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ABSTRACT

Phylogenetic networks encode a broader picture of evolution by the inclusion of reticulate processes such as hybridization, introgression, or
horizontal gene transfer. Each hybridization event is represented by a ‘hybridization cycle’. Here, we investigate the statistical identifiability
of the position of the hybrid node in a 4-node hybridization cycle in a semi-directed level-1 phylogenetic network. That is, we investigate if
our model is able to detect the correct placement of the hybrid node in the hybridization cycle using quartet concordance factors as data. In
the current study, we prove that the correct placement of the hybrid node in 4-node hybridization cycles, included in level-1 phylogenetic
networks, is generically identifiable if the assumptions are non-restrictive such as t € (0,00) for all branch (or edge) lengths and y € (0,1)
for the inheritance probability of the hybrid edges. However, simulations show that accurate detection of these cycles can be complicated by
inadequate sampling, small sample size, or gene tree estimation error. We identify practical advice for evolutionary biologists on best sam-
pling strategies to improve the detection of this type of hybridization cycle.
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INTRODUCTION

The increasing evidence of reticulate processes in the Tree of
Life has inspired the development of novel mathematical and
statistical methods to infer phylogenetic networks from genomic
data (Huson and Bryant 2006, Degnan 2018, Jiao et al. 2021,
Kong et al. 2022). A phylogenetic network is an extension of the
tree graph by the inclusion of hybrid nodes that allow for two
incoming parental edges which represent genetic material being
transferred from two different sources. Methods to infer phyloge-
netic networks include classes from combinatorial (Griinewald
et al. 2007, Grunewald et al. 2013, Yang et al. 2013, Oldman et al.
2016, Tan et al. 2019), distance-based (Willems et al. 2014,
Markin et al. 2019, Xu and Ané 2022), or model-based under
Markov models that use genetic sequences or markers as input
(Gross et al. 2021, Rabier et al. 2021, Lutteropp et al. 2022) or
under the multispecies coalescent model (Rannala and Yang
2003) that uses gene trees as input (Yu et al. 2014, Solis-Lemus
and Ané 2016, Zhang et al. 2018).

Model-based approaches provide accurate representations of
the reticulate evolutionary process among species represented by

the estimated phylogenetic network. However, the accurate esti-
mation of this parameter requires proof of identifiability. Indeed,
multiple studies have tackled the question of whether phyloge-
netic networks are identifiable under different models (Pardi and
Scornavacca 2013, Solis-Lemus and Ané 2016, Gross and Long
2018, Long and Kubatko 2018, Allman et al. 2019, Banos 2019,
Gross et al. 2021, Solis-Lemus et al. 2020, Xu and Ané 2022,
Allman et al. 2024), and here, we extend the identifiability proofs
in Solis-Lemus and Ané (2016) and Solis-Lemus et al. (2020) to
further validate the inference of level-1 phylogenetic networks
under a pseudolikelihood model built on the multispecies net-
work coalescent model (MSNC). Since identifiability can be
unattainable in many cases, in practice, one aims to prove generic
identifiability which means that the network parameter is almost
surely identifiable.

Let \V be a semi-directed level-1 phylogenetic network with
h hybridization events and n taxa. We denote this the network
parameter of the model. Let G = {Gy,Ga,...,G,} be g esti-
mated gene trees as input for the model. We can define a like-

lihood as the product of the probability under the
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multispecies network coalescent model (Yu et al. 2012) of
each gene tree given the network parameter (with its numeri-
cal parameters as branch lengths and inheritance probabil-
ities). For the case of a species tree as the model parameter, it
has been proven that the distribution of gene trees identifies
(or generically identifies) the tree topology, branch lengths
and even root position under the multispecies coalescent
model in trees (Chang 1996, Allman and Rhodes 2006,
Allman et al. 2011, Rhodes and Sullivant 2012). The same is
not known for the full likelihood model on species networks,
but generic identifiability proofs have been derived for the
case of a quartet-based pseudolikelihood model (Solis-Lemus
and Ané 2016, Banos 2019, Solis-Lemus et al. 2020) that
assumes probabilities of each observed quartet gene tree under
its corresponding species quarnet are independent. Note that
pseudolikelihood approaches have been used to infer species
tree as well when full likelihood calculations are computation-
ally infeasible (Liu et al. 2010). The identifiability results in
networks show that the presence of hybridization events in n-
taxon level-1 semi-directed phylogenetic networks is generi-
cally identifiable from the observed distribution of gene trees
under a pseudolikelihood model as described in the next
theorem.

Theorem 1 [Generic identifiability of a hybridization event
(Solis-Lemus and Ané 2016, Solis-Lemus et al. 2020)].
Let N be a semi-directed level-1 n-taxon phylogenetic
network with one hybridization event. Let k be the number
of nodes in the cycle defined by the hybridization event.
Then, the hybridization event is generically identifiable if
(i) k>3, (ii) t € (0,00) for all branch lengths, and
(iii) y € (0,1) for the inheritance probability
corresponding to the hybridization event.

However, it remained unproven whether the position of the
hybrid node within the hybridization cycle was identifiable.
Here, we begin to explore the question of network identifiabil-
ity by focusing on level-1 phylogenetic networks with hybrid-
ization cycles of 4 nodes (4-node cycles). These types of

cycles [denoted diamonds (Pickrell and Pritchard 2012)] are
relevant because in practice they seem to lead to flat pseudoli-
kelihood scores (Solis-Lemus and Ané 2016). That is, 4-node
cycles that only differ on the placement of the hybrid node in
the cycle can have similar pseudolikelihood scores. Here, we
show that a semi-directed network (correct direction of hybrid
edges) is generically identifiable from input unrooted gene
trees, not only the unrooted network (placement of the cycle).
This implies that the direction of the gene flow event (hybrid
edge) can be distinguished with the pseudolikelihood model,
providing an accurate evolutionary interpretation of the origin
and target of hybridizations. Our proof follows the same alge-
braic geometry techniques as in Solis-Lemus and Ané (2016)
and Solis-Lemus et al. (2020) such as the definition of the set
of polynomial equations under the coalescent model and the
search for unique (or finitely many) solutions.

The organization of the manuscript is as follows. In second
Section, we establish the models more precisely and the
approach used to prove generic identifiability. In third
Section, we define the theorems and proofs for the generic
identifiability of the placement of the hybrid node in the 4-
node hybridization cycle. In fourth and fifth Sections, we illus-
trate the mathematical findings (and the practical considera-
tions when dealing with limited data) with a simulation study.
Finally, we present some discussion in Section 6.

MATERIALS AND METHODS
Semi-directed level-1 explicit phylogenetic networks

Our main parameter of interest is the topology A/ of a phylo-
genetic network (Definition 1) along with the numerical
parameters of the vector of branch lengths (¢) and a vector of
inheritance probabilities (7). The inheritance probabilities
describe the proportion of genes inherited by a hybrid node
from one of its hybrid parents (see Fig. 1).

Definition 1. A rooted explicit phylogenetic network (Huson
etal. 2010) N on taxon set X is a connected directed acyclic
graph with vertices V.= {r} UV, UV U Vr,

A —— A
E — A
— B —— B
(] L
p v = 0.42 c E o
D y D
1—7=0.58
— E — E D &
Internal Hybrid v =0.42
no.de': L F node o
speciation T F

Figure 1. Left: rooted phylogenetic tree of six taxa. Internal nodes (grey circles) represent speciation events and are usually omitted on
phylogenetic trees. Centre: rooted phylogenetic network on six taxa with & = 1 hybridization event represented by the green edge. The
hybrid node (in green) represents a hybridization event. The hybrid node has two parent edges: a minor hybrid edge in green labelled

¥ = 0.42 and a major hybrid edge in black labelled 1 —y = 0.58. The hybridization event can represent different biological processes:
hybridization, horizontal gene transfer, or introgression. Right: a semi-directed network for the same biological scenario as in the centre.
Although the root location is unknown, its position is constrained by the direction of the hybrid edges. For example, the taxon D cannot be

an outgroup.
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edges E = Eyy U Er, and a bijective leaf-labelling

function f : Vi, — X with the following characteristics: (i) the
root r has indegree 0 and outdegree 2, (ii) any leaf v € V;,
has indegree 1 and outdegree 0, (iii) any tree node v € Vr
has indegree 1 and outdegree 2, (iv) any hybrid node v € Vi
has indegree 2 and outdegree 1, (v) a tree edge e € Er is an
edge whose child is a tree node, (vi) a hybrid edge e € Ey is
an edge whose child is a hybrid node, (vii) a hybrid

edge e € Ey has an inheritance probability

parameter 0 <y, < 1 which represents the proportion of the
genetic material that the child hybrid node received from this
parent edge. For a tree edge e, y, = 1.

In a rooted explicit network, every internal node represents a
biological process: speciation for tree nodes and hybridization for
hybrid nodes. However, other types of phylogenetic networks,
such as unrooted networks (Huson et al. 2010) and semi-directed
networks (Solis-Lemus and Ané 2016, Gross et al. 2021) are also
useful representations of evolutionary relationships. Unrooted phy-
logenetic networks are typically obtained by suppressing the root
node and the direction of all edges. In semi-directed networks, on
the other hand, the root node is suppressed and we ignore the
direction of all tree edges, but we maintain the direction of hybrid
edges, thus keeping information on which nodes are hybrids. The
placement of the root is then constrained, because the direction of
the two hybrid edges to a given hybrid node informs the direction
of time at this node: the third edge must be a tree edge directed
away from the hybrid node and leading to all the hybrid’s
descendants. Therefore, the root cannot be placed on any
descendant of any hybrid node, although it might be placed on
some hybrid edges. See Figure 1 for an example of a rooted
explicit phylogenetic network and its semi-directed version.

Each hybridization event creates a cycle which represents a
subgraph with at least two nodes and no cut-edges. A cut-edge
is any edge in the network whose removal disconnects the net-
work. Note that given that phylogenetic networks are acyclic,
the term cycle refers to sequence of edges that would form a
cycle if they were all undirected. We also note that for every
hybridization event, there are two parent hybrid edges con-
nected to the hybrid node: (i) a major hybrid edge with inher-
itance probability y > 0.5, and (ii) a minor hybrid edge with
inheritance probability y < 0.5. Both edges are parametrized
with the same y.

Here, we focus on the case of semi-directed networks. In
addition, we assume the following characteristics of the semi-
directed network under study.

Assumption 1 Let N have n leaves and h hybridization
events (that is, |V1| = n and |V,| = h).

Assumption 2 We further assume that " is of level-1
(Huson et al. 2010). That is, we assume that any given
edge can be part of at most one cycle which means that
there is no overlap between any two cycles (Rosselld
and Valiente 2009, Huson et al. 2010).

Thus, our parameters of interest are (./\/ ) t,y) where N is
an explicit semi-directed level-1 phylogenetic network that

Identifiability of 4-node cycles « 3

links the n species under study, and has h hybridization events.
This network has two vectors of numerical parameters: (i)
branch lengths t € [0,00)™ where n, is the number of
branches in the network, and (ii) inheritance probabilities y €
(0,0.5)™ for ny, the number of minor hybrid edges.

Generic identifiability of the position of the hybrid node

To show that the position of the hybrid node in the hybridization
cycle is generically identifiable, we represent every semi-directed
level-1 network ' as a set of polynomial quartet concordance
factor (CF) equations as in Solis-Lemus and Ané (2016) and
Solis-Lemus et al. (2020), and we find if both systems of polyno-
mial equations share solutions in the parameter space:
CF(N,t,y) = CE(N ,t,7). Note that the term concordance
factor has been used for measures of agreement for a given bipar-
tition from a collection of gene trees [gene concordance factors
(Baum 2007)] or site patterns [site concordance factors (Minh
et al. 2020)], but our proofs concern only quartet concordance
factors (Solis-Lemus and Ané 2016) and the abbreviation CF is
used throughout for simplicity.

First, each network can be decomposed into 4-taxon sub-
networks [quarnets in Huber ef al. (2018)]. That is, for a given
network A with n>4 taxa, we consider all 4-taxon subsets
S={s={a,b,c,d} :a,b,c,d € X} to define the theoretical
CFs expected under the multispecies network coalescent
model for each 4-taxon subset. These theoretical CFs are
already derived for a species tree in (Allman et al. 2011), and
for a species network in (Solis-Lemus and Ané 2016). In both
cases, the CFs do not depend on the position of the root. For
the tree, the major CF is defined for the quartet that agrees
with the species tree. That is, if the species tree has the split
ab|cd with internal edge f, then the major CF would be
CFpjcd = 1 —2/3 exp(—t). The CF for the minor resolutions
(in disagreement with the species tree ablcd) would then be
CF,ejpd = CFagppc = 1/3 exp(—t) (Hudson 1983).

For the case of a 4-taxon network, the theoretical CFs are
weighted averages of CFs on trees. For example, Figure 2 shows
a semi-directed 4-taxon network (A =a, M =0, e =, e =)
and the two displayed quartet trees depending on which hybrid
edge is used (major hybrid edge used corresponds to the quartet
on top, and minor hybrid edge used corresponds to the quartet
on the bottom). The CFs on this 4-taxon network are then given
by a weighted sum of the quartet CFs of the two displayed quar-
tet trees with weights: 1 —7 and y. Namely,

° CFab|cd = (1 —7/)(1 - 2/3 exp( —ti3—t3— tz)) +
y(1=2/3 exp(—t,)) for the major resolution, and

* CFupa = CFugpe = (1-7)(1/3exp(—tiz—tr3— 1)) +
y(1/3exp(—t,)) for the minor resolutions.

The computation of CF equations when there are more
than two leaves beneath a hybrid node is not as straight-
forward as weights depend on branch lengths and y parame-
ters. Details about this computation can be found in Solis-
Lemus and Ané (2016). We show in the Appendix the system
of polynomial equations for the four phylogenetic networks
considered in this study: N o, N right N lefty and N up
(Fig. 3). Since each network is obtained by the rotation of the
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Figure 2. A, a semi-directed network with a given 4-taxon subset (np = 1,n; = 1,1, = 2,3 = 0) highlighted in blue which corresponds to
taking one individual in 1y (blue square), one individual in n; (blue triangle), and two individuals in n, (blue circles). B, to obtain the CF
equations for the resulting quarnet (C) we split it as two quarnet trees weighted by 1 —y and y. D, major CF equation for the quarnet as
weighted average of CF equations on quarnet trees.

Figure 3. Semi-directed networks with one hybridization cycle with 4 nodes (diamond), but different position of the hybrid node in the
cycle. We denote these networks A o, N rights N lefty and N up respectively from left to right.

hybrid node in the hybridization cycle, there is a simple map-
ping of 4-taxon subsets that allows us to define the CF equa-
tions for all networks from the original N gown. This process is
also described in the Appendix.

Definition 2 Let N be n-taxon semi-directed level-1 explicit

phylogenetic network with h hybridizations. This network

n
defines a set of 3 (
4

model with parameters t and 7. Denote this system of
equations as CF(N,t,7). If we change the variables
to z; = exp( — t;) for all internal branch lengths,

then CE(N ,z,y) is a system of polynomial equations.

> CF equations under the coalescent

Definition 3 (Generic identifiability of hybrid node

position). Let N be an n-taxon semi-directed level-1 explicit
phylogenetic network with h hybridizations. We focus on one

hybridization that has 4 nodes in the hybridization cycle.

Let N be a network with the hybrid node rotated inside the
4-node hybridization cycle. Let CE(N ,t,y) be the system of
polynomial CF equations defined by N, and

let CEF(N",t',y') be the system of polynomial CF equations
defined by N'. We say the position of the hybrid node in the

4-node hybridization cycle in N is identifiable if the system
of CE(N,t,y) = CE(N",¢,y") does not have solutions in

any set of numerical parameters (t,y,t,y"). We say the
position of the hybrid node in the 4-node hybridization cycle
in N is generically identifiable if the solution set of the
system CE(N',t,y) = CF(N",t,7') has measure zero.

Identifiability of 4-node cycles in semi-directed level-1 phylogenetic
networks

In this paper, we prove the following theorem regarding the
generic identifiability of the placement of the hybrid node in
the 4-node hybridization cycle in a level-1 network:

Theorem 2 Let N be a semi-directed level-1 n-taxon
phylogenetic network with one hybridization event that
creates a 4-node hybridization cycle. Then, the placement of
the hybrid node in the cycle is generically identifiable if
(i) n>S, (ii) t € (0,00) for all branch lengths, and
(iii) y € (0,1) for the inheritance probability
corresponding to the hybridization event.

To prove this theorem, we prove three separate theorems:
N ipn vs. N right (Theorem 3), N goun vs. N Ieft (Theorem 4),
and N gy vs. N wp (Theorem S). In this section, we show
Theorem 3 and its proof, and the other two theorems and proofs
are placed in the Appendix. For these three theorems, we assume
the networks only have six taxa and one hybridization event. We
generalize to n taxa and h hybridization events in Remark 2.
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Theorem 3 Let N ,,, be a semi-directed level-1 6-taxon
phylogenetic network with one hybridization event
producing a hybridization cycle with 4 nodes. Without loss
of generality, let the taxa be partitioned among clades
as ng = 1,n; =2,ny = 1,n3 =2 (Fig. 3). Let the
hybrid node be ancestral to the clade ng. Let N,ig;,t bea
semi-directed level-1 6-taxon phylogenetic network with one
hybridization event producing a hybridization cycle with
4 nodes such that the unrooted version of N right agrees
with the unrooted version of N jpn. Let the hybrid node
in the hybridization cycle in N right be ancestral to the
clade ny. Then, N jon and Nright are identifiable
lftl <OO,t13>0,t3<OO, and AS (0,1)

Proof. Let CF(N oun; 2,7) be the system of CF polynomial
equations defined by N 4, and let CF(, right s Z',7') be
the system of CF polynomial equations defined by N g
Both systems of equations can be found in the Appendix
(Tables 1-14).

Let P =A{p(z,7)—q(,7) : p(z.7) € CEN doun, 2, 7),
q(2,7') € CF(Nyigu,2',7')} be the set of polynomial equations
resulting from matching CF(N 4o, 2,7) to CF(N, vight » 2 »¥") for
every 4-taxon subset.

Using Macaulay2 (Grayson and Stillman undated), we
compute the Grobner basis of P on the (z,¥) variables by any
elimination order. All Macaulay2 scripts are available at
https://github.com/gtiley/diamond-identifiability.

The resulting ideal is given by:

z1(zi3=1)’z3y(1-y) =0
zi(zi3 = D)zz(z3 = )y(1-7) = 0

which represent the conditions that the (z,7) variables need
to satisfy for the polynomial set P to vanish to zero.

Thus, N jous and N right are not identifiable in the subset of
parameter space corresponding to {z; =0} U{z;3 =1}U
{m=0tu{y=0jU{y=1;. 1

Remark 1. We note that by assuming that t € (0,00) for all
branch lengths, and y € (0, 1) for the inheritance
probabilities, we can guarantee generic identifiability of the
placement of the hybrid node in the 4-node hybridization
cycle.

Remark 2. The identifiability of the position of the hybrid
node in 4-node cycles in n-taxon level-1 phylogenetic
networks is obtained by noticing that we need at most two
taxa per clade to define all the CF polynomial equations
[Lemma 1 in Solis-Lemus et al. (2020)], and thus, if the
hybridization cycles are identifiable with only one taxon in
some clades, the addition of a second taxon will only reduce
the set in the parameter space where the two networks are
not (generically) identifiable.

Identifiability of 4-node cycles « §

Remark 3. We did not explore the identifiability in the case
of n =5 because it was already discovered in Solis-Lemus
and Ané (2016) and Solis-Lemus et al. (2020) that some
hybridization events with only one taxon sampled in one of
the four taxa partitions (labelled ng,ny,ny,n3 in Fig. 2)
are either not generically detectable or the numerical
parameters are not generically identifiable. These cases were
denoted bad diamonds, and were excluded for the new
proofs here.

Simulations without gene tree estimation error

We simulated gene trees under the MSNC using BPP v.4.1.4
(Flouri et al. 2020). The level-1 network under investigation
contained eight taxa and one 4-node hybridization cycle (dia-
mond) (Fig. 4A). To simulate gene trees under the MSNC,
we required a rooted evolutionary history, and thus, we inves-
tigated three potential root placements: (i) a balanced root
included in the cycle (r; in Fig. 4B), (ii) a ladderized root
with the root in the cycle (r, in Fig. 4C), and (iii) a ladderized
root such that the cycle occurs in the ingroup (r3 in Fig. 4D).
The root height is not the same between the balanced root
and ladderized rootings, but the age of episodic gene flow is 13
units of 8, population size measured in expected nucleotide
diversity. Edge lengths for the networks used in simulations
are in substitutions per site and the inheritance probability (y)
was 0.5 for all simulations. A 6 of 0.01 was constant over all
nodes. Simulations were carried out for nine diamonds for the
three rooting scenarios, such that we changed if lineages were
represented by a clade of two taxa or a single taxon (Fig. 4E).

Sequences were also simulated with BPP v.4.1.4, which
were used in later comparisons between true gene trees and
estimated gene trees. Sequence simulation used the HKY
model of nucleotide substitution (Hasegawa et al. 1985) with
a transition-transversion rate-ratio of 3 and equilibrium fre-
quencies at Ty = 707 = 0.3 and 7¢ = g = 0.2 was selected.
A low degree of among site rate variation was incorporated
using a gamma distribution (Yang 1994) with a shape and rate
of 0.6. A strict clock was used among branches and there is no
among-locus rate variation. One-hundred simulations were
performed for each of the 27 rooted networks, using 100, 500,
1000, and 5000 loci. Each locus had 1000 base pairs.

We then selected the ladderized root (root 3 in Fig. 4D) to
assess the changes in performance due to the value of the
inheritance parameter. We varied the number of gene trees
and the inheritance probability across nine diamonds, as illus-
trated in Figure 4E. Specifically, we examined nine parameter
combinations using the following values: 250, 1000, and 4000
gene trees, paired with an inheritance probability of 0.05, 0.25,
and 0.5. For each diamond and parameter combination, we
performed 100 replicate simulations. Scripts for reproducing
simulation experiments are available at https://github.com/

gtiley/diamond-identifiability.

Incorporating gene tree error into simulation experiments

Biological data are often messy with many potential sources of
gene tree estimation error. For example, deep paralogy can
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Figure 4. Semi-directed level-1 network topology with a diamond hybridization cycle. A, the semi-directed diamond has tip labels in capital
letters and node labels in lower case italicized letters. The hybrid node is labelled as k. The locations of the three possible roots are
indicated by 7y, 5, 3. B-D, node heights for the three rooted networks in units of 8 population size. The direction of episodic gene flow is
shown with an arrow. E, for each root, nine networks were investigated, the first including all tips, the next four reducing one cherry to a
single branch in an anticlockwise fashion, the next four reducing two cherries to two lineages with a single taxon.

lead to gene trees that conflict with species trees (Maddison
1997) and lead to rooting errors when using an outgroup
(Huelsenbeck et al. 2002, Holland ef al. 2003). Such gene tree
errors can be prevalent in groups with histories of large-scale
gene duplication and loss such as plants (Leebens-Mack et al.
2019) and insects (Li ef al. 2018). These rooting errors may
negatively affect the performance of inference methods, espe-
cially those based on rooted triples. Therefore, we estimated
networks while incorporating gene tree error with two differ-
ent strategies. First, for each simulation condition, we ran-
domly re-rooted 10% and 30% of the gene trees. Because
rooting errors may also be accompanied by other topological
errors, we estimated networks from the simulated data incor-
porating a random re-rooting and a random nearest neighbour
interchange (NNI) move to 10% and 30% of gene trees.
Second, because our NNI approach may explore a relatively
limited set of gene tree errors, we re-estimated gene trees for a
subset of simulation conditions over a range of alignment
lengths as a proxy for gene tree information. Based on the first
set of simulations with rooting and NNI errors, we identified
five diamonds (d;,d,,d;,ds,dy) that appeared representative
for all diamonds. We then fixed the number of gene trees to
1000 and the inheritance probability at 0.25, while varying the
sequence length across 250, 1000, and 4000 for each of the
five selected diamonds. Gene trees were then estimated with
IQ-TREE v.2.3.6 (Minh et al. 2020) from gene sequence data
using the same model used in the simulations (HKY+G), to
avoid incorporating any model mis-specification error. Every
scenario was replicated 20 times. Scripts for introducing ran-
dom roots and NNI moves to trees are available at https://
github.com/gtiley/diamond-identifiability.

Network estimation

Networks were estimated from the simulated or estimated gene
trees using pseudolikelihood methods that utilize the gene tree

topologies only. We used two methods: (i) the Species Networks
applying Quartets (SNaQ) function (Solis-Lemus and Ané
2016) implemented through the PhyloNetworks v.0.15.0 Julia
package (Solis-Lemus et al. 2017) in Julia v.1.6.5 where SNaQ
implements statistical inference by involving numerical optimiza-
tion of branch lengths and inheritance probabilities, and a heuris-
tic search in the space of level-1 phylogenetic networks; and (i)
the InferNetwork MPL function (Yu and Nakhleh 2015) imple-
mented through PhyloNet v.3.8.3 (Wen et al. 2018). Notably,
SNaQ uses unrooted quartets as data while InferNetwork MPL
uses rooted triples (more on rooting error later). Both analyses
used 10 independent runs with the maximum number of allowed
hybridization events set to zero, one, or two.

Three summary statistics were used to evaluate the perform-
ance of the estimations. First, we calculated the proportion of
simulations where only one hybridization event was detected
based on a two-point pseudolikelihood score difference.
Although the pseudolikelihood does not have straight-forward
implementation of model selection such as the Akaike
Information Criterion (Akaike 1974), we used differences in
pseudolikelihood scores as some operational criteria to evaluate
detection of hybridization edges among the replicates in lieu of
slope heuristics (Baudry et al. 2012) or goodness-of-fit tests (Cai
and Ané 2021) that might be more appropriate for an empirical
investigation. Second, we checked if the network estimated when
allowing one hybridization event had the same topology as the
true network using the hardwiredClusterDistance function
(Huson et al. 2010) in PhyloNetworks. While the absolute dis-
tance between networks is difficult to interpret, a distance of 0
means the network topologies are identical. The proportion of
correct networks was calculated only for networks with one
hybridization event regardless of how many events were preferred
via model selection, as different selection criteria and additional
lines of evidence could help guide decision making. Third, we
checked if the true minor hybrid edge is present in the estimated
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network with only one estimated hybridization event. This is
done by drawing bootstrap support from the estimated network
onto the true network with the hybridBootstrapSupport function
from PhyloNetworks. A bootstrap support of 100% shows that
the true hybrid edge is present in the estimated network, even if
some other aspects of the network are incorrect. Scripts for calcu-
lating these summary statistics are available at https://github.
com/gtiley/diamond-identifiability.

RESULTS
Simulation results: error-free gene trees

The pseudolikelihood methods implemented in PhyloNetworks
and PhyloNet generally performed well across all simulation con-
ditions. SNaQ_was capable of correctly identifying the presence
of one hybridization event, recovering the correct network, and
recovering the hybridization node in all simulations as the num-
ber of gene trees increased (Supporting Information, Figs S1-
S3). For diamonds ds and dy when the rooting was ladderized
and in the cycle (r,) or ladderized and out of the cycle (r3),
SNaQ_sometimes missed the correct network or hybridization
node when the number of gene trees was low, but converged to
the correct network as gene trees increased from 100 to 5000.
InferNetwork MPL was more efficient with respect to the num-
ber of gene trees for d¢ or dy and performed well for r;
(Supporting Information, Fig. S4) and r, (Supporting
Information, Fig. SS5), but sometimes struggled with r3
(Supporting Information, Fig. S6). Across all diamonds for 73,
InferNetwork MPL did not always detect one hybridization
edge, such that two hybridization edges were preferred over
none. Even when considering the estimated networks that only
allowed one hybridization event, the network was not always cor-
rect; however, the correct hybridization node was almost always
recovered (Supporting Information, Fig. S6). If the recovery of
the hybridization node was the most favourable criteria of an esti-
mator, both SNaQ_and InferNetwork MPL performed well with
error-free gene trees, with SNaQ_requiring more gene trees in
cases where the hybrid node had a single taxon for a descendant
instead of a cherry (Fig. S).

When the inheritance probability was either 0.25 and 0.5,
SNaQ was capable of identifying the presence of one hybrid-
ization event, recovering the hybridization node, and recover-
ing the correct network when the number of gene trees
increased (Fig. 6). For diamond ds, dg and dy, the correct net-
work or hybridization node was sometimes missed when the
number of gene trees was low (250), but converged to the
correct network as the gene trees increased to 1000 and 4000.
When the inheritance probability was 0.05, recovering the cor-
rect network and recovering the hybridization node had an
increasing trend across all diamonds while the number of gene
trees increased. Diamond dy could only be recovered about 50
percent even with 4000 gene trees. Furthermore, SNaQ could
identify the presence of the one hybridization event for all dia-
monds excluding d¢ and dg, whose presence rate was decreas-
ing while the number of gene trees increased. Since dg and dg
were symmetric, their results both reflected false negatives
when including more gene trees. We also noticed that
CorrectNetwork and HasHybridEdge were identical, which
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was a special case. In other general cases, these two evalua-
tions could perform differently.

Simulation results: gene trees with error

SNaQ tolerated rooting errors well when they were present in
both 10% (Supporting Information, Figs S7-S9) and 30%
(Supporting Information, Figs S10-S12) of gene trees. The
patterns for d¢ and dy with r, and r3 from error-free gene trees
were observed again, which was expected since SNaQ used
unrooted quartets as data. InferNetwork MPL was largely
robust to root error in 10% of the gene trees for r; and r;,
with the exception of sometimes detecting more than one
hybridization edge (Supporting Information, Figs S13, S14).
However, it was difficult to recover the correct network for r3
and the proportion of incorrect networks sometimes increased
with the number of gene trees (Supporting Information, Fig.
S15). The lowest proportions of correct network estimations
were observed for diamonds dy4, d7, and dy, which were not all
cases where the hybrid node had a single taxon as a descend-
ant. The overall network being incorrect did not always mean
that the estimated hybridization node was wrong, but the
decreased performance compared to simulations without gene
tree error was drastic (Supporting Information, Table S1). As
the proportion of gene tree errors increased from 10% to 30%,
similar patterns were observed for InferNetwork MPL, such
that d,, d7, and dy performed poorly for 3, but with a higher
proportion of network estimation errors (Supporting
Information, Figs S16-S18). For example, the hybridization
node was never recovered for dy with 73 and 5000 gene trees
(Supporting Information, Fig. S18). Introducing an additional
NNI move error yielded qualitatively similar simulation results
(Supporting Information, Figs. S$19-S30), implying both
methods are robust to small degrees of estimation error.

When utilizing estimated gene trees, accurate estimation
improves as sequence length increases as is expected (Figure
8). Only d9 performed a different trend as the fraction
dropped for large sequence length.

DISCUSSION
Mathematical insights

We have shown that the placement of the hybrid node in a 4-
node hybridization cycle is generically identifiable in semi-
directed level-1 phylogenetic networks. This result has impor-
tant biological implications such as correct rooting of a semi-
directed network which provides more information about the
actual speciation process from the origin of the clade. More
work is needed to understand the identifiability of larger (and
smaller) cycles. We decided to focus on the case of the 4-node
hybridization cycle because of empirical evidence suggesting
flat pseudolikelihood on these hybridization events. However,
smaller cycles are also biologically interesting as they describe
hybridization events between more closely related popula-
tions, but it is not always true under incomplete taxon sam-
pling or in the presence of extinct taxa. In such cases, the
resulting cycle may also be small but with longer edge lengths.
It has already been proven that 2-node cycles are not identifi-
able, but 3-node cycles are whenever we have sufficient
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Figure S. Proportion of 100 simulation replicates where the true hybridization edge is recovered by SNaQ_(squares) or InferNetwork_MPL
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Figure 4.
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Figure 6. SNaQ results for root 3 with different value of the number of gene trees paired with the inheritance probability. FoundOneEdge is
the proportion out of 20 replicates that one reticulate edge was correctly inferred by the pseudolikelihood scores. CorrectNetwork is the
proportion of 20 replicates where the estimated topology when allowing only one hybridization event is identical to the true topology.
HasHybridEdge is the proportion of 20 replicates where the correct hybridization edge was inferred, regardless if other parts of the
estimated network were incorrect, when allowing only one hybridization event. Gamma represents the inheritance probability. Diamond d,
through tody correspond to Figure 4E. Note that the plots in CorrectNetwork and HasHybridEdge are identical which suggests that when the

correct hybrid edges are recovered, the true network is estimated.

sampling from the hybrid and sister clades (Solis-Lemus and
Ané 2016, Solis-Lemus et al. 2020). Thus, we can explore the
identifiability of the placement of the hybrid node in the
hybridization 3-node cycle as future work. In particular, we
want to answer the following question:

Question 1. Let Ny, N, N3 be the three rotations of the
n-taxon semi-directed level-1 phylogenetic networks with

one hybridization event producing a hybridization cycle
of 3 nodes. Are N'y, N 5, N5 (generically) identifiable?

Furthermore, all existing identifiability studies on semi-
directed phylogenetic networks are restricted to a level-1 net-
work (Solis-Lemus and Ané 2016, Gross and Long 2018,
Banos 2019, Gross et al. 2021, Solis-Lemus et al. 2020, Allman
et al. 2024). Questions on the identifiability of higher-level
networks remain open.

Biological insights from simulations and best practices
Pseudolikelihood methods can perform well for estimating a
level-1 network from gene tree distributions in the absence of
gene tree error, consistent with previous simulations and
empirical analyses (Yu and Nakhleh 2015, Solis-Lemus and
Ané 2016). PhyloNet’s InferNetwork MPL was more efficient
than PhyloNetwork’s SNaQ_for diamonds ds, d¢, and dy, capa-
ble of recovering the correct network with as few as 100 gene

trees where SNaQ would require at least 500 (Fig. $).
However, InferNetwork MPL was not always perfect even
with error-free gene trees such as dg for r;. In addition, SNaQ
was far more robust to the types of gene tree errors explored
here than InferNetwork MPL, capable of detecting one
hybridization event and recovering the correct network in
most conditions when provided a sufficient number of gene
trees (Fig. 7). InferNetwork_MPL could still detect the pres-
ence of a hybridization edge more often than not depending
on the diamond analysed with r3, but the estimated network
was frequently incorrect and if one were using unknown
empirical data, there is a risk of estimating additional false pos-
itive hybridization nodes in the presence of gene tree rooting
errors.

The diamonds and rootings where network estimation
errors were most prevalent have implications for empirical
analyses. SNaQ errors primarily occurred for dy, dg, and d, all
diamonds where the hybrid node descendant was a single
taxon (Fig. 4E). This implies that sampling two or more indi-
viduals for the lineage of interest could provide an increase in
statistical power over a single taxon, at least for SNaQ and
methods that use unrooted gene trees. Interestingly, network
estimation errors were most prevalent when the cycle was
restricted to an ingroup (r3). InferNetwork MPL especially
struggled with dy, d7, and dy in the presence of errors, as it
appears more data would not be helpful. Precisely why these
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hybridization event. Diamonds correspond to Figure 4E.

diamonds performed poorly is unclear, but it could be an arti-
fact of how errors were introduced to simulations. For exam-
ple, dy and d; both have cherries for the descendants of the
hybrid node. Since the outgroup errors were done randomly,
this created more chances for a descendant of the hybrid node
to be the outgroup. Outgroup lineages are typically sampled at
an appropriate evolutionary distance to polarize phylogenetic
relationships or site patterns in the context of D-statistics
(Green et al. 2010, Durand et al. 2011, Pease and Hahn
2015), but our results show that rooting errors and potentially
other sources of topological errors (e.g. deep paralogy, assem-
bly, or genotyping, biases in starting material such as museum
tissue vs. fresh) could be misleading for estimating level-1 net-
works with rooted triples. An unrooted quartet-based method
such as SNaQ should be more robust to gene tree error, but
rooted triple-based methods should perform well and can be
beneficial for a low number of gene trees (e.g. 100) if gene
tree quality can be reliably evaluated.
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14 . Tileyetal

Appendix A: Phylogenetic networks as a set of

polynomial equations

A.1 CF equations for N 4,,,,: CE(N gon, 2, 7)-
Table 1. CF equations for N down: CE(N doun» 2,7)

n

CF formula

(0,0,2,2)

(07 1727 1)

(0’ 17 172)

(0,2,2,0)

(0,2,1,1)

(07 27 07 2)

(1,0,2,1)

(1,0,1,2)

(1,1,2,0)

(17 17072)

(1,2,1,0)

(1,2,0,1)

2
1 - 352222323
1
3

1
3

2222323
222323

1- %Z23ZZ
1
322322
L2032
322322
2
1- §Z3
1
3%
1

3%3

2
1 - 5222321321

1
3
1
3

2222321321

2222321321
—2

1 3 Z1321

1
3

1
3

Z1321
21321

2
1- §Z3Z13Z1
1
3
1
3

(1 - }’) (1 - %Zzg,Zz) +j/(l - %Zz)

2321321

2321321

)
)3
(1-7) (1 - §Z3) +7(1 - %ZZ3Z3)
(1=7)3z3+riznz
(1-y)3z3+rizs2s
(1-7)(1-2z32032) +7(1 - 222)
(1-7)jz2322 +732
(1-7)izpnznn +riz
(1=7)(1-3252) +7(1- =)
(1-7)3z13z3 +7323
(1-7)3z1323+73%
(1-7)(1=221) +7(1 - 2zp321321)
(1 _}’)%Zl +7%Z23Z13Z1
(1-7)321 +r3zszi32

)(1-321) +7(1-32i321)
(1-7)3z1+r3zi32
(1-7)3z1+7r3zi37

(continued)
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Table 1. (continued)

Identifiability of 4-node cycles «+ 1§

n CF formula
(2, 0, 2, 0) ( ]/)2 (1 - %22202011113223) +2}’(1 - }’) (1 - %ZzZ()) +y2 (1 - %ZzZOZoz)
21 1 21
(1-7) 32220%01213223 T 2r(1-7) 32220 TV 32220202
( 7)2 %2220201213223 +2y(1-y) %zzzo +7? %zzzozoz
(2,0,1,1) ( ]/)2(1— %Z()ZBZ(H) +27(1—]/)(1—Z0+ lZ()Zz3) +]/2(1— %Z()Z()z)
( 7)2§20213Z01 +7(1-y)zo(1- in )—Hf 320202
( _y)Z%ZOZBZOl -H/ 1 - 0(1 - % ) +7 320%02
(2,0,0,2) ( 7/)2(1 gZ3ZOZ13201) +2}’(1 -7)(1- gzazo) +74(1- %Z3zozz3zoz)
21 _1 21
3
(1-7)" 32320213201 +27(1 = 7) 32320 +7* 2320223202
( 7)2%2310213201 +2r(1-7)3z320 + ¥’ 3232022370
(27 1, 1,0) ( }/)2(1 - %Z()Z()l) +2}/(1 - )(1 -2z0+ lZo2523213) +]/2(1 - %20202)
—_ )21 1
3
(1=7)"3z0z01 +7(1 = 7)z0 (1 - $223213) +7* 120202
( 7)2%z0201 +7(1 —y)zo(l - 72232;13) +7* 12020
(2,1,0,1) ( 7)2(1 - —zoz01) +27(1-y)(1-2z0+ %zozm) +7(1- %Zozozzza)
(1 —Y)Z%Zozm +r(1-7)z0(1- %‘4'13) +7* 120200223
(1 _7)2%ZOZ01 +r(1- Zo<1 %213) + 7320202223
(2,27 0,0) ( ]/)2(1 - —ZIZOZol) +2}’(1 - }/)(1 - %Z1Zo) +Y2(1 - %Z1ZOZ02ZZ3Z13)
( 7/)2 §ZIZOZOI + 2}’(1 - J/) %leo + 72 %Z]ZQZozzzg,Zlg,
( ]/)2%2120201 +27(1 }/)%Z1Z0+Y2%Z120202223213
(1,1,1,1) ( 7’)(1—%213)+7%223
(1-7)3z13+7(1 - 3223)
(1-7)32z3 7323

A.2 Definition of CF equations for network obtained
by the rotation of hybrid in hybridization cycle.

We start by noticing that there is a correspondence between a
quartet in the network Ny, and a quartet in any other net-
work. For example, in Figure 9, we want to match the equations
corresponding to n = (O 1,2, l) in N gpn and N right- We can
see that the equations for the quartet n=(0,1,2,1) in N, right

o
fu=1(0;1,2, 1)
2
g e = —tag—t2
3€

can be obtained from the equations in quartet n = (2,0,1,1) in
N, down+
Therefore, in order to get the equations for N righty We need
to identify to which quartets they correspond in the N -
Note that only the last quartet (1,1,1,1) is not a mere rota-
tion. We have to compute the CFs for the specific network
(Fig. 10).

(1 —7)2(1 — 2/8e o tutu) L 29(1 — 4)(1 — e7% + 1/3eH07t5) 4 42(1 — 2/3et0 M)

Figure 9. Correspondence between the quartet n = (0,1,2,1) in N g, (left), the same quartet in N, (centre), and the quartet

n=1(2,0,1,1) in N gos (right).
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16 .« Tileyetal

ns ng3

n1 N9 ni UP)

ng no

CFoips = (1 —7)(1 —2/3e7™) + 41/3e 7™ CFyyo3 = (1 — 7)1/3e 7™ + y(1 — 2/3e ™)
CFops = (1 —7)1/3e7™ + 4(1 — 2/3e7*3) CFogps = (1 —7)(1 — 2/3e*) 4+ v1/3e "
CFognz = (1 —7)1/3e7 4 71/3e7* CFognz = (1 —7)1/3e7™ + 41/3e~*s

Figure 10. CF equations for quartet (1,1,1,1) comparing the N iown and N, right networks.

A.3 CF equations for \' vight: CF (N vight 2, ¥ )+

Table 2. CF equations for NV, right: CF N right s %5 7)

n €N jign n €N goun CF formula
(0,0,2,2) (2,0,2,0) (1-7)*(1- 2mzozoiziszas) +2r(1 - 7) (1= 22220) + 72 (1 - 22220200
(1-7)*Lznz0z01 213203 + 27 (1 - 7) 3 2220 + ¥ 2 2220202
(1-7)* tnz0z01 213203 + 27 (1 - 7) 3 2220 + ¥ S 2270202
(0,1,2,1) (2,0,1,1) (1-7)*(1 - 2zoz13201) +27(1 = 7) (1 — 20 + L20223) + 72 (1 - 220202)
(1-7)*Lz0zi3z01 +7(1 = 7)z0 (1 = 1223) +7* 1 z0200
1
3

zoz13201 +7(1 — 7)20(1 - —223) +7*1 320202
(0,1,1,2) (1,0,2,1) (1-7)(1-220325) +7(1- 22)
1ntrin
1
3
2

(1-7)3z322+7322

(0,2,2,0) (2,0,0,2) (1-7)* (1= 2z3z0z13201) +27(1 = 7) (1 = 22320) + 72 (1 = 22320223202)
(1-y 2§z3zoz13zm +27(1-7)3z320 +7* 32320223702
(1-7)*3zaz0z13201 +2¢(1 - 7) 32320 + P S 2320203200

(0,2,1,1) (1,0,1,2) (1=7)(1-223) +7(1 - 222323)
(1-y % 3473237
(1-7)3z3+73z323

(0,2,0,2) (0,0,2,2) 1-2 1220323
%Zzzzsza
%Zzzzsz3

(1,0,2,1) (2,1,1,0) (1=7)* (1= 2z0z01) +27(1 = 7) (1 = 20 + Lz0223213) +7* (1 = 220202)
(1- Z%ZOZM +y(1- )Zo(l - ‘Zzazla) +7* 320702
(1-7 2%20201 +7(1-7)z0 (1 - Lz33213) +7* 220700

)

)

(1,0,1,2) (1,1,2,0) (1-7) (1= 2zi320320) +7(1 - 222)

(1-7)
)
)
)
)

1
J2znn Hr3%
1
(1-7)3z320322 + 732
2

(1,1,2,0) (2,1,0,1) (1=7)* (1= 220z01) + 27 (1 - 7) (1 — 20 + 3 z0213) +7* (1 - 220200223)
(1-7 2%Zozm +7(1=7)z0 (1 - Lz13) +7* 20200223
(1-y 2%20201 +r(1- )ZO(I - %113) +72%Zozozzzs

(continued)
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Table 2. (continued)

Identifiability of 4-node cycles « 17

n €N g n €N joun CF formula
(1,1,0,2) (0,1,2,1) 1- 22532,
322322
%22322
(1,2,1,0) (1,1,0,2) (1=7)(1 - 221323) +7(1 - 223)
(1 —7)%213%“‘7%23
(1-7)3z1323 + 732
(1,2,0,1) (0,1,1,2) 1-2z
(2,0,2,0) (2,2,0,0) (1-7)* (1= 2z120201) +27(1 = 7) (1 - 22120) + 72 (1 - 2z120200223213)
(1-7)*Lz1z0z01 +27(1 - 7) L2120 + P L z1z0zmas s
(1—y)2§2120z01+2}/(1 ¥)32120 + 7 3 2120200223213
(2,0,1,1) (1,2,1,0) (1=7)(1-221) +7(1 - (zp321321)
(1=7)3z1 +rizazia
(1 —7)521 —H’gzzazmzl
(2,0,0,2) (0,2,2,0) 1= 2222321321
%Zzzzsznzl
%ZZZZSZISZI
(2,1,1,0) (1,2,0,1) (1-7)(1-22)) +7(1- 221321)
(1-7)3z1+riziz
(1-y)3z1+73zi32
(2,1,0,1) (0,2,1,1) 1-2z532
%Zle
%21321
(2,2,0,0) (0,2,0,2) 1= 2232132
§Z32137«1
2321321
(1,1,1,1)

1-y)(1-3z01) +73213

3
(1=7)3z01 +7(1=3z13)
(
(1=7)3z01 +73213
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A.4 CF equations for N: CF(N4,2,7).

Table 3. CF equations for Ni4: CF(N g, 2,7)

ncN left n €N joun CF formula
(0,0,2,2) (0,2,0,2) 1- 2232132
%Z3Z13Z1
52321321
(0,1,2,1) (1,1,0,2) (1=9) (1= 2z1323) +7(1 - 223)
(1-7)3z323 +7323
(1-7)3zi3z3+732
(0,1,1,2) (1,2,0,1) (1=p)(1-221) +7(1 - 221321)
(1-y)3z1+7izi3m
(1-y)3z21 +73z1321
(0,2,2,0) (2,0,0,2) (1- }’)2(1 - 3z;z0z13z01) +27(1-7) (1 - §2320) +77 (1 - 323%0223202)
(1- y)Z%z3zoz13z01 +2y(1-7)3z320 + 7> 12320723702
(1- }’)2§Z3ZO7«13Z01 +27(1-7)3z320 +7° 32320223202
(0,2,1,1) (2,1,0,1) (1-7)*(1- fzozm) +2y(1 =7)(1=z0+ Lzoz13) + 72 (1 - 220202223)
(1- y)2§z0z01 +r(1-7)z0(1- 3z z13) +7* 320202223
(1-7)*zozo1 +7(1- 0(1 1213) +77 20200223
(0,2,0,2) (2,2,0,0) (1- }’)2(1 - 51110201) +27(1 -7) (1 - %leo) ‘H’z(l - %ZIZOZOZZBzB)
(1 - }’)2 %leozm + 27(1 - 7’) %leo + }’2 %leozozzzszm
(1- }’)252120201 +2r(1-7) 32120 +7* 2120200223713
(1,0,2,1) (0,1,1,2) 1- 2z
333
333
(1,0,1,2) (0,2,1,1) 1- 22537
%lezl
%ZBZI
(1,1,2,0) (1,0,1,2) (1-7)(1=223) +7(1 - 223323)
(1-y)3z3+7323%
(1-7)3z3 +7322323
(1,1,0,2) (1,2,1,0) (1=-)(1=221) +7(1 - 2zp321321)
(1-7) %Zl +v 312321321
(1 Y)%Zl+7322321321
(1,2,1,0) (2,0,1,1) (1-7)*(1 - 2zoz13201) +27(1 = 7) (1 — 20 + L20223) + 72 (1 = 220202)
(1 Y)Zézozlazm +y(1-7)z0(1- %Zzs) +7* 320200
(1-7) 20z13Z01 +7(1 - 7)z0(1- %123) +7* 320202
(1,2,0,1) (2,1,1,0) (1=7)* (1= 2z0z01) +27(1 = 7) (1 = 20 + Lz0223213) +7* (1 = 2z0202)
(1 Y)Z%ZOZol +y(1 —}’)Zo(l - 32235513) +7 320202
(1- }’)ZLZOZm +7(1=7)z (1~ %223Z13) +7* 32020
(2,0,2,0) (0,0,2,2) 1- 22,2323
%Zzzzszs
%2222323
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Identifiability of 4-node cycles « 19

Table 3. (continued)

neNy n €N goun CF formula
(2,0,1,1) (0,1,2,1) 1- 22532,
%Zmzz
%22322
(2,0,0,2) (0,2,2,0) 1= 222321321
%Zzzzsznzl
%ZZZBZISZI
(2,1,1,0) (1,0,2,1) (1-7)(1- 220322) +7(1 - 225)
(1-7)3z322+732
(1-7)3z322+r32
(2,1,0,1) (1,1,2,0) (1=7)(1-22zi323%) +7(1 - 222)
(1-7)3z132232 +}’3Zz
(1-7) §21322322 +yi 322
(2,2,0,0) (2,0,2,0) (1-7)* (1= 2zyzozqizi3203) +27(1 = 7) (1 = 2za20) + 72 (1 = 22p20202)
(1= 7/)2 %Zzzolmzlszzs +27(1-y) %Zzzo +7? %Zzzozoz
(1- 7)2%22%301213223 +27(1-7)32220 +7* 32220202
(1,1,1,1) (1-7)3z3 +7(1 - 32z0)
(1-y)(1- *Z23)+73zoz
(1-7)3223 +7320m
A.S CF equations for \,,: CF(N,y,2,7).
Table 4. CF equations for Nup: CF(./\/up, z,7)
ncN up n €N goum CF formula
(0,0,2,2) (2,2,0,0) (1-7)* (1= 2z1z0201) +27(1 = 7) (1 - 22z120) +7* (1 - 2z120200223213)
(1-7)*{z1z0201 +2r(1 = 7) s2120 + 72§ 2120200223213
(1- 7’)2 %ZIZOZOI +2y(1- J’) z1z0+7* Z1Z0202223213
(0,1,2,1) (1,2,1,0) (1=7)(1-221) +7(1 - 2z23213271)
(1-7) %Zl +V%Z2321321
(1-7)321 +rizszia
(0,1,1,2) (2,1,1,0) (1=7)* (1= 2z0z01) +27(1 = 1) (1 = 20 + Lz0223213) + 72 (1 = 220202)
(1- Y)Z%Zozm +7(1-7)z0 (1 - $223213) +7* 3 20202
(1-7) a0z +7(1 - 7)z0 (1 - 1z23213) +7* 120202
(0,2,2,0) (0,2,2,0) 1 - 222321321
1nzz37
§Z2Z23Z13zl
(0,2,1,1) (1,1,2,0) (1-7)(1- 2z13232) +7(1 - 222)
(1-7)3z2820 + 7322
(1-7)3z32322 +732
(0,2,0,2) (2,0,2,0) (1-7)* (1= 2zyz0z01z13223) +27(1 = 7) (1 = 2z320) + 72 (1 = 22520202)
(1-7)* L zzznziazs +2r(1-7)izz + 1 dnz0ze
(1-7)* i zz0z01 213723 + 21 (1 - 1) 3 2220 +1* 32220202

(continued)
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Table 4. (continued)

neNy n €N jon CF formula
(1,0,2,1) (1,2,0,1) (1=7)(1-%2) +7(1- 2z13z1)
(1-7)3z1+rizi3z
(1-7)iz+rizizz
(1,0,1,2) (2,1,0,1) (1=7)* (1= 2zoz01) +27(1 = 7) (1 — 20 + L20213) + 72 (1 = 220202223)
(1- 7)2%20301 +y(1 _?’)Zo(l - 3213) ‘H’Z%Zozozzzs
(1-7)*4 Lzozo1 +7(1-7)z0 (1 - 1213) + ¥ 20200203
(1,1,2,0) (0,2,1,1) 1- 22537
%21321
%ZISZI
(1,1,0,2) (2,0,1,1) (1-7)* (1= 2z0z13201) +27r(1 = 7) (1 — 20 + 2 z0223) +7* (1 = 2z0202)
(1-7) 320z13701 +7(1 —}’)Zo(l - —223) +7* 32020
(1-7)* 320z13z01 +¥(1 = 7)20( 3223) +7* 32020
(1,2,1,0) (0,1,2,1) 1- 22332
%Zz3zz
%22312
(1,2,0,1) (1,0,2,1) (1-7)(1-220320) +7(1- 225)
(1-7)3z322+7322
(1-7)3mntriz
(2,0,2,0) (0,2,0,2) 1- 2232132
52321321
%Zszlszl
(2,0,1,1) (1,1,0,2) (1-7)(1=2z1323) +7(1 - 223)
(1-7)3z1323+73%
(1-7)3z13z3 +732
(2,0,0,2) (2,0,0,2) (1=7)*(1 - 2z3z0z13201) +27(1 = 7) (1 = 22320) + 72 (1 = 22320223202 )
(1- 7)2%2320213201 +2y(1-y) 32320 + 77 32320223702
(1- 7)2§2320Z13Z01 +2r(1-7) 32320 +7* 12320223702
(2,1,1,0) (0,1,1,2) 1-2z3
3%
333
(2,1,0,1) (1,0,1,2) (1-7)(1-223) +7(1 - 222323)
(1-7)3z3 +7322323
(1-7)3z3 +7322323
(2,2,0,0) (0,0,2,2) 1- 22,2323
%Zzzzsz3
%Zzzzsza
(1,1,1,1) (1=-7)(1=3z02) + 73201

(1-7)32z02 +7(1- 3z01)
(1-7)3z02 + 73201
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Identifiability of 4-node cycles « 21

Appendix B: Phylogenetic networks as a set of polyno-
mial equations: n = 6 taxa

B.1 CF equations for 4-cycle network \ 4, for
N = 1212 (Diamond 6).

Table 5. CF equations for 4-cycle network A 4y, for N = 1212 (Diamond 6)

n CF formula
(0,1,1,2) 1-22z
(0,2,1,1) 1-2z37
%21311
%Z13Z1
(0,2,0,2) 1- 2232137
%Z3213Z1
%Z321321
(1,0,1,2) (1=7)(1-223) +7(1 - 222323)

(1-7)32 +7522323

(1

z3+r3237

(1,1,0,2) (1-7) (1= 2z1323) +7(1 - 223)
(1-7)3z13z3+732
(1-7)3z13z3 + 7323

(1,2,1,0) (1-p)(1- le)—l-y( z23z13z1)

7)
)(1
)
)
)
(1-7)3z1 +r3zsz321
(1-7)
(1,2,0,1) (1-7y) 1——z1)+7/(1—%z13z1)
(1-7)
(1-7)3z1+73z1321
(1,1,1,1) (1=7)(1-2213) + 71z
(1-7) Zl3+7(1—%223>
(1-y)3z13+73223

1

3

1

3

1

3

1

3

1 1

321 T7322321371
1
ja1trizsa
1

3

1

3

1

3

B.2 CF equations for 4-cycle network right for
N = 1122 (Diamond 9).

Table 6. CF equations for 4-cycle network A/ right for N = 1122 (Diamond 9)

neN right n € N joun CF formula

(0,1,1,2) (1,0,2,1) (1-7)(1-2232) +7(1- 225)
(1-7)izsz+732
(1-7)32322+7322

(0,2,1,1) (1,0,1,2) (1-7) (1= 223) +7(1 - 223525)
(1-7)3z3+7r3zs2
(1-7)323 +7322323

(continued)
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22 . Tileyetal

Table 6. (continued)

neN, right n € N goun CF formula
(0,2,0,2) (0,0,2,2) 1 - 22,25323
%22Z23Z3
%Zzzzszs
(1,0,1,2) (1,1,2,0) (1-7)(1-2232537) +7(1 - 222)
(1-7)3zi32322 + 7522
(1-7)jz2022 + 732
(1,1,0,2) (0,1,2,1) 1-22)32,
%Zzszz
%ZZ3Z2
(1,2,1,0) (1,1,0,2) (1=7)(1=2z1323) +7(1 - 223)
(1-y)3z1323 +732
(1-y)3z13z3+732
(1,2,0,1) (0,1,1,2) 1-2z
35
35
(1,1,1,1) (1=y)3z01 +7(1 = 3z13)
(1=7)(1=3zo1) + 73213
(1=y)3201 +73213

B.3 CF equations for 4-cycle network N\
for N = 2211 (Diamond 7).

Table 7. CF equations for 4-cycle network N, for N = 2211 (Diamond 7)

ne Ny n €N jon CF formula
(0,1,1,2) (1,2,0,1) (1=9)(1=221) +7(1- 22z1321)
(1-7)3z1+rizi3z
(1-7)3z1+73z1321
(0,2,1,1) (2,1,0,1) (1=7)* (1= 2zoz01) +27(1 = 7) (1 = 20 + L20213) + 72 (1 = 220202223)
(1_7)2%203014‘7(1_ (1 32 )‘H’ 320202223
(1- y)2§z0z01 +y(1- (1 -3z SR 320202223
(0,2,0,2) (2,2,0,0) (1-7)*(1 - 2z120201) +2y(1 -7)(1-22120) +7* (1 - 2212020223213)
(1- }’)2%2120201 +2r(1-7) 32120 + 7 3212020223713
(1=-7)*1ziz0201 +27(1 - 7) L2120 + P2 L 2120200203213
(1,0,1,2) (0,2,1,1) 1- 22532
%lezl
%21311
(1,1,0,2) (1,2,1,0) (1=9)(1=221) +7(1 - 2zp321321)
1

(1-7)3 21+Y3Z23Z1321

(1-7)321 +r32321321

(continued)
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Identifiability of 4-node cycles «+ 23

Table 7. (continued)

neNy n €N jon CF formula

(1,2,1,0) (2,0,1,1) (1-7)* (1= 2z0z13z00) +27(1 = 7) (1 — 20 + 1 2z0223) + 72 (1 = 2z0202)
(1 —Y)Z%Zozmzm +r(1 —Y)Zo(l - %223) +7* 32020
(1 _Y)Z%Zozlszm +r(1-p)z0(1- %Zzs) +7* 320202

(1,2,0,1) (2,1,1,0) (1=7)*(1 - 2z0z01) +27(1 = 7) (1 = 20 + L20223213) + 7 (1 = 220202)
(1 —7)2§20201 +7(1 —7)20(1 - %223@13) +7* 32070
(1 —7)2%250201 +r(1-7)z0(1 - tz23213) +7* 2020

(1,1,1,1) (1-7)3z23 +7(1 = 3202)
(1-7)(1- ‘Zzs) +73Z02
(1-7)3223 +7370m

B.4 CF equations for 4-cycle network \V,,
for N = 2121 (Diamond 8).

Table 8. CF equations for 4-cycle network A\, up for N =2121 (Diamond 8)

ncN wp n €N joun CF formula
(0,1,1,2) (2,1,1,0) (1=7)* (1= 2z0z01) +27(1 = ¥) (1 = 20 + Lz0z23213) +7* (1 = 220202)
(1 —7)2%20101 +7(1- V)Zo<1 - —223113) +7*3 320202
(1=7)"Lzoz01 +7(1 = 7)20 (1= Lz23213) +7* L2020
(0,2,1,1) (1,1,2,0) (1=7)(1- 2z13237) +7(1 - 222)
(1-7)3z32322 + 732
(1-7)3z32322 +7322
(0,2,0,2) (2,0,2,0) (1 7/)2(1 - Inzoz01z13223) +2r(1=7) (1= 22220) + 72 (1 - 22220202)
(1-7)* L zzoznzinzns +2r(1-7)dzz + 1 daz0ze
(1 7)2%22Z0301Z13223 +27(1-7)32220 +7* 3222020
(1,0,1,2) (2,1,0,1) (1=7)*(1 - 2z0z01) +27(1 = 7) (1 = 20 + L20213) + 72 (1 - 220200223)
(1 —7/)2%20201 +7(1=y)zo(1- l213) +7* 220200223
(1 —y)Z%zozm +7(1-7y)zo(1- —z13) + 7320202223
(1,1,0,2) (2,0,1,1) (1-7)* (1= 2z0z13201) +27(1 - y)(l —20+ 320223) + 77 (1 - 2z0202)
(1 7)2%20113%1 +r(1 _V)Zo(l ) +7* 120200
(1-y)? 3z0z13z01 +7(1 -7)z0(1- gzz3> +7* 320200
(1,2,1,0) (0,1,2,1) 1- 2252,
322322
%22322
(1,2,0,1) (1,0,2,1) (1=7)(1 - 220322) +7(1 - 223)
(1-7)3z322 +7322
(1-7)3z322+7322
(1,1,1,1) (1=-7)(1=3202) +73201
(1-7)3z02 +7(1—2z01)
(1-7)3z02 +73201

920z Asenuer g| uo Jasn saleiqgi] UOSIPBI\-UISUOSIAA 10 AlsIaniun AQ 0022S28/6 10182/ | /y/o[onie/uBauuljoAs/wod dno-olwapeoe//:sdiy Wol) papeojumo(]



24 . Tileyetal

Appendix C: Phylogenetic networks as a set of
polynomial equations: n = 7 taxa
C.1 CF equations for \ ,,,, for N = 1222 (Diamond 2).

Table 9. CF equations for N 4,,,, for N = 1222 (Diamond 2)

n

CF formula

(07 07 27 2)

(0,1,2,1)

(07 17 172)

(07 27 27 0)

(0727 17 1)

(0,2,0,2)

(1707271)

(1707172)

(1717270)

(1,1,0,2)

(1,2,1,0)

(1’2707 ]')

(1,1,1,1)

2
1- 3222323

1

32222323

1
32222323

2
1- 3 2232

1
322322

1

322322
_2

1 3 zZ3

1
3%3

1
343

2
1 - Sznz321321

1
3

1
3

2222321321
2222321321

2
1- 321321

1

321321

1
321321
1- §Z3Z13Z1

1

32321321

3

(1-7)(1- 222322) +7(1 - 222)
(1-y)izantriz
(1-y)3z2322+732
(1=7)(1-223) +7(1 - 222323)
(1-y)3z3 +r3z323
(1-y)3z3+73232

(1 —y)(l - %21322322) +}'(1 - %zz)
(1-y)3z32322 + 732
(1-y)iznzsnt+riz
(1-p)(1- §z13Z3) —H/(l - §z3)
(1-y)3z13z3 +732
(1-7)3zi3z3+7iz3

(1 —7)(1 - %zl) 'H’(l - §Z23Z13Z1)
(1 _7)%31 ‘H’%Zzszlszl
(1-7)321 +r3ziz321

(1 —y)(l - %zl) +}’(1 - %zmzl)
(1-y)3z1 +7321321
(1-7)321+r3zi32

(1 —y)(l - %zm) +73223
(1-7)3213 ‘H’(l - §Z23)
(1-7)3z3+7323
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Identifiability of 4-node cycles «+ 2§
C.2 CF equations for \ right for N = 2122 (Diamond 5).

Table 10. CF equations for N/ right for N = 2122 (Diamond 5)

neN right n €N goun CF formula
(0,0,2,2) (2,0,2,0) (1-7)* (1= 220201213223 ) + 27 (1 = 7) (1 = 22320) + 72 (1 = 22320202)
(1-7)* Lznz0znzi3z0s +27(1 - 1) iz + P L 220200
(1—7)252220101213123 +2r(1-7)3220 +7* 32220202
(0,1,2,1) (2,0,1,1) (1-7)* (1= 2z0z13z00) +27(1 = 7) (1 — 20 + 1 2z0223) + 72 (1 = 2z0202)
(1 _y)Z%ZOZISZOI +r(1-7)z(1 - %223) +7* 32020
(1 _7)2%20213%1 +r(1-p)z0(1- %Zzs) + 7320702
(0,1,1,2) (1,0,2,1) (1=-7)(1-32322) +7(1-32)
(1-7)3z322+7322
(1-7)3z322+7322
(0,2,2,0) (2,0,0,2) (1-7)* (1= 22320213201 ) +27(1 = 7) (1 = 22320) + 72 (1 = 22320223202)
(1-7)*z3z0213201 +27(1 - 7) 2320 + P Lz 20203200
(1-7)*zsz0zi3z01 +2¢(1 - 7) 2320 + P Lz z0203200
(0,2,1,1) (1,0,1,2) (1=7)(1-223) +7(1 - 22323)
(1-7)3z3+rizszs
(1-7)3z3+7r3z32
(0,2,0,2) (0,0,2,2) 1- 22,2537
%7«222323
%Zzzzszs
(1,0,2,1) (2,1,1,0) (1=7)*(1 - 2z0z01) +27(1 = 7) (1 = 20 + L20223213) + 7 (1 = 220202)
(1-y) $z0zo1 +7(1-7)z o(1- 5223213) +7* 120200
(1 —7)2%250201 +7(1-y)zo(1- —1237«13) +7* 320200
(1,0,1,2) (1,1,2,0) (1-7)(1- 2z3237) +7(1 - 222)
(1-7)izz322 + 732
(1-7)3z32302 +732
(1,1,2,0) (2,1,0,1) (1- y)2(1—§z0z01)+2y(1—y)(l—zo+%zozl3)+y2(1—%zozozzzg,)
(1 _7)2%10101 +r(1-y)z0(1- %213) +7* 320200223
(1 _V)Z%ZOZOI +r(1 —V)Zo(l - 5213) +7* 220200223
(1,1,0,2) (0,1,2,1) 1- 2257,
322322
%22322
(1,2,1,0) (1,1,0,2) (1-7)(1 - 2z1323) +7(1 - 223)
(1-y)izi3zs +73z
(1-7)3z1333+732
(1,2,0,1) (0,1,1,2) 1-2z
3%
3%
(1,1,1,1) (1-7)3z01 +7(1-3z13)
(1=7)(1-fzo1) + 73213
(1-7)3z0 +73213
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C.3 CF equations for Nleft for N = 2212 (Diamond 3).

Table 11. CF equations for A/ for N = 2212 (Diamond 3)

ncN left n €N joun CF formula
(0,0,2,2) (0,2,0,2) 1- 2232132
%Z3Z13Z1
52321321
(0,1,2,1) (1,1,0,2) (1=9) (1= 2z1323) +7(1 - 223)
(1-7)3z323 +7323
(1-7)3zi3z3+732
(0,1,1,2) (1,2,0,1) (1=p)(1-221) +7(1 - 221321)
(1-y)3z1+7izi3m
(1-y)3z21 +73z1321
(0,2,2,0) (2,0,0,2) (1- }’)2(1 - 3z;z0z13z01) +27(1-7) (1 - §2320) +77 (1 - 323%0223202)
(1- y)Z%z3zoz13z01 +2y(1-7)3z320 + 7> 12320723702
(1- }’)2§Z3ZO7«13Z01 +27(1-7)3z320 +7° 32320223202
(0,2,1,1) (2,1,0,1) (1-7)*(1- fzozm) +2y(1 =7)(1=z0+ Lzoz13) + 72 (1 - 220202223)
(1- y)2§z0z01 +r(1-7)z0(1- 3z z13) +7* 320202223
(1-7)*zozo1 +7(1- 0(1 1213) +77 20200223
(0,2,0,2) (2,2,0,0) (1- }’)2(1 - 51110201) +27(1 -7) (1 - %leo) ‘H’z(l - %ZIZOZOZZBzB)
(1 - }’)2 %leozm + 27(1 - 7’) %leo + }’2 %leozozzzszm
(1- }’)252120201 +2r(1-7) 32120 +7* 2120200223713
(1,0,2,1) (0,1,1,2) 1- 2z
333
333
(1,0,1,2) (0,2,1,1) 1- 22537
%lezl
%ZBZI
(1,1,2,0) (1,0,1,2) (1-7)(1=223) +7(1 - 223323)
(1-y)3z3+7323%
(1-7)3z3 +7322323
(1,1,0,2) (1,2,1,0) (1=-)(1=221) +7(1 - 2zp321321)
(1-7) %Zl +v 312321321
(1 Y)%Zl+7322321321
(1,2,1,0) (2,0,1,1) (1-7)*(1 - 2zoz13201) +27(1 = 7) (1 — 20 + L20223) + 72 (1 = 220202)
(1 Y)Zézozlazm +y(1-7)z0(1- %Zzs) +7* 320200
(1-7) 20z13Z01 +7(1 - 7)z0(1- %123) +7* 320202
(1,2,0,1) (2,1,1,0) (1=7)* (1= 2z0z01) +27(1 = 7) (1 = 20 + Lz0223213) +7* (1 = 2z0202)
(1 Y)Z%ZOZol +y(1 —}’)Zo(l - 32235513) +7 320202
(1 }’)Zézozm +7(1-7)z (1 - %2232513) +7* 32020
(1,1,1,1) (1-7)3z3+7(1-%z02)
(L=7)(1 = 3223) + 7320
(1-7)323+732m
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C.4 CF equations for \’ up for N = 2221 (Diamond 4).

Table 12. CF equations for A/, for N = 2221 (Diamond 4)

Identifiability of 4-node cycles « 27

neN wp n €N goun CF formula
(0,0,2,2) (2,2,0,0) (1-7)* (1= 2z120201) +27(1 = 7) (1 - 2z120) + 72 (1 - 2z120200223213)
(1- 7)252120201 +2y(1-y)3z120 + 7’ 1212020022321
(1- y)2§z1z0z01 +2y(1- ) z1z0+7°3 321%20202223213
(0,1,2,1) (1,2,1,0) (1=7)(1-221) +7(1 - (zp321321)
(1-7)3z21 +73z32132
(1- 7)%21 +}’3zz321321
(0,1,1,2) (2,1,1,0) (1=7)*(1 - 2z0z01) +27(1 = 7) (1 = 20 + L20223213) + 7 (1 = 220202)
(1- 7)%20201 +r(1-7)z0(1- 3223213) +7* 32020
(1-y) 320701 +7(1 - 7)zo(1- —z23z13) +7* 320202
(0,2,2,0) (0,2,2,0) 1 - 2220321321
§ZZz23zl3zl
3252252311321
(0,2,1,1) (1,1,2,0) (1-7)(1- 2z13237) +7(1 - 222)
(1-7)jz20322+ 732
(1-7)3232322 +7322
(0,2,0,2) (2,0,2,0) (1-7)* (1= 2zyzozoizi3203) +27(1 = 7) (1 = 2za20) + 72 (1 = 22520202)
(1- 7)2%2210201213223 +2r(1-7)3220 +7* 32220202
(1-7)*iznz0z01 213223 + 27 (1 - 7) 3 2220 + 1 S 2220200
(1,0,2,1) (1,2,0,1) (1=7)(1-221) +7(1- 221321)
(1-7)iz+rizi3z
(1-7)321+7r3zi321
(1,0,1,2) (2,1,0,1) (1=7)* (1= 2z0z01) +27(1 = 7) (1 = 20 + Lz0213) + 72 (1 = 220202223)
(1- 7)2%20%1 +r(1 _V)Zo<1 - lz13.) + 7% 320202223
(1- 7) 1Z0Z01 +y(1- 7’)20(1 - —213) ‘H’Z%Zozozzzs
(1,1,2,0) (0,2,1,1) l—le3z1
%21321
%Zl?,zl
(1,1,0,2) (2,0,1,1) (1-7)* (1= 2z0z13z00) +27(1 = 7) (1 — 20 + 1 2z0223) + 72 (1 = 2z0202)
(1- 7) ;ZozBZOl +7(1 _7)20(1 - %223) ‘H’Z%Zozoz
(1 —7)2320213201 +r(1 —7)20(1 - %223) +7* 320202
(1,2,1,0) (0,1,2,1) 1= 2232
322322
%2232’2
(1,2,0,1) (1,0,2,1) (1-7)(1-32322) +7(1-32)
(1-7)3z322+7322
(1-7)3z32+7322
(1,1,1,1) (1-7)(1=3z0) +73201
(1 —7)%%2 +7(1-2zy)
(1=7)3z02 + 73201
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Appendix D: Theorems and proofs for generic
identifiability of 4-node cycles in semi-directed level-1
phylogenetic networks

Theorem 4. Let N o, be a semi-directed level-1 6-taxon
phylogenetic network with one hybridization event
producing a hybridization cycle with 4 nodes. Without loss
of generality, let the taxa be partitioned among clades
as ng = 1,n; =2,ny = 1,n3 =2 (Fig. 3). Let the hybrid
node be ancestral to the clade ng. Let ./\/leﬂ be a semi-
directed level-1 6-taxon phylogenetic network with one
hybridization event producing a hybridization cycle with 4
nodes such that the unrooted version of N i agrees with
the unrooted version of N . Let the hybrid node in the
hybridization cycle in N left be ancestral to the clade n;.
Then, N goun and N lefe are generically identifiable
lftl <oo,t13 >0,t3 <09, and A (0, 1)

Proof.

The structure of the proof is the same as for Theorem 3, but
we repeat it for completeness. Let CF(N goun,z,7) be the sys-
tem of CF polynomial equations defined by A4, and let
CF(Ni,2',7') be the system of CF polynomial equations
defined by . Both systems of equations can be found in the
Appendix (Tables 1-14).

Let P={p(z,7) —q(Z,7) : p(z,7) € CEWN doun- z,7), q(Z,
7') € CE(N4,2',7')} be the set of polynomial equations
resulting from matching CF (N down>2,¥) to CF (N left Z.7).

Using Macaulay2 (Grayson and Stillman undated), we com-
pute the Grobner basis of P on the (z,¥) variables by any elimi-
nation order. All Macaulay2 scripts are available at https://
github.com/ gtlley/ diamond- 1dent1ﬁab1hty

Let C(z.7.2,7) : 2 € [0,00)" 7 € [0, 1]",2' € [0,00)" 7,
7 €]o, l]h] be the set of all polynomials on the (z,7,7,7')
variables.

The resulting ideal is given by:

{(z1)(z13 = D(23)(7.)(r. = Dpilz,7) = pi
€ Cl(z,7,7,7); deg(p) =7i=1,...,8}

which represents the conditions that the (z,¥) variables need to
satisfy for the polynomial set P to vanish to zero.

As the polynomials {pi(z,7)};_, have the Lebesgue measure
zero, N joun and N 1yt are not generically identifiable in the subset

of parameter space corresponding to {z; =0} U{z;3 =1}
U{zs =0} U{r=0}u{r=1}. m.

Theorem S. Let N o, be a semi-directed level-1 6-taxon
phylogenetic network with one hybridization event
producing a hybridization cycle with 4 nodes. Without loss
of generality, let the taxa be partitioned among clades
as ng = 1,n; =2,ny = 1,n3 =2 (Fig. 3). Let the hybrid
node be ancestral to the clade ny. Let ./\/up be a semi-
directed level-1 6-taxon phylogenetic network with one
hybridization event producing a hybridization cycle with 4
nodes such that the unrooted version of N up agrees with
the unrooted version of N go,. Let the hybrid node in the
hybridization cycle in N, be ancestral to the clade ns.
Then, N gown and N’ up are generically identifiable
if ) <00,t3>0,t <00, and y € (0,1).

Proof.

The structure of the proof is the same as for Theorem 4, but
we repeat it for completeness. Let CF(A jom,2,7) be the sys-
tem of CF polynomial equations defined by N, and let
CF(Np,7,7') be the system of CF polynomial equations
defined by \V,,. Both systems of equations can be found in the
Appendix.

Let P={p(z,7)—q(Z.7') : p(2,7) € CF(N doun,2,7),q(Z,
7') € CF(N,,2',7')} be the set of polynomial equations result-
ing from matching CF(N 4o, 2,7) to CF(N up,z’, 7).

Using Macaulay2 (Grayson and Stillman undated), we com-
pute the Grobner basis of P on the (z,¥) variables by any elimi-
nation order. All Macaulay2 scripts are available at https://
github.com/ gtlley/ diamond- 1dent1ﬁab111ty

Let C[(z,7,2,7) :z€[0,00)" 3,y € [0,1)",2' € [0,00)" 3,
7 €]o, I]h] be the set of all polynomials on the (z,7,7',y)
variables.

The resulting ideal is given by:

{(z0)(z13 = 1)(23)(7.) (7.
€ Cl(z,7,2,7)]; deg(p)

pi(z,7) : pi
10;i=1,...,12}

which represents the conditions that the (z,¥) variables need to
satisfy for the polynomial set P to vanish to zero.

As the polynomials {p;(z,7)}", have the Lebesgue measure
zero, N gon an up are not generically identifiable in the subset
of parameter space corresponding to {z; =0} U{z;3 =1}
Wz =0}U{y=0}U{y=1} LB
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Appendix E: Subset of CF equations used in

Macaulay2

We present below the table with the major CF for all 4-taxon

Identifiability of 4-node cycles « 29

equations are multiplied by 3 for conciseness. All Macaulay2

scripts can be found in https://github.com/gtiley/diamond-

subsets, except (1,1,1,1) for which we present all equations. All

Table 13. Subset of CF equations used in Macaulay2 (Part 1)

identifiability/tree/main/scripts/macaulay2.

(n07nl7n27n3)

N right

(0,0,2,2)

(07 1’27 1)

(07 15 1’2)
(0,2,2,0)

(0,2,1,1)
(0,2,0,2)
(1,0, 2, 1)

(170ﬂ 172)
(1,1,2,0)

1,1,0,2
1,2,1,0
1,2,0,1
2,0,2,0

—~ o~ o~
T — — —

(2,0,1,1)

(2,0,0,2)

(2,1,1,0)

Ndown
3- 2Z2223Z3
3- 222322
3- 223

3 - 2222321321

3- 221321
3- ZZ3ZI3Z1

(1-7)(3-222322) +7(3-22,)

(1-7)(3-223) +7(3 —222323)
(1-7)(3-2z1322322) +7(3 - 222)

(1-7)(3-221323) +7(3-223)
(1-7)(3-221) +7(3 - 22321321)
(1=7)(3-22z1) +7(3-22z1321)
(1-7)*(3 - 2z220201213223)
+27(1-7)(3 - 22:20)

+ }’2(3 - 2Zzzozoz)

(1-7)*(3 = 2z0z13201)
+2y(1-7)(3 =320 +20223)
+7%(3 - 220202)
(1-y)*(3=22z320z13201)
+27(1-7)(3 - 22320)

+7*(3 - 2z32022320)
(1-7)*(3 - 2z0701)
+2y7(1-7)(3 =320 + z0223213)
+7*(3 - 220202)

(1-7,)* (3 = 2uzuquorur3z3)
+27,(1-7.)(3 = 2t2u0)
+72(3 = 2uzugupy)

(1-7.)*(3 = 2uou13u01)
+27,(1=7,)(3 = 3uo +utiz3)
+72(3 — 2uoup)

(1-7.) (3 = 2u231) +7,(3 - 2u2)
(1=7,)*(3 = 2u3upur31i01)
+27,(1=7,) (3= 2u3u0)
+72(3 = 2u3uour3u2)
(1-7,)(3-223) +7,(3—222323)
3 —22929323

(1- }’u)z(3 = 2uguor )
+27,(1=7,) (3 = 3uo + uguz3u13)
+72(3 — 2uoup)
(1=7,)(3—2uizu312) +7,(3 —2u2)
(1-7,)*(3 — 2uouor)
+27,(1=7,) (3= 3ug +upuy3)
+7i(3—2u0u02u23)

3 —2ux3uy

(1=7,) (3 =2u13u3) +7,(3 - 2u3)
3—2us

(1=7.)*(3 = 2uuouor)
+27,(1-7.)(3 = 2t1u0)
+72(3 = 2uyuguor a3 t13)

(1=7,)(=2u1) +7,(3 = 2up3u1311)

3 = 2upupzug3ty

(1-7,)3=2u) +7,(3—2u3u)

(continued)
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Table 13. (continued)

(n07n13n2>n3)

N down

N right

(2,1,0,1)

(2,2,0,0)

(17 17 17 1)

(1-7)*(3 =2z0z01)
+2y(1-y)(3 - 320 +20213)
+7*(3 = 220200223)

(1 - 7)2(3 - 22110201)
+27(1-7)(3 -22120)

+ 72(3 - 2Z120Z02223Z13)
(1-7)(3-2z13) + 722
(1-7)z13+7(3 - 2223)
(1-7)z13+ 7223

3- 21{13141

3- 21131413141

(1=7,)uo1 +7,(3=2u13)
(1-y,)(3=2uq) +7,u3
(1 _J/u)u()l +}/uul3

Table 14. Subset of CF equations used in Macaulay2 (Part 2)

(n07nlan27n3)

Nleft

Nup

(0,0,2,2)

(07 17271)
(0,1,1,2)

(0,2,2,0)

(0,2,1,1)

(0,2,0,2)

(1,0,2,1)
(1,0, 1,2)

(17 17270)
(1,1,0,2)

(1,2,1,0)

3- 21)31/131/1

(1=7,)(3=2v13v3) +7,(3—2v3)
(1-7,)3=2v1) +7,(3=2v1311)

(1-7,)*(3 - 2v3vov13v01)
+27,(1-7,)(3 - 2v3m)
+72(3 = 2v300v23v02)
(1=7,)"(3 = 2vov01)
+27,(1=7,)(3 = 3vo +vov13)
+72(3 = 2vgvpa123)

(1- 7v)2(3 = 2uvv01)
+27,(1=7,)(3=2viw)

+ 73(3 - 21/11’01’021/231/13)
32,

3-—- 21/131/1

(1 - yv)(:)’ - 2V3) +yv(3 - 21’231)3)
(1=7,)(3=2v1) +7,(3 = 2va3v1311)

(1-7,)*(3 = 2vov13v01)
+ 2}/11(1 - }/V)(:’) - 31}0 + V0V23)
+ 73(3 - 21101/02)

(1 - 7w)2(3 - 2Wlwowm)
+27,(1-7,)(3=2wwp)

+ 73,(3 — 2w woWworwa3w13)
(1-7,)B=2w)+7,(3 —2wywizw;)
(1- 7w)2(3 — 2wowo; )

+27,,(1=7,,) (3 = 3wo +wow3wi3)
+72(3 = 2wowpy)

3 —2wywaswizw

(1-7,)3=2wizwy3w) +7, (3 —2w,)

(1- 7w)2(3 = 2wy wowo1wi3wa3)
+27,(1=7,)(3 = 2wawo)

+ Vi (3 = 2wywowpy )
(1-7,)(3=2wy) +7,(3=2wizw;)
(1- Vw)2(3 — 2wowor )
+27,(1-7,)(3 =3wy +wowi3)
+72(3 = 2wowoawa3)

3 —2wizw;

(1-7,)*(3 - 2wowi3wor )
+27,,(1-7,)(3 = 3w +wowa3)
+72(3 = 2wowy)

3- 2W23 wy

(continued)
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Table 14. (continued)

Identifiability of 4-node cycles « 31

(n07n17n2an3)

N left

Nuw

(1,2,0,1)

(2,0,2,0)
(2,0,1,1)
(2, 0,0, 2)

(27 1, 1,0)
(27 1507 l)
(2,2,0,0)

(1,1,1,1)

(1-7,)%(3 = 2vov01)
+2y,(1-7,)(3 = 3vg +vova3v13)
+72(3 = 2vgv02)

3=21,v53v3

3 =231,

3 = 2v,1p3v1311

(1-7,)(3=2v2312) +7,(3-21)
(1-7,)(3=2v13v2312) +7,(3 = 21,)
(1=7,)*(3 = 2vawov01v13v23)
+27,(1-7,)(3=2v,10)

+72(3 = 2vavov02)

(1=y,)v23 +7,(3-2v02)

(1 - Vu) (3 - 21’23) + 7,02

(=7, v +7,v0

(1=7,)(3=2wywy)+7,(3—2w,)

3 = 2wawizwy

(1=7,)(3=2wizw3) +7,(3 = 2ws3)
(1-7,)*(3 = 2wswowy3wor)
+27,(1-7,,)(3 - 2w3wo)

+ yi(?) — 2w3wowa3woy)

3-2w;
(I=7,)(3=2w3)+7,(3—2wyw;)

3- 2W2W23 w3

(1-7,)3 =2we) +7,wo
(1=7,)wo2 +7,(3=2wor)
(1=7,)wo2 +7,wo1
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