the numerical 
parameters of the vector of branch lengths (t) and a vector of 
inheritance probabilities (γ). The inheritance probabilities 
describe the proportion of genes inherited by a hybrid node 
from one of its hybrid parents (see Fig. 1).

Definition 1. A rooted explicit phylogenetic network (Huson 
et al. 2010) N on taxon set X is a connected directed acyclic 
graph with vertices V ¼ frg [VL [ VH [ VT, 

Figure 1. Left: rooted phylogenetic tree of six taxa. Internal nodes (grey circles) represent speciation events and are usually omitted on 
phylogenetic trees. Centre: rooted phylogenetic network on six taxa with h¼ 1 hybridization event represented by the green edge. The 
hybrid node (in green) represents a hybridization event. The hybrid node has two parent edges: a minor hybrid edge in green labelled 
γ ¼ 0:42 and a major hybrid edge in black labelled 1 − γ ¼ 0:58. The hybridization event can represent different biological processes: 
hybridization, horizontal gene transfer, or introgression. Right: a semi-directed network for the same biological scenario as in the centre. 
Although the root location is unknown, its position is constrained by the direction of the hybrid edges. For example, the taxon D cannot be 
an outgroup.
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edges E¼ EH [ ET, and a bijective leaf-labelling 
function f : VL! X with the following characteristics: (i) the 
root r has indegree 0 and outdegree 2, (ii) any leaf v 2 VL 
has indegree 1 and outdegree 0, (iii) any tree node v 2 VT 
has indegree 1 and outdegree 2, (iv) any hybrid node v 2 VH 
has indegree 2 and outdegree 1, (v) a tree edge e 2 ET is an 
edge whose child is a tree node, (vi) a hybrid edge e 2 EH is 
an edge whose child is a hybrid node, (vii) a hybrid 
edge e 2 EH has an inheritance probability 
parameter 0< γe<1 which represents the proportion of the 
genetic material that the child hybrid node received from this 
parent edge. For a tree edge e, γe ¼ 1.   

In a rooted explicit network, every internal node represents a 
biological process: speciation for tree nodes and hybridization for 
hybrid nodes. However, other types of phylogenetic networks, 
such as unrooted networks (Huson et al. 2010) and semi-directed 
networks (Sol�ıs-Lemus and An�e 2016, Gross et al. 2021) are also 
useful representations of evolutionary relationships. Unrooted phy
logenetic networks are typically obtained by suppressing the root 
node and the direction of all edges. In semi-directed networks, on 
the other hand, the root node is suppressed and we ignore the 
direction of all tree edges, but we maintain the direction of hybrid 
edges, thus keeping information on which nodes are hybrids. The 
placement of the root is then constrained, because the direction of 
the two hybrid edges to a given hybrid node informs the direction 
of time at this node: the third edge must be a tree edge directed 
away from the hybrid node and leading to all the hybrid’s 
descendants. Therefore, the root cannot be placed on any 
descendant of any hybrid node, although it might be placed on 
some hybrid edges. See Figure 1 for an example of a rooted 
explicit phylogenetic network and its semi-directed version.

Each hybridization event creates a cycle which represents a 
subgraph with at least two nodes and no cut-edges. A cut-edge 
is any edge in the network whose removal disconnects the net
work. Note that given that phylogenetic networks are acyclic, 
the term cycle refers to sequence of edges that would form a 
cycle if they were all undirected. We also note that for every 
hybridization event, there are two parent hybrid edges con
nected to the hybrid node: (i) a major hybrid edge with inher
itance probability γ>0:5, and (ii) a minor hybrid edge with 
inheritance probability γ<0:5. Both edges are parametrized 
with the same γ.

Here, we focus on the case of semi-directed networks. In 
addition, we assume the following characteristics of the semi- 
directed network under study.

Assumption 1 Let N have n leaves and h hybridization 
events (that is, jVLj ¼ n and jVhj ¼ h).  

Assumption 2 We further assume that N is of level-1 
(Huson et al. 2010). That is, we assume that any given 
edge can be part of at most one cycle which means that 
there is no overlap between any two cycles (Rossell�o 
and Valiente 2009, Huson et al. 2010).   

Thus, our parameters of interest are ðN ; t; γÞ where N is 
an explicit semi-directed level-1 phylogenetic network that 

links the n species under study, and has h hybridization events. 
This network has two vectors of numerical parameters: (i) 
branch lengths t 2 ½0;1Þne where ne is the number of 
branches in the network, and (ii) inheritance probabilities γ 2
ð0;0:5Þnh for nh, the number of minor hybrid edges.

Generic identifiability of the position of the hybrid node
To show that the position of the hybrid node in the hybridization 
cycle is generically identifiable, we represent every semi-directed 
level-1 network N as a set of polynomial quartet concordance 
factor (CF) equations as in Sol�ıs-Lemus and An�e (2016) and 
Solis-Lemus et al. (2020), and we find if both systems of polyno
mial equations share solutions in the parameter space: 
CFðN ; t; γÞ ¼ CFðN

0

; t
0

; γ0 Þ. Note that the term concordance 
factor has been used for measures of agreement for a given bipar
tition from a collection of gene trees [gene concordance factors 
(Baum 2007)] or site patterns [site concordance factors (Minh 
et al. 2020)], but our proofs concern only quartet concordance 
factors (Sol�ıs-Lemus and An�e 2016) and the abbreviation CF is 
used throughout for simplicity.

First, each network can be decomposed into 4-taxon sub
networks [quarnets in Huber et al. (2018)]. That is, for a given 
network N with n ≥ 4 taxa, we consider all 4-taxon subsets 
S ¼ fs¼ fa;b; c;dg : a;b; c;d 2 Xg to define the theoretical 
CFs expected under the multispecies network coalescent 
model for each 4-taxon subset. These theoretical CFs are 
already derived for a species tree in (Allman et al. 2011), and 
for a species network in (Sol�ıs-Lemus and An�e 2016). In both 
cases, the CFs do not depend on the position of the root. For 
the tree, the major CF is defined for the quartet that agrees 
with the species tree. That is, if the species tree has the split 
abjcd with internal edge t, then the major CF would be 
CFabjcd ¼ 1 − 2=3 expð− tÞ. The CF for the minor resolutions 
(in disagreement with the species tree abjcd) would then be 
CFacjbd ¼ CFadjbc ¼ 1=3 expð− tÞ (Hudson 1983).

For the case of a 4-taxon network, the theoretical CFs are 
weighted averages of CFs on trees. For example, Figure 2 shows 
a semi-directed 4-taxon network (�¼ a, �¼ b, � ¼ c, � ¼ d) 
and the two displayed quartet trees depending on which hybrid 
edge is used (major hybrid edge used corresponds to the quartet 
on top, and minor hybrid edge used corresponds to the quartet 
on the bottom). The CFs on this 4-taxon network are then given 
by a weighted sum of the quartet CFs of the two displayed quar
tet trees with weights: 1 − γ and γ. Namely,

� CFabjcd ¼ ð1 − γÞð1 − 2=3 expð− t13 − t23 − t2ÞÞþ

γð1 − 2=3 expð− t2ÞÞ for the major resolution, and 
� CFacjbd ¼ CFadjbc ¼ ð1 − γÞð1=3 expð− t13 − t23 − t2ÞÞþ

γð1=3 expð− t2ÞÞ for the minor resolutions. 

The computation of CF equations when there are more 
than two leaves beneath a hybrid node is not as straight- 
forward as weights depend on branch lengths and γ parame
ters. Details about this computation can be found in Sol�ıs- 
Lemus and An�e (2016). We show in the Appendix the system 
of polynomial equations for the four phylogenetic networks 
considered in this study: N down, N right , N left , and N up 
(Fig. 3). Since each network is obtained by the rotation of the 
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hybrid node in the hybridization cycle, there is a simple map
ping of 4-taxon subsets that allows us to define the CF equa
tions for all networks from the original N down. This process is 
also described in the Appendix.

Definition 2 Let N be n-taxon semi-directed level-1 explicit 
phylogenetic network with h hybridizations. This network 

defines a set of 3
n

4

 !

CF equations under the coalescent 

model with parameters t and γ. Denote this system of 
equations as CFðN ; t; γÞ. If we change the variables 
to zi ¼ expð− tiÞ for all internal branch lengths, 
then CFðN ;z; γÞ is a system of polynomial equations.  

Definition 3 (Generic identifiability of hybrid node 
position). Let N be an n-taxon semi-directed level-1 explicit 
phylogenetic network with h hybridizations. We focus on one 
hybridization that has 4 nodes in the hybridization cycle. 
Let N 0 be a network with the hybrid node rotated inside the 
4-node hybridization cycle. Let CFðN ; t; γÞ be the system of 
polynomial CF equations defined by N , and 
let CFðN 0; t0; γ0Þ be the system of polynomial CF equations 
defined by N 0. We say the position of the hybrid node in the 
4-node hybridization cycle in N is identifiable if the system 
of CFðN ; t;γÞ ¼ CFðN 0; t0; γ0Þ does not have solutions in 

any set of numerical parameters ðt; γ; t0; γ0Þ. We say the 
position of the hybrid node in the 4-node hybridization cycle 
in N is generically identifiable if the solution set of the 
system CFðN ; t; γÞ ¼ CFðN 0; t0;γ0Þ has measure zero.   

Identifiability of 4-node cycles in semi-directed level-1 phylogenetic 
networks

In this paper, we prove the following theorem regarding the 
generic identifiability of the placement of the hybrid node in 
the 4-node hybridization cycle in a level-1 network:

Theorem 2 Let N be a semi-directed level-1 n-taxon 
phylogenetic network with one hybridization event that 
creates a 4-node hybridization cycle. Then, the placement of 
the hybrid node in the cycle is generically identifiable if 
(i) n>5, (ii) t 2 ð0;1Þ for all branch lengths, and 
(iii) γ 2 ð0;1Þ for the inheritance probability 
corresponding to the hybridization event.   

To prove this theorem, we prove three separate theorems: 
N down vs. N right (Theorem 3), N down vs. N left (Theorem 4), 
and N down vs. N up (Theorem 5). In this section, we show 
Theorem 3 and its proof, and the other two theorems and proofs 
are placed in the Appendix. For these three theorems, we assume 
the networks only have six taxa and one hybridization event. We 
generalize to n taxa and h hybridization events in Remark 2.

Figure 2. A, a semi-directed network with a given 4-taxon subset ðn0 ¼ 1;n1 ¼ 1;n2 ¼ 2;n3 ¼ 0Þ highlighted in blue which corresponds to 
taking one individual in n0 (blue square), one individual in n1 (blue triangle), and two individuals in n2 (blue circles). B, to obtain the CF 
equations for the resulting quarnet (C) we split it as two quarnet trees weighted by 1 − γ and γ. D, major CF equation for the quarnet as 
weighted average of CF equations on quarnet trees.

Figure 3. Semi-directed networks with one hybridization cycle with 4 nodes (diamond), but different position of the hybrid node in the 
cycle. We denote these networks N down, N right , N left , and N up respectively from left to right.
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Theorem 3 Let N down be a semi-directed level-1 6-taxon 
phylogenetic network with one hybridization event 
producing a hybridization cycle with 4 nodes. Without loss 
of generality, let the taxa be partitioned among clades 
as n0 ¼ 1;n1 ¼ 2;n2 ¼ 1;n3 ¼ 2 (Fig. 3). Let the 
hybrid node be ancestral to the clade n0. Let N right be a 
semi-directed level-1 6-taxon phylogenetic network with one 
hybridization event producing a hybridization cycle with 
4 nodes such that the unrooted version of N right agrees 
with the unrooted version of N down. Let the hybrid node 
in the hybridization cycle in N right be ancestral to the 
clade n2. Then, N down and N right are identifiable 
if t1<1; t13>0; t3<1, and γ 2 ð0;1Þ.  

Proof. Let CFðN down; z; γÞ be the system of CF polynomial 
equations defined by N down and let CFðN right; z0; γ0Þ be 
the system of CF polynomial equations defined by N right . 
Both systems of equations can be found in the Appendix 
(Tables 1–14).   

Let P ¼ fpðz; γÞ− qðz0; γ0Þ : pðz; γÞ 2 CFðN down; z; γÞ;
qðz0; γ0Þ 2 CFðN right; z0; γ0Þg be the set of polynomial equations 
resulting from matching CFðN down; z;γÞ to CFðN right; z0; γ0Þ for 
every 4-taxon subset.

Using Macaulay2 (Grayson and Stillman undated), we 
compute the Gr€obner basis of P on the ðz; γÞ variables by any 
elimination order. All Macaulay2 scripts are available at 
https://github.com/gtiley/diamond-identifiability.

The resulting ideal is given by: 

z1ðz13 − 1Þ2z3γð1 − γÞ ¼ 0

z1ðz13 − 1Þz3ðz23 − 1Þγð1 − γÞ ¼ 0 

which represent the conditions that the ðz; γÞ variables need 
to satisfy for the polynomial set P to vanish to zero.

Thus, N down and N right are not identifiable in the subset of 
parameter space corresponding to fz1 ¼ 0g [ fz13 ¼ 1g[
fz3 ¼ 0g [ fγ¼ 0g[ fγ¼ 1g. �

Remark 1. We note that by assuming that t 2 ð0;1Þ for all 
branch lengths, and γ 2 ð0;1Þ for the inheritance 
probabilities, we can guarantee generic identifiability of the 
placement of the hybrid node in the 4-node hybridization 
cycle.  

Remark 2. The identifiability of the position of the hybrid 
node in 4-node cycles in n-taxon level-1 phylogenetic 
networks is obtained by noticing that we need at most two 
taxa per clade to define all the CF polynomial equations 
[Lemma 1 in Solis-Lemus et al. (2020)], and thus, if the 
hybridization cycles are identifiable with only one taxon in 
some clades, the addition of a second taxon will only reduce 
the set in the parameter space where the two networks are 
not (generically) identifiable.  

Remark 3. We did not explore the identifiability in the case 
of n¼ 5 because it was already discovered in Sol�ıs-Lemus 
and An�e (2016) and Solis-Lemus et al. (2020) that some 
hybridization events with only one taxon sampled in one of 
the four taxa partitions (labelled n0;n1;n2;n3 in Fig. 2) 
are either not generically detectable or the numerical 
parameters are not generically identifiable. These cases were 
denoted bad diamonds, and were excluded for the new 
proofs here.   

Simulations without gene tree estimation error
We simulated gene trees under the MSNC using BPP v.4.1.4 
(Flouri et al. 2020). The level-1 network under investigation 
contained eight taxa and one 4-node hybridization cycle (dia
mond) (Fig. 4A). To simulate gene trees under the MSNC, 
we required a rooted evolutionary history, and thus, we inves
tigated three potential root placements: (i) a balanced root 
included in the cycle (r1 in Fig. 4B), (ii) a ladderized root 
with the root in the cycle (r2 in Fig. 4C), and (iii) a ladderized 
root such that the cycle occurs in the ingroup (r3 in Fig. 4D). 
The root height is not the same between the balanced root 
and ladderized rootings, but the age of episodic gene flow is 11

2 
units of θ, population size measured in expected nucleotide 
diversity. Edge lengths for the networks used in simulations 
are in substitutions per site and the inheritance probability (γ) 
was 0.5 for all simulations. A θ of 0.01 was constant over all 
nodes. Simulations were carried out for nine diamonds for the 
three rooting scenarios, such that we changed if lineages were 
represented by a clade of two taxa or a single taxon (Fig. 4E).

Sequences were also simulated with BPP v.4.1.4, which 
were used in later comparisons between true gene trees and 
estimated gene trees. Sequence simulation used the HKY 
model of nucleotide substitution (Hasegawa et al. 1985) with 
a transition-transversion rate-ratio of 3 and equilibrium fre
quencies at πA ¼ πT ¼ 0:3 and πC ¼ πG ¼ 0:2 was selected. 
A low degree of among site rate variation was incorporated 
using a gamma distribution (Yang 1994) with a shape and rate 
of 0.6. A strict clock was used among branches and there is no 
among-locus rate variation. One-hundred simulations were 
performed for each of the 27 rooted networks, using 100, 500, 
1000, and 5000 loci. Each locus had 1000 base pairs.

We then selected the ladderized root (root 3 in Fig. 4D) to 
assess the changes in performance due to the value of the 
inheritance parameter. We varied the number of gene trees 
and the inheritance probability across nine diamonds, as illus
trated in Figure 4E. Specifically, we examined nine parameter 
combinations using the following values: 250, 1000, and 4000 
gene trees, paired with an inheritance probability of 0.05, 0.25, 
and 0.5. For each diamond and parameter combination, we 
performed 100 replicate simulations. Scripts for reproducing 
simulation experiments are available at https://github.com/ 
gtiley/diamond-identifiability.

Incorporating gene tree error into simulation experiments
Biological data are often messy with many potential sources of 
gene tree estimation error. For example, deep paralogy can 
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lead to gene trees that conflict with species trees (Maddison 
1997) and lead to rooting errors when using an outgroup 
(Huelsenbeck et al. 2002, Holland et al. 2003). Such gene tree 
errors can be prevalent in groups with histories of large-scale 
gene duplication and loss such as plants (Leebens-Mack et al. 
2019) and insects (Li et al. 2018). These rooting errors may 
negatively affect the performance of inference methods, espe
cially those based on rooted triples. Therefore, we estimated 
networks while incorporating gene tree error with two differ
ent strategies. First, for each simulation condition, we ran
domly re-rooted 10% and 30% of the gene trees. Because 
rooting errors may also be accompanied by other topological 
errors, we estimated networks from the simulated data incor
porating a random re-rooting and a random nearest neighbour 
interchange (NNI) move to 10% and 30% of gene trees. 
Second, because our NNI approach may explore a relatively 
limited set of gene tree errors, we re-estimated gene trees for a 
subset of simulation conditions over a range of alignment 
lengths as a proxy for gene tree information. Based on the first 
set of simulations with rooting and NNI errors, we identified 
five diamonds (d1;d2;d3;d8;d9) that appeared representative 
for all diamonds. We then fixed the number of gene trees to 
1000 and the inheritance probability at 0.25, while varying the 
sequence length across 250, 1000, and 4000 for each of the 
five selected diamonds. Gene trees were then estimated with 
IQ-TREE v.2.3.6 (Minh et al. 2020) from gene sequence data 
using the same model used in the simulations (HKYþG), to 
avoid incorporating any model mis-specification error. Every 
scenario was replicated 20 times. Scripts for introducing ran
dom roots and NNI moves to trees are available at https:// 
github.com/gtiley/diamond-identifiability.

Network estimation
Networks were estimated from the simulated or estimated gene 
trees using pseudolikelihood methods that utilize the gene tree 

topologies only. We used two methods: (i) the Species Networks 
applying Quartets (SNaQ) function (Sol�ıs-Lemus and An�e 
2016) implemented through the PhyloNetworks v.0.15.0 Julia 
package (Sol�ıs-Lemus et al. 2017) in Julia v.1.6.5 where SNaQ 
implements statistical inference by involving numerical optimiza
tion of branch lengths and inheritance probabilities, and a heuris
tic search in the space of level-1 phylogenetic networks; and (ii) 
the InferNetwork_MPL function (Yu and Nakhleh 2015) imple
mented through PhyloNet v.3.8.3 (Wen et al. 2018). Notably, 
SNaQ uses unrooted quartets as data while InferNetwork_MPL 
uses rooted triples (more on rooting error later). Both analyses 
used 10 independent runs with the maximum number of allowed 
hybridization events set to zero, one, or two.

Three summary statistics were used to evaluate the perform
ance of the estimations. First, we calculated the proportion of 
simulations where only one hybridization event was detected 
based on a two-point pseudolikelihood score difference. 
Although the pseudolikelihood does not have straight-forward 
implementation of model selection such as the Akaike 
Information Criterion (Akaike 1974), we used differences in 
pseudolikelihood scores as some operational criteria to evaluate 
detection of hybridization edges among the replicates in lieu of 
slope heuristics (Baudry et al. 2012) or goodness-of-fit tests (Cai 
and An�e 2021) that might be more appropriate for an empirical 
investigation. Second, we checked if the network estimated when 
allowing one hybridization event had the same topology as the 
true network using the hardwiredClusterDistance function 
(Huson et al. 2010) in PhyloNetworks. While the absolute dis
tance between networks is difficult to interpret, a distance of 0 
means the network topologies are identical. The proportion of 
correct networks was calculated only for networks with one 
hybridization event regardless of how many events were preferred 
via model selection, as different selection criteria and additional 
lines of evidence could help guide decision making. Third, we 
checked if the true minor hybrid edge is present in the estimated 

Figure 4. Semi-directed level-1 network topology with a diamond hybridization cycle. A, the semi-directed diamond has tip labels in capital 
letters and node labels in lower case italicized letters. The hybrid node is labelled as k. The locations of the three possible roots are 
indicated by r1, r2, r3. B–D, node heights for the three rooted networks in units of θ population size. The direction of episodic gene flow is 
shown with an arrow. E, for each root, nine networks were investigated, the first including all tips, the next four reducing one cherry to a 
single branch in an anticlockwise fashion, the next four reducing two cherries to two lineages with a single taxon.
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network with only one estimated hybridization event. This is 
done by drawing bootstrap support from the estimated network 
onto the true network with the hybridBootstrapSupport function 
from PhyloNetworks. A bootstrap support of 100% shows that 
the true hybrid edge is present in the estimated network, even if 
some other aspects of the network are incorrect. Scripts for calcu
lating these summary statistics are available at https://github. 
com/gtiley/diamond-identifiability.

R E S U L T S
Simulation results: error-free gene trees

The pseudolikelihood methods implemented in PhyloNetworks 
and PhyloNet generally performed well across all simulation con
ditions. SNaQ was capable of correctly identifying the presence 
of one hybridization event, recovering the correct network, and 
recovering the hybridization node in all simulations as the num
ber of gene trees increased (Supporting Information, Figs S1– 
S3). For diamonds d6 and d9 when the rooting was ladderized 
and in the cycle (r2) or ladderized and out of the cycle (r3), 
SNaQ sometimes missed the correct network or hybridization 
node when the number of gene trees was low, but converged to 
the correct network as gene trees increased from 100 to 5000. 
InferNetwork_MPL was more efficient with respect to the num
ber of gene trees for d6 or d9 and performed well for r1 
(Supporting Information, Fig. S4) and r2 (Supporting 
Information, Fig. S5), but sometimes struggled with r3 
(Supporting Information, Fig. S6). Across all diamonds for r3, 
InferNetwork_MPL did not always detect one hybridization 
edge, such that two hybridization edges were preferred over 
none. Even when considering the estimated networks that only 
allowed one hybridization event, the network was not always cor
rect; however, the correct hybridization node was almost always 
recovered (Supporting Information, Fig. S6). If the recovery of 
the hybridization node was the most favourable criteria of an esti
mator, both SNaQ and InferNetwork_MPL performed well with 
error-free gene trees, with SNaQ requiring more gene trees in 
cases where the hybrid node had a single taxon for a descendant 
instead of a cherry (Fig. 5).

When the inheritance probability was either 0.25 and 0.5, 
SNaQ was capable of identifying the presence of one hybrid
ization event, recovering the hybridization node, and recover
ing the correct network when the number of gene trees 
increased (Fig. 6). For diamond d5, d6 and d9, the correct net
work or hybridization node was sometimes missed when the 
number of gene trees was low (250), but converged to the 
correct network as the gene trees increased to 1000 and 4000. 
When the inheritance probability was 0.05, recovering the cor
rect network and recovering the hybridization node had an 
increasing trend across all diamonds while the number of gene 
trees increased. Diamond d9 could only be recovered about 50 
percent even with 4000 gene trees. Furthermore, SNaQ could 
identify the presence of the one hybridization event for all dia
monds excluding d6 and d9, whose presence rate was decreas
ing while the number of gene trees increased. Since d6 and d9 
were symmetric, their results both reflected false negatives 
when including more gene trees. We also noticed that 
CorrectNetwork and HasHybridEdge were identical, which 

was a special case. In other general cases, these two evalua
tions could perform differently.

Simulation results: gene trees with error
SNaQ tolerated rooting errors well when they were present in 
both 10% (Supporting Information, Figs S7–S9) and 30% 
(Supporting Information, Figs S10–S12) of gene trees. The 
patterns for d6 and d9 with r2 and r3 from error-free gene trees 
were observed again, which was expected since SNaQ used 
unrooted quartets as data. InferNetwork_MPL was largely 
robust to root error in 10% of the gene trees for r1 and r2, 
with the exception of sometimes detecting more than one 
hybridization edge (Supporting Information, Figs S13, S14). 
However, it was difficult to recover the correct network for r3 
and the proportion of incorrect networks sometimes increased 
with the number of gene trees (Supporting Information, Fig. 
S15). The lowest proportions of correct network estimations 
were observed for diamonds d4, d7, and d9, which were not all 
cases where the hybrid node had a single taxon as a descend
ant. The overall network being incorrect did not always mean 
that the estimated hybridization node was wrong, but the 
decreased performance compared to simulations without gene 
tree error was drastic (Supporting Information, Table S1). As 
the proportion of gene tree errors increased from 10% to 30%, 
similar patterns were observed for InferNetwork_MPL, such 
that d4, d7, and d9 performed poorly for r3, but with a higher 
proportion of network estimation errors (Supporting 
Information, Figs S16–S18). For example, the hybridization 
node was never recovered for d9 with r3 and 5000 gene trees 
(Supporting Information, Fig. S18). Introducing an additional 
NNI move error yielded qualitatively similar simulation results 
(Supporting Information, Figs. S19–S30), implying both 
methods are robust to small degrees of estimation error.

When utilizing estimated gene trees, accurate estimation 
improves as sequence length increases as is expected (Figure 
8). Only d9 performed a different trend as the fraction 
dropped for large sequence length.

D I S C U S S I O N
Mathematical insights

We have shown that the placement of the hybrid node in a 4- 
node hybridization cycle is generically identifiable in semi- 
directed level-1 phylogenetic networks. This result has impor
tant biological implications such as correct rooting of a semi- 
directed network which provides more information about the 
actual speciation process from the origin of the clade. More 
work is needed to understand the identifiability of larger (and 
smaller) cycles. We decided to focus on the case of the 4-node 
hybridization cycle because of empirical evidence suggesting 
flat pseudolikelihood on these hybridization events. However, 
smaller cycles are also biologically interesting as they describe 
hybridization events between more closely related popula
tions, but it is not always true under incomplete taxon sam
pling or in the presence of extinct taxa. In such cases, the 
resulting cycle may also be small but with longer edge lengths. 
It has already been proven that 2-node cycles are not identifi
able, but 3-node cycles are whenever we have sufficient 
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Figure 5. Proportion of 100 simulation replicates where the true hybridization edge is recovered by SNaQ (squares) or InferNetwork_MPL 
(triangles). The x-axis corresponds to the number of gene trees in the input sample. The diamond and root numbers correspond to 
Figure 4.
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sampling from the hybrid and sister clades (Sol�ıs-Lemus and 
An�e 2016, Solis-Lemus et al. 2020). Thus, we can explore the 
identifiability of the placement of the hybrid node in the 
hybridization 3-node cycle as future work. In particular, we 
want to answer the following question:

Question 1. Let N 1;N 2;N 3 be the three rotations of the 
n-taxon semi-directed level-1 phylogenetic networks with 
one hybridization event producing a hybridization cycle 
of 3 nodes. Are N 1;N 2;N 3 (generically) identifiable?   

Furthermore, all existing identifiability studies on semi- 
directed phylogenetic networks are restricted to a level-1 net
work (Sol�ıs-Lemus and An�e 2016, Gross and Long 2018, 
Ba~nos 2019, Gross et al. 2021, Solis-Lemus et al. 2020, Allman 
et al. 2024). Questions on the identifiability of higher-level 
networks remain open.

Biological insights from simulations and best practices
Pseudolikelihood methods can perform well for estimating a 
level-1 network from gene tree distributions in the absence of 
gene tree error, consistent with previous simulations and 
empirical analyses (Yu and Nakhleh 2015, Sol�ıs-Lemus and 
An�e 2016). PhyloNet’s InferNetwork_MPL was more efficient 
than PhyloNetwork’s SNaQ for diamonds d2, d6, and d9, capa
ble of recovering the correct network with as few as 100 gene 

trees where SNaQ would require at least 500 (Fig. 5). 
However, InferNetwork_MPL was not always perfect even 
with error-free gene trees such as d8 for r3. In addition, SNaQ 
was far more robust to the types of gene tree errors explored 
here than InferNetwork_MPL, capable of detecting one 
hybridization event and recovering the correct network in 
most conditions when provided a sufficient number of gene 
trees (Fig. 7). InferNetwork_MPL could still detect the pres
ence of a hybridization edge more often than not depending 
on the diamond analysed with r3, but the estimated network 
was frequently incorrect and if one were using unknown 
empirical data, there is a risk of estimating additional false pos
itive hybridization nodes in the presence of gene tree rooting 
errors.

The diamonds and rootings where network estimation 
errors were most prevalent have implications for empirical 
analyses. SNaQ errors primarily occurred for d2, d6, and d9, all 
diamonds where the hybrid node descendant was a single 
taxon (Fig. 4E). This implies that sampling two or more indi
viduals for the lineage of interest could provide an increase in 
statistical power over a single taxon, at least for SNaQ and 
methods that use unrooted gene trees. Interestingly, network 
estimation errors were most prevalent when the cycle was 
restricted to an ingroup (r3). InferNetwork_MPL especially 
struggled with d4, d7, and d9 in the presence of errors, as it 
appears more data would not be helpful. Precisely why these 

Figure 6. SNaQ results for root 3 with different value of the number of gene trees paired with the inheritance probability. FoundOneEdge is 
the proportion out of 20 replicates that one reticulate edge was correctly inferred by the pseudolikelihood scores. CorrectNetwork is the 
proportion of 20 replicates where the estimated topology when allowing only one hybridization event is identical to the true topology. 
HasHybridEdge is the proportion of 20 replicates where the correct hybridization edge was inferred, regardless if other parts of the 
estimated network were incorrect, when allowing only one hybridization event. Gamma represents the inheritance probability. Diamond d1 
through tod9 correspond to Figure 4E. Note that the plots in CorrectNetwork and HasHybridEdge are identical which suggests that when the 
correct hybrid edges are recovered, the true network is estimated.
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Figure 7. Proportion of 100 simulation replicates where the hybridization node was recovered by SNaQ (squares) or InferNetwork_MPL 
(triangles). The x-axis corresponds to the number of gene trees in the input sample. The diamond and root numbers correspond to 
Figure 4. Error was introduced into 10% of gene trees for each round of simulation by randomly re-rooting the gene tree and performing a 
random NNI move.
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diamonds performed poorly is unclear, but it could be an arti
fact of how errors were introduced to simulations. For exam
ple, d4 and d7 both have cherries for the descendants of the 
hybrid node. Since the outgroup errors were done randomly, 
this created more chances for a descendant of the hybrid node 
to be the outgroup. Outgroup lineages are typically sampled at 
an appropriate evolutionary distance to polarize phylogenetic 
relationships or site patterns in the context of D-statistics 
(Green et al. 2010, Durand et al. 2011, Pease and Hahn 
2015), but our results show that rooting errors and potentially 
other sources of topological errors (e.g. deep paralogy, assem
bly, or genotyping, biases in starting material such as museum 
tissue vs. fresh) could be misleading for estimating level-1 net
works with rooted triples. An unrooted quartet-based method 
such as SNaQ should be more robust to gene tree error, but 
rooted triple-based methods should perform well and can be 
beneficial for a low number of gene trees (e.g. 100) if gene 
tree quality can be reliably evaluated.
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Appendix A: Phylogenetic networks as a set of 
polynomial equations                                                 

A.1 CF equations for N down: CFðN down;z; γÞ.                
Table 1. CF equations for N down: CFðN down;z; γÞ

n CF formula

ð0;0;2;2Þ 1 − 2
3 z2z23z3

1
3 z2z23z3

1
3 z2z23z3

ð0;1;2;1Þ 1 − 2
3 z23z2

1
3 z23z2

1
3 z23z2

ð0;1;1;2Þ 1 − 2
3 z3

1
3 z3

1
3 z3

ð0;2;2;0Þ 1 − 2
3 z2z23z13z1

1
3 z2z23z13z1

1
3 z2z23z13z1

ð0;2;1;1Þ 1 − 2
3 z13z1

1
3 z13z1

1
3 z13z1

ð0;2;0;2Þ 1 − 2
3 z3z13z1

1
3 z3z13z1

1
3 z3z13z1

ð1;0;2;1Þ ð1 − γÞ 1 − 2
3 z23z2

� �
þ γ 1 − 2

3 z2
� �

ð1 − γÞ 1
3 z23z2þ γ 1

3 z2

ð1 − γÞ 1
3 z23z2þ γ 1

3 z2

ð1;0;1;2Þ ð1 − γÞ 1 − 2
3 z3

� �
þ γ 1 − 2

3 z23z3
� �

ð1 − γÞ 1
3 z3þ γ 1

3 z23z3

ð1 − γÞ 1
3 z3þ γ 1

3 z23z3

ð1;1;2;0Þ ð1 − γÞ 1 − 2
3 z13z23z2

� �
þ γ 1 − 2

3 z2
� �

ð1 − γÞ 1
3 z13z23z2þ γ 1

3 z2

ð1 − γÞ 1
3 z13z23z2þ γ 1

3 z2

ð1;1;0;2Þ ð1 − γÞ 1 − 2
3 z13z3

� �
þ γ 1 − 2

3 z3
� �

ð1 − γÞ 1
3 z13z3þ γ 1

3 z3

ð1 − γÞ 1
3 z13z3þ γ 1

3 z3

ð1;2;1;0Þ ð1 − γÞ 1 − 2
3 z1

� �
þ γ 1 − 2

3 z23z13z1
� �

ð1 − γÞ 1
3 z1þ γ 1

3 z23z13z1

ð1 − γÞ 1
3 z1þ γ 1

3 z23z13z1

ð1;2;0;1Þ ð1 − γÞ 1 − 2
3 z1

� �
þ γ 1 − 2

3 z13z1
� �

ð1 − γÞ 1
3 z1þ γ 1

3 z13z1

ð1 − γÞ 1
3 z1þ γ 1

3 z13z1
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A.2 Definition of CF equations for network obtained   
by the rotation of hybrid in hybridization cycle.
We start by noticing that there is a correspondence between a 
quartet in the network N down and a quartet in any other net
work. For example, in Figure 9, we want to match the equations 
corresponding to n¼ ð0;1;2;1Þ in N down and N right . We can 
see that the equations for the quartet n¼ ð0;1;2;1Þ in N right 

can be obtained from the equations in quartet n¼ ð2;0;1;1Þ in 
N down.

Therefore, in order to get the equations for N right , we need 
to identify to which quartets they correspond in the N down.

Note that only the last quartet ð1;1;1;1Þ is not a mere rota
tion. We have to compute the CFs for the specific network 
(Fig. 10).

Table 1. (continued) 
n CF formula

ð2;0;2;0Þ ð1 − γÞ2 1 − 2
3 z2z0z01z13z23

� �
þ2γð1 − γÞ 1 − 2

3 z2z0
� �

þ γ2 1 − 2
3 z2z0z02

� �

ð1 − γÞ2 1
3 z2z0z01z13z23þ2γð1 − γÞ 1

3 z2z0þ γ2 1
3 z2z0z02

ð1 − γÞ2 1
3 z2z0z01z13z23þ2γð1 − γÞ 1

3 z2z0þ γ2 1
3 z2z0z02

ð2;0;1;1Þ ð1 − γÞ2 1 − 2
3 z0z13z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z23

� �
þ γ2 1 − 2

3 z0z02
� �

ð1 − γÞ2 1
3 z0z13z01þ γð1 − γÞz0 1 − 1

3 z23
� �

þ γ2 1
3 z0z02

ð1 − γÞ2 1
3 z0z13z01þ γð1 − γÞz0 1 − 1

3 z23
� �

þ γ2 1
3 z0z02

ð2;0;0;2Þ ð1 − γÞ2 1 − 2
3 z3z0z13z01

� �
þ2γð1 − γÞ 1 − 2

3 z3z0
� �

þ γ2 1 − 2
3 z3z0z23z02

� �

ð1 − γÞ2 1
3 z3z0z13z01þ2γð1 − γÞ 1

3 z3z0þ γ2 1
3 z3z0z23z02

ð1 − γÞ2 1
3 z3z0z13z01þ2γð1 − γÞ 1

3 z3z0þ γ2 1
3 z3z0z23z02

ð2;1;1;0Þ ð1 − γÞ2 1 − 2
3 z0z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z23z13

� �
þ γ2 1 − 2

3 z0z02
� �

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z23z13
� �

þ γ2 1
3 z0z02

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z23z13
� �

þ γ2 1
3 z0z02

ð2;1;0;1Þ ð1 − γÞ2 1 − 2
3 z0z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z13

� �
þ γ2 1 − 2

3 z0z02z23
� �

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z13
� �

þ γ2 1
3 z0z02z23

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z13
� �

þ γ2 1
3 z0z02z23

ð2;2;0;0Þ ð1 − γÞ2 1 − 2
3 z1z0z01

� �
þ2γð1 − γÞ 1 − 2

3 z1z0
� �

þ γ2 1 − 2
3 z1z0z02z23z13

� �

ð1 − γÞ2 1
3 z1z0z01þ2γð1 − γÞ 1

3 z1z0þ γ2 1
3 z1z0z02z23z13

ð1 − γÞ2 1
3 z1z0z01þ2γð1 − γÞ 1

3 z1z0þ γ2 1
3 z1z0z02z23z13

ð1;1;1;1Þ ð1 − γÞ 1 − 2
3 z13

� �
þ γ 1

3 z23

ð1 − γÞ 1
3 z13þ γ 1 − 2

3 z23
� �

ð1 − γÞ 1
3 z13þ γ 1

3 z23

Figure 9. Correspondence between the quartet n¼ ð0;1;2;1Þ in N down (left), the same quartet in N right (centre), and the quartet 
n¼ ð2;0;1;1Þ in N down (right).
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A.3 CF equations for N right: CFðN right;z; γÞ.                  

Figure 10. CF equations for quartet ð1;1;1;1Þ comparing the N down and N right networks.

Table 2. CF equations for N right: CFðN right; z; γÞ

n 2N right n 2 N down CF formula

ð0;0;2;2Þ ð2;0;2;0Þ ð1 − γÞ2 1 − 2
3 z2z0z01z13z23

� �
þ2γð1 − γÞ 1 − 2

3 z2z0
� �

þ γ2 1 − 2
3 z2z0z02

� �

ð1 − γÞ2 1
3 z2z0z01z13z23þ2γð1 − γÞ 1

3 z2z0þ γ2 1
3 z2z0z02

ð1 − γÞ2 1
3 z2z0z01z13z23þ2γð1 − γÞ 1

3 z2z0þ γ2 1
3 z2z0z02

ð0;1;2;1Þ ð2;0;1;1Þ ð1 − γÞ2 1 − 2
3 z0z13z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z23

� �
þ γ2 1 − 2

3 z0z02
� �

ð1 − γÞ2 1
3 z0z13z01þ γð1 − γÞz0 1 − 1

3 z23
� �

þ γ2 1
3 z0z02

ð1 − γÞ2 1
3 z0z13z01þ γð1 − γÞz0 1 − 1

3 z23
� �

þ γ2 1
3 z0z02

ð0;1;1;2Þ ð1;0;2;1Þ ð1 − γÞ 1 − 2
3 z23z2

� �
þ γ 1 − 2

3 z2
� �

ð1 − γÞ 1
3 z23z2þ γ 1

3 z2

ð1 − γÞ 1
3 z23z2þ γ 1

3 z2

ð0;2;2;0Þ ð2;0;0;2Þ ð1 − γÞ2 1 − 2
3 z3z0z13z01

� �
þ2γð1 − γÞ 1 − 2

3 z3z0
� �

þ γ2 1 − 2
3 z3z0z23z02

� �

ð1 − γÞ2 1
3 z3z0z13z01þ2γð1 − γÞ 1

3 z3z0þ γ2 1
3 z3z0z23z02

ð1 − γÞ2 1
3 z3z0z13z01þ2γð1 − γÞ 1

3 z3z0þ γ2 1
3 z3z0z23z02

ð0;2;1;1Þ ð1;0;1;2Þ ð1 − γÞ 1 − 2
3 z3

� �
þ γ 1 − 2

3 z23z3
� �

ð1 − γÞ 1
3 z3þ γ 1

3 z23z3

ð1 − γÞ 1
3 z3þ γ 1

3 z23z3

ð0;2;0;2Þ ð0;0;2;2Þ 1 − 2
3 z2z23z3

1
3 z2z23z3

1
3 z2z23z3

ð1;0;2;1Þ ð2;1;1;0Þ ð1 − γÞ2 1 − 2
3 z0z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z23z13

� �
þ γ2 1 − 2

3 z0z02
� �

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z23z13
� �

þ γ2 1
3 z0z02

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z23z13
� �

þ γ2 1
3 z0z02

ð1;0;1;2Þ ð1;1;2;0Þ ð1 − γÞ 1 − 2
3 z13z23z2

� �
þ γ 1 − 2

3 z2
� �

ð1 − γÞ 1
3 z13z23z2þ γ 1

3 z2

ð1 − γÞ 1
3 z13z23z2þ γ 1

3 z2

ð1;1;2;0Þ ð2;1;0;1Þ ð1 − γÞ2 1 − 2
3 z0z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z13

� �
þ γ2 1 − 2

3 z0z02z23
� �

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z13
� �

þ γ2 1
3 z0z02z23

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z13
� �

þ γ2 1
3 z0z02z23
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Table 2. (continued) 
n 2N right n 2 N down CF formula

ð1;1;0;2Þ ð0;1;2;1Þ 1 − 2
3 z23z2

1
3 z23z2

1
3 z23z2

ð1;2;1;0Þ ð1;1;0;2Þ ð1 − γÞ 1 − 2
3 z13z3

� �
þ γ 1 − 2

3 z3
� �

ð1 − γÞ 1
3 z13z3þ γ 1

3 z3

ð1 − γÞ 1
3 z13z3þ γ 1

3 z3

ð1;2;0;1Þ ð0;1;1;2Þ 1 − 2
3 z3

1
3 z3

1
3 z3

ð2;0;2;0Þ ð2;2;0;0Þ ð1 − γÞ2 1 − 2
3 z1z0z01

� �
þ2γð1 − γÞ 1 − 2

3 z1z0
� �

þ γ2 1 − 2
3 z1z0z02z23z13

� �

ð1 − γÞ2 1
3 z1z0z01þ2γð1 − γÞ 1

3 z1z0þ γ2 1
3 z1z0z02z23z13

ð1 − γÞ2 1
3 z1z0z01þ2γð1 − γÞ 1

3 z1z0þ γ2 1
3 z1z0z02z23z13

ð2;0;1;1Þ ð1;2;1;0Þ ð1 − γÞ 1 − 2
3 z1

� �
þ γ 1 − 2

3 z23z13z1
� �

ð1 − γÞ 1
3 z1þ γ 1

3 z23z13z1

ð1 − γÞ 1
3 z1þ γ 1

3 z23z13z1

ð2;0;0;2Þ ð0;2;2;0Þ 1 − 2
3 z2z23z13z1

1
3 z2z23z13z1

1
3 z2z23z13z1

ð2;1;1;0Þ ð1;2;0;1Þ ð1 − γÞ 1 − 2
3 z1

� �
þ γ 1 − 2

3 z13z1
� �

ð1 − γÞ 1
3 z1þ γ 1

3 z13z1

ð1 − γÞ 1
3 z1þ γ 1

3 z13z1

ð2;1;0;1Þ ð0;2;1;1Þ 1 − 2
3 z13z1

1
3 z13z1

1
3 z13z1

ð2;2;0;0Þ ð0;2;0;2Þ 1 − 2
3 z3z13z1

1
3 z3z13z1

1
3 z3z13z1

ð1;1;1;1Þ ð1 − γÞ 1
3 z01þ γð1 − 2

3 z13Þ

ð1 − γÞð1 − 2
3 z01Þþ γ 1

3 z13

ð1 − γÞ 1
3 z01þ γ 1

3 z13
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A.4 CF equations for N left: CFðN left;z; γÞ.                     

Table 3. CF equations for N left: CFðN left; z; γÞ

n 2N left n 2 N down CF formula

ð0;0;2;2Þ ð0;2;0;2Þ 1 − 2
3 z3z13z1

1
3 z3z13z1

1
3 z3z13z1

ð0;1;2;1Þ ð1;1;0;2Þ ð1 − γÞ 1 − 2
3 z13z3

� �
þ γ 1 − 2

3 z3
� �

ð1 − γÞ 1
3 z13z3þ γ 1

3 z3

ð1 − γÞ 1
3 z13z3þ γ 1

3 z3

ð0;1;1;2Þ ð1;2;0;1Þ ð1 − γÞ 1 − 2
3 z1

� �
þ γ 1 − 2

3 z13z1
� �

ð1 − γÞ 1
3 z1þ γ 1

3 z13z1

ð1 − γÞ 1
3 z1þ γ 1

3 z13z1

ð0;2;2;0Þ ð2;0;0;2Þ ð1 − γÞ2 1 − 2
3 z3z0z13z01

� �
þ2γð1 − γÞ 1 − 2

3 z3z0
� �

þ γ2 1 − 2
3 z3z0z23z02

� �

ð1 − γÞ2 1
3 z3z0z13z01þ2γð1 − γÞ 1

3 z3z0þ γ2 1
3 z3z0z23z02

ð1 − γÞ2 1
3 z3z0z13z01þ2γð1 − γÞ 1

3 z3z0þ γ2 1
3 z3z0z23z02

ð0;2;1;1Þ ð2;1;0;1Þ ð1 − γÞ2 1 − 2
3 z0z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z13

� �
þ γ2 1 − 2

3 z0z02z23
� �

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z13
� �

þ γ2 1
3 z0z02z23

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z13
� �

þ γ2 1
3 z0z02z23

ð0;2;0;2Þ ð2;2;0;0Þ ð1 − γÞ2 1 − 2
3 z1z0z01

� �
þ2γð1 − γÞ 1 − 2

3 z1z0
� �

þ γ2 1 − 2
3 z1z0z02z23z13

� �

ð1 − γÞ2 1
3 z1z0z01þ2γð1 − γÞ 1

3 z1z0þ γ2 1
3 z1z0z02z23z13

ð1 − γÞ2 1
3 z1z0z01þ2γð1 − γÞ 1

3 z1z0þ γ2 1
3 z1z0z02z23z13

ð1;0;2;1Þ ð0;1;1;2Þ 1 − 2
3 z3

1
3 z3

1
3 z3

ð1;0;1;2Þ ð0;2;1;1Þ 1 − 2
3 z13z1

1
3 z13z1

1
3 z13z1

ð1;1;2;0Þ ð1;0;1;2Þ ð1 − γÞ 1 − 2
3 z3

� �
þ γ 1 − 2

3 z23z3
� �

ð1 − γÞ 1
3 z3þ γ 1

3 z23z3

ð1 − γÞ 1
3 z3þ γ 1

3 z23z3

ð1;1;0;2Þ ð1;2;1;0Þ ð1 − γÞ 1 − 2
3 z1

� �
þ γ 1 − 2

3 z23z13z1
� �

ð1 − γÞ 1
3 z1þ γ 1

3 z23z13z1

ð1 − γÞ 1
3 z1þ γ 1

3 z23z13z1

ð1;2;1;0Þ ð2;0;1;1Þ ð1 − γÞ2 1 − 2
3 z0z13z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z23

� �
þ γ2 1 − 2

3 z0z02
� �

ð1 − γÞ2 1
3 z0z13z01þ γð1 − γÞz0 1 − 1

3 z23
� �

þ γ2 1
3 z0z02

ð1 − γÞ2 1
3 z0z13z01þ γð1 − γÞz0 1 − 1

3 z23
� �

þ γ2 1
3 z0z02

ð1;2;0;1Þ ð2;1;1;0Þ ð1 − γÞ2 1 − 2
3 z0z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z23z13

� �
þ γ2 1 − 2

3 z0z02
� �

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z23z13
� �

þ γ2 1
3 z0z02

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z23z13
� �

þ γ2 1
3 z0z02

ð2;0;2;0Þ ð0;0;2;2Þ 1 − 2
3 z2z23z3

1
3 z2z23z3

1
3 z2z23z3
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A.5 CF equations for N up: CFðN up;z; γÞ.                      

Table 3. (continued) 
n 2N left n 2 N down CF formula

ð2;0;1;1Þ ð0;1;2;1Þ 1 − 2
3 z23z2

1
3 z23z2

1
3 z23z2

ð2;0;0;2Þ ð0;2;2;0Þ 1 − 2
3 z2z23z13z1

1
3 z2z23z13z1

1
3 z2z23z13z1

ð2;1;1;0Þ ð1;0;2;1Þ ð1 − γÞ 1 − 2
3 z23z2

� �
þ γ 1 − 2

3 z2
� �

ð1 − γÞ 1
3 z23z2þ γ 1

3 z2

ð1 − γÞ 1
3 z23z2þ γ 1

3 z2

ð2;1;0;1Þ ð1;1;2;0Þ ð1 − γÞ 1 − 2
3 z13z23z2

� �
þ γ 1 − 2

3 z2
� �

ð1 − γÞ 1
3 z13z23z2þ γ 1

3 z2

ð1 − γÞ 1
3 z13z23z2þ γ 1

3 z2

ð2;2;0;0Þ ð2;0;2;0Þ ð1 − γÞ2 1 − 2
3 z2z0z01z13z23

� �
þ2γð1 − γÞ 1 − 2

3 z2z0
� �

þ γ2 1 − 2
3 z2z0z02

� �

ð1 − γÞ2 1
3 z2z0z01z13z23þ2γð1 − γÞ 1

3 z2z0þ γ2 1
3 z2z0z02

ð1 − γÞ2 1
3 z2z0z01z13z23þ2γð1 − γÞ 1

3 z2z0þ γ2 1
3 z2z0z02

ð1;1;1;1Þ ð1 − γÞ 1
3 z23þ γð1 − 2

3 z02Þ

ð1 − γÞð1 − 2
3 z23Þþ γ 1

3 z02

ð1 − γÞ 1
3 z23þ γ 1

3 z02

Table 4. CF equations for N up: CFðN up;z; γÞ

n 2N up n 2 N down CF formula

ð0;0;2;2Þ ð2;2;0;0Þ ð1 − γÞ2 1 − 2
3 z1z0z01

� �
þ2γð1 − γÞ 1 − 2

3 z1z0
� �

þ γ2 1 − 2
3 z1z0z02z23z13

� �

ð1 − γÞ2 1
3 z1z0z01þ2γð1 − γÞ 1

3 z1z0þ γ2 1
3 z1z0z02z23z13

ð1 − γÞ2 1
3 z1z0z01þ2γð1 − γÞ 1

3 z1z0þ γ2 1
3 z1z0z02z23z13

ð0;1;2;1Þ ð1;2;1;0Þ ð1 − γÞ 1 − 2
3 z1

� �
þ γ 1 − 2

3 z23z13z1
� �

ð1 − γÞ 1
3 z1þ γ 1

3 z23z13z1

ð1 − γÞ 1
3 z1þ γ 1

3 z23z13z1

ð0;1;1;2Þ ð2;1;1;0Þ ð1 − γÞ2 1 − 2
3 z0z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z23z13

� �
þ γ2 1 − 2

3 z0z02
� �

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z23z13
� �

þ γ2 1
3 z0z02

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z23z13
� �

þ γ2 1
3 z0z02

ð0;2;2;0Þ ð0;2;2;0Þ 1 − 2
3 z2z23z13z1

1
3 z2z23z13z1

1
3 z2z23z13z1

ð0;2;1;1Þ ð1;1;2;0Þ ð1 − γÞ 1 − 2
3 z13z23z2

� �
þ γ 1 − 2

3 z2
� �

ð1 − γÞ 1
3 z13z23z2þ γ 1

3 z2

ð1 − γÞ 1
3 z13z23z2þ γ 1

3 z2

ð0;2;0;2Þ ð2;0;2;0Þ ð1 − γÞ2 1 − 2
3 z2z0z01z13z23

� �
þ2γð1 − γÞ 1 − 2

3 z2z0
� �

þ γ2 1 − 2
3 z2z0z02

� �

ð1 − γÞ2 1
3 z2z0z01z13z23þ2γð1 − γÞ 1

3 z2z0þ γ2 1
3 z2z0z02

ð1 − γÞ2 1
3 z2z0z01z13z23þ2γð1 − γÞ 1

3 z2z0þ γ2 1
3 z2z0z02

(continued) 
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Table 4. (continued) 
n 2N up n 2 N down CF formula

ð1;0;2;1Þ ð1;2;0;1Þ ð1 − γÞ 1 − 2
3 z1

� �
þ γ 1 − 2

3 z13z1
� �

ð1 − γÞ 1
3 z1þ γ 1

3 z13z1

ð1 − γÞ 1
3 z1þ γ 1

3 z13z1

ð1;0;1;2Þ ð2;1;0;1Þ ð1 − γÞ2 1 − 2
3 z0z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z13

� �
þ γ2 1 − 2

3 z0z02z23
� �

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z13
� �

þ γ2 1
3 z0z02z23

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z13
� �

þ γ2 1
3 z0z02z23

ð1;1;2;0Þ ð0;2;1;1Þ 1 − 2
3 z13z1

1
3 z13z1

1
3 z13z1

ð1;1;0;2Þ ð2;0;1;1Þ ð1 − γÞ2 1 − 2
3 z0z13z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z23

� �
þ γ2 1 − 2

3 z0z02
� �

ð1 − γÞ2 1
3 z0z13z01þ γð1 − γÞz0 1 − 1

3 z23
� �

þ γ2 1
3 z0z02

ð1 − γÞ2 1
3 z0z13z01þ γð1 − γÞz0 1 − 1

3 z23
� �

þ γ2 1
3 z0z02

ð1;2;1;0Þ ð0;1;2;1Þ 1 − 2
3 z23z2

1
3 z23z2

1
3 z23z2

ð1;2;0;1Þ ð1;0;2;1Þ ð1 − γÞ 1 − 2
3 z23z2

� �
þ γ 1 − 2

3 z2
� �

ð1 − γÞ 1
3 z23z2þ γ 1

3 z2

ð1 − γÞ 1
3 z23z2þ γ 1

3 z2

ð2;0;2;0Þ ð0;2;0;2Þ 1 − 2
3 z3z13z1

1
3 z3z13z1

1
3 z3z13z1

ð2;0;1;1Þ ð1;1;0;2Þ ð1 − γÞ 1 − 2
3 z13z3

� �
þ γ 1 − 2

3 z3
� �

ð1 − γÞ 1
3 z13z3þ γ 1

3 z3

ð1 − γÞ 1
3 z13z3þ γ 1

3 z3

ð2;0;0;2Þ ð2;0;0;2Þ ð1 − γÞ2 1 − 2
3 z3z0z13z01

� �
þ2γð1 − γÞ 1 − 2

3 z3z0
� �

þ γ2 1 − 2
3 z3z0z23z02

� �

ð1 − γÞ2 1
3 z3z0z13z01þ2γð1 − γÞ 1

3 z3z0þ γ2 1
3 z3z0z23z02

ð1 − γÞ2 1
3 z3z0z13z01þ2γð1 − γÞ 1

3 z3z0þ γ2 1
3 z3z0z23z02

ð2;1;1;0Þ ð0;1;1;2Þ 1 − 2
3 z3

1
3 z3

1
3 z3

ð2;1;0;1Þ ð1;0;1;2Þ ð1 − γÞ 1 − 2
3 z3

� �
þ γ 1 − 2

3 z23z3
� �

ð1 − γÞ 1
3 z3þ γ 1

3 z23z3

ð1 − γÞ 1
3 z3þ γ 1

3 z23z3

ð2;2;0;0Þ ð0;0;2;2Þ 1 − 2
3 z2z23z3

1
3 z2z23z3

1
3 z2z23z3

ð1;1;1;1Þ ð1 − γÞð1 − 2
3 z02Þþ γ 1

3 z01

ð1 − γÞ 1
3 z02þ γð1 − 2

3 z01Þ

ð1 − γÞ 1
3 z02þ γ 1

3 z01
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Appendix B: Phylogenetic networks as a set of polyno
mial equations: n¼ 6 taxa
B.1 CF equations for 4-cycle network N down for            
N ¼ 1212 (Diamond 6).

B.2 CF equations for 4-cycle network N right for                
N ¼ 1122 (Diamond 9).

Table 5. CF equations for 4-cycle network N down for N ¼ 1212 (Diamond 6)

n CF formula

ð0;1;1;2Þ 1 − 2
3 z3

1
3 z3

1
3 z3

ð0;2;1;1Þ 1 − 2
3 z13z1

1
3 z13z1

1
3 z13z1

ð0;2;0;2Þ 1 − 2
3 z3z13z1

1
3 z3z13z1

1
3 z3z13z1

ð1;0;1;2Þ ð1 − γÞ 1 − 2
3 z3

� �
þ γ 1 − 2

3 z23z3
� �

ð1 − γÞ 1
3 z3þ γ 1

3 z23z3

ð1 − γÞ 1
3 z3þ γ 1

3 z23z3

ð1;1;0;2Þ ð1 − γÞ 1 − 2
3 z13z3

� �
þ γ 1 − 2

3 z3
� �

ð1 − γÞ 1
3 z13z3þ γ 1

3 z3

ð1 − γÞ 1
3 z13z3þ γ 1

3 z3

ð1;2;1;0Þ ð1 − γÞ 1 − 2
3 z1

� �
þ γ 1 − 2

3 z23z13z1
� �

ð1 − γÞ 1
3 z1þ γ 1

3 z23z13z1

ð1 − γÞ 1
3 z1þ γ 1

3 z23z13z1

ð1;2;0;1Þ ð1 − γÞ 1 − 2
3 z1

� �
þ γ 1 − 2

3 z13z1
� �

ð1 − γÞ 1
3 z1þ γ 1

3 z13z1

ð1 − γÞ 1
3 z1þ γ 1

3 z13z1

ð1;1;1;1Þ ð1 − γÞ 1 − 2
3 z13

� �
þ γ 1

3 z23

ð1 − γÞ 1
3 z13þ γ 1 − 2

3 z23
� �

ð1 − γÞ 1
3 z13þ γ 1

3 z23

Table 6. CF equations for 4-cycle network N right for N ¼ 1122 (Diamond 9)

n 2N right n 2 N down CF formula

ð0;1;1;2Þ ð1;0;2;1Þ ð1 − γÞ 1 − 2
3 z23z2

� �
þ γ 1 − 2

3 z2
� �

ð1 − γÞ 1
3 z23z2þ γ 1

3 z2

ð1 − γÞ 1
3 z23z2þ γ 1

3 z2

ð0;2;1;1Þ ð1;0;1;2Þ ð1 − γÞ 1 − 2
3 z3

� �
þ γ 1 − 2

3 z23z3
� �

ð1 − γÞ 1
3 z3þ γ 1

3 z23z3

ð1 − γÞ 1
3 z3þ γ 1

3 z23z3

(continued) 
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B.3 CF equations for 4-cycle network N left                    
for N ¼ 2211 (Diamond 7).

Table 6. (continued) 
n 2N right n 2 N down CF formula

ð0;2;0;2Þ ð0;0;2;2Þ 1 − 2
3 z2z23z3

1
3 z2z23z3

1
3 z2z23z3

ð1;0;1;2Þ ð1;1;2;0Þ ð1 − γÞ 1 − 2
3 z13z23z2

� �
þ γ 1 − 2

3 z2
� �

ð1 − γÞ 1
3 z13z23z2þ γ 1

3 z2

ð1 − γÞ 1
3 z13z23z2þ γ 1

3 z2

ð1;1;0;2Þ ð0;1;2;1Þ 1 − 2
3 z23z2

1
3 z23z2

1
3 z23z2

ð1;2;1;0Þ ð1;1;0;2Þ ð1 − γÞ 1 − 2
3 z13z3

� �
þ γ 1 − 2

3 z3
� �

ð1 − γÞ 1
3 z13z3þ γ 1

3 z3

ð1 − γÞ 1
3 z13z3þ γ 1

3 z3

ð1;2;0;1Þ ð0;1;1;2Þ 1 − 2
3 z3

1
3 z3

1
3 z3

ð1;1;1;1Þ ð1 − γÞ 1
3 z01þ γð1 − 2

3 z13Þ

ð1 − γÞð1 − 2
3 z01Þþ γ 1

3 z13

ð1 − γÞ 1
3 z01þ γ 1

3 z13

Table 7. CF equations for 4-cycle network N left for N ¼ 2211 (Diamond 7)

n 2N left n 2 N down CF formula

ð0;1;1;2Þ ð1;2;0;1Þ ð1 − γÞ 1 − 2
3 z1

� �
þ γ 1 − 2

3 z13z1
� �

ð1 − γÞ 1
3 z1þ γ 1

3 z13z1

ð1 − γÞ 1
3 z1þ γ 1

3 z13z1

ð0;2;1;1Þ ð2;1;0;1Þ ð1 − γÞ2 1 − 2
3 z0z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z13

� �
þ γ2 1 − 2

3 z0z02z23
� �

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z13
� �

þ γ2 1
3 z0z02z23

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z13
� �

þ γ2 1
3 z0z02z23

ð0;2;0;2Þ ð2;2;0;0Þ ð1 − γÞ2 1 − 2
3 z1z0z01

� �
þ2γð1 − γÞ 1 − 2

3 z1z0
� �

þ γ2 1 − 2
3 z1z0z02z23z13

� �

ð1 − γÞ2 1
3 z1z0z01þ2γð1 − γÞ 1

3 z1z0þ γ2 1
3 z1z0z02z23z13

ð1 − γÞ2 1
3 z1z0z01þ2γð1 − γÞ 1

3 z1z0þ γ2 1
3 z1z0z02z23z13

ð1;0;1;2Þ ð0;2;1;1Þ 1 − 2
3 z13z1

1
3 z13z1

1
3 z13z1

ð1;1;0;2Þ ð1;2;1;0Þ ð1 − γÞ 1 − 2
3 z1

� �
þ γ 1 − 2

3 z23z13z1
� �

ð1 − γÞ 1
3 z1þ γ 1

3 z23z13z1

ð1 − γÞ 1
3 z1þ γ 1

3 z23z13z1

(continued) 
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B.4 CF equations for 4-cycle network N up                     
for N ¼ 2121 (Diamond 8).

Table 7. (continued) 
n 2N left n 2 N down CF formula

ð1;2;1;0Þ ð2;0;1;1Þ ð1 − γÞ2 1 − 2
3 z0z13z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z23

� �
þ γ2 1 − 2

3 z0z02
� �

ð1 − γÞ2 1
3 z0z13z01þ γð1 − γÞz0 1 − 1

3 z23
� �

þ γ2 1
3 z0z02

ð1 − γÞ2 1
3 z0z13z01þ γð1 − γÞz0 1 − 1

3 z23
� �

þ γ2 1
3 z0z02

ð1;2;0;1Þ ð2;1;1;0Þ ð1 − γÞ2 1 − 2
3 z0z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z23z13

� �
þ γ2 1 − 2

3 z0z02
� �

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z23z13
� �

þ γ2 1
3 z0z02

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z23z13
� �

þ γ2 1
3 z0z02

ð1;1;1;1Þ ð1 − γÞ 1
3 z23þ γð1 − 2

3 z02Þ

ð1 − γÞð1 − 2
3 z23Þþ γ 1

3 z02

ð1 − γÞ 1
3 z23þ γ 1

3 z02

Table 8. CF equations for 4-cycle network N up for N ¼ 2121 (Diamond 8)

n 2N up n 2 N down CF formula

ð0;1;1;2Þ ð2;1;1;0Þ ð1 − γÞ2 1 − 2
3 z0z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z23z13

� �
þ γ2 1 − 2

3 z0z02
� �

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z23z13
� �

þ γ2 1
3 z0z02

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z23z13
� �

þ γ2 1
3 z0z02

ð0;2;1;1Þ ð1;1;2;0Þ ð1 − γÞ 1 − 2
3 z13z23z2

� �
þ γ 1 − 2

3 z2
� �

ð1 − γÞ 1
3 z13z23z2þ γ 1

3 z2

ð1 − γÞ 1
3 z13z23z2þ γ 1

3 z2

ð0;2;0;2Þ ð2;0;2;0Þ ð1 − γÞ2 1 − 2
3 z2z0z01z13z23

� �
þ2γð1 − γÞ 1 − 2

3 z2z0
� �

þ γ2 1 − 2
3 z2z0z02

� �

ð1 − γÞ2 1
3 z2z0z01z13z23þ2γð1 − γÞ 1

3 z2z0þ γ2 1
3 z2z0z02

ð1 − γÞ2 1
3 z2z0z01z13z23þ2γð1 − γÞ 1

3 z2z0þ γ2 1
3 z2z0z02

ð1;0;1;2Þ ð2;1;0;1Þ ð1 − γÞ2 1 − 2
3 z0z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z13

� �
þ γ2 1 − 2

3 z0z02z23
� �

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z13
� �

þ γ2 1
3 z0z02z23

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z13
� �

þ γ2 1
3 z0z02z23

ð1;1;0;2Þ ð2;0;1;1Þ ð1 − γÞ2 1 − 2
3 z0z13z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z23

� �
þ γ2 1 − 2

3 z0z02
� �

ð1 − γÞ2 1
3 z0z13z01þ γð1 − γÞz0 1 − 1

3 z23
� �

þ γ2 1
3 z0z02

ð1 − γÞ2 1
3 z0z13z01þ γð1 − γÞz0 1 − 1

3 z23
� �

þ γ2 1
3 z0z02

ð1;2;1;0Þ ð0;1;2;1Þ 1 − 2
3 z23z2

1
3 z23z2

1
3 z23z2

ð1;2;0;1Þ ð1;0;2;1Þ ð1 − γÞ 1 − 2
3 z23z2

� �
þ γ 1 − 2

3 z2
� �

ð1 − γÞ 1
3 z23z2þ γ 1

3 z2

ð1 − γÞ 1
3 z23z2þ γ 1

3 z2

ð1;1;1;1Þ ð1 − γÞð1 − 2
3 z02Þþ γ 1

3 z01

ð1 − γÞ 1
3 z02þ γð1 − 2

3 z01Þ

ð1 − γÞ 1
3 z02þ γ 1

3 z01
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Appendix C: Phylogenetic networks as a set of  
polynomial equations: n¼ 7 taxa
C.1 CF equations for N down for N ¼ 1222 (Diamond 2).
Table 9. CF equations for N down for N ¼ 1222 (Diamond 2)

n CF formula

ð0;0;2;2Þ 1 − 2
3 z2z23z3

1
3 z2z23z3

1
3 z2z23z3

ð0;1;2;1Þ 1 − 2
3 z23z2

1
3 z23z2

1
3 z23z2

ð0;1;1;2Þ 1 − 2
3 z3

1
3 z3

1
3 z3

ð0;2;2;0Þ 1 − 2
3 z2z23z13z1

1
3 z2z23z13z1

1
3 z2z23z13z1

ð0;2;1;1Þ 1 − 2
3 z13z1

1
3 z13z1

1
3 z13z1

ð0;2;0;2Þ 1 − 2
3 z3z13z1

1
3 z3z13z1

1
3 z3z13z1

ð1;0;2;1Þ ð1 − γÞ 1 − 2
3 z23z2

� �
þ γ 1 − 2

3 z2
� �

ð1 − γÞ 1
3 z23z2þ γ 1

3 z2

ð1 − γÞ 1
3 z23z2þ γ 1

3 z2

ð1;0;1;2Þ ð1 − γÞ 1 − 2
3 z3

� �
þ γ 1 − 2

3 z23z3
� �

ð1 − γÞ 1
3 z3þ γ 1

3 z23z3

ð1 − γÞ 1
3 z3þ γ 1

3 z23z3

ð1;1;2;0Þ ð1 − γÞ 1 − 2
3 z13z23z2

� �
þ γ 1 − 2

3 z2
� �

ð1 − γÞ 1
3 z13z23z2þ γ 1

3 z2

ð1 − γÞ 1
3 z13z23z2þ γ 1

3 z2

ð1;1;0;2Þ ð1 − γÞ 1 − 2
3 z13z3

� �
þ γ 1 − 2

3 z3
� �

ð1 − γÞ 1
3 z13z3þ γ 1

3 z3

ð1 − γÞ 1
3 z13z3þ γ 1

3 z3

ð1;2;1;0Þ ð1 − γÞ 1 − 2
3 z1

� �
þ γ 1 − 2

3 z23z13z1
� �

ð1 − γÞ 1
3 z1þ γ 1

3 z23z13z1

ð1 − γÞ 1
3 z1þ γ 1

3 z23z13z1

ð1;2;0;1Þ ð1 − γÞ 1 − 2
3 z1

� �
þ γ 1 − 2

3 z13z1
� �

ð1 − γÞ 1
3 z1þ γ 1

3 z13z1

ð1 − γÞ 1
3 z1þ γ 1

3 z13z1

ð1;1;1;1Þ ð1 − γÞ 1 − 2
3 z13

� �
þ γ 1

3 z23

ð1 − γÞ 1
3 z13þ γ 1 − 2

3 z23
� �

ð1 − γÞ 1
3 z13þ γ 1

3 z23
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C.2 CF equations for N right for N ¼ 2122 (Diamond 5).

Table 10. CF equations for N right for N ¼ 2122 (Diamond 5)

n 2N right n 2 N down CF formula

ð0;0;2;2Þ ð2;0;2;0Þ ð1 − γÞ2 1 − 2
3 z2z0z01z13z23

� �
þ2γð1 − γÞ 1 − 2

3 z2z0
� �

þ γ2 1 − 2
3 z2z0z02

� �

ð1 − γÞ2 1
3 z2z0z01z13z23þ2γð1 − γÞ 1

3 z2z0þ γ2 1
3 z2z0z02

ð1 − γÞ2 1
3 z2z0z01z13z23þ2γð1 − γÞ 1

3 z2z0þ γ2 1
3 z2z0z02

ð0;1;2;1Þ ð2;0;1;1Þ ð1 − γÞ2 1 − 2
3 z0z13z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z23

� �
þ γ2 1 − 2

3 z0z02
� �

ð1 − γÞ2 1
3 z0z13z01þ γð1 − γÞz0 1 − 1

3 z23
� �

þ γ2 1
3 z0z02

ð1 − γÞ2 1
3 z0z13z01þ γð1 − γÞz0 1 − 1

3 z23
� �

þ γ2 1
3 z0z02

ð0;1;1;2Þ ð1;0;2;1Þ ð1 − γÞ 1 − 2
3 z23z2

� �
þ γ 1 − 2

3 z2
� �

ð1 − γÞ 1
3 z23z2þ γ 1

3 z2

ð1 − γÞ 1
3 z23z2þ γ 1

3 z2

ð0;2;2;0Þ ð2;0;0;2Þ ð1 − γÞ2 1 − 2
3 z3z0z13z01

� �
þ2γð1 − γÞ 1 − 2

3 z3z0
� �

þ γ2 1 − 2
3 z3z0z23z02

� �

ð1 − γÞ2 1
3 z3z0z13z01þ2γð1 − γÞ 1

3 z3z0þ γ2 1
3 z3z0z23z02

ð1 − γÞ2 1
3 z3z0z13z01þ2γð1 − γÞ 1

3 z3z0þ γ2 1
3 z3z0z23z02

ð0;2;1;1Þ ð1;0;1;2Þ ð1 − γÞ 1 − 2
3 z3

� �
þ γ 1 − 2

3 z23z3
� �

ð1 − γÞ 1
3 z3þ γ 1

3 z23z3

ð1 − γÞ 1
3 z3þ γ 1

3 z23z3

ð0;2;0;2Þ ð0;0;2;2Þ 1 − 2
3 z2z23z3

1
3 z2z23z3

1
3 z2z23z3

ð1;0;2;1Þ ð2;1;1;0Þ ð1 − γÞ2 1 − 2
3 z0z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z23z13

� �
þ γ2 1 − 2

3 z0z02
� �

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z23z13
� �

þ γ2 1
3 z0z02

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z23z13
� �

þ γ2 1
3 z0z02

ð1;0;1;2Þ ð1;1;2;0Þ ð1 − γÞ 1 − 2
3 z13z23z2

� �
þ γ 1 − 2

3 z2
� �

ð1 − γÞ 1
3 z13z23z2þ γ 1

3 z2

ð1 − γÞ 1
3 z13z23z2þ γ 1

3 z2

ð1;1;2;0Þ ð2;1;0;1Þ ð1 − γÞ2 1 − 2
3 z0z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z13

� �
þ γ2 1 − 2

3 z0z02z23
� �

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z13
� �

þ γ2 1
3 z0z02z23

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z13
� �

þ γ2 1
3 z0z02z23

ð1;1;0;2Þ ð0;1;2;1Þ 1 − 2
3 z23z2

1
3 z23z2

1
3 z23z2

ð1;2;1;0Þ ð1;1;0;2Þ ð1 − γÞ 1 − 2
3 z13z3

� �
þ γ 1 − 2

3 z3
� �

ð1 − γÞ 1
3 z13z3þ γ 1

3 z3

ð1 − γÞ 1
3 z13z3þ γ 1

3 z3

ð1;2;0;1Þ ð0;1;1;2Þ 1 − 2
3 z3

1
3 z3

1
3 z3

ð1;1;1;1Þ ð1 − γÞ 1
3 z01þ γð1 − 2

3 z13Þ

ð1 − γÞð1 − 2
3 z01Þþ γ 1

3 z13

ð1 − γÞ 1
3 z01þ γ 1

3 z13
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C.3 CF equations for N left for N ¼ 2212 (Diamond 3).

Table 11. CF equations for N left for N ¼ 2212 (Diamond 3)

n 2N left n 2 N down CF formula

ð0;0;2;2Þ ð0;2;0;2Þ 1 − 2
3 z3z13z1

1
3 z3z13z1

1
3 z3z13z1

ð0;1;2;1Þ ð1;1;0;2Þ ð1 − γÞ 1 − 2
3 z13z3

� �
þ γ 1 − 2

3 z3
� �

ð1 − γÞ 1
3 z13z3þ γ 1

3 z3

ð1 − γÞ 1
3 z13z3þ γ 1

3 z3

ð0;1;1;2Þ ð1;2;0;1Þ ð1 − γÞ 1 − 2
3 z1

� �
þ γ 1 − 2

3 z13z1
� �

ð1 − γÞ 1
3 z1þ γ 1

3 z13z1

ð1 − γÞ 1
3 z1þ γ 1

3 z13z1

ð0;2;2;0Þ ð2;0;0;2Þ ð1 − γÞ2 1 − 2
3 z3z0z13z01

� �
þ2γð1 − γÞ 1 − 2

3 z3z0
� �

þ γ2 1 − 2
3 z3z0z23z02

� �

ð1 − γÞ2 1
3 z3z0z13z01þ2γð1 − γÞ 1

3 z3z0þ γ2 1
3 z3z0z23z02

ð1 − γÞ2 1
3 z3z0z13z01þ2γð1 − γÞ 1

3 z3z0þ γ2 1
3 z3z0z23z02

ð0;2;1;1Þ ð2;1;0;1Þ ð1 − γÞ2 1 − 2
3 z0z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z13

� �
þ γ2 1 − 2

3 z0z02z23
� �

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z13
� �

þ γ2 1
3 z0z02z23

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z13
� �

þ γ2 1
3 z0z02z23

ð0;2;0;2Þ ð2;2;0;0Þ ð1 − γÞ2 1 − 2
3 z1z0z01

� �
þ2γð1 − γÞ 1 − 2

3 z1z0
� �

þ γ2 1 − 2
3 z1z0z02z23z13

� �

ð1 − γÞ2 1
3 z1z0z01þ2γð1 − γÞ 1

3 z1z0þ γ2 1
3 z1z0z02z23z13

ð1 − γÞ2 1
3 z1z0z01þ2γð1 − γÞ 1

3 z1z0þ γ2 1
3 z1z0z02z23z13

ð1;0;2;1Þ ð0;1;1;2Þ 1 − 2
3 z3

1
3 z3

1
3 z3

ð1;0;1;2Þ ð0;2;1;1Þ 1 − 2
3 z13z1

1
3 z13z1

1
3 z13z1

ð1;1;2;0Þ ð1;0;1;2Þ ð1 − γÞ 1 − 2
3 z3

� �
þ γ 1 − 2

3 z23z3
� �

ð1 − γÞ 1
3 z3þ γ 1

3 z23z3

ð1 − γÞ 1
3 z3þ γ 1

3 z23z3

ð1;1;0;2Þ ð1;2;1;0Þ ð1 − γÞ 1 − 2
3 z1

� �
þ γ 1 − 2

3 z23z13z1
� �

ð1 − γÞ 1
3 z1þ γ 1

3 z23z13z1

ð1 − γÞ 1
3 z1þ γ 1

3 z23z13z1

ð1;2;1;0Þ ð2;0;1;1Þ ð1 − γÞ2 1 − 2
3 z0z13z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z23

� �
þ γ2 1 − 2

3 z0z02
� �

ð1 − γÞ2 1
3 z0z13z01þ γð1 − γÞz0 1 − 1

3 z23
� �

þ γ2 1
3 z0z02

ð1 − γÞ2 1
3 z0z13z01þ γð1 − γÞz0 1 − 1

3 z23
� �

þ γ2 1
3 z0z02

ð1;2;0;1Þ ð2;1;1;0Þ ð1 − γÞ2 1 − 2
3 z0z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z23z13

� �
þ γ2 1 − 2

3 z0z02
� �

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z23z13
� �

þ γ2 1
3 z0z02

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z23z13
� �

þ γ2 1
3 z0z02

ð1;1;1;1Þ ð1 − γÞ 1
3 z23þ γð1 − 2

3 z02Þ

ð1 − γÞð1 − 2
3 z23Þþ γ 1

3 z02

ð1 − γÞ 1
3 z23þ γ 1

3 z02
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C.4 CF equations for N up for N ¼ 2221 (Diamond 4).

Table 12. CF equations for N up for N ¼ 2221 (Diamond 4)

n 2N up n 2 N down CF formula

ð0;0;2;2Þ ð2;2;0;0Þ ð1 − γÞ2 1 − 2
3 z1z0z01

� �
þ2γð1 − γÞ 1 − 2

3 z1z0
� �

þ γ2 1 − 2
3 z1z0z02z23z13

� �

ð1 − γÞ2 1
3 z1z0z01þ2γð1 − γÞ 1

3 z1z0þ γ2 1
3 z1z0z02z23z13

ð1 − γÞ2 1
3 z1z0z01þ2γð1 − γÞ 1

3 z1z0þ γ2 1
3 z1z0z02z23z13

ð0;1;2;1Þ ð1;2;1;0Þ ð1 − γÞ 1 − 2
3 z1

� �
þ γ 1 − 2

3 z23z13z1
� �

ð1 − γÞ 1
3 z1þ γ 1

3 z23z13z1

ð1 − γÞ 1
3 z1þ γ 1

3 z23z13z1

ð0;1;1;2Þ ð2;1;1;0Þ ð1 − γÞ2 1 − 2
3 z0z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z23z13

� �
þ γ2 1 − 2

3 z0z02
� �

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z23z13
� �

þ γ2 1
3 z0z02

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z23z13
� �

þ γ2 1
3 z0z02

ð0;2;2;0Þ ð0;2;2;0Þ 1 − 2
3 z2z23z13z1

1
3 z2z23z13z1

1
3 z2z23z13z1

ð0;2;1;1Þ ð1;1;2;0Þ ð1 − γÞ 1 − 2
3 z13z23z2

� �
þ γ 1 − 2

3 z2
� �

ð1 − γÞ 1
3 z13z23z2þ γ 1

3 z2

ð1 − γÞ 1
3 z13z23z2þ γ 1

3 z2

ð0;2;0;2Þ ð2;0;2;0Þ ð1 − γÞ2 1 − 2
3 z2z0z01z13z23

� �
þ2γð1 − γÞ 1 − 2

3 z2z0
� �

þ γ2 1 − 2
3 z2z0z02

� �

ð1 − γÞ2 1
3 z2z0z01z13z23þ2γð1 − γÞ 1

3 z2z0þ γ2 1
3 z2z0z02

ð1 − γÞ2 1
3 z2z0z01z13z23þ2γð1 − γÞ 1

3 z2z0þ γ2 1
3 z2z0z02

ð1;0;2;1Þ ð1;2;0;1Þ ð1 − γÞ 1 − 2
3 z1

� �
þ γ 1 − 2

3 z13z1
� �

ð1 − γÞ 1
3 z1þ γ 1

3 z13z1

ð1 − γÞ 1
3 z1þ γ 1

3 z13z1

ð1;0;1;2Þ ð2;1;0;1Þ ð1 − γÞ2 1 − 2
3 z0z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z13

� �
þ γ2 1 − 2

3 z0z02z23
� �

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z13
� �

þ γ2 1
3 z0z02z23

ð1 − γÞ2 1
3 z0z01þ γð1 − γÞz0 1 − 1

3 z13
� �

þ γ2 1
3 z0z02z23

ð1;1;2;0Þ ð0;2;1;1Þ 1 − 2
3 z13z1

1
3 z13z1

1
3 z13z1

ð1;1;0;2Þ ð2;0;1;1Þ ð1 − γÞ2 1 − 2
3 z0z13z01

� �
þ2γð1 − γÞ 1 − z0þ

1
3 z0z23

� �
þ γ2 1 − 2

3 z0z02
� �

ð1 − γÞ2 1
3 z0z13z01þ γð1 − γÞz0 1 − 1

3 z23
� �

þ γ2 1
3 z0z02

ð1 − γÞ2 1
3 z0z13z01þ γð1 − γÞz0 1 − 1

3 z23
� �

þ γ2 1
3 z0z02

ð1;2;1;0Þ ð0;1;2;1Þ 1 − 2
3 z23z2

1
3 z23z2

1
3 z23z2

ð1;2;0;1Þ ð1;0;2;1Þ ð1 − γÞ 1 − 2
3 z23z2

� �
þ γ 1 − 2

3 z2
� �

ð1 − γÞ 1
3 z23z2þ γ 1

3 z2

ð1 − γÞ 1
3 z23z2þ γ 1

3 z2

ð1;1;1;1Þ ð1 − γÞð1 − 2
3 z02Þþ γ 1

3 z01

ð1 − γÞ 1
3 z02þ γð1 − 2

3 z01Þ

ð1 − γÞ 1
3 z02þ γ 1

3 z01
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Appendix D: Theorems and proofs for generic 
identifiability of 4-node cycles in semi-directed level-1 
phylogenetic networks

Theorem 4. Let N down be a semi-directed level-1 6-taxon 
phylogenetic network with one hybridization event 
producing a hybridization cycle with 4 nodes. Without loss 
of generality, let the taxa be partitioned among clades 
as n0 ¼ 1;n1 ¼ 2;n2 ¼ 1;n3 ¼ 2 (Fig. 3). Let the hybrid 
node be ancestral to the clade n0. Let N left be a semi- 
directed level-1 6-taxon phylogenetic network with one 
hybridization event producing a hybridization cycle with 4 
nodes such that the unrooted version of N left agrees with 
the unrooted version of N down. Let the hybrid node in the 
hybridization cycle in N left be ancestral to the clade n1. 
Then, N down and N left are generically identifiable 
if t1<1; t13>0; t3<1, and γ 2 ð0;1Þ.   

Proof.
The structure of the proof is the same as for Theorem 3, but 

we repeat it for completeness. Let CFðN down;z; γÞ be the sys
tem of CF polynomial equations defined by N down and let 
CFðN left;z0; γ0Þ be the system of CF polynomial equations 
defined by N left . Both systems of equations can be found in the 
Appendix (Tables 1–14).

Let P ¼ fpðz; γÞ− qðz0; γ0Þ : pðz; γÞ 2 CFðN down;z; γÞ; qðz0;
γ0Þ 2 CFðN left;z0; γ0Þg be the set of polynomial equations 
resulting from matching CFðN down;z; γÞ to CFðN left;z0; γ0Þ.

Using Macaulay2 (Grayson and Stillman undated), we com
pute the Gr€obner basis of P on the ðz; γÞ variables by any elimi
nation order. All Macaulay2 scripts are available at https:// 
github.com/gtiley/diamond-identifiability.

Let C½ðz; γ;z0; γ0Þ : z 2 ½0;1Þn − 3
; γ 2 ½0;1�h;z0 2 ½0;1Þn − 3

;
γ0 2 ½0;1�h� be the set of all polynomials on the ðz; γ;z0; γ0Þ
variables.

The resulting ideal is given by: 

fðz1Þðz13 − 1Þðz3ÞðγzÞðγz − 1Þpiðz; γÞ : pi
2 C½ðz; γ; z0; γ0Þ�; degðpiÞ ¼ 7; i ¼ 1; . . . ; 8g

which represents the conditions that the ðz; γÞ variables need to 
satisfy for the polynomial set P to vanish to zero.

As the polynomials fpiðz; γÞg8
i¼1 have the Lebesgue measure 

zero, N down and N left are not generically identifiable in the subset 

of parameter space corresponding to fz1 ¼ 0g [ fz13 ¼ 1g
[fz3 ¼ 0g [ fγ ¼ 0g [ fγ ¼ 1g.                                           �.

Theorem 5. Let N down be a semi-directed level-1 6-taxon 
phylogenetic network with one hybridization event 
producing a hybridization cycle with 4 nodes. Without loss 
of generality, let the taxa be partitioned among clades 
as n0 ¼ 1;n1 ¼ 2;n2 ¼ 1;n3 ¼ 2 (Fig. 3). Let the hybrid 
node be ancestral to the clade n0. Let N up be a semi- 
directed level-1 6-taxon phylogenetic network with one 
hybridization event producing a hybridization cycle with 4 
nodes such that the unrooted version of N up agrees with 
the unrooted version of N down. Let the hybrid node in the 
hybridization cycle in N up be ancestral to the clade n3. 
Then, N down and N up are generically identifiable 
if t1<1; t13>0; t3<1, and γ 2 ð0;1Þ.   

Proof.
The structure of the proof is the same as for Theorem 4, but 

we repeat it for completeness. Let CFðN down;z; γÞ be the sys
tem of CF polynomial equations defined by N down and let 
CFðN up;z0; γ0Þ be the system of CF polynomial equations 
defined by N up. Both systems of equations can be found in the 
Appendix.

Let P ¼ fpðz; γÞ− qðz0; γ0Þ : pðz; γÞ 2 CFðN down;z; γÞ;qðz0;
γ0Þ 2 CFðN up;z0; γ0Þg be the set of polynomial equations result
ing from matching CFðN down;z; γÞ to CFðN up;z0; γ0Þ.

Using Macaulay2 (Grayson and Stillman undated), we com
pute the Gr€obner basis of P on the ðz; γÞ variables by any elimi
nation order. All Macaulay2 scripts are available at https:// 
github.com/gtiley/diamond-identifiability.

Let C½ðz; γ;z0; γ0Þ : z 2 ½0;1Þn − 3
; γ 2 ½0;1�h;z0 2 ½0;1Þn − 3

;
γ0 2 ½0;1�h� be the set of all polynomials on the ðz; γ;z0; γ0Þ
variables.

The resulting ideal is given by: 

fðz1Þðz13 − 1Þðz3ÞðγzÞðγz − 1Þpiðz; γÞ : pi
2 C½ðz; γ; z0; γ0Þ�; degðpiÞ ¼ 10; i ¼ 1; . . . ; 12g

which represents the conditions that the ðz; γÞ variables need to 
satisfy for the polynomial set P to vanish to zero.

As the polynomials fpiðz; γÞg12
i¼1 have the Lebesgue measure 

zero, N down and N up are not generically identifiable in the subset 
of parameter space corresponding to fz1 ¼ 0g [ fz13 ¼ 1g
[fz3 ¼ 0g [ fγ ¼ 0g [ fγ ¼ 1g.                                           �.

28 � Tiley et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/evolinnean/article/4/1/kzaf019/8257700 by U
niversity of W

isconsin-M
adison Libraries user on 18 January 2026

https://github.com/gtiley/diamond-identifiability
https://github.com/gtiley/diamond-identifiability
https://github.com/gtiley/diamond-identifiability
https://github.com/gtiley/diamond-identifiability


Appendix E: Subset of CF equations used in 
Macaulay2
We present below the table with the major CF for all 4-taxon 
subsets, except (1,1,1,1) for which we present all equations. All 

equations are multiplied by 3 for conciseness. All Macaulay2 
scripts can be found in https://github.com/gtiley/diamond- 
identifiability/tree/main/scripts/macaulay2.

Table 13. Subset of CF equations used in Macaulay2 (Part 1)

ðn0;n1;n2;n3Þ N down N right

ð0;0;2;2Þ 3 − 2z2z23z3 ð1 − γuÞ
2
ð3 − 2u2u0u01u13u23Þ

þ2γuð1 − γuÞð3 − 2u2u0Þ

þ γ2
uð3 − 2u2u0u02Þ

ð0;1;2;1Þ 3 − 2z23z2 ð1 − γuÞ
2
ð3 − 2u0u13u01Þ

þ2γuð1 − γuÞð3 − 3u0þu0u23Þ

þ γ2
uð3 − 2u0u02Þ

ð0;1;1;2Þ 3 − 2z3 ð1 − γuÞð3 − 2u23u2Þþ γuð3 − 2u2Þ

ð0;2;2;0Þ 3 − 2z2z23z13z1 ð1 − γuÞ
2
ð3 − 2u3u0u13u01Þ

þ2γuð1 − γuÞð3 − 2u3u0Þ

þ γ2
uð3 − 2u3u0u23u02Þ

ð0;2;1;1Þ 3 − 2z13z1 ð1 − γuÞð3 − 2z3Þþ γuð3 − 2z23z3Þ

ð0;2;0;2Þ 3 − 2z3z13z1 3 − 2z2z23z3

ð1;0;2;1Þ ð1 − γÞð3 − 2z23z2Þþ γð3 − 2z2Þ ð1 − γuÞ
2
ð3 − 2u0u01Þ

þ2γuð1 − γuÞð3 − 3u0þu0u23u13Þ

þ γ2
uð3 − 2u0u02Þ

ð1;0;1;2Þ ð1 − γÞð3 − 2z3Þþ γð3 − 2z23z3Þ ð1 − γuÞð3 − 2u13u23u2Þþ γuð3 − 2u2Þ

ð1;1;2;0Þ ð1 − γÞð3 − 2z13z23z2Þþ γð3 − 2z2Þ ð1 − γuÞ
2
ð3 − 2u0u01Þ

þ2γuð1 − γuÞð3 − 3u0þu0u13Þ

þ γ2
uð3 − 2u0u02u23Þ

ð1;1;0;2Þ ð1 − γÞð3 − 2z13z3Þþ γð3 − 2z3Þ 3 − 2u23u2

ð1;2;1;0Þ ð1 − γÞð3 − 2z1Þþ γð3 − 2z23z13z1Þ ð1 − γuÞð3 − 2u13u3Þþ γuð3 − 2u3Þ

ð1;2;0;1Þ ð1 − γÞð3 − 2z1Þþ γð3 − 2z13z1Þ 3 − 2u3

ð2;0;2;0Þ ð1 − γÞ2ð3 − 2z2z0z01z13z23Þ ð1 − γuÞ
2
ð3 − 2u1u0u01Þ

þ2γð1 − γÞð3 − 2z2z0Þ þ2γuð1 − γuÞð3 − 2u1u0Þ

þ γ2ð3 − 2z2z0z02Þ þ γ2
uð3 − 2u1u0u02u23u13Þ

ð2;0;1;1Þ ð1 − γÞ2ð3 − 2z0z13z01Þ ð1 − γuÞð3 − 2u1Þþ γuð3 − 2u23u13u1Þ

þ2γð1 − γÞð3 − 3z0þ z0z23Þ

þ γ2ð3 − 2z0z02Þ

ð2;0;0;2Þ ð1 − γÞ2ð3 − 2z3z0z13z01Þ 3 − 2u2u23u13u1

þ2γð1 − γÞð3 − 2z3z0Þ

þ γ2ð3 − 2z3z0z23z02Þ

ð2;1;1;0Þ ð1 − γÞ2ð3 − 2z0z01Þ ð1 − γuÞð3 − 2u1Þþ γuð3 − 2u13u1Þ

þ2γð1 − γÞð3 − 3z0þ z0z23z13Þ

þ γ2ð3 − 2z0z02Þ
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Table 13. (continued) 
ðn0;n1;n2;n3Þ N down N right

ð2;1;0;1Þ ð1 − γÞ2ð3 − 2z0z01Þ 3 − 2u13u1

þ2γð1 − γÞð3 − 3z0þ z0z13Þ

þ γ2ð3 − 2z0z02z23Þ

ð2;2;0;0Þ ð1 − γÞ2ð3 − 2z1z0z01Þ 3 − 2u3u13u1

þ2γð1 − γÞð3 − 2z1z0Þ

þ γ2ð3 − 2z1z0z02z23z13Þ

ð1;1;1;1Þ ð1 − γÞð3 − 2z13Þþ γz23 ð1 − γuÞu01þ γuð3 − 2u13Þ

ð1 − γÞz13þ γð3 − 2z23Þ ð1 − γuÞð3 − 2u01Þþ γuu13

ð1 − γÞz13þ γz23 ð1 − γuÞu01þ γuu13

Table 14. Subset of CF equations used in Macaulay2 (Part 2)

ðn0;n1;n2;n3Þ N left N up

ð0;0;2;2Þ 3 − 2v3v13v1 ð1 − γwÞ
2
ð3 − 2w1w0w01Þ

þ2γwð1 − γwÞð3 − 2w1w0Þ

þ γ2
wð3 − 2w1w0w02w23w13Þ

ð0;1;2;1Þ ð1 − γvÞð3 − 2v13v3Þþ γvð3 − 2v3Þ ð1 − γwÞð3 − 2w1Þþ γwð3 − 2w23w13w1Þ

ð0;1;1;2Þ ð1 − γvÞð3 − 2v1Þþ γvð3 − 2v13v1Þ ð1 − γwÞ
2
ð3 − 2w0w01Þ

þ2γwð1 − γwÞð3 − 3w0þw0w23w13Þ

þ γ2
wð3 − 2w0w02Þ

ð0;2;2;0Þ ð1 − γvÞ
2
ð3 − 2v3v0v13v01Þ 3 − 2w2w23w13w1

þ2γvð1 − γvÞð3 − 2v3v0Þ

þ γ2
vð3 − 2v3v0v23v02Þ

ð0;2;1;1Þ ð1 − γvÞ
2
ð3 − 2v0v01Þ ð1 − γwÞð3 − 2w13w23w2Þþ γwð3 − 2w2Þ

þ2γvð1 − γvÞð3 − 3v0þ v0v13Þ

þ γ2
vð3 − 2v0v02v23Þ

ð0;2;0;2Þ ð1 − γvÞ
2
ð3 − 2v1v0v01Þ ð1 − γwÞ

2
ð3 − 2w2w0w01w13w23Þ

þ2γvð1 − γvÞð3 − 2v1v0Þ þ2γwð1 − γwÞð3 − 2w2w0Þ

þ γ2
vð3 − 2v1v0v02v23v13Þ þ γ2

wð3 − 2w2w0w02Þ

ð1;0;2;1Þ 3 − 2v3 ð1 − γwÞð3 − 2w1Þþ γwð3 − 2w13w1Þ

ð1;0;1;2Þ 3 − 2v13v1 ð1 − γwÞ
2
ð3 − 2w0w01Þ

þ2γwð1 − γwÞð3 − 3w0þw0w13Þ

þ γ2
wð3 − 2w0w02w23Þ

ð1;1;2;0Þ ð1 − γvÞð3 − 2v3Þþ γvð3 − 2v23v3Þ 3 − 2w13w1

ð1;1;0;2Þ ð1 − γvÞð3 − 2v1Þþ γvð3 − 2v23v13v1Þ ð1 − γwÞ
2
ð3 − 2w0w13w01Þ

þ2γwð1 − γwÞð3 − 3w0þw0w23Þ

þ γ2
wð3 − 2w0w02Þ

ð1;2;1;0Þ ð1 − γvÞ
2
ð3 − 2v0v13v01Þ 3 − 2w23w2

þ2γvð1 − γvÞð3 − 3v0þ v0v23Þ

þ γ2
vð3 − 2v0v02Þ
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Table 14. (continued) 
ðn0;n1;n2;n3Þ N left N up

ð1;2;0;1Þ ð1 − γvÞ
2
ð3 − 2v0v01Þ ð1 − γwÞð3 − 2w23w2Þþ γwð3 − 2w2Þ

þ2γvð1 − γvÞð3 − 3v0þ v0v23v13Þ

þ γ2
vð3 − 2v0v02Þ

ð2;0;2;0Þ 3 − 2v2v23v3 3 − 2w3w13w1

ð2;0;1;1Þ 3 − 2v23v2 ð1 − γwÞð3 − 2w13w3Þþ γwð3 − 2w3Þ

ð2;0;0;2Þ 3 − 2v2v23v13v1 ð1 − γwÞ
2
ð3 − 2w3w0w13w01Þ

þ2γwð1 − γwÞð3 − 2w3w0Þ

þ γ2
wð3 − 2w3w0w23w02Þ

ð2;1;1;0Þ ð1 − γvÞð3 − 2v23v2Þþ γvð3 − 2v2Þ 3 − 2w3

ð2;1;0;1Þ ð1 − γvÞð3 − 2v13v23v2Þþ γvð3 − 2v2Þ ð1 − γwÞð3 − 2w3Þþ γwð3 − 2w23w3Þ

ð2;2;0;0Þ ð1 − γvÞ
2
ð3 − 2v2v0v01v13v23Þ 3 − 2w2w23w3

þ2γvð1 − γvÞð3 − 2v2v0Þ

þ γ2
vð3 − 2v2v0v02Þ

ð1;1;1;1Þ ð1 − γvÞv23þ γvð3 − 2v02Þ ð1 − γwÞð3 − 2w02Þþ γww01

ð1 − γvÞð3 − 2v23Þþ γvv02 ð1 − γwÞw02þ γwð3 − 2w01Þ

ð1 − γvÞv23þ γvv02 ð1 − γwÞw02þ γww01
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